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ABSTRACT

Motivation: The problem of finding remote homologues of
a given protein sequence via alignment methods is not fully
solved. In fact, the task seems to become more difficult
with more data. As the size of the database increases,
so does the noise level; the highest alignment scores
due to random similarities increase and can be higher
than the alignment score between true homologues.
Comparing two sequences with an arbitrary alignment
method vyields a similarity value which may indicate an
evolutionary relationship between them. A threshold value
is usually chosen to distinguish between true homologue
relationships and random similarities. To compensate for
the higher probability of spurious hits in larger databases,
this threshold is increased. Increasing specificity however
leads to decreased sensitivity as a matter of principle.

Sensitivity can be recovered by utilizing refined pro-
tocols. A number of approaches to this challenge have
made use of the fact that proteins are often members of
some larger protein family. This can be exploited by using
position-specific substitution matrices or profiles, or by
making use of transitivity of homology. Transitivity refers to
the concept of concluding homology between proteins A
and C based on homology between A and a third protein
B and between B and C. It has been demonstrated that
transitivity can lead to substantial improvement in recogni-
tion of remote homologues particularly in cases where the
alignment score of A and C is below the noise level.

A natural limit to the use of transitivity is imposed by do-
mains. Domains, compact independent sub-units of pro-
teins, are often shared between otherwise distinct proteins,
and can cause substantial problems by incorrectly linking
otherwise unrelated proteins.

Results: We extend a graph-based clustering algorithm

which uses an asymmetric distance measure, scaling
similarity values based on the length of the protein
sequences compared. Additionally, the significance of
alignment scores is taken into account and used for a
filtering step in the algorithm. Post-processing, to merge
further clusters based on profile HMMs is proposed. SCOP
sequences and their super-family level classification are
used as a test set for a clustering computed with our
method for the joint data set containing both SCOP and
SWISS-PROT. Note, the joint data set includes all multi-
domain proteins, which contain the SCOP domains that
are a potential source of incorrect links. Our method
compares at high specificities very favorably with PSI-
Blast, which is probably the most widely-used tool for
finding remote homologues.

We demonstrate that using transitivity with as many
as twelve intermediate sequences is crucial to achieving
this level of performance. Moreover, from analysis of false
positives we conclude that our method seems to correctly
bound the degree of transitivity used. This analysis also
yields explicit guidance in choosing parameters.

The heuristics of the asymmetric distance measure used
neither solve the multi-domain problem from a theoretical
point of view, nor do they avoid all types of problems we
have observed in real data. Nevertheless, they do provide
a substantial improvement over existing approaches.
Availability: The complete software source is freely
available to all users under the GNU General Public
License (GPL) from http://www.bioinformatik.uni-koeln.de/
~proclust/download/

Contact: proclust@www.bioinformatik.uni-koeln.de,
schliep@zpr.uni-koeln.de

Supplementary Information: A web interface to the
software allowing to run query sequences against the
set of clusters is available at http://www.bioinformatik.

TCurrent address: Max Planck Institute for Molecular Genetics, Ber””vuni—koeln.de/~proclust.
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Fig. 2. This partial evolutionary tree demonstrates the biological
mechanism which allows the use of transitivity. Protefaand C
have diverged too far to establish homology based on their low
similarity value of 20%. However, as the existence of an (unknown)
common ancestor d8 andC as well asA andC can be established
due to the reasonably high similarity values of 35% respectively.
40% of their sequences, protedmight serve as the missing link.
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logues are hidden in the so-callegilight zone; their se-

. guence similarity is too low to separate them from pairs
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Sequence Similariy %] of sequences with equal or even higher sequence simi-

larity due to chance, which is drastically apparent in Fig-

ure 1. This problem becomes more acute as the increase of

Fig. 1. For pairs of domain sequences from SCOP 1.53 we showy,, i, 0 of sequence databases (Spang and Vingron, 2001)
histograms of alignment scores: the sequences are either members

from distinct SCOP super-families (top) or the same SCOP supe'j-eads to increased noise level; the twilight zone is ever in-

family (bottom). Only pairs with sequence similarities of up to 30% creasing. . - L .
are shown. Note the extensive overlap; separating the two classesProteins are often part of protein families. This kinship
of pairs by alignment score is virtually impossible. There are evercan be used to find a related known structure, which is

more true homologues with very low sequence similarity comparediidden in the twilight zone, by using other, more closely
with SCOP 1.37 (not shown). related family members dstermediate sequences. This

concept is calledransitivity and refers to the following

property of mathematical relations: A and B are related

as well asB and C, then A and C are also related.
INTRODUCTION Transitivity, as it applies to the problem of finding remote
The advances in experimentally determining or verifyinghomologues, is depicted in Figure 2; it has been examined
the three-dimensional structure of proteins do not keep up a number of approaches (Abagyan and Batalov, 1997;
with the ever-increasing sequencing capacities. A standardarket al., 1997; Pearson, 1997; Gerstein, 1998; Salamov
method for alleviating this problem is using homology et al., 1999; Arvestadet al., 2000; Boltenet al., 2001).
between a target sequence of unknown structure and Ehey establish that transitivity does work in this context,
protein of known structure to predict the structure of thebut unfortunately only to a limited extent. Note, the
target. Homology, the existence of a common ancestorglation we are considering and which we are trying to
can be detected by a pair-wise comparison if the sequenaketect through sequence similarity is structural homology,
similarity is ‘significant’ (Chothia and Lesk, 1986; Sander which is not truly a transitive relation in the mathematical
and Schneider, 1991; Rost, 1999). This allows to infersense.
structural or even functional similarity (Brennet al., There are a number of factors contributing to this
1998; Pearson, 1997, 1995). limitations. On one hand we know from the theory of

It is well known that a large proportion of true homo- random graphs (Spencer, 2001) that large enough random
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A [ ] [ ] are subsequently merged and processed further. Potential
multi-domain problems are not explicitly dealt with in this
w(B,A) | [WAB)
H approach.
s [ [ ‘ Protomap (Yoneet al., 1999) also uses a graph-based
approach where edges represent sequence comparisons
w(C,B)T lW(B'C) and the corresponding edge weights result from a scoring
c [T [ ] scheme combining BLAST, FASTA and Smith—Waterman
E-values. A hierarchy of clusters is obtained by iteratively
W(D,C)T lw(C,D) lowering thresholds in a threshold graph and computing
o [ strongly connected components at each threshold level.
Presence of ambiguous proteins, which potentially are
multi-domain proteins, results in cluster splitting.
Fig. 3. This figure motivates our desire for an asymmetric distance Enright and Ouzounis (2000) employ a routine all
measure. Herd and D are proteins consisting of distinct domains against all BLAST search and subsequently ignore
depicted in the different shades of gr&.andC are two multi-  hits below a specifiedE-value threshold, yielding a
domain proteins each containing both domains. Ifyemetric (0, 1)-similarity matrix. They disregard all differences
distance measure is used, ug A, B) = w(B, A),thenanincorrect iy similarity for hits above the threshold. Extensive
link from A to D is established as Iong as the edges are present 'Bost—processing requiring additional Smith—Waterman
the threshold graph. In the asymmetric case the length-dependept o formed to symmetrize the matrix and to deal with
scaling will result imw (A, B) < w(B, A) and possibly removal of 1 5main proteins, assuring that transitivity holds
the edge(A, B) when going over to a threshold graph. Thus, the L T .
links from B to A and fromC to D will be lost and hencé\ and D row-wise in the similarity matrix. Subsequently, rows are
will not longer be linked. clustered using single links. An evaluation of performance
is provided by inspection of some examples.
similarities will produce so-called super-clusters, very Tatusov et al. (1997) build clusters of orthologous
large clusters connecting large parts of the sequence spaggoups (COG's) starting with proteins from seven different
This can be dealt with by using more stringent criteria forspecies. At first significant hits across species are detected
significance. and so-called ‘triangle relationships’ used as seeds for
Multi-domain proteins pose the more acute problemclusters. An iterative merging process is performed, which
Domains are compact, semi-independent structural unitsies to account for the multi-domain problem in the
of proteins, which often appear highly conserved in amerging step. Novel protein sequences can be compared
number of multi-domain proteins; i.e. proteins containingto the existing clusters to provide structure and function
two or more domains, see Figure 3 for a schematic viewprediction.
The edges in Figure 3 represent significant sequence Our method is designed to provide a clustering as an aid
similarity, and, considered individually, are correct.in finding remote homologues; the multi-domain problem
However, asymmetric similarity relation does not distin- is directly addressed although we do not pretend to fully
guish between two proteins being globally similar andsolve it. However, the asymmetric distance employed
one protein being similar to an individual domain of aresults in very high sensitivity while keeping error rates
multi-domain protein. This leads to incorrect links via at a minimum, as the large-scale evaluation shows. In
intermediate sequences between distinct single-domaimme following sections, we give a detailed account on
proteins (cf. proteimA andD in Figure 3). Anasymmetric ~ the extensions to the graph-based clustering algorithm we
similarity relation or distance measure can be employed thave developed, describe the data sets used, present and
distinguish between the two distinct flavors of similarity discuss our results with an emphasis on the extend of
mentioned above. Since obtaining domain annotation igransitivity used and problems with multi-domain proteins.
neither possible in general nor computationally feasibleThe evaluation process also providsplicit guidance for
a simple heuristic (Bolteret al., 2001) was proposed choosing parameters. We conclude with an outlook on
which we extend in this manuscript to deal with thefurther developments.
aforementioned problems.
A number of related approaches have used the concept
of transitivity for large scale analysis of protein sequencesA'—GORlTHM
Systers (Krause and Vingron, 1998) uses an iterate@he algorithm is an extension of the graph-based cluster-
BLAST or FASTA search for computing clusters. The ing proposed in Boltesrt al. (2001), which we will sum-
iteration proceeds by picking the protein most distantlymarize very briefly in the following. An introduction to
related to the query subject to some consistency andraph-based clustering can be found in Jain and Dubes
termination conditions. Clusters computed for all proteing1988).
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e Compute a complete undirected gragh where and Vingron, 1994) of given lengths. The parameters
vertices are identified with protein sequences and eacbf the extremal value distributiony = 0.04469 and
edge represents a Smith—Waterman local alignmenp = 0.971029, were estimated by computing alignments
(Smith and Waterman, 1981) of the two incidentof random sequences using our Smith—Waterman imple-
sequenced? and Q, weighted with the raw Smith— mentation with the parameters listed below. The pruning
Waterman score, denoted by r@v Q). Note, an consisted of removing edges$, Q) from the graphG
arbitrary distance measure can be used as the weigiftthe significance of the score (P, Q) was below the
instead of the Smith—Waterman score. chosen significance threshotd. Various values fott,

were tested.
e Replace each undirected eddd’, Q} with two

directed edges(P, Q) and (Q, P) modifying the  Post-processing: merging clusters
weights such that As was noted before (Bolteet al., 2001), the clustering
raw(P, Q) * 100 procedure seems to be rather conservative and likely to
w(P, Q) = “TranP.P) produce clusters which partition SCOP super-families. It
’ was anatural extension to investigate whether a criterion
and similarly for w(Q, P). Dividing by the self- could be found to merge those clusters without introducing
similarity rawm P, P) corrects for amino-acid com- false positives. Given the high quality of the clusters, we
position and, as the self-similarity is proportional pPropose to use Profile-HMMs for that task. The protocol
to the number of amino-acids d?, scales the sim- providing the greatest gain was the following:
ilarity value by the length ofP. Hence, w(P, Q) R
and w(Q, P) will generally be distinct; the distance
measure we defined between protein sequences is
asymmetric. The resulting graph is denoted Bg. e A multiple alignment was built for each set of se-
guences with the ClustalW (Thompsehal., 1994)
software version 1.7 using the default parameters.

Clusters containing at least twenty sequences were
selected.

e Proceed to the threshold gragdy(z) by removing
all edges of weight—i.e. a similarity percentage value
of—less tharr. e With the HMMER package (Eddy, 1998), version
2.1.1 from http://hmmer.wustl.edu/, profiles were
built with the hmmbuild and hmmcalibrate programs.
Again, default parameters were used.

e Compute all strongly connected components (SCCs)
(Sedgewick, 1990) iG4(t). The strongly connected
components, maximal sets of vertices such that di-
rected paths exists froR to Q and fromQ to P for e For each such cluster profile all sequences not con-
all verticesP, Q in a SCC, are output as the resulting  tained in the cluster were scored using the profile and
clusters. the E-value was recorded.

This algorithm and the results presented in (Boltene ClustersC andD were merged, if, using the profile for
et al., 2001) raised a number of questions and opened clusterC, the averageE-value of sequences fro
several possible avenues for improving the performance. wasbelow some threshold
To awid over-fitting and to concentrate on the highest ) ) )
performance pay-off extensions, we chose to restricOmplexity and running time
ourselves to graph pruning based on score significancéhe dominating term is the computation of the pair-wise
and a Profile-HMM based post-processing step presenteskquence comparisons, which is quadratic in the number
in the following. Other extensions were implementedof sequences. However, it only has to be performed once,
and evaluated, and either matched or, in combinationit is trivial to distribute to a large cluster of CPU’s, and
insignificantly exceeded the performance presented in thigdditions or changes to the computed data set can be made

paper (not shown). incrementally. The resulting grapld and Gy are large
o o but can be easily dealt with in real-time. The computation
Filtering by score significance of the SCC'’s is linear in the number of vertices plus

Preliminary analysis (not shown) suggested that especiallthe number of edges (Sedgewick, 1990). The clustering
for short sequences an improvement in performance migltas well as subsequent filtering operations on the graphs
be gained by pruning the graph further based on the statidenefit greatly from the fact that the threshold graphs
tical significance of the score. We employed the standarGq(t) are typically very sparse. We observed an average
extremal value distribution (Karlin and Altschul, 1990) vertex degree of 17.6.

to estimate maximal scores observable with the Smith— For the data set ALL (see below for details) the
Waterman algorithm for random sequences (WatermaSmith—Waterman computations needed 70 CPU days, the

S185


http://hmmer.wustl.edu/

P.Pipenbacher et al.

Table 1. Descriptive statistics of the datasets used SPROT. SWISS-PROT (Bairoch and Apweiler, 2000) re-
lease 39 from ftp:/ftp.ebi.ac.uk/pub/databases/swissprot
was processed analogously to SCOP: short sequences

scop SPROT ALL o
of less than 40 a.a. as well as sequences containing
Number of sequences 0.403 47.160 56.563 &.a. masked due to low complexity were removed. To
Average length 176 381 346 Speed up computations the CD-HI (Cluster Database
Number of families 1.264 / / at High Identity) software (Liet al., 2001) was used
mumger Oifsulger'fam'“es 837 / / to remove redundant sequences at the 80% or higher
umber ot olds . 53 / / sequence identity level. A cutoff at this high identity level
Proteins per super-family 11,7 / / . . . -
Homologous pairs 608.578 / s is unlikely to influence the results and greatly facilitates
Non-homologous pairs 43.594.925 Vs / re-computations should they become necessary.

ALL. This dataset was created by merging SCOP and

. .S
clustering needs about 30 seconds. For the cluster merging

using HMMs about 21 CPU days were needed. Evaluating performance
We evduated the validity of our hypothesis, that the
IMPLEMENTATION AND EVALUATION asymmetric sequence length-dependent distance measure

The method has been implemented in a C++ softwardnproves recognition of remote homologues while avoid-
which has been published under the GNU General Publit?9 false positives due to problems with multi-domain
License (GPL). It has been developed and tested on groteins, by using SCOP as test set. The annotation given

Compaq ES40 running Tru64 Unix V5.1, using Compaq,sby the SCOP super-family classification of a (domain)
cxx compiler, version 6.20. In addition, it has been testef€dUeNce was taken as the ‘truth” to which we compared
and used on various Sun Ultra computers (Ultra 5 uﬁhe clustering we computed. Note, the clustering for the

to Sun Enterprise 10000), running Solaris 7 and earlieRnalysis was performed on the combined data set ALL
versions, using the GNU g++ compiler version 2.9x andcontaining the domain sequences from SCOP as well as
ahove. virtually all non-redundant SWISS-PROT sequences. In

In the Smith—Waterman algorithm (our own imp|emen_partic_ular, ALL in_cluded thecompl ete sequences which
tation is included in software), the following parameterscoma'” the domain sequences from SCOP. A failure of the

(Boltenet al., 2001) were used: an integerized version ofmethod would be clearly detectable by incorrectly joining

the BLOSUMSO substitution matrix, gap opening penaltyP&irs of sequences _from d_|st|nct SCOP super-families
90 (about 15 times the average a.a. identity score), and?Y Virtue of a multi-domain SWISS-PROT sequence
gap extension penalty 9. The substitution matrix was choontaining them both. .

sen based on experiments of one of the authors (Schneck- O the further analysis we will refer to a (unordered)

ener, 1998). Guidance for choosing the gap penalties w2 Of sequences from the same SCOP super-family

provided by experimentation with single-link clustering @S {rué homologues, and to a pair of sequences in the
on a subset of SCOP; cf. (Boltehal., 2001). The choice Same computed cluster peedicted homologues. We will

of gap penalties proved not to be critical (not shown). ~ Call @ predicted true homologue pafue positive (TP),
gapp P ( ) a true homologue which has been not predictatse

Data sets negative (FN), a true non-homologue pair predicted to be

We used the following datasets, which are available?omologuefalse positive (FP) and a true non-homologue

from  http://www.bioinformatik.uni-koeln.de/proclusy P&l not predictedtrue negative (TN). The following
download/ for easier reference. derived quantities allow to summarize the performance:

Sensitivity specifies the proportion of homologue pairs
SCOP. We used SCOP (Hubbare al., 1999) version detected
1.53 from http://astral.stanford.edu/scopseq-1.53.html. sens — #TP
The domain sequences and classification were ob- #TP +#FN
tained from http://astral.stanford.edu/seq.cgi?get=andspecificity the proportion of correct predictions among
scopdom-seqres-all;ver=1.53. This file does not contaithe pairs predicted to be homologues
any sequences from SCOP classes 8-9. After removing 4T P
all sequences with less than 40 a.a., the sequences were speC = ———.
filtered for low complexity regions by using the software #EP +#TP
seg (Wootton and Federhen, 1993) with parameters ‘12 perfect method would haveens = spec = 1, which
1.8 2.0 -xX'. Sequences containing masked a.a. as well asplies that neither false positive nor false negative errors
duplicate sequences were removed. are made.
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Table 2. Histogram of super-family sizes in SCOP versus cluster sizes 100 - - - - - - — -
usterin
PSIBLAST
90 B
Size Proportion of Proportion
super-families of clusters 80 | 4
1 22.7% 65.7% 70 L 1
2-5 37.8% 24.5% —
6-10 16.0% 4.4% g 60r
11-20 11.0% 3.0% 2
21-50 8.3% 1.9% g S0r '
51-100 3.0% 0.4% S
>100 1.2% 0.1% @ 4o
30 + —
. . 20 + B
For comparison with PSI-Blast (Altschwt al., 1997)
we used PSI-Blast version 2.1.2 from ftp://ncbi.nlm.nih. 10 b ]
gov/blast/executables with the following parameters ‘-
_ - _ _' - - _ 0 1 1 1 1 1 1 1 1 1
h, E-Value e.E Value -j 20_ M BLOSUMSO0 -b _0 F o 10 20 30 0 0 80 70 8 90 100
T'. PSI-Blast isnot symmetric in the sense that it does Specificity [%]

not necessarily find sequende starting from a query

sequenceQ, even if the reverse search, using sequence _ ) _ o

P as the query, does fin@. To compensate for that, Fig. 4. This comparison with PSI-BLAST shows sensitivity versus

we considerecbrdered pairs of sequences from SCOP specificity for both method;: the clustering has been computed on

in the comparison. That is, for the two sequenBeand the data set AL_L, evalugtlo_n is done on the dgtg_ set_SCOP. As

- - . already the partial curve indicates, a greater flexibility with respect

Q we considered both pail$, Q) and (Q, P), running to choosing an appropriate specificity versus sensitivity tradeoff is

two separate PSI-Blast searches withand Q as query  provided by PSI-Blast.

sequences. Given a query sequeRceave defined(P, Q)

to be a homologue predicted by PSI-Blasifvasamong

those sequences found and vice versa for queries @om

Since the SCOP classification is identical for boh Q)

and(Q, P) whereas predictions by PSI-Blast might differ,

it can occur that(P, Q) and (Q, P) are different with

respect to their status of true/false positives respectively ...|

negatives, when evaluating PSI-Blast.
This way of counting predictions is in favor of PSI- |

Blast. It results in a higher sensitivity of PSI-Blast, as |

the many cases where asymmetric, i.e. only one pair of o——= ! "

(P, Q) or (Q, P) was predicted, PSI-Blast search results S

were observed (not shown) gave at least partial credit. All

9000

8000 [

7000 [

6000 [

Positives (TP)

searches were performed on the ALL dataset. Fig. 5. The histogram of scores for true positives in a clustering of
data set ALL with threshold = 13.1% shows a larger number of
DISCUSSION pairs with very low sequence similarity. Scores were taken from the

. . ... ..complete directed grapBg.
We chose parameters as to achieve maximal sensitivity

at a specificity of 99%. This rate of 1% false positives
has been chosen in a number of publications (Par
et al.,, 1997; Brenneret al., 1998; Parket al., 2000;

Enright and Ouzounis, 2000) as a reasonable compromi
which substantially improves sensitivity compared with

re‘?’ﬁglr::?u?sttaé:?: , Scpoegﬂlf{te}/d appears to have a tendencbeIOW the clustering threshold(not shown)
9 P bp Y Observe the rather ‘flat shape of the sensitivity versus

to partition SCOP super-families. This can be deduce g N L
from the high specificity and the histogram of clustersizegpeCIfICIty curve in Figure 4 and the sudden rise in

in Table 2 C_)n a positive note, super-components due tOLength-, distance- and score-histograms per cluster are available for down-
random similarities do not emerge. Roughly half of theload from http://www.bioinformatik.uni-koeln.deproclust/download/

l?esulting clusters are ‘non-trivial’. That is, they contain
airs of sequences which are connected via a number of
fitermediate sequences, pair-wise similarities vary over a

wide range with a large proportion of pairs having score
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Table 3. Results obtained for our clustering (top) as well as PSI-Blast 18000
(bottom). Searches have been performed on the ALL dataset, the evaluation
on sequences from SCOP. The number of TN is 87084524 minus the
number of FP

T
Shorter Path
Longer Path =----

16000

14000

12000

10000

r 1-t,  #TP  #FP  #FN  sens.  spec.
S 8000 |
16.3% 2310°° 230240 2083 374949 38.0%  99.1% oo
13.1% 831077 364458 3096 240731 60.2%  99.2% o).

13.1% 31107 363545 3028 241644 60.1% 99.2%

2000

0

E-value #TP #FP #FN  sens. Spec. 0 ° 10 15 20

200000 j j Shonelj Path
1010 662076 27467 547612 547%  96.0% 180000 | Longer Path ------- ,
1071 574887 5934 635491 475%  99.0% .
1072 517851 1187 692527 42.8%  99.8% e0000 I
104 485437 188 724939  40.1% >99.9% 140000 |- 1
» 120000 |- E
8
'% 100000 B
sensitivity and loss of specificity, once the threshold * 80000 - 1
is lowered belowr = 4%, at which level spurious 60000 [ 1
similarities due to random similarities appear. This does 40000 | ,
not allow to improve the recognition of homologues, even 20000 - |
at the expense of a lower specificity, by varying the
threshold. In contrast PSI-Blast can easily be re-run, after % 5 0 5 2
the initial profiles have been generated, with a larGer Length of Path

values threshold to find a larger proportion of homologues,
while sacrificing specificity. Fig. 6. Since Gy(7) is directed, andT P as well asFP are in
) o the same SCC, directed paths going in both directions exist by
Using transitivity definition. We show histograms of the shorter respectively longer
We estimated the degree of transitivity used by computingPath between false positives (top) and true positives (bottom).
distances between true positive and false positive SCOBPserve the abundance of the latter for distance 3-5 and the
sequences. In graphs a distance between two vertices jgstence (f)flt?r)ue positives at even larger distances up to a maximal
naturally given by the length—i.e. the number of edges— Istance of 13.
of a shortest path connecting them. Note, in directed
graphs the distance frof to Q is not necessarily equal
to the distance fronQ to P; in a SCC paths fromP to ~ Sequence similarity by chance which supports the claim
Q and vice versa exist by definition. As Figure 6 shOWS,that our method limits the degree of transitivity inherently
asubstantial proportion of true homologues have distanc@nd correctly. Figure 6 also indirectly demonstrates that
two or larger, with a significant drop-off at distance five. clusters are inhomogeneous with respect to distances
That is, one up to four intermediate sequences are need&§tween members.
for about 50% of the super-family pairs. However, still a ) ] ] ] )
sizable proportion has larger distance up to a maximum oP€aling with multi-domain proteins
13. The evidence supporting the success of our method in
Fdse positives are rare (note the different scale for thedealing with multi-domain proteins (their abundance is
y-axis) and have an average distance of about 4.6, whictiepicted in Table 4) is indirect and relies on the presence
is substantially larger than the 2.1 we observe for the truef the multi-domain protein sequences from SWISS-
positives. However, there is a wide variation of distance$?ROT in the ALL dataset. As we have demonstrated,
as well as a substantial overlap of the two histograméntermediate sequences are used to a large extend to link
for the two different classes of positives. Hence, trueSCOP domain sequences but nevertheless few of those
positives cannot be separated from false positives biinks are incorrect, as indicated by a specificity of 99.2%.
their distance. If high distances were an indicator for We analyzed the false positive errors and observed the
false positives, this would show an overuse of transitivityfollowing causes of errors. In general such errors are
The opposite seems true, errors are rather due to higihe result of ‘unwanted’ edges, e.¢gA, B) or (D, C)
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Table 4. The abundance of multi-domain proteins and the number of 1571 5 [ IIIECEE
domains is tabulated for the 33409 sequences from ALL for which

information about the domain composition could be derived from Pfam 6.2 >32%ﬁ 7 o

(Batemaret al., 2000) p2334/ R | >
31.1%£ 7 21.4%
P00544 PF0001
No. of domains No. of proteins | [ rromf ] i
26.8%)| 29.8%
) 25 738 Q62270 [ e prooi]| 0.
2 4.902 21.6%)| >32% 25.9%
3 1.261 P42689 PFO l 26.1
4 580 25.?D/£ j?gw
5 261 diirk__ S0 mmrvrreT—
6 181 | .
7 137 y 31.3%, 7“”
>8 349 P33497
total 33.409 . . . . .
Fig. 8. A larger multi-domain problem in cluster # 1517: Clustering
of ALL, using a a threshold of = 21.3% and a significance
thresholdt, = 1 —3.1-10~7. There are no edges between P12715
dimidal _ and P33497 in the graph. Domain annotation obtained from Pfam
>32%£ 7 15.4% 6.2 (Batemaret al., 2000).

MDH_EGOLI | [_rroe ] o
lG.O%ﬁ j >32%
dimlda2 PF02866

|

Fig. 7. This multi-domain problem is present in cluster # 1779 for c |1 | Dom 8 I
data set ALL using a threshold af = 13.1% and a significance ﬁ 7
thresholdt, = 1 — 3.1 - 10 /. MDH_ECOLI is a Malat-

Dehydrogenase frork. coli, dlmldal is the NAD(P)-binding N- D | | bom B ]

terminal (PF00056) andlmlda2 the C-terminal domain (PF02866) ﬁ 7

of the Malat-Dehydrogenase frous scrofa. The multi-domain

problem depicted in this picture disappears if the threshold is raised

above 154%, since the edge linking MDHEECOLI to dlimidal

vanishes. There are further (_axamples of these two domains causir,m_ggl 9. This schematic picture shows a case where our simple

problems at thresholds as high as= ,18'8%' There are .no edges heuristic fails. Due to the ‘ladder’ of proteins with just the right

betweerdlmidal anddlmlda2. Domain annotation obtained from increase in length, none of unwanted edges are removed when going

Pfam 6.2 (Batemast al., 2000). over to the threshold graph. Such cases have been observed in

the analysis of false positive appearing for lower thresholdsot
shown).

in Figure 3, not being removed when going over to

the threshold graplGq(z). In the examples in Figure 7

and Figure 8, the length-dependent scaling heuristic weimilar length, sharing exactly one well conserved domain.

employ fails because the shared domains are too weBesides incorrectly linking those two proteins, this can

conserved for the length ratio of the proteins involved.  also lead to incorrect links between distinct single-domain
There are also some systematic errors associated wifiroteins analogously to Figure 3. These and other possible

the heuristic. The most common one is caused by edggsoblems appear however to be rare as indicated by the

from a single-domain protein to a multi-domain proteinvery high specificity of our method.

(cf. proteinsA and B respectively in Figure 3 or Figure 9) )

having weights above the threshaldince the differences Merging clusters

in length are not large enough to have enough of a scalingjhe use of profile HMMs to merge clusters with and

effect. Typically this will appear, see Figure 9, as a ‘ladder’'assign singletons, or one-element clusters, to those large

of proteins of increasing length. Each step of this ladder ignough to allow proper training of HMMs showed only

a\alid edge in itself. a very modest improvement of 3.3% in sensitivity with a
Another problem is posed by multi-domain proteins ofsmall loss of 0.14% in specificity, cf. Table 5.

E H Dom B ‘
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Table5. Changes in true positiveA TP, and false positives\FP, usingthe  proved by taking the length and position of conserved re-
HMM-b_ased clus_ter merging for varying-value are shown. Our choice of gions of the alignments into account.
102 is displayed in bold
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