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Fig. 1. When we find approximate matches of reads of lengthL in genomes,
our approach compares 2-gram frequency vectors of the read with 2-gram
frequency vectors of length L windows in the genome. If the read, t in this
figure, derived from position 1 of the genome s by a deletion of size k (blue),
the last k positions of t match s[L + 1, L + k]. Affine edit distance is not
tight if s[L+ 1, L+ k] at least partially matches the deletion. We argue that
the probability of this happening is low.

Probability of catastrophic failure: For edit operations which affect
positions q letters apart, it is easy to show that the inequality L1 ≤
AED is sharp, that isL1 gives the edit distance with affine gap costs.
Consequently finding matches of minimal L1 prefers matches with
fewer indels over matches with frequent substitutions. However, the
lower bound can be still arbitrarily bad (when one string is a rotation
or transposition of another), but the probability is small. The 2-gram
frequency vectors can be naturally viewed as the sufficient statistics
of a first-order Markov chain on nucleotides, and we will view all
our points, both reads and genomic positions, as first-order Markov
chains.

Consider the fixed L-length window s (Fig. 1) in the reference
genome and its q-spectrum cq(s). How is cq(s) altered by the
deletion? A total of k + 1 subtractions by one—one for each pair
of nucleotides from one position before the deletion to one position
after the deletion—is applied to not more than k + 1 coordinates
of cq(s). As t is also of length L, the deletion has to be balanced
by k additional characters from s. This introduces k − 1 pairs (red
in Fig. 1) at the end, one containing the character before and the
character following the deletion and one pair (sL, sL+1), which

were not present in s[1 : L]. These k+1 additional pairs give a total
of k+1 additions of 1 to not more than k+1 coordinates of cq(s). It
can happen that these k+1 subtractions and k+1 additions exactly
cancel, yielding L1(s, t) = 0 even though the Levenshtein distance
ED(s, t) = k. Under the Markov assumption we can now compute
an upper bound for the probability P (L1(s, t) = 0|ED(s, t) = k)
if we consider exactly one deletion of length k as in Fig. 1. If we
look at a single 2-gram within the deletion then the probability that
it appears in the red part in Fig. 1—hence the subtraction of the
count due to the deletion and is offset by the addition of the count—
is largest, when it is the most frequent 2-gram. Assuming the two
subtractions involving pairs across the border of the deletion in s and
the pairs covering the deletion in t and across the boundary to the
red part in t cancels out, the probability of finding exactly the k− 1
deleted counts (contained inside the deletion of s) compensated by
the added counts at the end of t is bounded from above by

P (L1(s, t) = 0|ED(s, t) = k, one deletion) ≤

(
k − 1

cA, cC , cG, cT

)
P ∗1

≤ (k − 1)!(
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4
!
)4 (P ∗2 )k−1,

where cA, cC , cG, cT are the nucleotide counts in the deletion, P ∗1
is the maximal probability of a realization of length k− 1 produced
by the underlying Markov chain and P ∗2 the maximal transition
probability in the Markov chain.

Memory reduction: We create d-dimensional q-gram frequency
vectors by shifting a window of size l (read length) over a genome
of size G. This naive approach uses O(Gd) amount of memory.
To reduce this large memory requirement for storing count vectors,
we apply two techniques. First, we only consider every g-th
genomic window for computing frequency vector, which brings
down the memory requirement to O(Gd

g
). Second, we observe that

consecutive g-th windows can have at most 2g differences in their
frequency vectors. We exploit this observation by not storing the
left α vectors and right α vectors of a particular vector V . Instead
we define these 2α vectors by their differences from V . When we
need these vectors in later stages we compute them on-the-fly. After
applying these two ideas, the total memory requirement for storing
count vectors is Gd

g(2α+1)
+ 2Gα(α+1)

2α+1
.



Table 1. Running times for read mappers used for evaluating simulated data.

Read mapper
Version

S1 S2 S3 S4
125 200 500 125 200 500 125 200 500 125 200 500

Bowtie (-v 3) 0.12.7 0:05 0:03 0:03 0:03 0:04 0:04 0:03 0:06
BWA 0.5.9 0:07 0:04 0:11 0:07 0:08 0:10 0:13 0:29
BWA (-n 50 -o 10 -e 50 -M 1 -O 3 -E 1) 1:30 2:34 4:30 5:55 3:14 4:42 3:44 4:57
SOAP2 (-r 1 -g 10 -v 50) 2.21 0:06 0:03 0:05 0:05 0:06 0:05 0:03 0:08
mrFAST (–best) 2.1.0.0 0:52 0:46 0:56 0:48 1:19 1:20 0:48 1:08
mrFAST (-e 6) 1:54 1:28 1:41 1:37 2:47 2:28 1:49 2:10
Novoalign (-l 0 -e 1 -r Random) 2.07.13 0:08 0:12 0:14 0:23 0:10 0:17 0:16 0:23
SSAHA2 (–best -1) 2.5.5 4:30 8:42 5:16 9:23 8:21 16:43 6:50 14:38
TreQ (τ = 1, β = 10000, α = 0) dev 2:29 2:55 3:37 2:37 3:01 3:43 2:33 3:03 4:09 2:40 2:31 3:24
LAST w/ LAMA 0:43 1:51 10:22 0:33 1:18 7:48 0:57 2:32 14:48 0:40 1:46 10:50
LAST w/ LAMA (-d108 -e120) 1:07 2:29 12:33 0:52 1:52 9:15 1:27 3:25 18:35 0:59 2:25 13:15
Stampy 0:18 0:31 1:35 0:37 1:13 5:00 0:40 1:16 4:41 0:36 1:05 3:27
Stampy w/ BWA 0:10 0:19 1:05 0:41 1:18 4:35 0:30 1:00 3:46 0:40 1:12 3:40
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Fig. 2. Effect of different parameters on TreQ. Simulated datasets S1, S2, S3, and S4 (for details see Section: Discussion) of read length 100bp are tested with
different parameter choices for TreQ. The memory requirement for TreQ comes down from 150GB (τ = 1, α = 0) to 40GB (τ = 4, α = 2) while a careful
selection of β achieves equivalent mapping accuracy in similar amount of time.


