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Abstract—Normalization before clustering is often needed
for proximity indices, such as Euclidian distance, which are
sensitive to differences in the magnitude or scales of the
attributes. The goal is to equalize the size or magnitude and the
variability of these features. This can also be seen as a way to
adjust the relative weighting of the attributes. In this context, we
present a first large scale data driven comparative study of three
normalization procedures applied to cancer gene expression
data. The results are presented in terms of the recovering of
the true cluster structure as found by five different clustering
algorithm.

I. INTRODUCTION

As pointed out by [1], cluster analysis techniques of gene
expression microarray data is of increasing interest in the
field of functional genomics. One of the reasons for this is
the need for molecular-based refinement of broadly defined
biological classes, with implications in cancer diagnosis,
prognosis and treatment [1], [2], [3].

Despite the importance of the choice of the clustering
method or data pre-processing in the analysis of cancer data
sets, there are in the literature few guidelines or standard
procedures about how these data should be analyzed [4].
The choice of methods are mostly driven by the familiarity
of biological experts to the methods rather than the method
characteristics. For example, the wide use of hierarchical
clustering methods is mostly a consequence of its similarity
to phylogenetic methods, which biologists are often acquaint
to.

In particular, distinct normalization1 procedures are usu-
ally applied to such datasets. These choices are often not
justified. Motivated by such issues, in this paper, we present
a first large scale data driven comparative study of three
normalization procedures applied to cancer gene expression
data. The results are presented in terms of the recovering of
the true cluster structure as found by five different clustering
algorithm.

The remaining of the paper is divided into four sections. In
Section II, we introduce the three normalization procedures
that will be analyzed. The experimental design, including the
description of the datasets and of the algorithms, is given
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in Section III. Section IV shows our experimental study, as
well as a discussion on the results. Some final remarks are
presented in Section V.

II. NORMALIZATION

Clustering is an important tool for the exploration of
datasets with no or very little prior information [5]. In order
to cluster a set of patterns, clustering methods need an
index of alikeness or association between the data patterns.
This can be achieved by the use of proximity (similarity
or dissimilarity) indices that calculate the alikeness of two
patterns. For the choice of a suitable index, the type of the
feature (attributes) and the characteristics of the index should
be taken into consideration.

Also, in many practical situations a dataset could present
patterns whose attributes or features values lie within dif-
ferent dynamic ranges [5], [6]. In this case, for proximity
indices such as Euclidean distance, features with large values
will have a larger influence than those with small values.
However, this not necessarily will reflect their importance
for defining the clusters.

The previous problem is often addressed by normalizing
the features values so that they lie within similar ranges.
There are several approaches to normalization of attributes
values [5], [7]. As the datasets used in our studies have
no categoric features, we consider only the case involving
numeric values. More precisely, we analyze three different
forms of feature normalization.

The first two of them have been widely used in clustering
applications [6], [5]: one is based on the z-score formula
(standardization) and the other scales the features values to
[0, 1]. The last normalization presented transforms the values
of the attributes in a rank. Such a kind of transformation
is more robust to outlier than the other two normalization
methods [6].

In order to make the definitions of the normalization
procedures clearer, before introducing them, we will give
some basic concepts. Following the definitions in [5], the
basic unit of data is called a pattern (instance), denoted
by a d-vector, whose components are scalars called features
(variables or attributes). The ith pattern is denoted by the
column vector x∗i and the jth feature value for the ith
pattern is denoted by x∗ij . The symbol “*” stands for the
unnormalized data. Let n be the number of instances in the
analysis. The pattern matrix is the n × d matrix A∗, where
each row is a pattern:



A∗ =
[
x∗1 x∗2 . . . x∗n

]T =


x∗11 x∗12 . . . x∗1d

x∗21 x∗22 . . . x∗2d

. . . . . . . . . . . .
x∗n1 x∗n2 . . . x∗nd


Based on the previous matrix, we can define the following

type of normalization:

xij =
x∗ij −mj

sj
, (1)

where mj and sj are, respectively, the sample mean and
standard deviation of attribute j. This type of normalization,
which uses the z-score formula, translates and scales the
axes so that transformed feature xij will have zero mean
and unit variance. Hereafter, for short, we will refer to this
normalization as Z1.

The second procedure involves normalization with the use
of the maximum and minimum values on the attribute:

xij =
x∗ij −Min(j)

Max(j)−Min(j)
, (2)

where Min(j) and Max(j) are, respectively, the smallest
and largest values that unnormalized feature j takes in the
data. Hereafter, for short, we will refer to this normalization
as Z2. Assuming nonnegative values, an attribute normalized
with Z2 is bounded by 0.0 and 1.0, with at least one observed
value at each of these end points [6]. Its standard deviation
will be sj/(Max(i) −Min(j)). Also, differently from Z1,
the transformed mean and variance resulting from Z2 will
not be the constant across all features.

Both procedures could be adversely affected by the pres-
ence of outliers on the features, mainly Z2 that depends on
the minimum and maximum values. A different approach to
normalization, which is more robust to outliers, converts the
values of the attributes to ranks:

xij = Rank(x∗ij) (3)

Equation 3 yields a normalized feature with mean of (n+
1)/2, range n−1, and variance (n+1)[((2n+1)/6)− ((n+
1)/4)] for all features [6]. For short, hereafter, we will refer
to this normalization as Z3.

III. EXPERIMENTAL DESIGN

We present the study of the effect of normalization proce-
dures Z1, Z2 and Z3 on the recovery of cluster structure in
20 Affymetrix gene expression datasets. In order to provide
a basis for comparison, we also include the analysis based
on the non-normalized data. We refer to the results with the
untransformed data as Z0.

A. Datasets

Twenty microarray datasets are included in this analysis.
They were built from the data available in [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. As
can be observed in Table I, these datasets present different
values for characteristics such as number of patterns (second
column), number of classes (third column), distribution of
patterns within the classes (fourth column), dimensionality
(fifth column), and dimensionality after feature selection (last
column).

To be more precise, we focus our study on microarray
data from cancer. In such a context, one of the main goals
is to identify previously unknown cancer subtypes for which
gene expression profiles are homogeneous within a subtype
but different between subtypes [22], [23], [12], [24], [21].
As pointed out before, the discovering of new subtypes of a
disease could aid the decision-making process related to the
choice of existing treatments, as well as in the development
of new target-specific therapeutics [1], [2], [3].

Microarray technology is usually available in two different
platforms, cDNA and Affymetrix [1], [2], [3]. Measurements
of Affymetrix arrays are estimates on the number of RNA
copies found in the cell sample, while cDNA microarrays
values are ratios of the number of copies in relation to a
control cell sample. Data from these platforms have dis-
tinct distributions, thus normalization procedures would have
distinct impacts on each platform. In order to make our
analysis less complex, we will approach only data produced
by Affymetrix microarrays.

One characteristic of the data produced via Affymetrix
microarray technology, which is interesting for our analysis
of the normalization procedures, is the variability of the
magnitude of the expression level of a gene. For example, in
a given array, there could be a gene whose expression level
is around 10 and other whose level is around 10,000.

In fact, following other works, for our datasets, all genes
with expression level below to 10 are set to the minimum
threshold of 10. The maximum threshold is set at 16,000.
Values below or above these thresholds are often not reliable
[1], [17], [25]. That is, our analysis is performed on the
scaled data to which the ceiling and threshold values have
been applied.

Furthermore, in order to remove uninformative genes, we
apply the following procedure. For each gene j (attribute), we
compute the mean mj . But before doing so, in order to get rid
of extreme values, we discard the 10% largest and smallest
values. Based on this mean, we transform every value x∗ij
to:

yij = log2(x
∗
ij/mj)

After the previous transformation, we select for further
analysis genes whose expression level differed by at least l-
fold, in at least c samples, from their mean expression level
across samples. With few exceptions, the parameters l and
c were chosen in such a way as to yield a filtered dataset



with around at least 10% of the original number of genes
(features).

Finally, it is important to point out that the data trans-
formed with the previous equation is only used in the filtering
step.

B. Clustering Methods and Recovery Measure
Five clustering algorithms are used to generate partitions

solutions and formed one factor in the overall experiment
design. These are the single linkage, complete linkage, aver-
age linkage, k-means and Shared Nearest Neighbors (SNN).
These algorithms have been chosen to provide a wide range
of recovery effectiveness, as well as to give some generality
to the results. In our analysis, all of them are implemented
with Euclidean distance. The Euclidean distance between two
patterns xi and xk is given by the following equation.

d(xi,xk) =

√√√√ d∑
j=1

(xij − xkj)2 (4)

Hierarchical clustering methods, more specifically the ag-
glomerative ones, are procedures for transforming a distance
matrix into a dendrogram or tree [5]. These algorithms start
with each pattern representing a cluster, then the methods
gradually merge these clusters into larger ones. Intuitively,
agglomerative methods yield a sequence of nested partitions
starting with the trivial clustering in which each item is in a
unique cluster, and ending with the trivial clustering in which
all patterns are in the same cluster.

Among the different agglomerative methods, there are
three broader used variations, which are used in this paper:
Complete Linkage (CL), Average Linkage (AL), and Single
Linkage (SL). These variations differ in the way the distance
between two clusters is calculated. For the single linkage
algorithm, the distance between two clusters is determined
by the two closest patterns in different clusters. In contrast,
the complete linkage method employs the farthest distance
of a pair of patterns to define the inter-cluster distance. In the
case of the average method, the distance between two clusters
is calculated by the average distance between the patterns
in one group and the patterns in the other group. Such a
method has been extensively used in the literature of gene
expression analysis [2], [3], [26], [27], although experimental
results have shown that in many cases the complete linkage
outperforms it [4].

Another method popular in the literature of gene expres-
sion analysis is the k-means [2], [3]. k-means is a partitional
iterative algorithm that optimizes the best fitting between
clusters and their representation, using a predefined number
of clusters [5]. Starting with prototypes values from ran-
domly selected patterns, the method works on two alternates
steps: (1) an allocation step, where all patterns are allocated
to the cluster with the prototype with lower dissimilarity; (2)
and a representation step, where a prototype is constructed
for each cluster. A major problem of this algorithm is its
sensitivity to the selection of the initial partition. As a con-
sequence, the algorithm could converge to a local minimum

[5]. In order to prevent the local minimum problem, a number
of runs with different initializations are executed. Then, the
best run, based on some cohesion measure, is taken as the
result. Another characteristic of this method is its robustness
to noisy data.

The Shared Nearest Neighbor algorithm (SNN) is a recent
technique and was selected because it can robustly deal
with high dimensionality, noise and outliers [28]. Such an
algorithm searches for the nearest neighbors of each pattern
and uses the number of neighbors that two points share as
the proximity index between them. With this index, SNN
employs an approach based on density to find representatives
patterns and build clusters around them. Besides the number
of nearest neighbors (NN ), two other kinds of parameters
are considered: the ones regarding the weights of the shared
nearest neighbor graph (strong, merge and label) and others
related to the number of strong links (topic and noise).
These parameters are thresholds on which each step of the
algorithm is based.

In terms of the index to measure the success of the
algorithm in recovering the true partition of the dataset, as
in [6], we use the corrected Rand [5], [6]. The corrected
Rand index can take values from -1 to 1, with 1 indicating a
perfect agreement between the partitions, and the values near
0 or negatives corresponding to cluster agreement found by
chance.

Formally, let U = {u1, . . . , ur, . . . , uR} be the par-
tition given by the clustering solution, and V =
{v1, . . . , vc, . . . , vC} be the partition formed by an a priori
information independent of partition U (the gold standard).
The corrected Rand is defined as

cR =

∑R
i

∑C
j

(
nij

2

)
−
(
n
2

)−1∑R
i

(
ni·
2

)∑C
j

(
n·j
2

)
1
2 [
∑R

i

(
ni·
2

)
+
∑C

j

(
n·j
2

)
]−
(
n
2

)−1∑R
i

(
ni·
2

)∑C
j

(
n·j
2

)
where (1) nij represents the number of objects in clusters
ui and vj ; (2) ni· indicates the number of objects in cluster
ui; (3) n·j indicates the number of objects in cluster vj ; (4)
n is the total number of objects; and (5)

(
a
b

)
is the binomial

coefficient a!
b!(a−b)! .

IV. EMPIRICAL STUDY AND DISCUSSION

All the five clustering algorithm and the three normaliza-
tion procedures were used to produce the respective partition
of the datasets. We also run the algorithms with the unnor-
malized version of the datasets. The number of cluster is set
to be equal to the true number of the classes in the data.
The known class labels were not used in any way during the
clustering.

In order to build the partition from the hierarchical meth-
ods, the trees were run from root to the leaves, then the k
first sub-trees were taken as the clusters, with k equal to the
exact number of classes in the dataset. In the case of the k-
means, as it is nondeterministic, for each configuration pair
(dataset, normalization procedure), we run the algorithm 30



TABLE I
DATASET DESCRIPTION

Dataset n Nr. Classes Dist. Classes d Filtered d
Armstrong-V1 [8] 72 2 24,48 12582 1081
Armstrong-V2 [8] 72 3 24,20,28 12582 2194
Bhattacharjee [9] 203 5 139,17,6,21,20 12600 1543
Chowdary [10] 104 2 62,42 22283 182
Dyrskjot [11] 40 3 9,20,11 7129 1203
Golub-V1 [12] 72 2 47,25 7129 1877
Golub-V2 [12] 72 3 38,9,25 7129 1877
Gordon [13] 181 2 31,150 12533 1626
Laiho [14] 37 2 8,29 22883 2202
Nutt-V1 [15] 50 4 14,7,14,15 12625 1377
Nutt-V2 [15] 28 2 14,14 12625 1070
Nutt-V3 [15] 22 2 7,15 12625 1152
Pomeroy-V1 [16] 34 2 25,9 7129 857
Pomeroy-V2 [16] 42 3 10,10,10,4,8 7129 1379
Ramaswamy [17] 190 14 11,10,11,11,22,10,11,10,30,11,11,11,11,20 16063 1363
Shipp [18] 77 2 58,19 7129 798
Su [19] 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571
West [20] 49 2 25,24 7129 1198
Yeoh-V1 [21] 248 2 43,205 12625 2526
Yeoh-V2 [21] 248 6 15,27,64,20,79,43 12625 2526

times. Then, for further analysis, we pick the partition with
the best corrected Rand (cR).

For the SNN, we execute the algorithm with several values
for its parameters (2%, 5%, 10%, 20%, 30% and 40% of
NN ), topic (0, 0.2, 0.4, 0.6, 0.8 and 1) and merge (0,
0.2, 0.4, 0.6, 0.8 and 1). Preliminary experiments showed
that variations of the other parameters did not produce very
different results. Thus, the default value were used for the
parameter strong, and the value 0 was used for the parameters
noise and label (to have all points assigned to a cluster). From
the partitions created with such parameters values, we pick
for further analysis the partition with best cR and with k in
the interval of interest.

In terms of results, Table II illustrates, for each dataset,
the configuration pair (algorithm, normalization procedure)
that showed the best corrected Rand value (third column).
In order to put this result into perspective, on the fourth
column of the table we present the best corrected Rand value
achieved with the non-normalized data (Z0). As one could
expect, the majority of the best corrected Rand values were
obtained with some kind of normalization procedure. This
happens for 14 out of the 20 datasets.

One surprising result is the good performance achieved
with Z3. Such a normalization procedure was the best one for
eight datasets, whereas the second best procedure, Z1, which
is one of most traditionally used procedure in cluster analysis
(including gene expression data) [5], [6], [2], worked best for
seven datasets. Thus, contrary to conventional expectation,
Z3 outperformed Z1 and Z2.

One reason for the behavior previously described could be
the presence of outliers or noise in our dataset sets, as Z3 is
more robust to deal with this sort of problem [6]. In fact, it
is well known that microarrays suffers from several sources
of noise; either by manufacture failures, problems in the
reading procedure; unspecific probes, variability in biological

samples, or variations in the environment conditions in which
experiments were performed [29].

In another kind of analysis, we investigate the impact
of each normalization procedure on the performance of the
algorithms. For instance, Table III illustrates the mean and
standard deviation, across all datasets, of the corrected Rand
(cR) for the pair (algorithm, normalization procedure). Based
on this table, as it occurred in the study in [6], we can observe
that, for some cases, there is a clear interaction between
algorithm and normalization procedures.

This impact was more significative on the hierarchical
methods. For instance, the mean of the cR for the AL
algorithm with Z3 was of 0.22 against a value of 0.05 (second
best value) for the case of Z2. Again, as stated before, one
reason for this could be the presence of outliers in the dataset.
A similar behavior happens for the case of the CL algorithm.
For the k-means and SNN the the magnitude of the mean
difference among the different normalization procedures was
not as large as in the previous cases. That is, in general, for
each of these algorithm there was no single normalization
procedure that could be stated to be the best (this includes
also the unnormalized data - Z0).

V. FINAL REMARKS

In the context of cluster analysis, for the case of proximity
indices, such as Euclidean distance, that are sensitive to
differences in the magnitude or scales of the attributes, before
clustering, the normalization of them could be needed [5].

In order to address the previous issue, in this paper, we
presented a first large scale data driven comparative study
of three normalization procedures applied to 20 cancer gene
expression datasets. The results were presented in terms of
the recovering of the true cluster structure as found by five
different clustering algorithm.

Two of the normalization procedures investigated have
been widely used in clustering applications [6], [5]: one



TABLE II
RESULTS

Dataset Alg. Norm. cR Z0

Armstrong-V1 KM Z1 0.64 0.47
Armstrong-V2 KM Z3 0.81 0.70
Bhattacharjee SNN Z3 0.62 0.47
Chowdary KM Z2 0.92 0.32
Dyrskjot SNN Z0 0.63 0.63
Golub-V1 KM Z1,Z2 0.94 0.59
Golub-V2 KM Z0 0.70 0.70
Gordon KM Z1,Z2,Z3 0.97 0.16
Laiho KM Z1 0.28 0.24
Nutt-V1 SNN Z0,Z1,Z2 0.44 0.44
Nutt-V2 SNN Z0,Z1,Z2 0.72 0.72
Nutt-V3 AL,CL,KM Z1,Z2,Z3 1.00 0.82
Pomeroy-V1 SNN Z1 0.24 0.16
Pomeroy-V2 KM Z3 0.56 0.54
Ramaswamy KM Z3 0.49 0.30
Shipp KM Z3 0.12 0.10
Su KM Z1 0.66 0.56
West KM Z3 0.50 0.39
Yeoh-V1 KM Z0 0.92 0.92
Yeoh-V2 KM Z0 0.25 0.25

TABLE III
CLUSTERING ALGORITHM X NORMALIZATION: MEAN AND STANDARD DEVIATION OF CR FOR ALL DATASET

Alg. Z0 Z1 Z2 Z3

SL 0.02± 0.04 0.01± 0.03 0.01± 0.03 0.00± 0.03
AL 0.05± 0.09 0.03± 0.08 0.05± 0.10 0.22± 0.28
CL 0.13± 0.20 0.05± 0.09 0.14± 0.25 0.22± 0.23
KM 0.36± 0.29 0.37± 0.34 0.44± 0.32 0.42± 0.29
SNN 0.29± 0.22 0.27± 0.24 0.26± 0.23 0.28± 0.19

is based on the z-score formula (Z1) and the other scales
the features values to [0, 1] (Z2). The other normalization
presented transforms the values of the attributes in a rank
(Z3).

To give some generality to our results, these procedures
were studied in conjunction with five different clustering al-
gorithms (all of them implemented with Euclidean distance):
the single linkage, complete linkage, average linkage, k-
means and Shared Nearest Neighbors (SNN) algorithms.

In terms of results, as it was expected, most of the best
corrected Rand values were obtained with some of sort
normalization in the datasets. More precisely, this happens
for 14 out of the 20 datasets.

Nevertheless, one surprising result was the excellent per-
formance achieved with Z3: it was the best normalization
procedure for eight datasets. The second best procedure, Z1,
which is one of most traditionally used procedure in cluster
analysis, worked best for seven datasets. Thus, in contrast to
conventional expectation, Z3 outperformed Z1 and Z2.

Our experimental results also showed that there is a clear
interaction between algorithm and normalization procedures.
The impact of the interaction was stronger for the case of the
hierarchical clustering methods: the mean of the cR obtained
with Z3 was much higher than with the other procedures.
As previously discussed, one reason for this could be the
presence of outliers and noise in the dataset.

Finally, based on Table III, we can see that in all datasets,

either SNN and or k-means are the methods with best recov-
ery of class labels. The average linkage and complete linkage
methods had cR values as high as k-means for only one
dataset, “Nutt-V3”. While the main objective of our study is
not the comparison of the clustering methods themselves, the
shortcoming of hierarchical methods is noticeable in other
comparative studies on gene expressions data [26], [27],
[4]. However, hierarchical methods are still widely used in
clustering gene expression datasets.
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