Publications
2024
Evolution shapes and conserves genomic signatures in viruses. M. Holmudden, J. Gustafsson, Y.J.K. Bertrand, A. Schliep and P. Norberg. Communications Biology 7 2024, 1412 (2024). 10.1038/s42003-024-07098-1 PDF
2023
Compressed computations using wavelets for hidden Markov models with continuous observations. L. Bello, J. Wiedenhöft and A. Schliep. PLOS One 2023, 6:18, e0286074. 10.1371/journal.pone.0286074
de Novo Generated Combinatorial Library Design. S.V. Johansson, M. Chehreghani, O. Engkvist and A. Schliep. Digital Discovery 2023, issue 1, 2024, 122–135. First published 27 Nov 2023. 10.1039/D3DD00095H
Diverse Data Expansion with Semi-Supervised k-Determinantal Point Processes. S.V. Johansson, O. Engkvist, M. Chehreghani and A. Schliep. In 2023 IEEE International Conference on Big Data (BigData), IEEE Computer Society, 5260–5265, Dec 2023. 10.1109/BigData59044.2023.10386642
2022
Federated Learning of Oligonucleotide Drug Molecule Thermodynamics with Differentially Private ADMM-Based SVM. S. Tavara, A. Schliep and D. Basu. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II, Springer, 459–467, 2022. 10.1007/978-3-030-93733-1_34 PDF
Using active learning to develop machine learning models for reaction yield prediction. S. Viet Johansson, H. Gummesson Svensson, E. Bjerrum, A. Schliep, M. Haghir Chehreghani, C. Tyrchan and O. Engkvist. Molecular Informatics 2022, 41, 2200043. 10.1002/minf.202200043 PDF
2021
Effects of Network Topology On the Performance of Consensus and Distributed Learning of SVMs Using ADMM. S. Tavara and A. Schliep. PeerJ Computer Science 2021, 7, e397. 10.7717/peerj-cs.397 Dataset
Deep Learning for Deep Waters: An Expert-in-the-loop Machine Learning Framework for Marine Sciences. I. Ryazanov, A. Trygvesdotter Nylund, D. Basu, I. Hassellöv and A. Schliep. Journal of Marine Science and Engineering 2021, 9:2, 169. 10.3390/jmse9020169
Fast parallel construction of variable-length Markov chains. J. Gustafsson, P. Norberg, J.R. Qvick-Wester and A. Schliep. BMC Bioinformatics 2021, 22:1, 1–23. 10.1186/s12859-021-04387-y PDF PubMed
Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer’s disease. H.V. Dansson, L. Stempfle, H. Egilsdóttir, A. Schliep, E. Portelius, K. Blennow, H. Zetterberg, F.D. Johannson and A. Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimer’s Research & Therapy 2021, 13:1, 151. To appear.. 10.1186/s13195-021-00886-5 PDF PubMed
2020
Blood glucose prediction with variance estimation using recurrent neural networks. J. Martinsson, A. Schliep, B. Eliasson and O. Mogren. Journal of Healthcare Informatics Research 2020, 4, 1–18. 10.1007/s41666-019-00059-y
Parallel construction of variable length Markov models for DNA sequences. J. Qvick. Master's Thesis, Chalmers University of Technology, Feb 2020. PDF
Prediction of Liver Toxicity using Machine Learning to aid Drug Discovery. D. Brunnsåker. Master's Thesis, Chalmers University of Technology, Feb 2020. PDF
AI-assisted synthesis prediction. S. Johansson, A. Thakkar, T. Kogej, E. Bjerrum, S. Genheden, T. Bastys, C. Kannas, C. Schliep, H. Chen and O. Engkvist. Drug Discovery Today: Technologies 2020. 10.1016/j.ddtec.2020.06.002
Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. N. Judd, B. Sauce, J. Wiedenhoeft, J. Tromp, B. Chaarani, A. Schliep, B. van Noort, J. Penttilä, Y. Grimmer, C. Insensee, A. Becker, T. Banaschewski, A.L.W. Bokde, E.B. Quinlan, S. Desrivières, H. Flor, A. Grigis, P. Gowland, A. Heinz, B. Ittermann, J. Martinot, M. Paillère Martinot, E. Artiges, F. Nees, D. Papadopoulos Orfanos, T. Paus, L. Poustka, S. Hohmann, S. Millenet, J.H. Fröhner, M.N. Smolka, H. Walter, R. Whelan, G. Schumann, H. Garavan and T. Klingberg. Proceedings of the National Academy of Sciences 2020, 117:22, 12411–12418. 10.1073/pnas.2001228117 PDF
The Global Museum: natural history collections and the future of evolutionary science and public education. F.T. Bakker, A. Antonelli, J.A. Clarke, J.A. Cook, S.V. Edwards, P.G. Ericson, S. Faurby, N. Ferrand, M. Gelang, R.G. Gillespie, M. Irestedt, K. Lundin, E. Larsson, P. Matos-Maraví, J. Müller, T. von Proschwitz, G.K. Roderick, A. Schliep, N. Wahlberg, J. Wiedenhoeft and M. Källersjö. PeerJ 2020, 8:e8225. 10.7717/peerj.8225 PDF PubMed
Machine Learning for Predicting Progression of Alzheimer’s Disease. H. Egilsdottir and H. Valur. Master's Thesis, Chalmers, Jun 2020. PDF
Machine learning for big sequence data: Wavelet-compressed Hidden Markov Models. L. Bello. Master's Thesis, Chalmers, Jun 2020. PDF
Compressed Machine Learning on Time Series Data. N. Gocht and F. Finger. Master's Thesis, University of Gothenburg, Jul 2020. PDF
2019
Parallel Computing of Support Vector Machines: A Survey. S. Tavara. ACM Computing Surveys 2019, 51:6, 123. 10.1145/3280989 Supplement
High-Performance Computing For Support Vector Machines. S. Tavara. University of Skövde, Feb 2019. (Licentiate Thesis). PDF
Bayesian optimization in ab initio nuclear physics. A. Ekström, C. Forssén, C. Dimitrakakis, D. Dubhashi, H. Johansson, A. Muhammad, H. Salomonsson and A. Schliep. Journal of Physics G: Nuclear and Particle Physics 2019, 46:095101. 10.1088/1361-6471/ab2b14
Prototype-based compression of time series from telecommunication data. G. Alpsten and S. Sabi. Master's Thesis, Chalmers University of Technology, Jun 2019. PDF
Using clickers to predict students final courses grades, an artificial intelligence approach. F. Delahunty and A. Schliep. Technical report, Jan 2019. Extended Abstract for Conference on Teaching and Learning (KUL2019). PDF
Bayesian localization of CNV candidates in WGS data within minutes. J. Wiedenhoeft, A. Cagan, R. Kozhemyakina, R. Gulevich and A. Schliep. Algorithms for Molecular Biology 2019, 14:20. 10.1186/s13015-019-0154-7 PDF PubMed
City Safety Event Classification using Machine Learning. N. Jurczyńska. Master's Thesis, University of Gothenburg, Jun 2019. PDF
Predicting Mechanisms of Toxicity for Drug Development. S.R. Stahlschmidt. Master's Thesis, University of Göteborg, Jun 2019. PDF
Embracing heterogeneity: building the Tree of Life and the future of phylogenomics. G.A. Bravo, A. Antonelli, C.D. Bacon, K. Bartoszek, M.P.K. Blom, S. Huynh, G. Jones, L.L. Knowles, S. Lamichhaney, T. Marcussen, H. Morlon, L.K. Nakhleh, B. Oxelman, B. Pfeil, A. Schliep, N. Wahlberg, F.P. Werneck, J. Wiedenhoeft, S. Willows-Munro and S.V. Edwards. PeerJ 2019, 7:e6399. 10.7717/peerj.6399 PDF Supplement PubMed
2018
An Optimization Problem Related to Bloom Filters With Bit Patterns. P. Damaschke and A. Schliep. In SOFSEM 2018: Theory and Practice of Computer Science, Springer, 10706, 525–538, Jan 2018. 10.1007/978-3-319-73117-9_37 PDF
Dynamically Compressed Bayesian Hidden Markov Models using Haar Wavelets. J. Wiedenhoeft. Ph.D. Thesis, Rutgers, The State University of New Jersey, Oct 2018. PDF
Automatic Blood Glucose Prediction with Confidence Using Recurrent Neural Networks. J. Martinsson, A. Schliep, B. Eliasson, C. Meijner, S. Persson and O. Mogren. In Proceedings of the 3rd International Workshop on Knowledge Discovery in Healthcare Data co-located with the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI), 64–68, Jul 2018. PDF
Clustering Vehicle Maneuver Trajectories Using Mixtures of Hidden Markov Models. J. Martinsson, N. Mohammadiha and A. Schliep. In 21st International Conference on Intelligent Transportation Systems {ITSC}, IEEE, 3698–3705, Nov 2018. PDF
Statistical Sensor Modelling for Autonomous Driving Using Autoregressive Input-Output HMMs. E. Listo Zec, N. Mohammadiha and A. Schliep. In 21st International Conference on Intelligent Transportation Systems {ITSC}, IEEE, 1331–1336, Nov 2018. 10.1109/ITSC.2018.8569592 PDF
Effect Of Network Topology On The Performance Of ADMM-based SVMs. S. Tavara and A. Schliep. In 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), IEEE, 388–393, Sep 2018. 10.1109/CAHPC.2018.8645857 PDF
Using HaMMLET for Bayesian Segmentation of WGS Read-Depth Data.. J. Wiedenhoeft and A. Schliep. Methods Mol Biol 2018, 1833, 83–93. 10.1007/978-1-4939-8666-8_6 PubMed
Clustering genomic signatures. J. Gustafsson and E. Norlander. Master's Thesis, Chalmers University of Technology, Jun 2018. PDF
Improved Pattern Generation for Bloom Filters with Bit Patterns. B. Hedström and I. Josefsson. Master's Thesis, Chalmers University of Technology, Jun 2018. PDF
2017
Probabilistic Modelling of Sensors in Autonomous Vehicles — Autoregressive Input/Output Hidden Markov Models for Time Series Analysis. E. Listo Zec. Master's Thesis, Chalmers University of Technology, May 2017. PDF
Bird Species Identification using Convolutional Neural Networks. J. Martinsson. Master's Thesis, Chalmers University of Technology, Jul 2017. PDF
Detecting Network Degradation Using Machine Learning. A. Gashi Rojas and N.O. Nordholm. Master's Thesis, Chalmers University of Technology, May 2017. PDF
Machine Learning for Personalized Diabetes Management using Continuous Sensing. S. Persson and C. Meijner. Master's Thesis, Jun 2017. PDF
2016
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression. J. Wiedenhoeft, E. Brugel and A. Schliep. In Research in Computational Molecular Biology: 20th Annual Conference, RECOMB 2016, Santa Monica, CA, USA, April 17-21, 2016, Proceedings, Springer, 9649, 263, 2016. 10.1007/978-3-319-31957-5 PDF Supplement
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression. J. Wiedenhoeft, E. Brugel and A. Schliep. PLoS Computational Biology 2016, 12:5, e1004871. 10.1371/journal.pcbi.1004871 PDF Supplement Dataset PubMed
Automatic learning of pre-miRNAs from different species. I.O.N. Lopes, A. Schliep and A.P.L.F. Carvalho. BMC Bioinformatics 2016, 17:224. 10.1186/s12859-016-1036-3 PDF Dataset PubMed
2015
Automatic learning of pre-miRNAs from different species. I.O.N. Lopes, A. Schliep and A.P.L.F. Carvalho. Technical report, Jul 2015. arXiv:1508.00412. PDF
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression. J. Wiedenhoeft, E. Brugel and A. Schliep. biorXiv 2015. http://dx.doi.org/10.1101/023705 PDF
2014
The discriminant power of RNA features for pre-miRNA recognition. I.O.N. Lopes, A. Schliep and A.P.L.F. Carvalho. BMC Bioinformatics 2014, 15:124. 10.1186/1471-2105-15-124 PDF PubMed
Single cell genome analysis of an uncultured heterotrophic stramenopile. R.S. Roy, D.C. Price, A. Schliep, G. Cai, A. Korobeynikov, E.C. Yang and D. Bhattacharya. Sci Rep 2014, 4:4780. 10.1038/srep04780 PDF PubMed
Improving genome assembly by identifying reliable sequencing data. R.S. Roy. Ph.D. Thesis, Oct 2014. PDF
Reduced representations for efficient analysis of genomic data; from microarray to high throughput sequencing. M. Mahmud. Ph.D. Thesis, Oct 2014. PDF
Turtle: Identifying frequent k-mers with cache-efficient algorithms. R.S. Roy, D. Bhattacharya and A. Schliep. Bioinformatics 2014, 14:30, 1950–7. 10.1093/bioinformatics/btu132 PDF PubMed
TreQ-CG: Clustering Accelerates High-Throughput Sequencing Read Mapping. M. Mahmud and A. Schliep. Technical report, 2014. PDF Supplement
2013
The discriminant power of RNA features for pre-miRNA recognition. I.O.N. Lopes, A. Schliep and A.P.L.F. Carvalho. Technical report, Oct 2013. arXiv:1312.5778. PDF
Turtle: Identifying frequent k-mers with cache-efficient algorithms.. R.S. Roy, D. Bhattacharya and A. Schliep. Technical report, May 2013. Arxiv. PDF
2012
CLEVER: Clique-Enumerating Variant Finder. T. Marshall, I.G. Costa, S. Canzar, M. Bauer, G. Klau, A. Schliep and A. Schönhuth. Bioinformatics 2012, 28:22, 2875–82.. 10.1093/bioinformatics/bts566 PDF PubMed
From TER to trans- and paracellular resistance: Lessons from impedance spectroscopy. D. Günzel, S.S. Zakrzewski, T. Schmid, M. Pangalos, J. Wiedenhoeft, C. Blasse, C. Ozboda and S.M. Krug. Annals of the New York Academy of Science 2012, 1257, 142–151. 10.1111/j.1749-6632.2012.06540.x PubMed
Indel-tolerant Read Mapping with Trinucleotide Frequencies using Cache-Oblivious kd-Trees. M. Mahmud, J. Wiedenhoeft and A. Schliep. Bioinformatics 2012, 28:18, i325–i332. 10.1093/bioinformatics/bts380 PDF Supplement PubMed
SLIQ: Simple Linear Inequalities for Efficient Contig Scaffolding. R.S. Roy, K. Chen, A. Sengupta and A. Schliep. Journal of Computational Biology 2012, 19, 1162–75. 10.1089/cmb.2011.0263 PDF PubMed
2011
Classifying short gene expression time-courses with Bayesian estimation of piecewise constant functions. C. Hafemeister, I.G. Costa, A. Schönhuth and A. Schliep. Bioinformatics 2011, 27:7, 946–52. 10.1093/bioinformatics/btr037 PDF PubMed
Selecting oligonucleotide probes for whole-genome tiling arrays with a cross-hybridization potential. C. Hafemeister, R. Krause and A. Schliep. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2011, 8:6, 1642–1652. 10.1109/TCBB.2011.39 PDF PubMed
pGQL: A Probabilistic Graphical Query Language for Gene Expression Time Courses. R.B. Schilling, I.G. Costa and A. Schliep. BioData Mining 2011, 4:9. 10.1186/1756-0381-4-9 PDF PubMed
Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models. M. Seifert, M. Strickert, A. Schliep and I. Grosse. Bioinformatics 2011, 27:12, 1645–1652. 10.1093/bioinformatics/btr199 PubMed
Speeding Up Bayesian HMM by the Four Russians Method. M. Mahmud and A. Schliep. In Algorithms in Bioinformatics, Springer Berlin / Heidelberg, 6833, 188–200, 2011. 10.1007/978-3-642-23038-7_17 PDF
Fast MCMC Sampling for Hidden Markov Models to Determine Copy Number Variations. M. Mahmud and A. Schliep. BMC Bioinformatics 2011, 12:1, 428. 10.1186/1471-2105-12-428 PDF PubMed
The Plexus Model for the Inference of Ancestral Multi-Domain Proteins. J. Wiedenhoeft, R. Krause and O. Eulenstein. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2011, 8:4, 890–901. 10.1109/TCBB.2011.22 Supplement PubMed
Cocos: Constructing multi-domain protein phylogenies. M. Homilius, J. Wiedenhoeft, S. Thieme, C. Standfuß, I. Kel and R. Krause. PLoS Currents: Tree of Life 2011. 10.1371/currents.RRN1240 PubMed
Speeding Up Bayesian HMM by the Four Russians Method. M. Mahmud and A. Schliep. In Algorithms in Bioinformatics, Springer Berlin / Heidelberg, 6833, 188–200, 2011. 10.1007/978-3-642-23038-7_17 PDF
Fast MCMC Sampling for Hidden Markov Models to Determine Copy Number Variations. M. Mahmud and A. Schliep. BMC Bioinformatics 2011, 12:1, 428. 10.1186/1471-2105-12-428 PDF PubMed
2010
PyMix - The Python mixture package - a tool for clustering of heterogeneous biological data. B. Georgi, I.G. Costa and A. Schliep. BMC Bioinformatics 2010, 11:9. 10.1186/1471-2105-11-9 PDF PubMed
Inferring Evolutionary Scenarios for Protein Domain Compositions. J. Wiedenhoeft, R. Krause and O. Eulenstein. In 6th International Symposium on Bioinformatics Research and Applications, Springer, 6053, 179–190, 2010. 10.1007/978-3-642-13078-6_21
2009
Constrained Mixture Estimation for Analysis and Robust Classification of Clinical Time Series. I.G. Costa, A. Schönhuth, C. Hafemeister and A. Schliep. Bioinformatics 2009, 12:25, i6–14. (ISMB 2009). 10.1093/bioinformatics/btp222 PDF Supplement PubMed
Context-specific Independence Mixture Models for Cluster Analysis of Biological Data. B. Georgi. Ph.D. Thesis, Freie Universität Berlin, Jun 2009. PDF
Partially-supervised protein subclass discovery with simultaneous annotation of functional residues. B. Georgi, J. Schultz and A. Schliep. BMC Struct Biol. 2009, 9:68. 10.1186/1472-6807-9-68 PDF PubMed
Semi-supervised Clustering of Yeast Gene Expression. A. Schönhuth, I.G. Costa and A. Schliep. In Cooperation in Classification and Data Analysis, Springer, 151–160, 2009. Proceedings of Two German-Japanese Workshops . 10.1007/978-3-642-00668-5_16 PDF
2008
Comparative Study on Normalization Procedures for Cluster Analysis of Gene Expression Datasets. M.C.P. de Souto, D.A.S. Araujo, I.G. Costa, R.G.F. Soares, T.B. Ludermir and A. Schliep. In Proceedings of the International Joint Conference on Neural Networks, IEEE Computer Society, 2008. 10.1109/IJCNN.2008.4634191 PDF
Ranking and Selecting Clustering Algorithms Using a Meta-learning Approach. M.C.P. de Souto, R.B.C. Prudencio, R.G.F. Soares, D.A.S. Araujo, I.G. Costa, T.B. Ludermir and A. Schliep. In Proceedings of the International Joint Conference on Neural Networks, IEEE Computer Society, 2008. 10.1109/IJCNN.2008.4634333 PDF
Efficient algorithms for the computational design of optimal tiling arrays. A. Schliep and R. Krause. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008, 557–567. 10.1109/TCBB.2008.50 PDF PubMed
Efficient Computation of Probe Qualities. C. Hafemeister. Master's Thesis, Freie Universität Berlin, May 2008. PDF
Inferring differentiation pathways from gene expression. I.G. Costa, S. Roepcke, C. Hafemeister and A. Schliep. Bioinformatics 2008, 24:13, i156–164. PDF Supplement PubMed
Mixture Models for the Analysis of Gene Expression: Integration of Multiple Experiments and Cluster Validation. I.G. Costa. Ph.D. Thesis, Freie Universität Berlin, May 2008. PDF
Clustering cancer gene expression data: a comparative study. M. de Souto, I.G. Costa, D. de Araujo, T. Ludermir and A. Schliep. BMC Bioinformatics 2008, 9:1, 497. 10.1186/1471-2105-9-497 PDF Supplement Dataset PubMed
New, improved, and practical k-stem sequence similarity measures for probe design. A.J. Macula, A. Schliep, M.A. Bishop and T.E. Renz. J. Comput. Biol. 2008, 15, 525–534. PDF PubMed
2007
Elastic registration in 3D volume data. R. Schilling. Master's Thesis, Universität Freiburg, 2007.
Validating Gene Clusterings by Selecting Informative Gene Ontology Terms with Mutual Information. I.G. Costa, M.C.P. de Souto and A. Schliep. In Advances in Bioinformatics and Computational Biology, Proceedings of the Brazilian Symposium on Bioinformatics, Springer Verlag, 81–92, 2007. 10.1007/978-3-540-73731-5_8 PDF
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data. I.G. Costa, R. Krause, L. Optiz and A. Schliep. BMC Bioinformatics 2007, 8, S3. 10.1186/1471-2105-8-S10-S3 PDF Supplement PubMed
Gene expression trees in lymphoid development. I.G. Costa, S. Roepcke and A. Schliep. BMC Immunol 2007, 8:1, 25. 10.1186/1471-2172-8-25 PDF Supplement PubMed
Partially-supervised context-specific independence mixture modeling. B. Georgi and A. Schliep. In workshop on Data Mining in Functional Genomics and Proteomics, ECML 2007, 2007. PDF
Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. S. Haesler, C. Rochefort, P. Licznerski, B. Georgi, P. Osten and C. Scharff. PloS Biology 2007, 5:12, e321. 10.1371/journal.pbio.0050321 PDF PubMed
Context-Specific Independence Mixture Modelling for Protein Families. B. Georgi, J. Schultz and A. Schliep. In Knowledge Discovery in Databases: PKDD 2007, Springer Berlin / Heidelberg, Volume 4702/2007, 79–90, 2007. 10.1007/978-3-540-74976-9_11 PDF Supplement
Mixture model based group inference in fused genotype and phenotype data. B. Georgi, M.A. Spence, P. Flodman and A. Schliep. In Studies in Classification, Data Analysis, and Knowledge Organization, Springer, 2007. PDF Supplement
Efficient Computational Design of Tiling Arrays Using a Shortest Path Approach. A. Schliep and R. Krause. In Algorithms in Bioinformatics, Springer Berlin / Heidelberg, Volume 4645/2007, 383–394, 2007. 10.1007/978-3-540-74126-8_36 PDF
Integer linear programming approaches for non-unique probe selection. G.W. Klau, S. Rahmann, A. Schliep, M. Vingron and K. Reinert. Discrete Appl. Math. 2007, 155:6-7, 840–856. http://dx.doi.org/10.1016/j.dam.2005.09.021 PDF
Identifying protein complexes directly from high-throughput TAP data with Markov random fields. W. Rungsarityotin, R. Krause, A. Schödl and A. Schliep. BMC Bioinformatics 2007, 8, 482. PDF Supplement PubMed
Analysis of fused in-situ hybridization and gene expression data. L. Opitz, A. Schliep and S. Posch. In Advances in Data Analysis, Springer, 577–584, 2007. Proceedings of the GfKl 2006. PDF
2006
On the feasibility of Heterogeneous Analysis of Large Scale Biological Data. I.G. Costa and A. Schliep. In Proceedings of ECML/PKDD 2006 Workshop on Data and Text Mining for Integrative Biology, 55–60, 2006. PDF
Context-specific independence mixture modeling for positional weight matrices. B. Georgi and A. Schliep. Bioinformatics 2006, 22:14, e166–e173. 10.1093/bioinformatics/btl249 PDF PubMed
Structure Learning of Conditional Trees. C. Hafemeister. Bachelor's Thesis, Freie Universität Berlin, Jun 2006. PDF
Decoding non-unique oligonucleotide hybridization experiments of targets related by a phylogenetic tree. A. Schliep and S. Rahmann. Bioinformatics 2006, 22:14, e424–e430. 10.1093/bioinformatics/btl254 PDF PubMed
Analyzing Microarray Data Using Homogenous and Inhomogenous Hidden Markov Models. M. Seifert. Master's Thesis, Martin-Luther-Universität Halle, 2006. PDF
An indicator for the number of modes in a mixture model using a linear map to simplex structure. M. Weber, W. Rungsarityotin and A. Schliep. In From Data and Information Analysis to Knowledge Engineering, Springer, 103–110, 2006. Proceedings of the GfKl 2005. PDF
2005
On external indices for mixtures: validating mixtures of genes. I.G. Costa and A. Schliep. In From Data and Information Analysis to Knowledge Engineering, Springer 2005, 662–669, 2005. PDF
The Graphical Query Language: a tool for analysis of gene expression time-courses. I.G. Costa, A. Schönhuth and A. Schliep. Bioinformatics 2005, 21:10, 2544–5. 10.1093/bioinformatics/bti311 PDF
Analyzing gene expression time-courses. A. Schliep, I.G. Costa, C. Steinhoff and A. Schönhuth. IEEE/ACM Trans Comput Biol Bioinform 2005, 2:3, 179–193. 10.1109/TCBB.2005.31 PDF PubMed
The General Hidden Markov Model Library: Analyzing Systems with Unobservable States. A. Schliep, B. Georgi, W. Rungsarityotin, I.G. Costa and A. Schönhuth. In Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis 2004, Gesellschaft für wissenschaftliche Datenverarbeitung, 121–135, 2005. PDF
2004
Optimal robust non-unique probe selection using Integer Linear Programming. G.W. Klau, S. Rahmann, A. Schliep, M. Vingron and K. Reinert. Bioinformatics 2004, 20 Suppl 1, i186–i193. 10.1093/bioinformatics/bth936 PDF PubMed
Robust inference of groups in gene expression time-courses using mixtures of HMMs. A. Schliep, C. Steinhoff and A. Schönhuth. Bioinformatics 2004, 20 Suppl 1, i283–i289. 10.1093/bioinformatics/bth937 PDF Supplement PubMed
Perron Cluster Analysis and Its Connection to Graph Partitioning for Noisy Data. M. Weber, W. Rungsarityotin and A. Schliep. Technical report, Zuse Institute Berlin (ZIB), 2004. PDF
2003
Using hidden Markov models to analyze gene expression time course data. A. Schliep, A. Schönhuth and C. Steinhoff. Bioinformatics 2003, 19 Suppl 1, i255–i263. 10.1093/bioinformatics/btg1036 PDF Supplement PubMed
Group testing with DNA chips: generating designs and decoding experiments. A. Schliep, D.C. Torney and S. Rahmann. Proc IEEE Comput Soc Bioinform Conf 2003, 2, 84–91. 10.1109/CSB.2003.1227307 PDF PubMed
Model-Based Clustering With Hidden Markov Models and its Application to Financial Time-Series Data. B. Knab, A. Schliep, B. Steckemetz and B. Wichern. In Between Data Science and Applied Data Analysis, Springer, 561–569, 2003. Proceedings of the GfKl 2002. 10.1007/978-3-642-18991-3_64 PDF
2002
Selecting signature oligonucleotides to identify organisms using DNA arrays. L. Kaderali and A. Schliep. Bioinformatics 2002, 18:10, 1340–1349. 10.1093/bioinformatics/18.10.1340 PDF PubMed
ProClust: improved clustering of protein sequences with an extended graph-based approach. P. Pipenbacher, A. Schliep, S. Schneckener, A. Schönhuth, D. Schomburg and R. Schrader. Bioinformatics 2002, 18 Suppl 2, S182–S191. 10.1093/bioinformatics/18.suppl_2.s182 PDF PubMed
Developing Gato and CATBox with Python: Teaching graph algorithms through visualization and experimentation. A. Schliep and W. Hochstättler. In Multimedia Tools for Communicating Mathematics, Springer-Verlag, 291–310, 2002. 10.1007/978-3-642-56240-2_18 PDF
2001
Clustering protein sequences-structure prediction by transitive homology. E. Bolten, A. Schliep, S. Schneckener, D. Schomburg and R. Schrader. Bioinformatics 2001, 17:10, 935–41. 10.1093/bioinformatics/17.10.935 PDF PubMed
Selecting target specific probes for DNA arrays. L. Kaderali. Master's Thesis, University of Cologne, 2001. 10.1093/bioinformatics/18.10.1340
A new Algorithm for Accelerating Pair-Wise Computations of Melting Temperature. L. Kaderali and A. Schliep. In Electron. Notes Discret. Math., 8, 46–49, 2001. Extended Abstract, 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization. 10.1016/S1571-0653(05)80076-9
Strongly Connected Components can Predict Protein Structure. E. Bolten, A. Schliep, S. Schneckener, D. Schomburg and R. Schrader. In Electron. Notes Discret. Math., 8, 10–13, 2001. Extended Abstract, 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization. 10.1016/S1571-0653(05)80066-6
Books:
- CATBox – An Interactive Course …
- 08301 Final Report -- Group …
- Proceedings of the German Conference …
Datasets:
- Effects of Network Topology On …
- Fast Bayesian Inference of Copy …
- Automatic learning of pre-miRNAs from …
- Clustering cancer gene expression data: …
Web supplements:
- Parallel Computing of Support Vector …
- Embracing heterogeneity: building the Tree …
- Fast Bayesian Inference of Copy …
- Fast Bayesian Inference of Copy …
- TreQ-CG: Clustering Accelerates High-Throughput Sequencing …
- Indel-tolerant Read Mapping with Trinucleotide …
- The Plexus Model for the …
- Constrained Mixture Estimation for Analysis …
- Inferring differentiation pathways from gene …
- Clustering cancer gene expression data: …
- Semi-supervised learning for the identification …
- Gene expression trees in lymphoid …
- Context-Specific Independence Mixture Modelling for …
- Mixture model based group inference …
- Identifying protein complexes directly from …
- Robust inference of groups in …
- Using hidden Markov models to …
Ph.D. theses:
- Dynamically Compressed Bayesian Hidden Markov …
- Improving genome assembly by identifying …
- Reduced representations for efficient analysis …
- Context-specific Independence Mixture Models for …
- Mixture Models for the Analysis …
- Algorithms to identify protein complexes …
M.Sc. theses
- AI for infectious diseases: Deep …
- Predicting Oligonucleotide Thermodynamics using Deep …
- Computational analysis and data mining …
- Parallel construction of variable length …
- Prediction of Liver Toxicity using …
- Machine Learning for Predicting Progression …
- Machine learning for big sequence …
- AI graders for Python programming …
- Compressed Machine Learning on Time …
- Prototype-based compression of time series …
- City Safety Event Classification using …
- Predicting Mechanisms of Toxicity for …
- Machine Learning for Suicide Risk …
- DNA Sequence Classification Using Variable …
- Assessment of Machine Learning Approaches …
- Parallel training of variable length …
- Clustering genomic signatures
- Improved Pattern Generation for Bloom …
- Probabilistic Modelling of Sensors in …
- Bird Species Identification using Convolutional …
- Detecting Network Degradation Using Machine …
- Machine Learning for Personalized Diabetes …
- Efficient Computation of Probe Qualities
- Elastic registration in 3D volume …
- Lernen von CSI Mixturen mit …
- Analyse von Bildern der mRNA-in …
- Analyzing Microarray Data Using Homogenous …
- Mixture Modeling and Group Inference …
- Development of a Pair HMM …
- Graph-based clustering for biological data
- Selecting target specific probes for …
- Evaluation and extension of a …