CHALMERS |

UNIVERSITY OF TECHNOLOGY

Machine learning for big sequence data:
Wavelet-compressed Hidden Markov
Models

Master’s thesis in Computer science and engineering

LUCA BELLO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2020

MASTER’S THESIS 2020

Machine learning for big sequence data:

Wavelet-compressed Hidden Markov
Models

LUCA BELLO

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Machine learning for big sequence data: Wavelet-compressed Hidden Markov Models

LUCA BELLO

© LUCA BELLO, 2020.

Supervisor: Alexander Schliep, Department of Computer Science and Engineering
External supervisor: Paolo Garza, Politecnico di Torino
Examiner: Alexander Schliep, Department of Computer Science and Engineering

Master’s Thesis 2020

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2020

v

Machine learning for big sequence data: Wavelet-compressed Hidden Markov Models

LUCA BELLO
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Hidden Markov models are among the most important machine learning methods
for the statistical analysis of sequential data, but they struggle when applied on
big data. Their relative inefficiency has been addressed several times by the use of
some compression techniques, either for the computation. This thesis explores the
former, with the application of a data compression technique based on wavelets and
the subsequent adaptation of the main HMMs algorithms from the literature: the
forward, Viterbi and Baum-Welch algorithms used to solve the evaluation, decoding
and training problem respectively. The testing phase shows that this new technique
generally yields equal or better results, obtaining some extremely high speedups in
the training problem, making it even thousands of times faster; this allows to easily
train a HMM with big data on a commodity laptop.

Keywords: machine, learning, sequence, wavelet, compression, hidden, markov,
models, viterbi, training.

Acknowledgements

Here I am, looking at this page and trying to write something that I can really call
my own; something I can unmistakably recognize as marked with my personal style.
Anyway, [will limit myself to just sprinkle some little magic here and there, sticking
to a traditional acknowledgment format, because there are definitely people I need
to thank. Also, I know for sure this will end up being too long, but I'm not the one
reading, so the joke’s on you.

The crazy series of events, life experiences and people that led me to this moment
would be too complex to describe. I started university as a completely different
person than I am now, moving out of my small hometown, away from my family,
and joining a student dorm in a distant city. I wasn’t prepared for what came after:
the absurd number of sleepless nights devoted to study; questioning my life choices
more times than I can remember; self-reflections that turned my soul inside out
multiple times; abandoning everything to start over. And I definitely didn’t know
that this experience would have given me lifelong friendships with people that I
love and respect. I'm incredibly grateful to them, and going through these five years
without them would have been impossible. This is the moment I should stop talking
about me and my exceptionally moving story and start talking about them. Before
starting a foreseeable long list of people, I should thank my family, that has always
been incredibly supportive throughout my academic career.

My dorm gave me a second family, and I need to thank every single person I met
there since everyone contributed to enriching my personality with a small part of
theirs, each in their own way. I want to thank Niccolo, for all the morning coffees,
the nightly bitters, the foam swords duels and the flip flops thrown against the wall;
Angelo, for his loyalty, the chicken curry, and for shouting my name out loud to all
the girls he meets; Fabrizio, for being a constant inspiration and motivation to do
better, for all the times he says "sorry", and for his kindness; and I want to thank
the whole group "L’Associazione" for all the gaming nights, the shared panic for the
exams, the meals we prepared, the laughs, the tears, and all the time we spent and
will spend together. I want to thank Luciana for all the tea we drank at night, for
the penguin hugs, the talks sitting against the radiator, and for far more things than
I could list. I want to thank Martina LL, my "spiritual sister", for being there when
it mattered. I want to thank Emma for being each other’s rambunctious sidekick
during the swedish adventure, and for all the times she tried to drag me out of my
room towards social activities.

There are tons of other people who would deserve some big thanks - and a cookie
- for being special, but this page won’t fit them all. To every single one of you:
thanks, from the bottom of my heart.

Luca Bello, Gothenburg, May 2020

vii

C

List of Figures

1 Introduction

3

ontents

1.1 Motivation and previous research
1.2 Hidden Markov Modelso
1.3 Wavelet compression
Theory
2.1 Evaluation problem oo
2.1.1 Forward algorithm
2.1.2 Backward algorithm00
2.2 Decoding problem oL
2.3 Training problem Lo
2.3.1 Starting model
2.4 Compressed algorithms 0oL
2.5 Formal transformationso
2.5.1 Forward algorithm00
2.5.2 Backward algorithm
2.5.3 Viterbi algorithm 0oL
2.5.4 Baum-Welch algorithm 00
2.6 Relevant model parameters.
2.6.1 State separation
2.6.2 Self-transition probabilities L.
Methods
3.1 Framework description Lo
3.2 Implementation details o0
3.2.1 Parser
3.2.2 Numerical errors L L
3.2.3 State representation L.
3.2.4 Data generationo Lo
3.2.5 Wavelet compression,
3.2.6 Logarithms summation
3.2.7 Savingresultso
3.2.8 Test automation
3.2.9 Other Python files

xiii

21
21
21
21
22
23
23
23
24
24
25
25

ix

Contents

3.3 Standard algorithms oo
3.3.1 Ewaluation problem L.
3.3.2 Decoding problemo
3.3.3 Training problem oL

3.4 Compressed algorithms
3.4.1 Ewvaluation problem
3.4.2 Decoding problem L oo
3.4.3 Training problem oo

Results

4.1 Testing setup
4.1.1 Choosing the parameters
4.1.2 Results evaluation 0.

4.2 Evaluation problem L

4.3 Decoding problem oo

4.4 Training problem Lo

Conclusion
5.1 Main takeaways
0.2 Wrapping up

Bibliography

A Appendix 1

A.1 Fully-connected model
A.2 Circular model
A.3 Left-to-right model oo

Appendix 2

Bl CH+ . o
B.1.1 algorithms_compressed.hpp
B.1.2 algorithms.hpp
B.1.3 commons.hpp
B.1.4 Compressorhpp
B.1.5 Modelhpp
B.1.6 parser.hpp
B.1.7 Statehpp
B.1.8 utilities.hpp
B.1.9 WaHMM.hpp

B.2 Python
B.2.1 automated test.py oL
B.2.2 create_model filepy o
B.2.3 generate data.py oo
B.2.4 generate states.py L
B.2.5 plot_datapy
B.2.6 plot_kmeans.py
B.2.7 pomegranate test.py

29
29
29
30
31
32
33

35
35
35

37

Contents

B.2.8 results aggregation.py LX
B.2.9 utilities io.pyo LXVI
B.2.10 utilities__kmeans.py oo LXVIII
B.2.11 viterbi_comparison.py L. LXX
B.2.12 WaHMM.py LXXI

X1

Contents

xii

1.1
1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

List of Figures

Collocation of this thesis in the context of different HMM types. . . .
A simple example of a Markov model: the state chain through time
(top) and the graph representation of the states connection (bottom).
An example of the output of a hidden Markov model through some
time steps. The state path () is not observable, and O are the obser-
vations emitted in each state.00
A signal decomposed with wavelets in its approximation and different
levels of detail. Tmage taken from [1].
Typical sequence data undergoing block compression; the vertical red
lines show the block borders in the case of an ideal compression. . . .
Example of block generation using a breakpoint array. During the
query (thick red), when values are above the threshold (horizontal
blue line), a breakpoint is returned (vertical blue line). Figure taken
from [2]. . ..o

Graphical representation of the lattice structure used for dynamic
programming in the standard algorithms.
The structure on which the compressed algorithms operate; it gener-
ates from a subset of the links in the lattice structure.
Data generated using a two-state HMM with distributions N (0, 1?)
and N(10,1%). o

Structure of the implemented code (thin border) and its connection
points to the external libraries used (thick border).

Relative difference between the P(O|)) log probabilities of the com-
pressed and standard algorithms. Since the errors are on a big neg-

ative log probability, the actual error magnitude is approximately of
1075000.

Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.
Relative difference between the fractions of errors in the estimated
generating path. L
Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.
Difference between the average KL-divergence for the compressed and
standard algorithms.

3

List of Figures

4.6 Speedup on the training problem using the compressed algorithm,
including the input data processing time.

A.1 Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.
A.2 Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and
standard algorithms. oo Lo
A.3 Relative difference between the P(O|)\) log probabilities of the com-
pressed and standard algorithms.
A.4 Relative difference between the fractions of errors in the estimated
generating path. oo
A.5 Difference between the average KL-divergence for the compressed and
standard algorithms. o oo
A.6 Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.
A.7 Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and
standard algorithms. oo
A.8 Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.
A.9 Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.
A.10 Speedup on the training problem using the compressed algorithm,
including the input data processing time.
A.11 Relative difference between the P(O|\) log probabilities of the com-
pressed and standard algorithms.
A.12 Relative difference between the fractions of errors in the estimated
generating path. oo
A.13 Difference between the average KL-divergence for the compressed and
standard algorithms. 0 oL
A.14 Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.
A.15 Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and
standard algorithms.o
A.16 Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.
A.17 Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.
A.18 Speedup on the training problem using the compressed algorithm,
including the input data processing time.

Xiv

1

Introduction

Nowadays, many real-world problems are tackled trying to get insights from data
with the application of machine learning techniques; it’s easy to see that as the
amount of data becomes massive, the algorithms necessarily need to be adapted
and optimized towards a lower computational complexity, to retain feasibility in a
reasonable execution time. Hidden Markov Models (HMMs) are among the most
important machine learning methods for the statistical analysis of sequential data.
Their mathematical structure provides a wide range of applications and can serve as
a basis for more complex models, making their study extremely meaningful. Some
central and well-known algorithms for HMMs tend to struggle when applied on big
data; the aim of this thesis is to adapt them so they can be applied on a compressed
representation of the data, preserving their usefulness and applicability.

1.1 Motivation and previous research

There are many examples of real world applications showing the importance of
hidden Markov models: computational finance [3], speech recognition [4] and more.
Unfortunately, limitations have been encountered when working with big data due
to the computational complexity of the standard algorithms. This problem has been
tackled with many different approaches: one that has often proved its effectiveness
is the idea of compression, to significantly reduce either the computations or the
scale of the data.

To show some context and establish the relevance of this topic, some efforts and
achievements will be described below. For discrete-valued sequences, [5] shows how
speed improvements are obtained by text compression techniques, based on identi-
fying repeated substrings in the observed input sequence and obtaining higly paral-
lelizable algorithms. Bayesian computations that were often avoided in practice due
to long running times have been accelerated in [6], showing considerable improve-
ments. For continuous observations, Bayesian inference was tackled by [7] and [2]
using wavelet compression; as summarized in Figure 1.1, what has been left un-
covered are the possible speed improvements obtainable by applying compression
techniques to the standard algorithms.

This thesis aims at covering that unexplored case, studying the effects of wavelet
compression for regular HMMs and their possible impact on real-world problems.
Specifically, T will make use of the concepts in Wiedenhoeft’s papers [7] and [2],
using part of the HaMMLET tool for wavelet compression; this is described more
in detail in Section 1.3.

1. Introduction

Standard Bayesian
¢ | z-U.M.Mozes | M.P.Mahmud,
2 | S., Weimann O. A. Schliep
2 S.A.
2| this thesis | WiedenhoeftJ.,
§ Brugel E.

Figure 1.1: Collocation of this thesis in the context of different HMM types.

1.2 Hidden Markov Models

This section provides the theoretical background on Hidden Markov Models and
introduces some needed notation, consistently with the one used by Rabiner in [8].
Consider a system which can be described by a set of N distinct states, Sy, Ss, ..., Sy,
as shown in Figure 1.2. At regular discrete time intervals, the system goes through
a state change and moves to another state (or to the same one) according to certain
probabilities associated with the state; if the future evolution of the system depends
solely on the current state, regardless of the system’s history, this is a first-order
Markov Process.

Let the time be denoted with ¢ = 1,2, ..., and the state of the system at a certain
time with ¢;. For a Markov process, it’s true that:

P(Qt = Sj|Qt—1 = Si, Gi—2 = Sk,) = P(Qt = Sj|Qt—1 = Si)~ (1-1)

The processes that are more often considered are time-homogeneous, meaning that
the transition probabilities a;; from a state to another are independent of time;
these probabilities can be collected in a matrix A that obeys the standard stochastic
constraints:

ai;; = P(q = Sjlg-1 = 5i) > 0, and (1.2a)
N
doai =1 (1.2b)
=1

1. Introduction

Figure 1.2: A simple example of a Markov model: the state chain through time
(top) and the graph representation of the states connection (bottom).

In the Markov model defined above and shown in Figure 1.2, each state corresponds
to an observable event. That is not always the case; sometimes the observations are
not the states of a Markov model, but they are related to the actual state chain
which is hidden, or not observable. A hidden Markov model (as shown in Figure
1.3) has an underlying Markov model which works as described above, with the
observations being a probabilistic function of the current state; this means that for
any observation O,

P(Ot|0t—17 Ot—2, oy Gt Gr—1, G—2,) = P<Ot|Qt)- (1-3)

Based on the type of observations, Markov models can be divided in discrete, where
the alphabet of observations is finite, and continuous, where it’s not. Looking at
the definition of this model, many interesting questions may arise: how likely is that
a sequence of observations has been generated by a certain model? What is the
most likely state path corresponding to a sequence of observations? What is a good
estimation of a model that suits the observations well? How can we apply Bayesian
inference to train a model? The first three questions are, as defined by Rabiner
in [8], the standard problems of HMMs named respectively evaluation, decoding
and training problem. The aim of this thesis is to address these problems in the
context of big data with a more efficient approach.

1. Introduction

Figure 1.3: An example of the output of a hidden Markov model through some
time steps. The state path () is not observable, and O are the observations emitted
in each state.

1.3 Wavelet compression

The compression technique that will be used throughout this thesis is based on
wavelets. A wavelet is a function which resembles a small oscillation; the convolution
of scaled versions of a wavelet with a signal of interest yields its wavelet transform.
This is often used as a mathematical tool used to analyze signals, obtain a different
representation of them and extract useful information. It is similar to the Fourier
transform, with the main difference that the latter loses all information about the
localization of a given frequency component.
A signal is usually decomposed using a certain wavelet and then, after some pro-
cessing, it is often recomposed using the corresponding reconstruction wavelet. The
decomposition yields an approximation of the signal and some detail coefficients,
representing respectively a smoothed version of the signal and the higher frequency
information. Many different wavelets can be used in a transform, based on the
properties needed for a certain application:

o size of support, the interval where the wavelet is non-zero;

o symmetry, that influences the quality of localization;

o number of vanishing moments, a blindness to polynomials of a certain degree;

o reqularity, also affecting frequency localization;

o (bi-)orthogonality, meaning that the decomposition and reconstruction wavelets

form two distinct bases which are mutually orthogonal.

Figure 1.4 shows an example of signal decomposition using wavelets; this repre-
sentation allows for effective de-noising against additive white Gaussian noise by
simply setting to zero some detail coefficients above a certain threshold before re-
constructing the signal. An interesting description of a possible use of wavelets is [9].

In the context of this thesis and following Wiedenhoeft’s work in [7] and [2], the
Haar wavelet is used to detect when a sequence of observations has a significant dis-
continuity in values, possibly indicating, under certain conditions, a change of state.
An example result of the compression process is shown in Figure 1.5. Specifically,
two main data structures from the HaMMLET tool will be used: the breakpoint

4

1. Introduction

x
4F T T T T T T T
2
0
2
| | 1 1 1 1 1 | N
0 100 200 300 400 500 600 700 800 900
Time steps
0 01 T T T T
0 _W
-0.01 y
_002 1 | | 1
-3 10 20 30 40 50 60 70
x 10
- T T T T ™
Dq- 0
0 -2 1 1 1 1 1]
X107 10 20 30 40 50 60 70
T T T
1 -
™
o o .
sl wVW\Af/V\/\f\A/\/v\/\/\W\[\WW\f\,\N\/\/(
1 | 1
-3 20 40 60 80 100 120
x 10
1 T T T]
DN 0
o - i
1 1
<107 50 100 150 200 250
T T T T T T T T
-
() 0
(@] -1 1
1 | 1 | 1 | 1 |
50 10 150 200 250 300 350 400 450 500

Coefficient indices

Figure 1.4: A signal decomposed with wavelets in its approximation and different
levels of detail. Image taken from [1].

array and the integral array. The former uses a certain threshold (discussed later
with the implementation) to define a block structure by storing indexes of blocks
delimiters, dividing the sequence of observations into blocks where the state can
be considered constant; the mechanism is shown in Figure 1.6. The latter contains
sufficient statistics for each block, such as the sum of all elements inside it. Using
two structures instead of one yields a more efficient implementation, as described
in [2].

It’s reasonable to expect that this compression method will work well when the states
of the HMM are well-separated, so that the block division is accurate, and when the
self-loop probability for each state is high enough, so that a single block contains
more observations. In principle this approach could also be applied to multivariate
data, but that falls out of the scope of this thesis.

1. Introduction

0 2000 4000 6000 8000 10000

Figure 1.5: Typical sequence data undergoing block compression; the vertical red
lines show the block borders in the case of an ideal compression.

2.5 r r ' \

20} iy 1

= ® e, . ® .

15} ! e, d - L

.-. ..; ‘... .:v Y b ‘. u. “
8 os}. T TR | BT . "
¥ M - o5 * M. W v .

0.0 Foe -: .-..:- v"‘.' i .: -,,":' * .,. ...\". .._) '-l g
_0.5 L -~ . . . : .
-1.0 ‘ ‘ ‘ :

0 50 100 150 200 250

10!

)
= 0
10 , _
9 TP ==711 71}, = =
< A T
2 101 ORI el b IR EIIEIR
w | & [L] & L] | { L d
= l | o 11° I
b ; | |
£ 10 2 l l |
o
= 107 ;
g
[1a]

104 : :

0 50 100 150 200 250

Position

Figure 1.6: Example of block generation using a breakpoint array. During the
query (thick red), when values are above the threshold (horizontal blue line), a
breakpoint is returned (vertical blue line). Figure taken from [2].

2

Theory

This chapter tackles the theory behind hidden Markov models and their main prob-
lems of interest, using that as a stepping stone to analyze the theoretical transfor-
mations required by the data compression process. At this point the elements of a
HMM should be clearly defined and denoted; again, the notation used is taken from
Rabiner [8]:
o N, the number of states in the model; specifically, individual states will be
denoted as S = {57, 5, ..., Sy} and the state at time ¢ will be denoted as ¢;;
o A= {a;;}, the state transition probability distribution, where a;; indicates the
probability of going from state i to state j in one time step;
o B = {b;}, the emission probability distribution of observations for each state
J;
o 7 = {m}, the initial state distribution.
To indicate the complete set of parameters, this compact notation is generally used,

A= (N, A, B,). (2.1)

To add on this and clarify the notation used: the observation sequence is denoted by
O, with the element observed at time ¢ being indicated by O,; in the same way, the
state sequence (also state path, generating path) is denoted by @, and the state at
time ¢ is indicated by ¢;. The HMMs that will be used in this thesis are continuous-
valued; each state is associated and characterized by an emission distribution. For
many applications, using Gaussian distributions is a good choice (e.g. autoregressive
HMMs for speech recognition). As stated in the introduction, there are three main
problems that will be tackled; each one will be described and discussed in a separate
section below.

2.1 Evaluation problem

The problem is about evaluating how well a specific sequence of observations is
represented by a given model, through the computation of the probability that
the observed sequence was produced by the model. Solving this problem is im-
portant because it allows to compare different models to decide which one better
represents a sequence of observations. Formally, given the observation sequence
O = 04,0,,...,0r and a model A = (A, B,), the goal is to efficiently compute its
likelihood. A very intuitive but inefficient way of doing it would be applying the law
of total probability, enumerating every possible sequence of states and summing the

7

2. Theory

conditional probability of all observations over all those sequences:

P(O[A) = Z P(O|Q,) Z 7r<hbq1(01)aq1qzbq2 (Os) ... a"IT—lb‘IT(OT) (2.2)
all Q all Q

For a specific state sequence, this equation starts in the state ¢; with probability
T4, produces the symbol O with probability b, (O1) and moves to the next state
¢1 to ¢ with probability a4, 4,, and then follows the same logic to cover the whole
observation sequence. When looking at the computational complexity, the number
of state paths obtained by enumeration is given by the dispositions with repetition of
the states, that is N7 for each state, the number of calculations scales linearly with
the length of the observation sequence; this yields a total computational complexity
that is O(T - N7T).

2.1.1 Forward algorithm

The standard algorithm use to solve the evaluation problem is the forward algorithm,
which is much more efficient than the approach considered above. The key element is
the forward variable oy (i), defined as the joint probability of observing the sequence
up to time t and being in state .S; at time ¢

(Jét('i) = P(0102 Ce Ot, qy = Sz|>\) (23)

Through induction, the following procedure can be defined:

() = [ﬁ:a()aw}b (O), 1<t<T—1, 1<j<N (2.4D)
P(O|)) = ;aT(i). (2.4c)

The first step is the initialization of the forward variable in (2.4a) using the initial
probability distribution 7. The actual induction happens on the second step (2.4b),
where ay 1 is calculated using the forward variables at the previous instant ay; to
make that calculation for a certain state .S;, it is necessary to consider the probability
of getting there from any state S; multiplied by the probability of observing the
symbol Oyyq1. This procedure terminates with (2.4c), that simply takes the sum
of the forward variables over all the states. The procedure can be visualized well
through the Figure 2.1.

Looking at the computational complexity, the number of calculations for each obser-
vation is N2 (N per each state); repeating this for the whole sequence length gives
a complexity that is O(T - N?), which is evidently faster than the previous approach
especially for increasingly long sequences.

Very closely tied to this algorithm is the backward algorithm. Although it’s not
necessary to solve the evaluation problem, it can be helpful in the solution of both
the decoding and the training problems.

8

2. Theory

k’l “\\1:.

7
7

W
éfé::"v\vﬁ‘?&’
KX R

Q)

PP

Figure 2.1: Graphical representation of the lattice structure used for dynamic
programming in the standard algorithms.

States

Observations

2.1.2 Backward algorithm

The backward variable is defined as the probability of the partial observation se-
quence from t 4+ 1 to the end, given a certain state at time ¢ and the model

Bt<2) = P(Ot+10t+2 e Ot’qt = Si7)\) (25)

This variable can also be calculated using the lattice structure shown in Figure 2.1,
in an inductive fashion with the use of dynamic programming:

Br(i)=1, 1<i<N, and (2.6a)

N
Bi(i) = aijbj(Op1) Biy1(d), t=T—-1,T-2,---,1, 1<i<N. (2.6b)

Jj=1

The initialization step in (2.6a) chooses an arbitrary starting point; the induction
(2.6b) computes the other variables by accounting for all the possible states the
system could have been in at the following time step. The calculation of the com-
putational complexity of this algorithm follows the same reasoning of the forward
algorithm; this leads to conclude that the backward algorithm also has a complexity

that is O(T - N?).

2. Theory

2.2 Decoding problem

A very common situation when dealing with hidden Markov models is the need
to predict the generating state path of a certain observed sequence. There is no
exact answer to this question; the goal is to find the solution that better fits the
data. Many optimization criteria can be used based on the definition of better. An
example is finding the most likely state individually for each observation; using this
criterion, the key variable is

which is the probability of being in state S; at time ¢, given both the observation
sequence and the model. This variable can be expressed using the forward and
backward variables in the following way

(i) = OB)il
P(O[N) Z;V:l O‘t(j)ﬁt(j)’

(2.8)

because the forward variable accounts for the observations before time ¢, while the
backward variable refers to the observations after ¢t. The most likely state at time ¢
is easily obtained through the =, variable by looking at which state as the highest
associated probability:

¢: = argmax {'yt(i)], 1<t<T. (2.9)
1<i<N

Although this approach obtains the highest number of expected correct matches
between predicted and actual state, it’s often discarded since it disregards the tran-
sition probabilities of the model. In particular, if some transitions have zero prob-
ability, meaning they cannot happen, this criterion would still be able to include
them in the result.
For this reason, it’s often more interesting to compute the most likely generating
path; mathematically, this means finding the maximization of P(Q|O, A). The stan-
dard algorithm used to solve this problem is the Viterbi algorithm; as the forward
algorithm, it uses a dynamic programming approach that allows to reduce computa-
tional complexity. The Viterbi algorithm substitutes the summations of the forward
algorithm with a maximization; the key variable to calculate is &;(7), defined as the
highest probability along a single path, after the first ¢ observations and ending in
state ¢

6t(Z) = max P(Q1QQ ey = i, 0102 ce Ot|>\) (210)

q1,92;--,qt—1

The most likely path will be the argument of this maximization over all the states
considering the whole observations sequence; it can be defined in the notation as 1.
Through induction it is possible to write the following equations:

Y1 =0

10

2. Theory

5,(j) = max {5,5_1(@) aij}bj(ot), 2<t<T, 1<j<N (2.11b)

1<i<N

Uilj) = argmax [51(D) ag|. 2<HST 1< <N
1<i<N

P* = max [(w)} (2.11¢)

1<i<N

¢y = argmax {6T(@)]
1<i<N

q;fk :¢t+1(Q:+1)a t:T_laT_Qaal (211d)

The initialization phase in (2.11a) starts with an empty solution for the state ;.
The induction in (2.11b) relies on the lattice structured defined previously in Figure
2.1; the contribution of the previous d; variables is given through the max operator
instead of using summation. During this process, the argmax is saved to later use
the variable ¢ to recover the most likely path. The termination (2.11c) happens
at the end of the observations sequence. After the final step, the most likely state
path associated with the sequence is given by backtracking through the v variables
as shown in (2.11d).

To discuss the computational complexity of this algorithm, the same points of the
forward algorithm can be made, leading to affirm that the Viterbi algorithm is also
O(T - N?).

2.3 Training problem

Real-world applications present many scenarios where the HMMs’ parameters are
not explicitly known. The relevance of this problem is easily shown by noting that a
model gives a lot of insights on the system; moreover, its accuracy was a key assump-
tion in the previous computations. The goal is to find the model \ that maximizes
P(O|\), the probability of the observation sequence given the model. Unfortunately,
this problem is very complex and there is no known way to analytically solve this
maximization problem for any given finite observation sequence.

Despite this, a number of techniques can be used to locally maximize P(O|\); a very
popular one is the Baum-Welch method, that starts from a guess of the model and
iteratively performs reestimations of the parameters to improve it. This algorithm
introduces a new key variable: £(i,7), the probability of being in state S; at time ¢
and in state S; at time ¢ + 1

ft(@j) = P(C]t =5, 41 = Sj‘Oy)\)- (2-12)

It can be useful to express this equation using the forward and backward variables.
In fact, the forward variable a;(7) accounts for the observations from the first one
up to Oy in state S;; the backward variable (3,,1(j) does the complementary job,
considering the observation sequence starting in state S; and from observation Oy
up to the last one. The step between ¢ and ¢ + 1 has been left out: to tie the two

11

2. Theory

variables, it’s necessary to include the probability of transitioning from state S; to \S;
and observing Oy, which is a;;0;(O41). The new formulation of & can be written
as

at(i)aijbj(otﬂ)ﬂtﬂ(j) _ at(i)aijbj(OtH)BtH(j)
P(O[A) et Caet @ (P)apgby (Or41) Beia (@)

&(i,) = (2.13)

By looking at the definition of the -, variable given in (2.7), it can be related with
&

N

%(i) =D &6 j) (2.14)

=1

Recalling the previous definition of 7; given at (2.7) is important to notice that
by summing 7;(i) over t, the obtained quantity can be interpreted as the expected
number of times that the state S; is visited, or equivalently as the expected number
of transitions from state S; (if we exclude the last observation at time 7'):

T-1
> (i) = expected number of transitions from state S; (2.15)
t=1

In a similar way, the sum of & (i, j) over t can be interpreted as the expected number
of transitions from S; to S;:

T-1
> &(i,7) = expected number of transitions from state S; to S; (2.16)
t=1

These interpretations lead to the definition of two reestimation formulas for the
initial distribution and the transition probabilities:

7= (i) (2.17a)

> ve(2)
The HMMs that have been object of study at this point have continuous emission
densities, that in the most general case can be written as:

(2.17b)

M
bJ(O) = Z ij%[oalfljma Ujm] (218)
m=1

where O is the observations sequence, c¢;, is the mixture coefficient of the m-th
mixture in state S; and R is a log-concave or elliptically symmetric density with
mean vector ji;, and covariance matrix Uj,,, again for the m-th mixture in state .S;.
It can be shown ([10-12]) that the reestimation formulas for the coefficients of the
mixture density have the following form

T_ ik
o = i Azt(m) (2.19a)
Dol D=1 %(]7 k)

12

2. Theory

ﬂ'k _ Z?:l 7t<j7 k) ' Ot
’ Z?:l %ﬁ(ja k) ’

S G R) - (01—) (Or = i)

ZtT:I Ve (4, k) '
where prime denotes the transposition of the vector and (7, k) is simply ;(7)
relative to the k-th mixture component. According to the context and the scope of
the thesis, the mixture model is reduced to a univariate Gaussian distribution; the
emission density for a state S; can be rewritten as

bj (O) - 9{[07 Mg 0-2]’ (220)

and (2.19Db)

Ui

(2.19¢)

where f1; is the mean and o2 is the variance of the Gaussian distribution associated
with the state S;. Thus, the reestimation formulas can also be simplified (e.g. by
getting rid of the mixture weight coefficients) and rewritten:

fi; = > 1) - O
’ Zthl Y(7)

S Y n() (0 — py)?
0% = T :
i=17e(d)
Applying the reestimation formulas (2.17a), (2.17b), (2.21a) and (2.21b) produces a
reestimated model \; the Baum-Welch algorithm guarantees that either the original
model) is a critical point of the likelihood function (the result would be A =) or the
model) is more likely than the previous one, meaning that P(O|\) > P(O|)). The
iteration of this procedure converges to a local maximum and produces a maximum
likelihood estimate of the model, providing a solution to the training problem.

(2.21a)

(2.21D)

2.3.1 Starting model

The Baum-Welch procedure requires the definition of a starting model; even though
the number of states is generally known (or can be guessed or estimated), to obtain
good results a good definition of the starting model A = (A, B,7) is necessary.
Unfortunately, most of the times little knowledge is possessed about the system;
thus, there is no straightforward answer to this problem. As discussed by Rabiner in
[8], experience shows that for A and 7 either random or uniform initial estimates are
adequate for useful parameters reestimation. For continuous emission distributions
B, the starting parameters are essential. Such parameters can be obtained with
several techniques, such as manual segmentation of the observation sequence into
states or k-means segmentation with clustering.

2.4 Compressed algorithms

The wavelet compression of the data has a big impact on the mechanisms of the
algorithms. In fact, the compression removes the necessity to consider the observa-
tions individually, allowing to focus on groups of them called blocks. As anticipated

13

2. Theory

block ﬁ block

block boundary

Observations

Figure 2.2: The structure on which the compressed algorithms operate; it generates
from a subset of the links in the lattice structure.

in Section 1.3, a block is a series of observations where the underlying state can
be considered constant and with sufficient statistics to perform the computations
required in the algorithms of interest. The structure used by all the algorithms
above, as said many times, is the one in Figure 2.1; not knowing anything about
the generating path of the observations forces to consider all the possible ones, eval-
uating at each time step the contribute of every possible state. Compressing the
observations opens up new possibilities by modifying that lattice structure into the
one represented in Figure 2.2. Since inside a block the state can be assumed to
remain the same, the transitions from other states are reputed too unlikely and thus
ignored.

To talk formally about compression and its impact on the computations, it’s nec-
essary to introduce some notation; this is done taking [13] as a starting point, but
applying some changes to avoid conflicts with already defined symbols and to put
more emphasis on some concepts.

A partition of the observations in blocks can be denoted as Y := {Y,}V_, where
Y,, is a single block and W is the number of blocks forming the partition. A block
contains n,, observations; each one is referred to using the symbol y,,; which is
indexed by the block number w and by the position inside the block k. The summary
statistics gathered for each block are the following;

N, ZJ1,w = Zyw,k7 EZ,w = Zyi,k (222)
k=1 k=1

14

2. Theory

To figure out how the computation varies with the introduction of this block struc-
ture, it’s useful to thoroughly examine the calculations in Wiedenhoeft’s PhD the-
sis [13] where HaMMLET wass developed. Remembering the definition of the for-
ward variable at (2.3) and its computation formula at (2.4b), being inside a block
Y,, only allows self-transitions; this reduces the computation of the next forward
variable to

ar1(J) = au(f)az;b;(Opir). (2.23)

Using induction, the forward variable relative to the whole block has to account
for n, — 1 self-transitions, one transition to state S; and n,, emissions; it can be

expressed as
N Nw

() :Z[aw 1 aw} o 1Hb Vo). (2.24)

i=1

An analogous point can be made on the backward and the Viterbi algorithms; the key
part, though, is that this formula still relies on individual observations. To exploit
summary blocks statistics, the term accounting emissions and self-transitions within
a block can be rewritten by making the Gaussian emissions explicit

azy™! ﬁ b (Y i) 7@”:;1 exp | — nil Wk — 113)° _Q'Mj)Q . (2.25)
V2 o = 207

The factors outside the exponential can be brought in, also providing implementation
advantages discussed later in Section 3.2.2. This yields

exp (S e (1) los(ay) — malos(o,) 1og<¢%>)- (2.26)
k=1 J

The exponent can finally be rewritten using the blocks summary statistics:

2005201 0 — 22w

Bu(j) = 224 K(ny.j), and (2.272)
20j
o1
K () = (1 = 1)log(a;) = log(o,) + 3 201+ log(2m)). (227h)

As pointed out in Wiedenhoeft’s PhD thesis [13], an equivalent term can be easily
derived also for non-Gaussian emissions that belong to the exponential distribution
family.

2.5 Formal transformations
To perform the other calculations, the equations have to be adapted using the re-
formulation above. The following sections contain the adaptation of the algorithms

to the compression scheme.

15

2. Theory

2.5.1 Forward algorithm

Restructuring the forward algorithm doesn’t bring a new meaning to the new vari-
able; for a block, a,(7) is the approximation of the uncompressed forward variable
at the end of the block. The induction phase has already been defined in (2.24);
adding the other steps yields:

(i) = me® 1<i<N (2.28a)
N .
(j) = [Zaw_l(@')%]e%(ﬂ, 1<w<W, 1<j<N (2.28b)
=1
N
Py (O|X) = > aw(i). (2.28c¢)

i=1

2.5.2 Backward algorithm

The backward algorithm follows a very similar transformation; f3,,(¢) is defined here
as the backward variable at the start of a block:

Pw()=1, 1<i<N (2.29a)

N
Bu(i) = ayeP g, (), w=W-1,W-2,---,1, 1<i<N. (2.29b)
j=1

2.5.3 Viterbi algorithm

The Viterbi algorithm is based on the forward algorithm with the substitution of
the sum over all the states with the max operator; again, all the variables refer to
the end of a block:

6 (1) =meP® 1 <i<N (2.30a)
’l/}l = 07
0w(j) = max [(5w1(i) ai]} ebwld), I<w<W, 1<j<N (2.30b)

YPi(j) = argmax [5w1(z’) aij}, I<w<W, 1<j<N

1<i<N

P* = max [5W(i)], (2.30c)

1<i<N
¢y = argmax [6W(i)],
1<i<N

0= Vo1 (@hy), w=W -1, W -2 1. (2.30d)

16

2. Theory

2.5.4 Baum-Welch algorithm

The Baum-Welch algorithm is more complex than the others, having more variables
to calculate for the parameters reestimation. Following the same order of Section
2.3, the first computation of interest is &(i, j), as defined in (2.13). To reason about
the following computations, it’s important to remember that both the compressed
forward and backward variables refer to the end of a block. Given this, two different
situations happen based on computing ¢ inside or outside a block. Inside a block,
it’s easy to see that &(i,7) = 0 for i # j; if w indicates the block, when i = j it
becomes:

(1) ai;bi(Opy1) Bra (1) _

&(i,1) = PO (2.31)
vy (4) a , —(t+1) 1 B
I, b (0 O ulDe” kE£zb (OO0 B0 ~
 uli)Buli)
(O

Since the right expression is not dependent on ¢, inside a block the variable is
constant over time. Instead, at the boundary between two blocks:

(1) a;;0; (Op41) Bes1(J) _
P(O[A)

(i, j) = (2.32)

Nw+1

= (1) a0 (Opy1) Buyi (f)aj; ™' ' IT b Ok

et (OW
ay (i)aige” 1D By (j)
Py(O\)\)

For the purpose of rewriting reestimation equations, it’s useful to define the £ vari-
able for a block in the following way:

i) =D &(i.j) = (2.33)

teYy

(7 — 1) ()Bi) + (DaggeB 1Dy 1 (), for i = j Aw# W

1 (nw — Daw (4)Bw (i) , fori=jAnw=W
~ POIN)) aw(i)aseP+ DBy (5) fori#jAw#W
0, fori£jAw=W

(2.34)

Moving forward, it’s interesting to note that by interpreting (i) as the probability
of visiting the state S; at time ¢, the variable is also constant over ¢ inside a block
(also implied from the result above); this means that for any ¢ inside a block, any
~:(1) can be representative for the whole block; remembering that the forward and
backward variables both refer to the end of a block, the equation (2.8) can be

rewritten:
_ (1) B (i) _ 0y (1) B (4)
W0 ="p0n) ~ PO (23

17

2. Theory

It’s worth noting that this reformulation correctly maintains the definition given in
(2.14). For convenience it’s useful to define 7,(7) as the representative value for a
block, which means that for all the ¢ associated with a block, 7, (i) = (7).

The reestimation formulas at (2.17a), (2.17b), (2.21a) and (2.21b) follow the new
definitions of & (i, j) and (7). Using the equations above, they can be rewritten:

T = (i) (2.36a)

EL" - Zg/:lgw(ivj)
ij = . }
szu/:l [nw’}/w(l)} - VW(Z)
The mean and standard deviation reestimations follow a slightly more complex re-
formulation, both for the general mixture and the single Gaussian distribution. In

particular, (2.21a) multiplies the single observation value by the respective ().
Since ;(7) is constant inside a block, the equation can be rewritten as:

(2.36b)

YL ()0 S () SR Yuk Zet Ywld) - Brw

= — = . = , (2.37)
T i) Y1 Yoo (7) - Y1 Yoo (5) -
The same reasoning applies to the variance reestimation:
. w - = =2
52 — 1 () (0 = 1y)? _ 2w=1"w(7) [22’“’ — 22w nwﬂj} (2.38)

7 S () Sy Yeld) T

2.6 Relevant model parameters

The computational complexity of the compressed algorithms is lower than the stan-
dard versions; since the blocks are used instead of the individual observations, it
goes from O(T - N?) to O(T - W?), where W is the total number of blocks obtained
from the compression. The complexity analysis refers to an infinite amount of data;
the actual efficiency gain depends on several factors: the separation of the states, the
self-transition probabilities and the implementation details (which will be discussed
in Chapter 3).

These parameters also impact the results errors due to the approximation introduced
by the block compression (as in (2.24)). Trying to find some conditions for which the
compressed algorithms always work well (or badly) in terms of speed and accuracy
is one of the main goals of this thesis, leading to a sensible choice on which set of
algorithms to utilize in different situations.

This section presents the most relevant factors that influence the results quality,
discussing their relevance and eventual conditions under which the compressed al-
gorithms should yield a substantial advantage over the standard ones.

2.6.1 State separation

The state separation is a key factor in the compressed algorithms; if the states are
well-separated, it’s easier to distinguish between two of them. This means that the

18

2. Theory

L)

. . °
Y Ay
H
0.0
.
o3 b b o 2o 4 $
N b S P Ve g *% LR
. .
.

0 2000 4000 6000 8000 10000

Figure 2.3: Data generated using a two-state HMM with distributions N (0, 1?)
and N(10,1?).

wavelet compression will produce blocks with clear boundaries, because some detail
coefficients of the Maxlet transform will be high due to a bigger jump between two
observations values belonging to different states. Figure 2.3 shows an example of
data with clear distinction between the states.

If the states are well-separated, the approximation made by the block compression
of neglecting some states contribution becomes more accurate. This is true because
the emission probability of an observation for a state that didn’t generate it gets
very close to zero. In this context, it’s useful to formally define a measure ng, g, of
how much well-separated two states are. Since for a Gaussian distribution N (u, 0?)
it’s known that 99.97% of the values lie within three standard deviations from the
mean, a good measure definition could be:

o \Msl - MSQ\

= 2.39
151,82 3(051 + 052) ()

The power of this definition lies in the fact that it’s easy to understand visually: if
Ns,,s, = 1 it means that the two distributions touch exactly after their respective 30;
if s, s, < 1, the distributions overlap for a significant portion; if 7g, g, > 1, then
the distributions are clearly separated. Also, a measure of 7g, 5, = 0 indicates that
the two distributions have the same mean. When having more than two states, this
separation should apply between every pair of consecutive distributions (ordered by
mean). This n will be denoted as separation coefficient for easier reference.

It should be clear that a higher state separation should reduce the error between the
compressed and the standard algorithms; a more precise analysis will be conducted
with the results evaluation in Chapter 4.

19

2. Theory

2.6.2 Self-transition probabilities

High self-transition probabilities should help the compression process in more than
one way: for example, they make the blocks bigger, directly implying the produc-
tion of fewer blocks for a fixed amount of observations and thus saving precious
computation time. The impact on accuracy is hard to evaluate: for a fixed observa-
tion sequence, having less blocks could increase the error because more state paths
are ignored; on the other hand, the contribution of the other state paths become
smaller, thus decreasing the approximation error. To better understand the actual
effects of this parameter on it, extensive testing will be conducted in Chapter 4.

20

3

Methods

This chapter describes the implementation structure, covering in detail the differ-
ences between the standard algorithms and their compressed version. Moreover,
typical problems (e.g. numerical precision) will be addressed, discussing applied
solutions and possible improvements.

The language of choice is C++, after considering others such as Python and R;
it sacrifices some simplicity for the sake of efficiency, both in terms of speed and
memory management. A great and popular compromise is to expose some Python
bindings to an internal C++ structure, providing a simpler interface to the under-
lying complex implementation.

3.1 Framework description

In the design phase of a new project it’s very useful to draw a scheme describing the
class structure as the one in Figure 3.1, also listing what external tools will be used
and how they will interface to the main components. To have more control over the
code and allow for fair speed comparisons, both the HMM representation and the
standard algorithms have been implemented from scratch.

The external components used are: CXXopts, to parse input arguments from com-
mand line; HAIMMLET [13], for wavelet compression and the relative data structures;
Pomegranate, a Python framework used for data generation.

The tool has been named WaHMM, after Wavelets Hidden Markov Model and
following the style of HAMMLET. The core interfaces with the external components
through the parser and the Compressor elements. The standard algorithms and
their compressed version have been separated in different files for easier management.

3.2 Implementation details

This section will describe several implementation choices, the reasoning behind them
and their impact on results.

3.2.1 Parser

The parser allows for an easy interaction with the tool through the specifications of
various options using the common UNIX style. Although it can be quite verbose,
it’s a very effective instrument to define input parameters and which algorithms to

21

3. Methods

State

N

Model

——

Main module
CXXopts —4 Parser F WaHMM.cpp % Compressor }— HaMMLET

Compressed
Algorithms

Algorithms

Utilities

Figure 3.1: Structure of the implemented code (thin border) and its connection
points to the external libraries used (thick border).

execute. This interface allows to input a model through command line or file, as
well as giving input observations as a space-separated list of floats in a file or with
a binary file format. Several options allow to choose which algorithms to execute,
together with controls for verbosity and saving the results to files.

3.2.2 Numerical errors

Any kind of numerical method or scientific computation faces the problem of numer-
ical errors. Representing real numbers on a machine is one thing, but observing that
representation forces their decimal expansion to be truncated at some point. There
is an entire sub-field of programming language theory called "exact real-number com-
putation" devoted to representing real numbers on computers; more information on
that can be found on Haskell’s wiki page [14]. At the end of the day, the smallest
difference between two numbers that a computer can recognize is called machine ep-
silon; if their difference is smaller, it’s rounded to zero producing a rounding error.
The machine epsilon is platform-dependent, but generally it can be close to 10716,
Since the product of probabilities can get very small fairly quickly, this problem
would cause increasingly bigger errors on all the computations (e.g. forward matrix
after some time steps).

To address this well-known problem, many approaches are possible: to achieve higher
precision, a double data type is used to store results, redefined as wahmm: :real t;

22

3. Methods

the workspace wahmm is used to avoid naming conflicts with libraries such as HaMM-
LET. For numerical problems, the strategy followed in this thesis is to use logarithms
of probabilities. There are several advantages with this approach: the logarithm nat-
urally scales the [0, 1] interval to (—oo, 0] so that when probabilities get smaller, their
logarithm becomes more negative; all the products required by the algorithms be-
come summations, which is much easier and faster to perform. Using a logarithmic
space also saves computations in the compressed algorithms; in fact, this transfor-
mation removes the exponential function in (2.27a), making it a natural choice for
the use in these algorithms.

3.2.3 State representation

For the scope of this thesis, a state is associated with a Gaussian distribution that
defines its emission probabilities. As such, accepting the trade-off between gener-
alization loss and efficiency gain, the State class directly embeds the parameters
of the associated Gaussian distribution. This allows for faster retrieval and update
of the parameters, and can be easily expanded to other probability distributions
(for future work) by turning State into an abstract class and deriving distribution-
specific State classes from it. It is worth noting that the emission probability is
provided directly in logarithmic space, to avoid useless overheads and speed up the
computation.

3.2.4 Data generation

To generate data from the model, the framework Pomegranate is being used. It’s
a general HMM library, but the fact that the implementation language is Python
makes any eventual speed comparison unfair, and thus it won’t be used to apply
standard algorithms to the model. Pomegranate can generate data in a simple and
fast way; some Python scripts interface with it by defining a model that is coherent
with the one used or estimated in WaHMM.

Specifically, generate_data.py reads the model from a file and generates an ob-
servation sequence of some length, optionally saving both the sequence and the
generating state path to file in both plaintext and binary form; this allows to read
the binary file for faster input processing, shrinking the running times considerably.
At this time, k-means clustering can be performed on the data after it’s generated.

3.2.5 Wavelet compression

The compression of the data happens through the Compressor class, that wraps an
interface to HaMMLET. The observation sequence undergoes the Maxlet transform
and it’s encapsulated in a BreakpointArray, a data structure that, given a certain
threshold, subdivides the sequence in blocks. Each block gathers observations that
are sufficiently close and thus are likely to have been generated while the model
was in the same hidden state. A summary of each block statistics is stored in a
parallel structure called IntegralArray. The combination of these two structures
allows to define an interface for simple and efficient querying of consecutive blocks

23

3. Methods

and their statistics summary. More information on how HaMMLET works can be
found in [13].

The threshold used to define blocks can surely be object of discussion: a low thresh-
old will yield more blocks than needed, reducing the efficiency of compression; a high
threshold will instead generate fewer bigger blocks that may group observations be-
longing to different states. The choice is taken from HaMMLET: the threshold is
obtained by computing and estimate of the noise variance from the finest detail
coefficients of the wavelet transform.

3.2.6 Logarithms summation

Some very useful declarations and functions are present in utilities.hpp and
commons . hpp; other than functions to easily print and free matrices, the most im-
portant one is sum_logarithms(). Since the program operates in the logarithmic
space, the probability products are converted into summations. A sum in the orig-
inal space, though, has no simple logarithmic equivalent; this situation happens
often, as in equation (2.4b)).

Using symbols, the function needed to solve this problem is some F' so that, given
two elements in logarithmic space log(x),log(y) it should produce:

log(z +y) = F(log(x), log(y)) (3.1)

The simplest option would be converting both elements back to the original space
through exponentiation, writing:

log(z + y) = log(e'°8(® 4 los)) (3.2)

However, this solution can cause underflow when log(x) or log(y) are too negative.
A simplification of this allows to write:

log(z 4) = log(z) + log(el*s®~1oe(®) 4 1) (3.3)

when log(z) > log(y). Some workaround are required if any of the operand is
—o00, implying the presence of some if clauses before the actual computation. The
sum_logarithms() function implements this operation using the std::loglpf ()
function from the standard library of C++ for a more efficient computation of the
logarithm.

3.2.7 Saving results

The algorithms results can be saved to file by adding the right option when calling
the program. Although the results directory may be changed, the default choice is
the /results folder. After running the algorithms, WaHMM will write the results
in properly named files. To produce an example, a set of standard results can also
be generated using Pomegranate through the script pomegranate_test.py, more
for a comparison with a different approach than for speed and performance.

24

3. Methods

3.2.8 Test automation

The process of testing the algorithms against generated data is of course central
to the thesis work; given the huge number of tests to conduct, it makes sense to
automate not only the testing process, but also the extraction of meaningful results.
The Python script automated_test.py takes care of the testing process through a
very simple sequence of steps:

» generate the model according to the topology and number of states relative to
the current case that is subject to test;

o generate data from the model and save to file both the sequence and the
generating path;

o estimate a model for the training problem from the data and save it to file;

o execute the algorithms, timing their execution and computing some perfor-
mance measures;

o periodically save the test results to file for future analysis.

The Python script results_aggregation.py allows to analyze the results in an
automated way, by not only computing the differences between the compressed
and standard algorithms in the chosen metrics, but also producing their graphical
representation in the form of plots, boxplots, and a merge of the two. The last one
is the format used for the figures discussed in Chapter 4.

3.2.9 Other Python files

Several Python scripts have been written to ease WaHMM’s usage and setup, not
only with an interface that may be simpler to use, but that also allows an eas-
ier automation of the testing process. The create_model file.py script defines
a model and saves it to file, so that it can be used in other scripts and later be
imported by WaHMM. plot_data.py and plot_kmeans.py are utilities to pro-
duce some outlook on the generated data and on the estimated model respectively.
viterbi_comparison.py simply compares Viterbi paths obtained with different al-
gorithms to point out the differences, particulary useful when checking the accuracy
of the compressed algorithms against the real generating path. utilities_io.py
and utilities_kmeans.py simply provide helper functions for the other scripts.

3.3 Standard algorithms

This section will discuss the implementation of the standard algorithms; for an easier
understanding, it can be useful to reference Figure 2.1 for a structural overview. All
the three functions solving the problems accept some boolean flags to influence the
type of output: verbose prints more information to the standard output; silence
suppresses all the output messages; tofile specifies that the output results should
be saved to file.

25

3. Methods

3.3.1 Evaluation problem

The evaluation problems can be solved by computing the forward matrix. Looking
at Figure 2.1, each row is associated to a state; each column represents a time
step. After the initialization described in (2.4a), the induction phase is constructed
by initializing to —oo the forward variables for the current time step; then, the
sum_logarithms() function is applied to accumulate the sum of the products in
(2.4b); at last, the emission probability is added and the computation moves to the
following time step. A simple sum of the forward variables over all states at the last
time step yields the desired P(O|\) probability. Looking at the code, it’s easy to
confirm the computational complexity of O(T - N?) (as it was previously stated in
Section 2.1.1).

3.3.2 Decoding problem

From a theoretical perspective, the decoding problem is very similar to the evaluation
problem; in fact, the Viterbi algorithm differs from the forward algorithm in applying
the maz operator instead of the sum. The implementation is slightly more complex,
requiring an additional matrix (named statesViterbi) with the same structure to
hold the argmaz results from (2.11b). After the initialization phase, a loop is used to
join the computation with a classic maximum search on-the-fly; this allows to only
iterate once over the states. The backtracking described in (2.11d) is then applied
by appending each state of the path at the head of a list; in this way, a simple visit
of the list yields the Viterbi state path. Again, the computational complexity of
O(T - N?) that was discussed in Section 2.2 is confirmed by the implementation.

3.3.3 Training problem

The Baum-Welch algorithm is the most complex of the three. It is performed it-
eratively for a maximum amount of iterations or until the procedure is improving
P(OJ)) by an amount smaller than a predefined threshold (107 in the implemen-
tation). For this reason, to avoid a big overhead most of the memory allocations
happen in training problem_wrapper (), that also handles the iterations of the al-
gorithm. The result returned at each iteration is the evaluation probability P(O|\)
relative to the model before the reestimation; this implementation choice avoids one
useless computation of the forward matrix at each iteration of the Baum-Welch al-
gorithm at the cost of performing one more iteration than needed after matching
the threshold.

The starting model supplied to the procedure can be directly read from a file using
the option estimate; in the absence of a solid estimation from domain knowledge,
it’s possible to generate the model estimate through an automatic procedure that,
given the number of states, selects some means and variances to be associated with
states. The chosen method for this automatic procedure is the application of K-
means clustering to the sequence; the proposed Python implementation uses the
clusters centroids as estimated means and computes the standard deviation with
the canonical squared distance formula. The model is then saved to an output
data/kmeans _model file, to be imported as a starting model when executing the

26

3. Methods

training algorithm. This clustering operation can happen either directly when the
data is generated, for faster execution, or later on, for externally supplied data.
The theory presented in Section 2.3 advocates for calculating every variable for
all the time steps: this implies a huge memory usage to store the forward and
backward variables, plus v, and ;. The procedure doesn’t actually need to store all
the intermediate results: to save space, the backward variable and ~; are calculated
only for the considered time step; the other variables are simply summed to obtain
the final cumulative sum over all time steps. Looking at the reestimation equations,
it can be seen that the denominator P(O|\) gets simplified in all of them except for
(2.17a); thus, it’s more convenient to remove it from the equations and just add it
to (2.17a) at the end.

Performing the reestimation of the Gaussian’s mean using the formula in (2.21a)
produces a problem; in fact, although working in logarithmic space eases the com-
putations for the variable 4, it cannot be done when observations are negative; that
is, if the reestimated mean is negative, it can’t be represented in the logarithmic
space. To overcome this problem, the observation sequence must be rescaled by
translating it by a value that is strictly greater than the minimum observed value so
that only strictly positive observations are present. This rescaling is applied on-the-
fly and for the mean reestimation only, to avoid useless computations; the added
offset must obviously be removed when moving out of the logarithmic space.

3.4 Compressed algorithms

This section contains a description of how the data compression changes the algo-
rithms in the implementation. To ease the computations, the summary statistics
of a block can be retrieved both individually (through Compressor: :blockSize(),
::blockSum() and ::blockSumSq()) and together, through an ad hoc data struc-
ture called blockdata and the related function Compressor: :blockData().

A key part of the computation is calculating e+ ® for a block. As a first observation,
working in logarithmic space allows to avoid the exponentiation and just calculate
E., (7). More interestingly, from (2.27a) it can be seen that K (n,, j) only depends on
the state and the size of the block, and not on the actual observations. To make the
algorithms faster, the Model class stores an array of hashmaps Model: :mKValues of
the K (n,,7) values per each state, adding entries as they are computed.

3.4.1 Evaluation problem

The forward algorithm is modified to deal with compressed data. The implementa-
tion is very similar to the uncompressed one: the Compressor class allows iterating
through the blocks to perform the computation of the compressed forward variable
following the equations (2.28a), (2.28b) and (2.28c).

3.4.2 Decoding problem

The compressed Viterbi algorithm iterates over the blocks in a similar fashion to the
forward algorithm, as it happens for the uncompressed algorithms. To keep track

27

3. Methods

of the actual Viterbi path, though, the block sizes must be recorded somewhere; in
this way, during the backtracking phase any block state can be associated to its size,
specifying how long does the sequence stay in that state.

3.4.3 Training problem

As shown in previous discussions, the compressed training algorithm is the one
that differs the most from the uncompressed version. A first difference that is
worth noting is that the backward matrix is computed fully using a compressed
backward algorithm; the space overhead is more manageable in this case, since
the backward matrix has one column per block and not one per observation. The
variables are computed according to the new definitions given in Section 2.5; the
mean and the variance computations are done outside of the logarithmic space,
to avoid the problems caused by negative values of the sum that would require
a translation of all values. An important consideration can be made for (2.27b):
K (ny,j) can be precomputed at each iteration of the Baum-Welch algorithm. To
find a balance between avoiding useless computations and performing the same
calculation every time, a map is used to keep track of the K(n,,j) values that have
already been encountered; whenever a new one is found, the computation is made
for all the states and stored into the map; this allows to speed up the compressed
algorithm a little bit more, at the cost of some extra memory.

28

4

Results

This chapter presents the methodologies that have been chosen to evaluate the de-
veloped algorithms, discussing the parameters influence and how the results will be
observed; this has the purpose to identify some conditions under which the com-
pressed algorithms are worth using.

4.1 Testing setup

4.1.1 Choosing the parameters

To test the approach developed in this thesis, some HMMs need to be defined. Choo
et al. [15] do a very good job defining some of the most frequent and useful model
topologies in the field of reference, which is computational biology; nonetheless, they
have a much broader scope and are found in many different applications. Three
topologies will be analyzed:

o fully connected model, with every pair of states being connected and thus with
the underlying graph being complete; the fully connected graph also includes
the self-loops for each state;

o circular model, with an ergodic graph: the states are arranged in a circle, and
a transition can only occur towards the same state or to the next one;

o left-to-right model, with an acyclic graph with the exception of loops; the states
are partially ordered and there are uniquely defined starting and ending states;
transitions must be taken to visit the states following that order.

Each topology will be explored using different numbers of states, to see how the
performance and accuracy varies. Specifically, models will be defined with 2, 3 and
5 states; this choice should give a perspective on how this parameter influences the
results. About the observation sequence, both its length and an expected number
of transitions should be discussed. For typical applications, the observations length
usually is in the order of 10°. Experience suggests that an adequate expected number
of transitions is 10, which is a realistic magnitude for several kind of sequences of
interest. The state separations that will be tested are 10 different values of n as
defined in (2.4c), going from 0.1 to 1.0 in increases of 0.1.

Testing algorithms against randomly generated data always presents the risk of
introducing a non-deterministic bias into results. To contrast this problem, 100
sequences have been generated for each model: this allows not only to analyze
some aggregate values to obtain some summarized information, but also to study
the spread of the performance measures and thus the results stability. The chosen

29

4. Results

aggregation method is the median, since its robustness allows to correctly ignore a
solid number of outliers. The number of sequences has been chosen as a compromise
between robustness of the statistics and feasibility of the execution times on a laptop.

4.1.2 Results evaluation

Before rushing to the results discussion, it is useful to overview what type of infor-
mation will be presented to analyze the results and the mathematical tools used to
elaborate them. Every measure defined in this section will be plotted against the
states separation 7).
Defining some measure of relative error is necessary, but it can be tricky, especially
when facing zero values; the approach used in this thesis is to use the relative
difference, defined as

S Lt Ty (4.1)

max (|, [y])

with the caveat of setting the error to zero when both x and y are zero.
For the states estimation, the accuracy is evaluated using another measure borrowed
from information theory: the Kullback-Leibler divergence (or KL-divergence), an
indicator of how much a probability distribution differs from another one taken as a
reference. A deeper explanation of this measure falls out of the scope of this thesis;
the formula is presented below:

p(x)
p(x)log(q<x>>d:v (4.2)
Now that the mathematical tools have been described, the different performance
measures can be properly explained.

The evaluation problem produces the logarithm probability P(O|)) as defined in
(2.4c); the performance of the compressed algorithm is measured as the relative
difference from the standard result.

For the decoding problem, the indicator has been chosen to be the fraction of errors
in the estimated generating path; thus, the performance measure is the relative
difference between the compressed and the standard results.

The training problem is much more complex, and summarizing its results to obtain
some indicator of how well the algorithm performs is not an easy task. The choice
for this thesis is to compare both the compressed and the standard estimates against
the real model, along three dimensions: the average accuracy on the states, mea-
sured with the KL-divergence; the average error on the transition log probabilities;
the average error on the log probability of the initial distribution evaluated at the
starting state. These three indicators are computed for both the compressed and
the standard algorithms and then compared by simply taking their difference.
Finally, the speedup will be analyzed with a simple ratio of the execution times,
separately for the three algorithms; this measure obviously includes the data input
processing time, to account for the overhead that the compressed algorithms require
to elaborate the data.

To give more insights on the plotted information, each plot has boxplots on the side
to describe the distribution of the results. It’s easy to see how discussing the results

Di(PlIQ) = [

—00

30

4. Results

2 states

o o
R S S)
L r = ¢ F T
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
State separation

Evaluation: probability relative error

L w
0.0010 —8— 2 states =
=

> 3 states
--®@- 5 states

lal
(=2 =]
s o
o o
=S
] }—I:’_“)

2o
s

0.0008 4
3 states

0.0006 -
L L & 3
i
PP ad L
03 0.4 0.5 0.6 0.7 0.8
State separation

r
e ¢
o
=]
=]

ror (relative)

o o

o o

(= =]

=~}
2l
SHH
i

i
0.9 10

Error (relative)

0.0004 4

5 states

0.0002 4 [o}

o)

oI CO S S N

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation

e
]—W

0.001

T T T T T
02 0.4 06 0.8 1.0 ’ 01 o2
State separation

Figure 4.1: Relative difference between the P(O|)) log probabilities of the com-
pressed and standard algorithms. Since the errors are on a big negative log proba-

bility, the actual error magnitude is approximately of 107209,
2 states
Speedup: evaluation 2 0.8 i ;—_‘ T i i i . o
SOl — - % ool
e Tz MFETTIeEIo
3.0 - e e @ Sstates "ol o2 o3 0s 05 e o7 o8 os 1o
“o.. State separation
25 R 3 states
g - I SO I ’
2 3 e
N e o -
01 o2 03 04 05 06 07 08 09 10
154 State separation
. 5 states
104 % % ? l ’l‘ .
r—.‘_.——.——_._.___.___._'__. §3 = I
L L
0.8 09 1.0

~

. . . T .
' ' ! . i |
0.2 0.4 0.6 0.8 Lo 0.1 0.2 03 0.4 05 0.6 0.7

State separation State separation

Figure 4.2: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.

will generate a big amount of figures; for this reason, this chapter will only present
the figures for the fully connected model; the other topologies will be discussed in
relation with this model and their plots will be grouped in the Appendix A at the
end of the thesis.

4.2 Evaluation problem

The information being plotted in Figure 4.1 is the relative difference on the log-
arithmic probability P(O|\) between the compressed and the standard algorithm.
The first thing to notice is that as the state separation increases, the error decreases;
this is expected, since having more distinguishable states helps the compression pro-
cess. In all cases, the error is relatively small and tightly spread, indicating that the
compressed algorithm does a good job approximating the standard one on the eval-
uation problem. Also, the error appears to decrease with a higher number of states
in the model. To understand if the use of the compressed algorithm is really worth

31

4. Results

2 states
0.0010

Decoding: relative path error

—8— 2 states 0.0005 7

3 states
--®@- 5 states

Error (relative)

0.0005 1 N, a

f y y T ? T ?
0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation

0.0000

2{TH
i

0.0004 7 3 states

0.0010

0.0003 4 0.0005 4

Error (relative)
-

o
:
:

T 7 - 7 T ——
0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation

0.0000

Error (relative)

0.0002 4

5 states

0.0001 4 0.0010

0.0005 + ’L
-
0.1

0.0000

0.0000

Error (relative)

: e
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo
State separation

T T T T T
0.2 0.4 0.6 0.8 Lo
State separation

Figure 4.3: Relative difference between the fractions of errors in the estimated
generating path.

2 states
1.25

Speedup: decoding o

o
> 1004
12 K
] e L 08 § 08 s o8 s 4§
g g @ T el states 1Y 8 T W EF T F T FF
@~ 5states ’ 01 02 03 04 05 06 07 08 03 10
114 State separation
3 states
125
o
S 10 él-OO’iiiggiiiii
g T T T T TIFTTET
aQ
w T T T T T T T T T T
ST oz 03 04 o5 o8 o7 o8 o8 10
0.9 4 State separation
5 states
215 -]
S S SR S W N S S N S N |
£l T T F T FT T T T
02 0.4 0.6 0.8 Lo 01 02 03 04 05 06 07 o8 09 10

State separation State separation

Figure 4.4: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.

it, Figure 4.2 shows the different speedups obtained; although they don’t change
much with the state separation, the main parameter affecting them is the number
of states: the use of the compressed algorithm is thus advised only when the model
has a relatively high number of states.

The circular and left-to-right topologies have slightly worse results, but definitely
going through the same considerations made for the fully connected model.

4.3 Decoding problem

As properly explained in Section 2.2, the decoding problem is quite similar to the
evaluation problem with the forward algorithm being partly modified. Thus, the
expected results should more or less align to the performances in the evaluation
problem. As Figure 4.3 shows, the general trend is the same. When the state
separation is extremely low, the uncertainty on the values is high; thus the actual
ordering between the states, although consistent with Figure 4.1, may vary slightly
in certain points. Although the performance indicator seems good, Figure 4.4 shows

32

4. Results

2 states
0.01

0.00 I
-0.011

-0.02

Training: KL-divergence difference

¢
¢
¢
L

. o

]
]
)

0001 00— o092 Statls
3 3 states
--®@- 5 states

Difference (abs)

T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation

—0.02 4

—0.04 3 states

0.0 =

o o .- 5 o
—0.06 4
—0.51

.
Difference (abs)
-man o (o

co o

H
HH
{ ooy

-1.0

— 4 T T T T T T T T
0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

State separation

Difference (abs)

—0.101 5 states

1
e
N + B § &
dTTTYT LR
- . . : Q .
0.1 0.2 0.4 0.5 0.6 0.7
State separation

—0.12 4

o ofwo
oo atw g
o g am

Difference (abs)

g1 amfHo

T T T T T
0.2 0.4 0.6 0.8 Lo
State separation

=l
o
e
©
-
o

Figure 4.5: Difference between the average KL-divergence for the compressed and
standard algorithms.

how the compressed algorithm is generally less efficient than the standard one when
the model has a small number of states; moreover, the data has a very high spread,
suggesting that the actual speedup depends a lot on the data being generated.
The model that scores better in the decoding problem is the left-to-right model,
which intuitively makes sense since each state only has one allowed transition; again,
though, the results are pretty similar and thus the compressed algorithm should only
be used when the number of states is high enough.

4.4 'Training problem

The training problem is the most complex of the three, as it has been said many
times at this point. The first plot of interest is in Figure 4.5, showing how well
the states are estimated by the compressed algorithm compared to the standard
one. While the overall trend is that of a constant small difference for most values
of state separation, it’s noteworthy that the plotted values are negative when the
states are not well-separated. This means that the compressed algorithm is actually
more accurate than the standard one, and this accuracy appears to increase with the
number of states if the state separation is small enough; the main problem is that,
for an increasing number of the states, the spread of the results starts becoming
very high. In spite of this, for a 5-states model that is not enough to cause problems
or big inaccuracies. Similar considerations can be made for both the transition
probabilities and the initial distribution estimations; the compressed training does
an overall better job by a small margin, that gets more consistent when the state
separation is very low.

The results for other topologies resemble the presented ones quite well. The generally
high instability of the results can make the appearance of the plot be less meaningful;
but when taking a deeper look at the data, the distribution of the results is mostly
skewed towards favoring the compressed algorithm over the standard one. Looking
at the speedup in Figure 4.6, there is a very noticeable performance gain that is
higher when the state separation is low and the number of states is high. In general,

33

4. Results

2 states
’ 300
Speedup: trainin o ==
P p 9 22001 T °
]
.'-, —8— 2 states 2 100 4 E
500 1 3 states L = i A a o a r-9 o Jr-u
e 5states o T T - = . T 7 T T y
. 01 02 03 04 05 06 07 08 09 10
State separation
500 1 . 3 states
e < 1=
2 55001 == g 8 g 3 o 8
2 k & 250 8 o 8
[o I
2 400 4 n ° = é L 8 s a o 8 “n
@ 01—) ; == == ? . ; = :
01 02 03 04 05 06 07 08 09 10
State separation
200 4 5 states
1500
(=%
£ 10004 T L T
: T T OO0AAAA0
A 117
‘ ‘ ‘ y ‘ [— - ‘ e == L 0 W L L
02 0.4 0.6 0.8 Lo 0.1 02 03 04 05 06 07 08 09 10
State separation State separation

Figure 4.6: Speedup on the training problem using the compressed algorithm,
including the input data processing time.

the speedup tends to be extremely high, giving a solid reason to use the compressed
training.

34

O

Conclusion

5.1 Main takeaways

The previous chapter presented a description of the results on a case-by-case basis;
after that, it’s useful to summarize the insights that have been extracted from the
testing process.

A first thing to point out is that the results are pretty consistent over all the tested
topologies; this allows to draw some general conclusions that are independent of
the topology of the model. Overall, the compressed algorithms perform with an
extremely high precision. Specifically, the evaluation and the decoding compressed
algorithms perform as well as the standard ones regardless of the states separation.
They are slower then their standard counterpart for models with a low number of
states, because of the overhead caused by the data compression; fortunately, the
speedup gets better for models with a higher number of states, when the running
times would start to grow more and more. The training algorithm is the one that
definitely performs best: it performs better than the standard algorithm for a low
state separation, and the achieved speedup is extremely high.

It’s important to remember that there is a number of factors that have been assumed
constant throughout the testing process, such as the self-transition probabilities or
the sequence length. In the context of big data, for sequences that are much longer
than the ones used in testing, the compressed algorithms certainly perform even
better than what is showed in Chapter 4.

5.2 Wrapping up

WaHMM gives the opportunity to apply either standard or compressed algorithms
to solve the evaluation, decoding, and training problems with an efficient C++
implementation. In the context of scientific research, this thesis will hopefully serve
as another confirmation that wavelet compression can work really well to allow
hidden Markov models to scale to big sequence data. In particular, it could allow
to train a hidden Markov model on a commodity laptop instead of requiring more
complex machinery, since the training may be even thousands of times faster.

35

5. Conclusion

36

1]

[10]

[11]

[12]

[13]

Bibliography

[. P. Waldmann, “On signals faint and sparse: The ACICA algorithm for blind
de-trending of exoplanetary transits with low signal-to-noise,” Astrophys. J.,
vol. 780, p. 23, 2014.

K. R. e. a. Wiedenhoeft J., Cagan A., “Bayesian localization of CNV candidates
in WGS data within minutes,” Algorithms Mol Biol, vol. 14, no. 20, 2019.

I. R. Sipos, A. Ceffer, and J. Levendovszky, “Parallel optimization of sparse
portfolios with ar-hmms,” Computational Economics, vol. 49, pp. 563-578, Apr
2017.

S. Y. M. Gales, “The Application of Hidden Markov Models in Speech Recogni-
tion,” Foundations and Trends in Signal Processing, vol. 1, no. 3, pp. 195-304,
2007.

7.-U. M. Mozes S., Weimann O., “Speeding Up HMM Decoding and Training by
Exploiting Sequence Repetitions,” in Combinatorial Pattern Matching (B. Ma
and K. Zhang, eds.), (Berlin, Heidelberg), Springer Berlin Heidelberg, 2007.
M. P. Mahmud and A. Schliep, “Speeding Up Bayesian HMM by the Four
Russians Method,” in Algorithms in Bioinformatics (T. M. Przytycka and M.-
F. Sagot, eds.), (Berlin, Heidelberg), pp. 188-200, Springer Berlin Heidelberg,
2011.

S. A. Wiedenhoeft J., Brugel E., “Fast Bayesian Inference of Copy Number Vari-
ants using Hidden Markov Models with Wavelet Compression,” PLoS Comput
Biol, vol. 12, no. 5, 2016.

L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition,” Proc. IEEFE, vol. 77, no. 2, pp. 261-266, 1989.

A. B. Romeo, C. Horellou, and J. Bergh, “A wavelet add-on code for new-
generation N-body simulations and data de-noising (JOFILUREN),” Monthly
Notices of the Royal Astronomical Society, vol. 354, pp. 1208-1222, 11 2004.
L. Liporace, “Maximum likelihood estimation for multivariate observations of
Markov sources,” IFEE Transactions on Information Theory, vol. 28, no. 5,
pp. 729-734, September 1982.

B. H. Juang, “Maximum-likelihood estimation for mixture multivariate stochas-
tic observations of Markov chains,” AT€T Technical Journal, vol. 64, no. 6,
pp. 1235-1249, July-Aug. 1985.

B. Juang, S. Levinson, and M. Sondhi, “Maximum likelihood estimation for
multivariate mixture observations of markov chains,” IEEE Transactions on
Information Theory, vol. 32, pp. 307-309, 3 1986.

J. Wiedenhoeft, Dynamically compressed Bayesian hidden Markov models using
Haar wavelets. PhD thesis, Rutgers, The State University of New Jersey, 2018.

37

Bibliography

[14] “Exact real arithmetic - haskellwiki.”

[15] . Z. L. Choo K. H., Tong J. C., “Recent applications of hidden markov models
in computational biology,” Genomics, Proteomics & Bioinformatics, vol. 2, 5
2004.

38

Appendix 1

A.1 Fully-connected model

Training: Transitions relative error difference

0000 o —p——® 0w B B =82 -StATES.
o 3 states
] .-
—0.025 1 ®- 5 states
—0.0501 ¢
w
2
ot
w —0.075 1
g
2
o
£ —0.1001
a
—0.125 4
—0.150 4
T T T . T
0.2 0.4 0.6 0.8 Lo

State separation

Difference (abs) Difference (abs)

Difference (abs)

2 states
0.5
wiy ¥ - & $ <© —<° & - =
-0.5 " T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
3 states
0.5
2 8
004 ¢+ 8 B 8 B 8 & &8 .o
'] &g 8 ¥ o &8 7
w ° 8
-0.5 t " T : T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
5 states
0.5
004 I, = & 2 B R .- a & A
= = % = ¥ v] T F F
-0.5 T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

State separation

Figure A.1: Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.

Training: Initial distribution error difference

7.0000000 1 4 - e - g g =82 Statls
: 3 states
~-@- 5 states
).0000005 4
A"-
).0000010 +
[] []
).0000015 +
).0000020 4 L
).0000025 + ® . i i . i
0.2 0.4 0.6 0.8 Lo

State separation

Difference (abs)

Difference (abs)

= le—7 2 states
£ ol L r 5 <
= e = <
5 =T % § ¥ ¥
5 []
3 o
£ 27
= T T T T T T T T T T
a 01 02 03 04 05 06 07 08 09 10
State separation
3 states
0000000 [(— -5 o T ° ° 2 o o
-0.000002 é e -]
o} o 8
—0.000004 o o
T T T : : T T T T T
01 02 03 04 05 06 07 08 09 10
State separation
5 states
0.000000 T == — ™— ™
—0.000005 ? g % g
g 8 o
~0.000010 L1 . 2 2 ; : . . T 2
01 02 03 04 05 06 07 08 09 10

State separation

Figure A.2: Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and standard

algorithms.

A. Appendix 1

A.2 Circular model

Evaluation: probability relative error

0.0010 7 —&— 2 states

3 states

0.0009 1 --@- 5 states

0.0008 4
0.0007 4 ..

0.0006

Error (relative)

0.0005 4

0.0004 4

0.0003 4

0.0002 T T T
0.2 0.4 0.6 0.8 Lo
State separation

Error (relative) Error (relative)

Error (relative)

2 states
0.003
0.002 o o
o.oul—LrirLiiLLi
2 TP PP oSS
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
3 states
0.003 o
0.002 ° 8
0.001 L ; i = i o i
o.oooij‘TTT%T%%
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
5 states
0.003
0.002 i 8 i
0.001] 5 I L= £ £
T PP aedd
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

State separation

Figure A.3: Relative difference between the P(O|)) log probabilities of the com-

pressed and standard algorithms.

Decoding: relative path error

0.0006 1 —&— 2 states

3 states

000051 @ --@- 5 states

0.0004 4

0.0003

Error (relative)

0.0002 4

0.0001

0.0000 4

T
0.2 0.4 0.6 0.8 Lo
State separation

Error (relative) Error (relative)

Error (relative)

Figure A.4: Relative difference between

generating path.

IT

2 states
0.0010
0.0005
= -
0.0000 ———F——=—= =% e ;
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation
3 states
0.0010
0.0005 ©
=
\T‘ = -3 2 - - —_— - - - -
0.0000 T f ; T 7 ; ? ? 7 ?
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation
5 states
0.0010
0.0005 %
0.0000 - = 2 o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

State separation

the fractions of errors in the estimated

A. Appendix 1

Training: KL-divergence difference

0001 —F—0———————— 88902 Statls
; 3 states
--®@- 5 states
—0.02 4
2
s —0.04 4
@
o]
c
2 B
& —0-06 1 :
a :
-0.08 4 ®
—0.10 4 ¢
T T T T T
0.2 0.4 0.6 0.8 Lo

Figure A.5:

State separation

standard algorithms.

Training: Transitions relative error difference

_! —8— 2 states
0.050 1 S 3 states
--@- 5 states
0.025
2 o000 ¢ —
2 +—
@
2
§ —0.025
£
© _0.050 1
—0.075 -
—0.100
0.2 0.4 0.6 08 10

State separation

Difference (abs) Difference (abs)

Difference (abs)

Figure A.6: Relative difference between
probabilities of the compressed and standard algorithms.

Training: Initial distribution error difference

1.0000000

).0000005

).0000010

).0000015 4

).0000020 4

).0000025

).0000030

).0000035 -

—

statés
3 states
~-@- 5 states

T
0.2 0.4 0.6 0.8 Lo
State separation

Difference (abs)

Difference (abs)

— 2 states
£ oo01
=
@
2 0001 & - < R < - S 2 < &
L
g E
@
£ —0.01 7 T T T T T T T T T
e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
. 3 states
E = T
= a 8 Q
v 001 L -ir - S~ - - - - - -
< - o
z 8
£ g5l . 2
e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation
= 5 states
Qo
E oo L = T - 8 £ - 5 5
g | % T
7 11 3 8
L o
[- . . 2 . . 2 ‘ . :
e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

State separation

Difference between the average KL-divergence for the compressed and

2 states
0.5
wl o & B e o o o o
-0.5 : T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
State separation
3 states
0.5
0.0 E g 1.1 k-2 E=3 & -2 2 -2
-0.5 T T T T T T T T T T
01 0.2 03 0.4 05 0.6 0.7 0.8 09 1.0
State separation
5 states
0.5 >
SR B
004 = L2 T - <= —/
& § ¥ F § %
-0.5 T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

State separation

the average error on the log transition

= le—7 2 states
2oL T T TV
G B s s %5 §F Y F®
[
2 -1+ T % o
g 8
£ 27
= T T T T T T T T T T
a 01 02 03 04 05 06 07 08 09 10
State separation
3 states
0.000000 - l T < 5 < < S & o -2
—0.000002 8
]]
—0.000004 o 8
T 7 7 : T T T T T T
01 02 03 04 05 06 07 08 09 10
State separation
5 states
0.000000 7T 7 =3 = - =
BEEERE
—0.000005 o 8 8
o -]
~0.000010 L+ ; Q . . !
01 02 03 04 05 06 07 08 09 1.0

State separation

Figure A.7: Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and standard
algorithms.

ITT

A. Appendix 1

2 states
10
Speedup: evaluation a
2] % = £ £ £ o o 2 £ g
164 g —8— 2 states g o © © © ©
e 3 states A
Cigeine . 0.01— ! ' ! ! ' ! ! ! '
g © 5states 01 02 03 04 05 06 07 08 09 10
1.4+ T g g State separation
3 states
15
o 127) o
5 =
E Eol 2 & 8 8 o o ° o o g
T @ ==
2 & L & © = o =T =F = = w
v 1.0 0.5 T T T T T T T T T T
01 02 03 04 05 06 07 08 09 10
State separation
0.8 5 states
2.0
=% o
o2 4 s s o8 g 8
=
| RER *—f E - 2
0.6 ./.\.\"'\.'_.—.,_.__. :% T‘ & % & = tgr = = =
[o}
T T " y T 10 - . . . T ; . .
02 0.4 0.6 0.8 Lo 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 10
State separation State separation

Figure A.8: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.

2 states
. 15
Speedup: decoding g
=
4 © 1.0
151 @i e g T 2states g g 8 . 8 & 8 8 2 8 8
e @3 stargs & T ® T ® =T =T 6 = +®wF =
. 0.5 : T . T T : T T T .
1.10 A ©: Sstates 01 02 03 04 05 06 07 08 09 10
State separation
1.05 1 3 states
15)
& 1.00 | Ey
E g 1.0 i g 3; B = 8 i 2 8 =
i 0.95 4 & ; E2 § © C 5 5
a 0.5 . T T T T . T T T T
0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 10
0.90 State separation
5 states
g 2 8 8 2 o 8 &
E
® 1.0 ? 5 ® T 5 LT © ©° & F
0.80 1 ¢ — ¢ ¢ g ° ©
1]
T T T T T 0.5 . T . T T . T T T T
02 0.4 0.6 0.8 Lo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation State separation

Figure A.9: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.

2 states
300
Speedup: trainin o il
peedup 9 52001 &2
[
1000 4 .’—. —8— 2 states 2 100 - i
3 states L == E-1 a8 a o o o
e 5 states 0 T . - == == 7 ; ? ; 7
. 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
300 4 . State separation
: 3 states
| 600 T—=— 8
i [=9
& 600 . a0 § ﬁ 8 8 o 8 5 o
- [
b=} i U (o]
g | 9 2004
L H (o) = 8 a A . a
[Y 0 T T T - T T T T T T
400 4 ? 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
B State separation
5 states
200 A 1500 T
(=%
5 1000 - T 8
i T g
ol 2 500 o
; ‘ , . ; R = L] = i o a 8
. T T : ; - ; ; .
0.2 0.4 0.6 0.8 Lo 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State separation State separation

Figure A.10: Speedup on the training problem using the compressed algorithm,
including the input data processing time.

IV

A. Appendix 1

A.3 Left-to-right model

2 states

T
Evaluation: probability relative error % 000041 © ° 5
] o}
e —e— 2 states £ 0.0002 1 g °
000044 3 states 5 s %
- @ 5 states 5 0.0000 F F T - N i " S — i
PR e 01 02 03 04 05 06 07 08 09 10
o State separation
0.0003 4 "o _ 3 states
[
T cgyeertt T (%)
2 . £ 0.0004 - o o
: . foe] [L
o ® £ 0.0002 |
< 0.0002 4 " 5 = l—ﬁ
8 . H%o.omm ! T | ! | | I = L1 1L
I 01 02 03 04 05 06 07 08 09 10
State separation
0.0001 4 _ 5 states
T 0.0010
2 ° o
s i % i 8
2 0.0005 A ; L % i
0.0000 4 u T = =
s T =
i " " T i 5 0.0000 L— : i ! 1 l_': T T T =
02 0.4 0.6 08 Lo 01 02 03 04 05 06 07 08 03 10

State separation

State separation

Figure A.11: Relative difference between the P(O|\) log probabilities of the com-

pressed and standard algorithms.

_ 2 states
. . g 0.0010
Decoding: relative path error =
* —8— 2 states £ 0.0005 1
0.000254 - - o
3 states e e iy
--@- 5 states & 0.0000 T T A T 5 . P . -
01 02 03 04 05 06 07 08 09 10
0.00020 State separation
_ 3 states
- T 0.0010
J =
H =
% 0.00015 4 k=
3 © 0.0005 -
B = T
5 2 0.0000 L~ =8~ & A -
Z 0.00010 1 o O f y g T 7 7 ? - T
H 01 02 03 04 05 06 07 08 09 L0
State separation
5 states
0.00005 T 0.0010
]
=
T 0.0005 i
0.00000 -) =
" " " j j § 0.0000 L £ £
02 0.4 06 0.8 Lo 01 02 03 04 05 06 07 08 03 10

State separation

State separation

Figure A.12: Relative difference between the fractions of errors in the estimated

generating path.

A. Appendix 1

Training: KL-divergence difference

0.05 1 —8— 2 states
K 3 states
RO --®@- 5 states
0.00 A — = - .
T —0.051
K] B B
u B []
2 B -
G -0.101 ® H ‘
g -"..
a L]
—0.15 4
—0.20 4
—0.25 T T T T T
0.2 0.4 0.6 0.8 10

State separation

Difference (abs)

Difference {abs)

Figure A.13: Difference between the average KL-divergence for the
and standard algorithms.

Training: Transitions relative error difference

0.2+ EL_LTEPPN —8— 2 states
O g -
.,' h 3 states
] --@- 5 states
0.19 . L]
E 007 ¢
15 .
H
2
£ 0.1
(=]
—0.2
—0.3
0.2 0.4 0.6 0.8 10

Figure A.14:

State separation

Difference (abs) Difference (abs)

Difference (abs)

State separation

2 states
0.0 q :L ‘ -2 2-4 & o ©- © a4 2
= | |
o 01 02 03 05 06 07 08 09 10
State separation
& 3 states
= s{ 2 L 8 0 8
-2 8 8 802 8 3 o8 §
& - 5 = B ! g -
8
8 01 02 03 05 06 07 08 09 10
State separation
o 5 states
5] ° A o o
ol é % = 2 & 5 % 4 & 5
cre g F %t
01 02 03 05 06 07 o8 09 10
State separation
compressed
2 states
0.5 . 5 5
ol & T o £ 8 8 < 8
2 0O7 e & 8
T 02 os 05 05 07 os o5 10
State separation
3 states
R A |
0.0 ; /s &= B2 —
e SR T |
- T 2 T T T T T T T T
03 0.1 0.2 0.3 . 0.5 0.6 07 08 0.9 1.0
State separation
05 5 states
cLEsmog 4 L LT
R L el == ==
o o
TPl 02 03 o4 o5 os o7 o8 08 10

Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.

Training: Initial distribution error difference

0.000000 2ot
3,stétes
-0.000001 - ®-.¢5 states
..
-0.000002 2 e 1
S
-0.000003
-0.000004
-0.000005
-0.000006
0.2 0.4 0.6 0.8 10

Figure A.15:

algorithms.

VI

State separation

Difference (abs) Difference (abs)

Difference (abs)

2 states
0.000000 = g] ¥ o
—0.000005 ﬁ I g g 8
[} 8 G
oooow0il | & o o
01 02 03 04 05 06 07 08 09 10
State separation
3 states
0.000000 I = = /= = 1]
~0.000005 - T T f
-0.000010 1_~ : : ! ! A, ; ‘
01 02 03 04 05 06 07 08 09 10
State separation
5 states
0.000000 % = o e e
~0.000005 \1—1 LA|—‘ L|:‘ T T
01 02 03 04 05 06 07 08 09 10

State separation

Relative difference between the average error on the log probability
of the starting state in the initial distribution for the compressed and standard

A. Appendix 1

2 states
1.00
Speedup: evaluation g 475 o
B > g 8 - E 2 8 - £ = =
181 e R, —8— 2 states §0.50- -5 To ? 5 <= == %
@ g @ O e g3 statls & :
. e 5 states 0.25 ! ! ! ! ' ! ! ! ' '
1.6 01 02 03 04 05 06 07 08 03 10
State separation
14 3 states
44 125
g8
(=%
. Sio0f 2 = 2 & & 2 o £ 2 I
E T = F & =T T 5§ = T
g 1.2 2 0754 © o g § g 8 o
= o o
a 0.50 -— : : : ; ! ! !] '
01 02 03 04 05 06 07 08 09 10
107 State separation
5 states
0.8 o}
S 2.0 8 Q o
22,
2 ; T &£ I T i T T I
0.6 1 — e —e— 4o o, o+ o ;)% 154 T ? o [e] T I 6 g T 8
i " " T i - . . Q . . . Q T
02 0.4 0.6 0.8 Lo 01 02 03 04 05 06 07 08 09 10

State separation State separation

Figure A.16: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.

2 states
125
Speedup: decodin a o <] o
P P 9 S0 = 2 = £ 2 I = £ =2 =2
3 = % T T 7 T T = T T
@@ 2 states @ 4
1 &g e o... _ .® -o* 0.75
L4 ¢ ¢ * e 3 states & © ©
o 0.50 -— ! ! ! ' ! ! ! ' '
@ 5states 01 02 03 04 05 06 07 08 09 L0
134 State separatlom
3 states
150
fris o2 8 02 B 08 8 8 2 g
§ ﬁl.oo-???fg?TTTTT
& o
& 075 1— ‘ . ‘ . o 2 . : .
11 01 02 03 04 05 06 07 08 09 10
State separation
5 states
1.0 20 =
5 § o <] é
M g 137 iﬁ iT iT E = Lg = i &
0.9 1 & b S § éo & §
T T T T T 0
0.2 0.4 0.6 0.8 Lo Lo o1 02 03 04 s 06 07 o8 09 10

State separation State separation

Figure A.17: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.

2 states
400 S
Speedup: training o
5 8
1200 { E] S8 T E E [+)
e —e— 2 states i 2004 @ 8 Q
., 3 states n o \T‘
—. 01— . = = B 9 o —§—4 j_
1000 4 L ®- 5 states 01 02 03 04 05 06 07 08 09 10
e State separation
@ ®.....g
800 4 . ______ o 3 states
.. N
o () 5 500 R - I
) } 9 5 8 O 5 I
B 6001 . 2 250 |
b 3 8 °
2
0 B 0 T T g 8 a T g 7 == =
400 4 B 01 02 03 04 05 06 07 08 09 10
B State separation
5 states
200 1) .
Y EIDUO-? ?i = = L T T, T e
b 5 T =
"1 & 5 8 g 8 § [JIJ[]
" y T T ; 0l — . : : " " - - - ;
02 0.4 06 0.8 Lo 01 02 03 04 05 06 07 08 09 10

State separation State separation

Figure A.18: Speedup on the training problem using the compressed algorithm,
including the input data processing time.

VII

A. Appendix 1

VIII

Appendix 2

B.1 CH++

B.1.1 algorithms_ compressed.hpp

#1 fndef WAHMM_ALGORITHMS_COMPRESSED_HPP
#define WAHMM_ALGORITHMS_ COMPRESSED_HPP

#include "Compressor.hpp"
#include "commons.hpp"
#include "utilities.hpp”
#include <list>

using std::list;

J*%*

* Compute the compressed forward matrixz given a model and a Compressor holding
* the compressed data. Each element approxzimates the wvalue at the end of the

* block of the uncompressed matric.

*

* Oparam m the model

*

@param c the compressor holding the data

*/

wahmm: :real_t** forward_matrix_compressed(Model& m, Compressor *c){
wahmm: :real_t **logForward;

size_t numberOfStates = m.mStates.size();

logForward = new wahmm::real_t*[numberOfStates]; // forward variables

c->initForward();
// initialization
for(size_t i = 0; i < numberOfStates; i++){
logForward[i] = new wahmm::real_t[c->blocksNumber()];
// alpha_0(%) = pi_% * E_1(%)
logForward[i] [0] = m.mLogPi[i] + compute_e(m, i, c->blockData());
}
// induction
size_t blockCounter = 1;
while(c->next ()){
for(size_t j = 0; j < numberOfStates; j++){ // arriving state
logForward[j] [blockCounter] = -infin;
for(int i = 0; i < numberOfStates; i++){ // starting state
// alpha_W(j3) = sum_{i=0}"N alpha_{w-1}(i)a_{ij} ...
logForward[j] [blockCounter] = sum_logarithms(
logForward[j] [blockCounter],
logForward[i] [blockCounter-1] + m.mLogTransitions[i][j]);

IX

B. Appendix 2

}

// ... E_w(j)

logForward[j] [blockCounter] += compute_e(m, j, c->blockData());
}
blockCounter++;

}

c->initForward() ;

return logForward;

J*%*

Compute the compressed backward matriz given a model and a Compressor holding
the compressed data. Each element approxzimates the wvalue at the end of the
block of the uncompressed matriz.

*
*
*
*
* @param m the model
* O@param c the compressor holding the data
*/
wahmm: :real_t** backward_matrix_compressed(Model& m, Compressor *c){
wahmm: :real_t **logBackward;
size_t numberOfStates = m.mStates.size();

logBackward = new wahmm: :real_t*[numberOfStates]; // backward variables

c->initBackward() ;
int blockCounter = c->blocksNumber() - 1;
// initialization
for(size_t i = 0; i < numberOfStates; i++){
logBackward[i] = new wahmm::real_t[c->blocksNumber()];
logBackward[i] [blockCounter] = 1;
}
blockCounter——;
// induction
while(blockCounter >= 0){
for(size_t i = 0; i < numberOfStates; i++){ // arriving state
logBackward[i] [blockCounter] = -infin;
for(size_t j = 0; j < numberOfStates; j++){ // starting state
// beta_t(i) = sum_{j=1}"N a_{ij} b_j(0_{t+1}) beta_{t+1}(j)
logBackward[i] [blockCounter] = sum_logarithms(
logBackward[i] [blockCounter],
m.mLogTransitions[i] [j] +
compute_e(m, j, c->reverseBlockData()) +
logBackward[j] [blockCounter+1]);
}
}
c->reverseNext () ;
blockCounter—--;
}

c->initBackward();

return logBackward;

/% x

B. Appendix 2

¥ ¥ ¥ %X %X ¥ * x

*/

void evaluation_compressed(Model& m, Compressor *c, bool verbose, bool silence,

VEL

* Solve the decoding problem making use of the compressed version of the
* forward algorithm.

*

Solve the evaluation problem through a compressed version of the forward
algorithm.

@param m the model

Oparam c compressor holding the data

Oparam verbose if true print result informations
Oparam silence suppress all output

Oparam tofile save results to file

bool tofile){

wahmm: :real_t **logForward;

wahmm: :real_t logEvaluation;

size_t numberOfStates = m.mStates.size();

if (!silence)
std::cout << "[>] +++ Compressed Evaluation Problem +++" << std::endl;

logForward = forward_matrix_compressed(m, c); //initialization and induction
// termination
logEvaluation = -infin;
for(size_t i = 0; i < numberOfStates; i++){
logEvaluation = sum_logarithms(logEvaluation,
logForward[i] [c->blocksNumber ()-1]);
}

// print results
if (verbose){
printMatrixSummary(logForward, numberOfStates, c->blocksNumber(),
"Blocks Forward (log)", false);

}
if (!'silence)
std::cout << "[>] log[P(Ollambda)]: " << logEvaluation << std::endl;
if (tofile){
if (verbose){
std::cout << "[>] Saving compressed evaluation log probability";
std::cout << " to file " << PATH_OUT;
std::cout << "compressed_evaluation_prob ... " << std::flush;
}
std: :ofstream ofs (PATH_QOUT + "compressed_evaluation_prob",
std: :ofstream: :out);
ofs.precision(std: :numeric_limits<double>: :max_digits10);
ofs << logEvaluation;
ofs.close();
if (verbose)
std::cout << "done." << std::endl;
}

freeMatrix(logForward, numberOfStates);

XI

B. Appendix 2

Oparam m the model

@param obs the observation sequence

Oparam verbose if true print result informations
Oparam silence suppress all output

Oparam tofile save results to file

* ¥ % % %

*/
void decoding_compressed(Model &m, Compressor *c, bool verbose, bool silence,
bool tofile){
wahmm: :real_t **logViterbi, **statesViterbi;
size_t numberOfStates = m.mStates.size();
logViterbi = new wahmm::real_t*[numberOfStates];
statesViterbi = new wahmm::real_t*[numberOfStates];
std::vector<size_t> blockLengths;

if(!silence)
std::cout << "[>] +++ Compressed Decoding Problem +++" << std::endl;

c->initForward();
// initialization
for(size_t i = 0; i < numberOfStates; i++){
logViterbi[i] = new wahmm::real_t[c->blocksNumber()];
statesViterbi[i] = new wahmm::real_t[c->blocksNumber()];
// delta_0(i) = pi_i * e (E_0(%))
logViterbi[i] [0] = m.mLogPi[i] + compute_e(m, i, c->blockData());
statesViterbi[i] [0] = -1; // psi_0(i) = 0
}
blockLengths.push_back(c->blockSize());
// induction
wahmm: :real_t currentMax -infin;
wahmm: :real_t currentSum = 0;
int blockCounter = 1;
int currentState = -1;
while(c->next ()){ // observations
for(size_t j = 0; j < numberOfStates; j++){ // arriving state
logViterbi[j] [blockCounter] = -infin;
// delta_t(j) = maz_{1<=i<=N} delta_{t-1}(i)a_{ij} ...
for(size_t i = 0; i < numberOfStates; i++){ // starting state
currentSum = logViterbil[i] [blockCounter-1] +
m.mLogTransitions[i] [j];
if (currentSum > currentMax){
currentMax = currentSum;
currentState = 1i;

}

/) e (E_w(y))

logViterbi[j] [blockCounter] = currentMax +
compute_e(m, j, c->blockData());

// psi_t(j) = argmaz/[...]

statesViterbi[j] [blockCounter] = currentState;

// re-initialize max vartables for next loop

currentMax = -infin;

currentState = -1;
}
blockLengths.push_back(c->blockSize());
blockCounter++;

XII

B. Appendix 2

// termination
wahmm: :real_t logDecoding;
list<size_t> viterbiPath;
currentMax = -infin; // this will contain the log probability of the path
currentState = -1;
blockCounter——;
for(size_t i = 0; i < numberOfStates; i++){
if (logViterbi[i] [blockCounter] > currentMax){
currentMax = logViterbil[i] [blockCounter];
currentState = 1i;
}
}
viterbiPath.push_front (currentState) ;
for(; blockCounter > 0; blockCounter--){
// if currentState == -1, impossible path
if (currentState >= 0)
currentState = statesViterbi[currentState] [blockCounter];
else {
if(!silence)
std::cerr << "[Warning] Impossible Viterbi path!" << std::endl;
break;
}
viterbiPath.push_front (currentState);
}

// print results
if (verbose){
printMatrixSummary(logViterbi, numberOfStates, c—>blocksNumber(),
"Block Viterbi (log)", false);
}
if(!silence){
std::cout << "[>] Most likely path: " << std::endl;
int i = 0;
for(auto it = viterbiPath.begin(); it != viterbiPath.end(); it++, i++){
// only print first 5 and last 5 states
if(i == 5)
std::cout << "... ";
if(i >= 5 && i < viterbiPath.size() - 5)
continue;
std::cout << *it << " ",

}

std::cout << std::endl;

std::cout << "[>] logl[P(Q|0,lambda)]: " << currentMax << std::endl;
}
if (tofile){

if (verbose){
std::cout << "[>] Saving compressed Viterbi path to file ";
std::cout << PATH_OUT << "compressed_decoding_path ...";
std::cout << std::flush;

}

std: :ofstream ofsPath (PATH_OUT + "compressed_decoding_path",
std: :ofstream: :out) ;

size_t lenIndex = 0;

for(auto it = viterbiPath.begin(); it != viterbiPath.end(); it++){

XIIT

B. Appendix 2

for(size_t blen = 0; blen < blockLengths[lenIndex]; blen++){
ofsPath << *it << " ";
}
lenIndex++;
}
ofsPath.close();
if (verbose)
std::cout << "done." << std::endl;
if (verbose){
std::cout << "[>] Saving compressed Viterbi log likelihood";
std::cout << " to file " << PATH_OUT,;
std::cout << "compressed_decoding_prob ... " << std::flush;
}
std::ofstream ofsProb (PATH_OUT + "compressed_decoding_prob",
std: :ofstream: :out);
ofsProb.precision(std: :numeric_limits<double>: :max_digits10);
ofsProb << currentMax;
ofsProb.close();
if (verbose)
std::cout << "done." << std::endl;

}
c->initForward() ;

freeMatrix(logViterbi, numberOfStates);
freeMatrix(statesViterbi, numberOfStates);

X

Jk*

* Perform one iteration of a compressed verstion of the Baum—Welch algorithm.
* Both the forward and backward matrixz are computed to achieve this.

* The values for K(n_w, j) could be precomputed; to avoid useless computations,
* whenever a new value of n_w s encountered, K(n_w, j) is computed for every
* state and put into a map for greater efficiency.

*

* Parameters reestimation happens by progressively transforming the numbers

* back into the mormal space.

*

* @returns the logEvaluation P(0/lambda) of the previous model

*/

wahmm: :real_t compressed_baum_welch_iteration(Model& m, Compressor *c,
wahmm: :real_t minSum, wahmm::real_t **logEpsilon, wahmm::real_t *logPi,
wahmm: :real_t **logGamma, wahmm::real_t *logGammaSum,
wahmm: :real_t *logTrDen, wahmm::real_t *average, wahmm::real_t *variance){

wahmm: :real_t logEvaluation; // P(0/lambda)
wahmm: :real_t **xlogForward; // forward matriz
wahmm: :real_t **logBackward; // backward matriz
size_t numberOfStates = m.mStates.size();

// initialization
for(size_t i = 0; i < numberOfStates; i++){
for(size_t j = 0; j < numberOfStates; j++)
logEpsilon[i] [j] = -infin;
logGammaSum[i] = -infin;

XIV

B. Appendix 2

}
logForward = forward_matrix_compressed(m, c);
logEvaluation = -infin;

for(size_t i = 0; i < numberOfStates; i++){
logEvaluation = sum_logarithms(logEvaluation,
logForward[i] [c->blocksNumber ()-11) ;
}

logBackward = backward_matrix_compressed(m, c);

c->initForward();

// iterate over blocks

int bc = 0; // block counter

size_t nBlocks = c->blocksNumber() ;
blockdata currentBd = c->blockData();

wahmm: :real_t logEvalGammaSum = -infin;
for(int i = 0; i < numberOfStates; i++){
logEvalGammaSum = sum_logarithms(logEvalGammaSum,
logForward[i] [0] +
logBackward[i] [0]);
}

while(c—>next()){ // "current block"” s w+l
for(int i = 0; i < numberOfStates; i++){
for(int j = 0; j < numberOfStates; j++){
logEpsilon[i] [j] = sum_logarithms(logEpsilon([i] [j],
logForward[i] [bc] +
m.mLogTransitions[i] [j] +
compute_e(m, j, c->blockData()) +
logBackward[j] [bc+1]);
if(i == A
logEpsilon[i] [j] = sum_logarithms(logEpsilon([i] [j],
log(currentBd.nw - 1) +
logForward[i] [bc] +
logBackward[i] [bcl) ;
}
}
logGamma[i] [bc] = logForward[i] [bc] + logBackwardl[i] [bc];
logGammaSum[i] = sum_logarithms(logGammaSum[i],
log(currentBd.nw) + logGamma[i] [bc]);
}
currentBd = c->blockData();
bc++;
}
// last block was not processed
for(int 1 = 0; i < numberOfStates; i++){
logEpsilon[i] [i] = sum_logarithms(logEpsilon[i] [i],
log(currentBd.nw - 1) +
logForward[i] [bc] +
logBackward[i] [bc]);
logGamma[i] [bc] = logForward[i] [bc] + logBackward[i] [bc];
logGammaSum[i] = sum_logarithms(logGammaSum[i],
log(currentBd.nw) + logGammal[i] [bc]);
}

// reestimated parameters

XV

B. Appendix 2

for(int i = 0; i < numberOfStates; i++){

logPi[i] = logGammal[i] [0] - logEvalGammaSum;

for(int j = 0; j < numberOfStates; j++){
logEpsilon[i] [j] -= logGammaSum[i];

}

c->initForward();

averagel[i] = 0;

wahmm: :real_t v;

for(int b = 0; b < nBlocks; b++){
currentBd = c->blockData();
v = currentBd.sl;
average[i] += exp(logGammal[il [b]-logGammaSum[i]) * v;
c->next();

}

c->initForward() ;

variance[i] = 0;

for(int b = 0; b < nBlocks; b++){
currentBd = c->blockData();
//v can sometimes have some numerical issues caused by HaMMLET code
v = currentBd.s2 - 2*average[i]*currentBd.sl +

currentBd.nw*average[i] *average[i];

variance[i] += exp(logGammal[i] [b]-logGammaSum([i]) * v;
c->next();

3

//update model
for(size_t i = 0; i < numberOfStates; i++){
m.mLogPi[i] = logPil[il;
for(size_t j = 0; j < numberOfStates; j++){
m.mLogTransitions[i] [j] = logEpsilon[i] [j];
}
m.mStates[i] .updateParameters(average[i],
sqrt(variance[i]));
}
//drop KValues matriz
m.mKValues.clear();

freeMatrix(logForward, numberOfStates);
freeMatrix(logBackward, numberOfStates);

return logEvaluation;

Jk*
* Solve the training problem by performing more iterations of a compressed
* version of the Baum-Welch algorithm.
* The training continues for a certain number of iterations at maxzimum or until
* the improvement on the evaluation probability falls below a certain threshold.
* Note that one more iteration than necessary is performed.
*/
void training_ compressed(Model& m, Compressor *c, wahmm::real_t thresh,
size_t maxIterations, bool verbose, bool silence, bool tofile){

wahmm: :real_t **logEpsilon; // eps_t(%,7), accumulator over all t

XVI

B. Appendix 2

// logPi is computed at last

wahmm: :real_t *logPi = new wahmm::real_t[m.mStates.size()];

wahmm: :real_t **logGamma;

wahmm: :real_t *logTrDen = new wahmm::real_t[m.mStates.size()];
wahmm: :real_t *logGammaSum = new wahmm::real_ t[m.mStates.size()];
// both average and variance arrays have one element for each state
wahmm: :real_t *average = new wahmm::real_t[m.mStates.size()];
wahmm: :real_t *variance = new wahmm::real_t[m.mStates.size()];

logEpsilon = new wahmm::real_t*[m.mStates.size()];
logGamma = new wahmm::real_t*[m.mStates.size()];
for(size_t i = 0; i < m.mStates.size(); i++){
logEpsilon[i] = new wahmm::real_t[m.mStates.size()];
logGamma[i] = new wahmm::real_t[c->blocksNumber()];
}

c->buildReverse();
c->initForward();
wahmm: :real_t minSum = 0;
do {

if (c->blockData().s1 < minSum)

minSum = c->blockData().si;

} while(c->next());
c->initForward();
minSum -= 1; // to avoid crash when 0 is saves as -0.0000000001
wahmm: :real_t evaluation=-infin, newEvaluation=-infin;
wahmm: :real_t logImprovement = thresh + 1;
size_t iter;

if (!silence)
std::cout << "[>] +++ Compressed Training Problem +++" << std::endl;

for(iter = 0; iter < maxIterations && logImprovement > thresh; iter++){
newEvaluation = compressed_baum_welch_iteration(m, c, minSum,
logEpsilon, logPi, logGamma,
logGammaSum, logTrDen, average, variance);
logImprovement = newEvaluation - evaluation;
evaluation = newEvaluation;
if (verbose){
std::cout << "[>] Iteration: " << iter << std::endl;
std::cout << "[>] Evaluation improvement (log): ";
std::cout << loglImprovement << std::endl;
std::cout << "[>] New P(0 | lambda): ";
std::cout << newEvaluation << std::endl;
m.printModel();
}
}
if(!'silence){
std::cout << "[>] Number of iterations: " << iter << std::endl;
m.printModel () ;
}

if (tofile){
m.sortModel();
if (verbose){
std::cout << "[>] Saving trained model to file " << PATH_OUT;

XVII

B. Appendix 2

std::cout << "training _model ... " << std::flush;
}
std: :ofstream modelFileOutput (PATH_OUT + "compressed_training model") ;
if (modelFileOutput.is_open()){
modelFileOutput << m;
¥
modelFileOutput.close();
if (verbose)
std::cout << "done." << std::endl;

}

// free wvartables

freeMatrix(logEpsilon, m.mStates.size());
freeMatrix(logGamma, m.mStates.size());
delete[] logPi;

delete[] logGammaSum;

delete[] average;

delete[] variance;

#endzf

B.1.2 algorithms.hpp

#ifndef WAHMM_ ALGORITHMS_HPP
#define WAHMM_ALGORITHMS_HPP
#include "commons.hpp"
#include "utilities.hpp"
#include <list>

using std::list;

VEL

* Compute the forward matrixz given a model and an observations sequence.

* @param m the model

* @param obs the observation sequence

*/

wahmm: :real_t** forward _matrix(Model& m, std::vector<wahmm::real_ t>&% obs){
wahmm: :real_t **logForward;
size_t numberOfStates = m.mStates.size();
logForward = new wahmm::real_t*[numberOfStates]; // forward variables

// initialization
for(size_t i = 0; i < numberOfStates; i++){
logForward[i] = new wahmm::real_t[obs.size()];
// alpha_0(3i) = pi_i * b_i(0_1)
logForward[i] [0] = m.mLogPil[i] +
m.mStates[i] .1logPdf (obs[0]);
}
// induction
for(size_t t = 1; t < obs.size(); t++){ // observations
for(size_t j = 0; j < numberOfStates; j++){ // arriving state
logForward[j] [t] = -infin;

XVIII

B. Appendix 2

for(int i = 0; i < numberOfStates; i++){ // starting state
// alpha_t+1(5) = sum_{i=0}"N alpha_t(i)a_{ij} ...
logForward[j] [t] = sum_logarithms(logForward[j][t],
logForward[i] [t-1] + m.mLogTransitions[i][j]);
}
/7 . b_{gHO0_{t+1})
logForward[j] [t] += m.mStates[j].logPdf (obs[t]);

return logForward;

}

Jk*

* Compute the backward matrixz given a model and an observations sequence.
*

* Oparam m the model

* @param obs the observation sequence

*/

wahmm: :real_t** backward_matrix(Model& m, std::vector<wahmm::real_ t>& obs){
wahmm: :real_t **logBackward;
size_t numberOfStates = m.mStates.size();
logBackward = new wahmm::real_t*[numberOfStates]; // backward variables

// initialization
for(size_t i = 0; i < numberOfStates; i++){
logBackward[i] = new wahmm::real_t[obs.size()];
// beta_T(i) = 1
logBackward[i] [obs.size()-1] = 0;
}
// induction
for(int t = obs.size()-2; t >= 0; t--){ // obserwvations
for(size_t i = 0; i < numberOfStates; i++){ // arriving state
logBackward[i] [t] = -infin;
for(size_t j = 0; j < numberOfStates; j++){ // starting state
// beta_t (i) = sum_{j=1}"N a_{i5} b_5(0_{t+1}) beta_{t+1}(7)
logBackward[i] [t] = sum_logarithms(logBackward[i] [t],
m.mLogTransitions[i] [j] +
m.mStates[j].logPdf (obs[t+1]) +
logBackward [j] [t+1]);

}
b

X

return logBackward;
X
/**
* Solve the ewvaluation problem through the forward algorithm.
*
* @param m the model
* @param obs the observation sequence
* Oparam verbose if true print result informations
* Oparam stilence suppress all output
*

Oparam tofile save results to file

*/

XIX

B. Appendix 2

void evaluation_problem(Model& m, std::vector<wahmm::real_t>& obs, bool verbose,
bool silence, bool tofile){
wahmm: :real_t **logForward;
wahmm: :real_t logEvaluation;
size_t numberOfStates = m.mStates.size();

if(!silence)
std::cout << "[>] +++ Evaluation Problem +++" << std::endl;

logForward = forward_matrix(m, obs); // initialization and induction
// termination
logEvaluation = -infin;
for(size_t i = 0; i < numberOfStates; i++){
logEvaluation = sum_logarithms(logEvaluation,
logForward[i] [obs.size()-1]);
}

// print results
if (verbose){
printMatrixSummary(logForward, numberOfStates, obs.size(),
"Forward (log)", false);

}
if (!silence)
std::cout << "[>] log[P(O|lambda)]: " << logEvaluation << std::endl;
if (tofile)q{
if (verbose){
std::cout << "[>] Saving evaluation log probability to file ";
std::cout << PATH_OUT << "evaluation_prob ... " << std::flush;
}
std::ofstream ofs (PATH_QUT + "evaluation_prob", std::ofstream::out);
ofs.precision(std: :numeric_limits<double>: :max_digits10);
ofs << logEvaluation;
ofs.close();
if (verbose)
std::cout << "done." << std::endl;
X
freeMatrix(logForward, numberOfStates);
}
VLS
* Solve the decoding problem making use of the forward algorithm.
*
* @param m the model
* @param obs the observation sequence
* @param verbose tf true print result informations
* Oparam stilence suppress all output
* Oparam tofile save results to file
*/

void decoding_problem(Model &m, std::vector<wahmm::real_t>& obs, bool verbose,
bool silence, bool tofile){
wahmm: :real_t **logViterbi, **statesViterbi;
size_t numberOfStates = m.mStates.size();
logViterbi = new wahmm::real_t*[numberOfStates];
statesViterbi = new wahmm::real_ t*[numberOfStates];

XX

B. Appendix 2

if (!silence)
std::cout << "[>] +++ Decoding Problem +++" << std::endl;

// initialization
for(size_t i = 0; i < numberOfStates; i++){
logViterbi[i] = new wahmm::real_t[obs.size()];
statesViterbi[i] = new wahmm::real_t[obs.size()];
// delta_0(i) = pi_4 * b_4(0_1)
logViterbi[i] [0] = m.mLogPi[i] + m.mStates[i].logPdf (obs[0]);
statesViterbi[i][0] = -1; // psi_0(i) = 0
}
// induction
wahmm: :real_t currentMax
wahmm: :real_t currentSum
int currentState = -1;
for(size_t t = 1; t < obs.size(); t++){ // observations
for(size_t j = 0; j < numberOfStates; j++){ // arriving state
logViterbi[j][t] = -infin;
// delta_t(j) = maz_{1<=i<=N} delta_{t-1}(i)a_{ij} ...
for(size_t i = 0; i < numberOfStates; i++){ // starting state
currentSum = logViterbi[i] [t-1] + m.mLogTransitions[i][j];
if (currentSum > currentMax){
currentMax = currentSum;
currentState = i;

—-infin;
0;

}

/7 . b_{gHO_{t})

logViterbi[j][t] = currentMax + m.mStates[j].logPdf (obs[t]);
// psi_t(g) = argmaz[...]

statesViterbi[j] [t] = currentState;

// re-initialize max vartiables for next loop

currentMax = -infin;

currentState = -1;

3

// termination
wahmm: :real_t logDecoding;
list<size_t> viterbiPath;
currentMax = -infin; // this will contain the log probability of the path
currentState = -1;
for(size_t i = 0; i < numberOfStates; i++){
if (logViterbi[i] [obs.size()-1] > currentMax){
currentMax = logViterbil[i] [obs.size()-1];
currentState = i;
}
}
viterbiPath.push_front (currentState);
for(int t = obs.size()-2; t >= 0; t--){
// if currentState == -1, impossible path
if (currentState >= 0)
currentState = statesViterbi[currentState] [t+1];
else {
if (!silence)
std::cerr << "[Warning] Impossible Viterbi path!" << std::endl;

XXI

B. Appendix 2

break;
}
viterbiPath.push_front(currentState);
}

// print results
if (verbose){
printMatrixSummary(logViterbi, numberOfStates, obs.size(),
"Viterbi (log)", false);
}
if(!'silence){
std::cout << "[>] Most likely path: " << std::endl;
int i = 0;
for(auto it = viterbiPath.begin(); it != viterbiPath.end(); it++, i++){
// only print first 5 and last 5 states
if(i == 5)
std::cout << "... ";
if(i >= 5 && i < viterbiPath.size() - 5)
continue;
std::cout << *it << " ",

}
std::cout << std::endl;
std::cout << "[>] logl[P(Q|0,lambda)]: " << currentMax << std::endl;
}
if (tofile){
if (verbose){
std::cout << "[>] Saving Viterbi path to file " << PATH_OUT;
std::cout << "decoding_path ... " << std::flush;
}
std::ofstream ofsPath (PATH_OUT + "decoding_path", std::ofstream::out);
for(auto it = viterbiPath.begin(); it != viterbiPath.end(); it++)
ofsPath << *it << " ";
ofsPath.close();
if (verbose)
std::cout << "done." << std::endl;
if (verbose){
std::cout << "[>] Saving Viterbi log likelihood to file ";
std::cout << PATH_OUT << "decoding_prob ... " << std::flush;
}
std::ofstream ofsProb (PATH_OUT + "decoding_prob", std::ofstream::out);
ofsProb.precision(std: :numeric_limits<double>::max_digits10);
ofsProb << currentMax;
ofsProb.close();
if (verbose)
std::cout << "done." << std::endl;
}

freeMatrix(logViterbi, numberOfStates);
freeMatrix(statesViterbi, numberOfStates);

/*k
* Perform one iteration of the Baum-Welch algorithm.
* The forward matriz is calculated entirely; the other things are not to save

XXII

B. Appendix 2

space; the backward variable is computed only for the current time; for the
reestimation parameters, accumulate sufficient statistics at each time step.
For example, the current gamma_t ts accumulated into logGamma and also used
to calculate the values for the other accumulators logAverage and logVariance.
logEpstlon will contain, at the end, the new transition matriz.

The P(0]/lambda) cancels out in everything except for the initial distribution,
so it's simplified and not included at all.

For the backward variable, two arrays are needed, for beta_t and beta_{t+1F}.
For this reason, use two arrays and swap them at each time step.

Also, the reestimation of the average requires calculating log(obs[t]);

to avoid negative observations, translate the sequence (only when performing
that computation) so the minimum obsevation is zero.

Actually, translate so that the sequence ranges from [1, inf) because

zero could be represented as -0.0000000000001 and it would make the log
function crash.viterbi_likelihood

¥ ¥ %X X ¥ ¥ X ¥ ¥ X X ¥ ¥ X *x *

* @returns the logEvaluation P(0/lambda) of the previous model

*/

wahmm: :real_t baum_welch_iteration(Model& m, std::vector<wahmm::real t>& obs,
wahmm: :real_t minObs, wahmm::real_t **logEpsilon,
wahmm: :real_t *logBackward, wahmm::real_t *prevLogBackward,
wahmm: :real_t *logPi, wahmm::real_t **logGamma, wahmm::real_t *logGammaSum,
wahmm: :real_t *logAverage, wahmm::real_t *logVariance){

wahmm: :real_t logEvaluation; // P(0/lambda)

wahmm: :real_t *xlogForward; // forward matriz

wahmm: :real_t *tmp; // for swapping of the backward arrays
size_t numberOfStates = m.mStates.size();

// initialization
for(size_t i = 0; i < numberOfStates; i++){
for(size_t j = 0; j < numberOfStates; j++)
logEpsilon[i] [j] = -infin;
logBackward[i] = 0;
prevLogBackward[i] = 0;
logGammaSum[i] = -infin;
logAverage[i] = -infin;
logVariance[i] = -infin;
}
logForward = forward_matrix(m, obs);
logEvaluation = -infin;
for(size_t i = 0; i < numberOfStates; i++){
logEvaluation = sum_logarithms(logEvaluation,
logForward[i] [obs.size()-1]);
}

// start from T-1
for(int t = obs.size()-2; t >= 0; t--){
// calculate backward variable for the next iteration
for(int i = 0; i < numberOfStates; i++){
logBackward[i] = -infin;
for(size_t j = 0; j < numberOfStates; j++){
logBackward[i] = sum_logarithms(logBackward[i],
m.mLogTransitions[i] [j] +
m.mStates[j].logPdf (obs[t+1]) +

XXIII

B. Appendix 2

prevLogBackward[j]);
}
}
// calculate epsilon and increase estimates for observation t
for(size_t i = 0; i < numberOfStates; i++){
for(size_t j = 0; j < numberOfStates; j++){
logEpsilon[i] [j]1 = sum_logarithms(logEpsilonl[il [j],
logForward[i] [t] +
m.mLogTransitions[i] [j] +
m.mStates[j].logPdf (obs[t+1]) +
prevLogBackward[jl); // -logEvaluation (it simplifies)
//prevLogBackward is beta_{t+1}
}
// calculate gamma_t (i) for the current t
// logBackward is beta_t
logGamma[i] [t] = logForward[i] [t] + logBackward[i];
logGammaSum[i] = sum_logarithms(logGammaSum[i], logGammal[i] [t]);
// update the accumulators
logAverage[i] = sum_logarithms(logAveragel[i],
logGamma[i] [t] + log(obs[t]-minObs));
}
// to avoid copying the array
tmp = logBackward;
logBackward = prevLogBackward;
prevLogBackward = tmp;
}
// compute final reestimated parameters
wahmm: :real_t currentNewAverage;
for(size_t i = 0; i < numberOfStates; i++){
for(size_t j = 0; j < numberOfStates; j++){
logEpsilon[i] [j] -= logGammaSum[il; // a_{ij}

}
logPi[i] = logGamma[i] [0] - logEvaluation; // pi_< = gamma_1(%)
logAverage[i] -= logGammaSum[i];

currentNewAverage = exp(logAverage[i])+minObs;
for(size_t t = 0; t < obs.size()-1; t++){
logVariance[i] = sum_logarithms(logVariancel[i],
logGamma[i] [t] + 2*log(abs(obs[t] - currentNewAverage)));
}
logVariance[i] -= logGammaSum[i];

3

// update parameters in the model
for(size_t i = 0; i < numberOfStates; i++){
m.mLogPi[i] = logPilil;
for(size_t j = 0; j < numberOfStates; j++){
m.mLogTransitions[i] [j] = logEpsilon[i] [j];
}
m.mStates[i] .updateParameters(exp(logAverage[i])+min0Obs,
sqrt (exp(logVariance[i])));
}

freeMatrix(logForward, numberOfStates);

return logEvaluation;

XXIV

B. Appendix 2

J*%*

* Solve the training problem by performing more tterations of the Baum-Welch
* algorithm. The training continues for a certain number of iterations at

* maxzimum or until the improvement on the evaluation probability falls below
* a certain threshold.

* Note that one more iteration than necessary ts performed.

*/

void training_problem(Model& m, std::vector<wahmm::real_t>& obs,
wahmm: :real_t thresh, size_t maxIterations, bool verbose, bool silence,
bool tofile){

wahmm: :real_t *+*logEpsilon; // eps_t(%,7), accumulator over all t

// logBackward only for current t

wahmm: :real_t *logBackward = new wahmm::real_t[m.mStates.size()];
wahmm: :real_t *prevLogBackward = new wahmm::real_t[m.mStates.size()];
// logPi computed at last

wahmm: :real_t *logPi = new wahmm::real_t[m.mStates.size()];

wahmm: :real_t **logGamma;

wahmm: :real_t *logGammaSum = new wahmm::real_t[m.mStates.size()];
wahmm: :real_t *logAverage = new wahmm::real_t[m.mStates.size()];
wahmm: :real_t *logVariance = new wahmm::real_t[m.mStates.size()];

logEpsilon = new wahmm::real_t*[m.mStates.size()];

logGamma = new wahmm::real_t*[m.mStates.size()];

for(size_t i = 0; i < m.mStates.size(); i++){
logEpsilon[i] = new wahmm::real_t[m.mStates.size()];
logGamma[i] = new wahmm::real_t[obs.size()-1];

wahmm: :real_t minObs = 0;
for(auto it = obs.begin(); it != obs.end(); it++){
if (*it < minObs)
minObs = *it;
}
minObs -= 1; // to avoid crash when 0 is saves as -0.0000000001
wahmm: :real_t evaluation=-infin, newEvaluation=-infin;
wahmm: :real_t logImprovement = thresh + 1;
size_t iter;
if(!silence)
std::cout << "[>] +++ Training problem +++" << std::endl;
for(iter = 0; iter < maxIterations && logImprovement > thresh; iter++){
newEvaluation = baum_welch_iteration(m, obs, minObs,
logEpsilon, logBackward, prevLogBackward, logPi, logGamma,
logGammaSum, logAverage, logVariance);
// newEvaluation = training problem_scaled(m, obs, min0bs,
// logEpstilon, logPi, logGamma,
/7 logGammaSum, logAverage, logVariance);
logImprovement = newEvaluation - evaluation;
evaluation = newEvaluation;
if (verbose){
std::cout << "[>] Iteration: " << iter << std::endl;
std::cout << "[>] Evaluation improvement (log): ";
std::cout << logImprovement << std::endl;
std::cout << "[>] New P(0 | lambda): " << newEvaluation;

XXV

B. Appendix 2

std::cout << std::endl;
m.printModel();

}
}
if(!'silence){
std::cout << "[>] Number of iterations: " << iter << std::endl;
m.printModel () ;
}
if (tofile){
m.sortModel();
if (verbose)
std::cout << "[>] Saving trained model to file " << PATH_OUT;
std::cout << "training_model ... " << std::flush;
std: :ofstream modelFileOutput (PATH_OUT + "training_model");
if (modelFileOutput.is_open()){
modelFileOutput << m;
}
modelFileOutput.close();
if (verbose)
std::cout << "done." << std::endl;
}

// free wvartables

freeMatrix(logEpsilon, m.mStates.size());
freeMatrix(logGamma, m.mStates.size());
delete[] logBackward;

delete[] prevLogBackward;

delete[] logPi;

delete[] logGammaSum;

delete[] logAverage;

delete[] logVariance;

#endif

B.1.3 commons.hpp

#ifndef WAHMM_ COMMONS_HPP
#define WAHMM_ COMMONS_HPP

#define PATH OUT std::string("results/")
#include <cstdint>

#include <cstddef>
using std::size_t;

#include <vector>
using std::vector;

#include <map>

#include <string>

XXVI

B. Appendix 2

using std::string;
using std::to_string;

#include <iostream>

using std::istream;
using std::ostream;
using std::endl;
using std::cin;
using std::cout;

#include <fstream>
using std::ifstream;
using std::ofstream;

#include <cmath>

using std::pow;

using std::exp; // e

using std::log; // natural log
using std::sqrt;

using std::abs;

#include <math.h>
using std::isfinite;

#include <algorithm>
using std::min;
using std::max;

namespace wahmm {
typedef double real_t;
}

const wahmm::real_t infin

std: :numeric_limits<wahmm

struct blockdata_t {
size_t nw;
wahmm: :real_t si;
wahmm: :real_t s2;
};
typedef blockdata_t blockdata;

#endif

s:real_t>::infinity();

B.1.4 Compressor.hpp

#ifndef WAHMM_COMPRESSOR_HPP
#define WAHMM_COMPRESSOR_HPP

#include "includes.hpp"
#include "Tags.hpp"
#include "HMM.hpp"
#include "Blocks.hpp"
#include "wavelet.hpp"
#include "Statistics.hpp"

XXVII

B. Appendix 2

#include "utils.hpp"
#include "commons.hpp"

template<typename T>
void MaxletTransform(FILE* fin,
bool binary,
vector<real_t>& coeffs,
vector< SufficientStatistics<T> >& suffstats,
const size_t nrDim = 1,
const size_t reserveT = 0

)

¥k
* Class constituting the interface between WaHMM and HaMMLET. It serves the

* purpose of reading the observations and compressing them into blocks,
* also providing an interace to navigate easily the data structures that
* HaMMLET offers.

*/
class Compressor {
/** Input observations values */
vector<real_t> mInputValues;
/**% Sum of the observations in a block */
vector<SufficientStatistics<Normal>> mStats;
/*% Threshold used to form blocks in the breakpoint array */
real_t mThreshold;
/** Integral array, @see HaMMLET documentation */
Statistics<IntegralArray, Normal> *mIntegralArray;
/*% Breakpoint array, @see HaMMLET documentation */
Blocks<BreakpointArray> *mWaveletBlocks;
size_t mBlocksNumber;
/*% Stack to hold the reverse order of the blocks, built on command */
std: :list<blockdata> mReverselList;
/** Iterator to navigate the reverse list */
std::1list<blockdata>::iterator listIt = mReverselList.begin();
public:
Compressor (const Compressor& that) = delete;

J**

* Construct a Compressor object. Data is read from an input file, creating
* a breakpoint array and defining a threshold to use; blocks are then

* defined and the integral array is created. There is initialization to

* correctly read the first block.

*

* Oparam filename the name of the input file to read the data

*/

Compressor (std: :string& filename, bool binary);

~Compressor () ;

/** Move the "current block pointer" back to the first block. */
void initForward();

VLS

* Move the "current block pointer" one step forward.

* O@return false if the "current block” is the last one

*/

bool next();

/*% Return the start index of the "current block". */

size_t start();

/** Return the end index of the "current block"”. */

XXVIII

B. Appendix 2

};

Compressor: : Compressor(std: :string& f, bool binary){

size_t end();

/*% Return the size of the "current block". */

size_t blockSize();

/*% Return the sum of the observations in the "current block". */

wahmm: :real_t blockSum();

/*% Return the squared sum of the observations in the "current block". */
wahmm: :real_t blockSumSq();

/** Return the data assoctated with the current block. */

blockdata blockData();

/**% Initialize the iterator for the reverse list. */

void initBackward();

VLS

* Advance the reverse list iterator.

* O@return false if the iterator reaches the end of the list

*/

bool reverseNext();

/*% Get the block size from the reverse list iterator. */

size_t reverseSize();

/** Return the sum of the observations using the reverse block iterator. */
wahmm: :real_t reverseSum() ;

/*% Return the squared sum of observations in the reverse iterator. */
wahmm: :real_t reverseSumSqQ) ;

/*% Return the data associated with the block in reverse iterator. */
blockdata reverseBlockData();

/*% Return the number of blocks. */

size_t blocksNumber () ;

/*% Return the number of observations. */

size_t observationsNumber () ;

/**% Build a list with the blocks in reverse order */

void buildReverse();

/*% Print start and end indexes of the "current block” alongside with its
* size and the sum of the observation values in tt; the format used is

* [start,end) size — "Sum:" sum

*/

void printBlockInfo();

VLT

* Print block information for all blocks, preceded by the thresold wvalue
* used to form them.

*/

void printAl1lBlocks();

try {
const size_t nrDataDim = 1; // number of dimensions
FILE* fin;
if (!binary)
fin = fopen(f.c_str(), "r");
else
fin = fopen(f.c_str(), "rb");
// Open the file and populate mInputValues
if(fin '= NULL) {
MaxletTransform(fin, binary, mInputValues, mStats, nrDataDim,
mInputValues.size() + 2);
} else {
throw runtime_error("Cannot read from input file " + £ + "1");

XXIX

B. Appendix 2

}

fclose(fin);

// detail coefficients
double stdEstimate = 0;
double estimateAccum = O;

stdEstimate += mInputValues[i];
if (stdEstimate > mInputValues.size()){

stdEstimate = O;
}
}
estimateAccum += stdEstimate/(mInputValues.size()/2);
stdEstimate = estimateAccum;

HaarBreakpointWeights (mInputValues);

mWaveletBlocks->createBlocks (mThreshold) ;
mWaveletBlocks->initForward();
mWaveletBlocks->next () ;
mBlocksNumber = 0;
do {
mBlocksNumber++;
} while(mWaveletBlocks->next());
mWaveletBlocks->initForward() ;
mWaveletBlocks->next();
}
catch(exception& e) {
std::cout << std::flush;
cerr << endl << flush << "[CompressorError]
cerr << e.what() << endl << flush;
throw e;

Compressor: : ~Compressor () {
delete mIntegralArray;
delete mWaveletBlocks;

¥

void Compressor: :initForward(){
mWaveletBlocks->initForward() ;
mWaveletBlocks->next () ;

3

bool Compressor: :next(){
return mWaveletBlocks->next();

3

XXX

// compute an estimate of the noise wvariance from the finest

for (size_t i = 1; i < mInputValues.size(); i += 2){

estimateAccum += stdEstimate/(mInputValues.size()/2);

mIntegralArray = new Statistics<IntegralArray,Normal>(mStats,nrDataDim) ;
mWaveletBlocks = new Blocks<BreakpointArray>(mInputValues);

stdEstimate /= 0.797884560802865355879892119868763736951717262324
mThreshold = sqrt(2*log((real_t)mWaveletBlocks->size())*stdEstimate);

’

869315;

B. Appendix 2

size_t Compressor::start(){
mWaveletBlocks->start() ;
}

size_t Compressor::end(){
mWaveletBlocks->end () ;
}

size_t Compressor::blockSize(){
mWaveletBlocks->blockSize();
}

wahmm: :real_t Compressor::blockSum(){
mIntegralArray->setStats (*mWaveletBlocks) ;
return mIntegralArray->suffStat(0).sum(); // 0 <s the dimension index

}

wahmm: :real_t Compressor: :blockSumSq(){
mIntegralArray->setStats(*mWaveletBlocks);
return mIntegralArray->suffStat(0).sumSq(); // 0 is the dimension index
}

blockdata Compressor::blockData(){
blockdata bd = {blockSize(), blockSum(), blockSumSq()};
return bd;

}

void Compressor: :initBackward(){
listIt = mReverseList.begin();
}

bool Compressor: :reverseNext(){
if (1istIt == mReverselList.end())
return false;
listIt++;
return true;

}

size_t Compressor: :reverseSize(){
return (*listIt).nw;

}

wahmm: :real_t Compressor: :reverseSum(){
return (*listIt).sl;
}

wahmm: :real_t Compressor: :reverseSumSq(){
return (*listIt).s2;
}

blockdata Compressor: :reverseBlockData(){
blockdata bd = {(*1listIt).nw, (*1listIt).sl, (*1listIt).s2};
return bd;

XXXI

B. Appendix 2

size_t Compressor: :blocksNumber (){
return mBlocksNumber;

3

size_t Compressor: :observationsNumber (){
return mInputValues.size();

}

void Compressor: :buildReverse(){
mWaveletBlocks->initForward();
blockdata bd;
while (mWaveletBlocks->next ()){
bd.nw = blockSize();
bd.s1 = blockSum();
bd.s2 = blockSumSq();
mReverseList.push_front(bd) ;

}
mWaveletBlocks->initForward() ;

3

void Compressor: :printBlockInfo(){
mWaveletBlocks->printBlock() ;
cout << "- Sum: " << blockSum();
cout << "- SumSq: " << blockSumSq() << endl;
}

void Compressor: :printAl1Blocks(){
do {
printBlockInfo();
mWaveletBlocks->next () ;
} while (mWaveletBlocks->end() < mWaveletBlocks->size());

printBlockInfo();
cout << "Threshold used: " << mThreshold << endl;
initForward();

}

J/*

* Overloads the original function in HaMMLET to use C-style file input
* for efficiency reasons. Some comments have been removed to better adapt the
* formatting to the thestis.
*/
template< typename T>
void MaxletTransform(
FILE* fin,
bool binary,
vector<real_t>& coeffs,
vector< SufficientStatistics<T> >& suffstats,
const size_t nrDim = 1,
const size_t reserveT = 0
) A
if (nrDim <= 0) {
throw runtime_error("Number of dimensions must be positive!");
}
if (coeffs.size() > 0) {
throw runtime_error("Coefficient array must be empty!");

}

XXXII

B. Appendix 2

if (suffstats.size() > 0) {
throw runtime_error("Statistics array must be empty!");
}
if (fin !'= NULL) {
coeffs.reserve((reserveT + nrDim) / nrDim + nrDim);
suffstats.reserve(reserveT + nrDim);
vector<real_t> S;
size_t i = O;
real t v =0
size_t dim = O;
double inputNum = O;

bool fileEnd = false;
if (!binary){
fileEnd = (fscanf(fin, "Y%1f", &inputNum) == EOF);

}
else {

fileEnd = (fread(&inputNum,1,sizeof (double),fin) != sizeof(double));
}

while (!fileEnd) {
v = (real_t)inputNum;
S.push_back(v);
suffstats.push_back(SufficientStatistics<T>(v));

dim++;
if (dim == nrDim) {
dim = 0;
coeffs.push_back(inf);
size_t j = i;
size_t m = 1;
real_t normalizer = sqrt2half;
while ((j&m) >0) {
real_t maxCoeff = 0;
size_t L = S.size() - 2 * nrDim;
size_t R = L + nrDim;
for (size_t d = 0; d < nrDim; ++d) {
maxCoeff = max(maxCoeff,normalize
S[L] += S[RI;
L++;
R++;
}
coeffs[j] = maxCoeff;
for (size_t d = 0; d < nrDim; ++d) {
S.pop_back();
}
j=d-m
m *= 2;
normalizer *= sqrt2half;
}
i++;
}

if (!binary)q{
fileEnd = (fscanf(fin, "J%1f", &inputNum) == EQOF);
}
else {
fileEnd = (fread(&inputNum,1,sizeof (double),fin) !=

sizeof (double));

XXXIIT

r*abs(S[L]-S[R])

B. Appendix 2

}
}
if (dim !'= 0) {
throw runtime_error("Input stream did not contain enoug]
"to fill all dimensions at last position!");
}
coeffs[0] = inf;
} else {
throw runtime_error("Cannot read input file or stream!");
}
3
#endif

B.1.5 Model.hpp

#ifndef WAHMM_MODEL_HPP
#define WAHMM_MODEL_HPP
#include "State.hpp"
#include "commons.hpp"
/*
Thts class represents a htidden Markov model for the specific scope
and context of the thesis (Gausstian states, continuous observations, etc).
The member variables are all public for efficiency reasons.
*/
class Model {
public:
/*% Collection of the states of the model */
std: :vector<State> mStates;
/** Matriz of log probabilities of transitions between states */
wahmm: :real_t **mLogTransitions;
/*% Logarithm of the initial state probability distribution */
std: :vector<wahmm: :real_t> mLogPi;
/*% Each entry its < n_w , K(n_w,j) for each state > */
std: :map<size_t, std::vector<wahmm::real_t>> mKValues;
Model();
Model (const Model& that);
Model(std: :vector<State>& states, std::vector<wahmm::real_ t>&relativeTr,
std: :vector<wahmm: :real_t>& relativePi);
/*% Print the model in a readable format, with classic probabilities */
void printModel();
/*% Sort the model with ascending states order */
void sortModel();
// Useful operators for model input/output
friend ostream& operator<<(ostream& os, const Model& m);
friend istream& operator>>(istream& is, Model& m);
I

XXXIV

1 values"

B. Appendix 2

Model: :Model () {}

Model: :Model (const Model& that){
mStates = that.mStates;
for(int i = 0; i < mStates.size(); i++){
mLogTransitions[i] = new wahmm::real_t[mStates.size()];
for(int j = 0; j < mStates.size(); j++){
mLogTransitions[i] [j] = that.mLogTransitions[i] [j];
}
}
mLogPi = that.mLogPi;
}

Model: :Model (std: :vector<State>& states, std::vector<wahmm::real_t>& relativeTr,
std: :vector<wahmm: :real_t>& relativePi){
mStates = std::vector<State>(states);
mLogTransitions = new wahmm::real_t*[states.size()];
wahmm: :real_t rowSum;
for(int 1 = 0; i < states.size(); i++){
mLogTransitions[i] = new wahmm::real_t[states.size()];
rowSum = O;
for(int j = 0; j < states.size(); j++)
rowSum += relativeTr[i*states.size() + jl;
for(int j = 0; j < states.size(); j++)
mLogTransitions[i] [j] = log(relativeTr[i*states.size() + j]) -
log(rowSum) ;
rowSum = O;
for(int j = 0; j < states.size(); j++)
rowSum += relativePil[j];
mLogPi.push_back(log(relativePi[i]) - log(rowSum));

}

void Model: :printModel () {
std::cout << "[>] Model information:" << std::endl;
for(State s : mStates){
cout << s.name();

cout << " | Mean: " << s.mean();
cout << " | StdDev: " << s.stdDev();
cout << endl;
}
std::cout << "—-————————- " << std::endl;
std::cout << "Transitions: " << std::endl;

for(int i = 0; i < mStates.size(); i++){
for(int j = 0; j < mStates.size(); j++)
std::cout << exp(mLogTransitions[i][j]) << " ";
std::cout << std::endl;

¥
std::cout << "-————————- " << std::endl;
std::cout << "Initial Distribution: " << std::endl;

for(int i = 0; i < mStates.size(); i++)
std: :cout << exp(mLogPi[i]) << " ";

std::cout << endl;

std::cout << "—————————- " << std::endl;

XXXV

B. Appendix 2

void Model: :sortModel (){
for(size_t i = 0; i < mStates.size(); i++){
for(size_t j = 0; j < mStates.size()-1; j++){
if (mStates[j] .mean() > mStates[j+1].mean()){
State tmpState = mStates[j];
mStates[j] = mStates[j+1];
mStates[j+1] = tmpState;
wahmm: :real_t *tmpTr = mLogTransitions[j];
mLogTransitions[j] = mLogTransitions[j+1];
mLogTransitions[j+1] = tmpTr;
wahmm: :real_t tmpInit = mLogPil[j];
mLogPi[j] = mLogPil[j+1];
mLogPi[j+1] = tmpInit;

}

ostream& operator<<(ostream& os, const Model& m){
os.precision(100);
os << m.mStates.size() << " ";
for(State s : m.mStates)
os << s.mean() << " " << s.stdDev() << " ";
for(size_t i = 0; i < m.mStates.size(); i++)
for(size_t j = 0; j < m.mStates.size(); j++)
os << m.mLogTransitions[i][j] << " ";
for(size_t i = 0; i < m.mStates.size(); i++)
os << m.mLogPil[i] << " ";
return os;

}

istream& operator>>(istream& is, Model& m){

size_t nStates;

wahmm: :real_t inMean, inStdDev;

is >> nStates;

for(size_t n = 0; n < nStates; n++){
is >> inMean >> inStdDev;
m.mStates.push_back(State(inMean, inStdDev));

}

wahmm: :real_t inTr;

std: :string inTrString;

m.mLogTransitions = new wahmm::real_t*[nStates];

for(size_t i = 0; i < nStates; i++){
m.mLogTransitions[i] = new wahmm::real_t[nStates];
for(size_t j = 0; j < nStates; j++){

is >> inTrString;

if (inTrString == "-inf")

inTr = -infin;
else

inTr = std::stod(inTrString);
m.mLogTransitions[i] [j] = inTr;

b
wahmm: :real_t inPi;
std::string inPiString;

XXXVI

B. Appendix 2

for(size_t i = 0; i < nStates; i++){
is >> inPiString;
if (inPiString == "-inf")
inPi = -infin;
else
inPi = std::stod(inPiString);
m.mLogPi.push_back(inPi);

}

return is;
}
#endz f

B.1.6 parser.hpp

/*
Copyright (c) 2014 Jarryd Beck

Permission ts hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

*/
#ifndef WAHMM_PARSER_HPP
#define WAHMM_PARSER_HPP

#include <iostream>

#include "cxzxzopts.hpp"
#include "commons.hpp"

cxxopts: :ParseResult
parse(int argc, char*x argv[])
{
try
{
cxxopts: :Options options(argv[0], "WaHMM - *Waxvelets on *H*idden *M¥arkov"
" xMxodels") ;

XXXVII

B. Appendix 2

bool apple = false;

options.add_options()
("s,state", "Specify a state with a Gaussian distribution",
cxxopts: :value<std::vector<double>>(), "<mean>,<stdDev>")
("t,transitions", "Transition probabilities in relative terms. For "
"example a two-state model could have -t 2.0,4.0,8.0,2.0 that "
"will translate into [0.33, 0.67; 0.8, 0.2]",

cxxopts: :value<std::vector<double>>(), "<a_11>,...")
("i,initial", "Initial probability distribution",
cxxopts: :value<std::vector<double>>(), "<pi_1>,...")

("obs", "Input file containing the observations as double separated "
"by a space",
cxxopts: :value<std::string>(), "<filename>")

("binary", "Specify that files for observations and generating path"
"are in binary format",
cxxopts: :value<bool>())

("model", "Input file containing a saved model to use for evaluation "
"and decoding problems",
cxxopts: :value<std::string>(), "<filename>")

("estimate", "Input file containing a saved model to use for the "
"training problem",
cxxopts::value<std::string>(), "<filename>")

("tofile", "Save results as files in the folder ./results/",
cxxopts: :value<bool>())

("evaluation", "Solve the evaluation problem using a standard "
"implementation of the forward algorithm",
cxxopts: :value<bool>())

("decoding", "Solve the decoding problem using the Viterbi algorithm",
cxxopts: :value<bool>())

("training", "Solve the training problem with the Baum-Welch "
"algorithm",
cxxopts: :value<bool>())

("compressed", "Use the compressed version of the algorithms",
cxxopts: :value<bool>())

("silence", "Suppress every message printed to screen",
cxxopts: :value<bool>())

("v,verbose", "Print extensive algorithms information",
cxxopts: :value<bool>())

("h,help", "Print this help message",
cxxopts: :value<bool>())

auto result = options.parse(argc, argv);

if (result.count("help")){
std::cout << options.help({""}) << std::endl;
exit (0);

}

return result;

} catch (const cxxopts::OptionException& e)

std::cout << "error parsing options: " << e.what() << std::endl;
exit(1);

XXXVIII

B. Appendix 2

#endif

B.1.7 State.hpp

#ifndef WAHMM_STATE_HPP
#define WAHMM_STATE_HPP

#include "commons.hpp"

VLS
* This class represents the State of a hidden Markov model; it 7s characterized
* by a continuous Gaussian emission probability distribution function.
*/
class State {
static size_t idCounter;
/*% Numerical ID of the state */
size_t mId;
/** Name of the state */
std: :string mName;
/*% Mean of the Gausstan assoctiated to the state */
wahmm: :real_t mMean;
/*% Standard deviation of the Gaussian associated to the state */
wahmm: :real_t mStdDev;
/*% Standard deviation logarithm precomputed for efficiency reasons */
wahmm: :real_t mLogStdDev;
public:
/*% Constructor with default name */
State(wahmm: :real_t mean, wahmm::real_t stdDev);
/** Constructor with given name */
State(wahmm: :real_t mean, wahmm::real_t stdDev, std::string name);
size_t id(Q);
std: :string name();
wahmm: :real_t mean();
wahmm: :real_t stdDev();
wahmm: :real_t logStdDev();
/*% Return the log probability of sampling x from the state distribution */
wahmm: :real_t logPdf (wahmm::real_t x);
/*% Update the parameters of the distribution associated to the state */
void updateParameters(wahmm::real_t mean, wahmm::real_t stdDev);

};

size_t State::idCounter = O;
const wahmm::real_t log_sqrt2pi = 0.9189385332046727417803297364056176398613974;

State::State(wahmm: :real_t mean, wahmm::real_t stdDev) : mMean(mean),
mStdDev (stdDev) ,
mLogStdDev (log(stdDev)),
mName ("State "+std::to_string(idCounter)),
mId(idCounter){
idCounter++;

3

XXXIX

B. Appendix 2

State::State(wahmm: :real_t mean, wahmm::real_t stdDev, std::string name)
mMean (mean) ,
mStdDev (stdDev) ,
mLogStdDev (log(stdDev)),
mName (name) ,
mId(idCounter){
idCounter++;

3

size_t State::id(){
return mlId;

3

std: :string State::name(){
return mName;

}

wahmm: :real_t State::mean(){
return mMean;

}

wahmm: :real t State::stdDev(){
return mStdDev;

3

wahmm: :real_t State::logStdDev(){
return mLogStdDev;
}

wahmm: :real_t State::logPdf (wahmm: :real_t x){
return (- log_sqrt2pi - mLogStdDev - 0.5*pow((x - mMean) / mStdDev, 2));
}

void State::updateParameters(wahmm::real_t mean, wahmm::real_t stdDev){
mMean = mean;
mStdDev = stdDev;
mLogStdDev = log(stdDev);

#endif

B.1.8 utilities.hpp

#ifndef WAHMM_UTILITIES HPP
#define WAHMM_UTILITIES HPP
#include <tostream>
#include "commons.hpp"

/**% Given (a = log(z) and b = log(y), returns log(z+y)) */
wahmm: :real_t sum_logarithms(wahmm::real_t a, wahmm::real_t b){
/**
Perform log-sum-exp on a pair of numbers in log space.. This is calculated
as z = log(ex*z + ex*y). However, this causes underflow sometimes

XL

B. Appendix 2

when x or y are too negative. A simplification of this ts thus

z =z + log(ex*x(y-z) + 1), where z is the greater number. If either of
the inputs are infinity, return infinity, and if either of the inputs
are negative infinity, then simply return the other input.

*/
if(a == infin || b == infin)
return infin;
if(a == -infin)
return b;
if(b == -infin)
return a;
if(a > b)
return a + loglpf(exp(b-a));
return b + loglpf(exp(a-b));
}

/*% Free a matriz of wahmm::real_t with 'rows' rows. */
void freeMatrix(wahmm: :real t#** m, size_t rows){
for(int i = 0; i < rows; i++)
delete[] m[i];
delete[] m;
}

/** Compute K(n_w,j) */
wahmm: :real_t compute_k(Model& m, size_t j, size_t nw){

const wahmm::real_t log_2pi = 1.8378770664093454835606594728112352797227949;

const wahmm::real_t log_2pi_over2 = log_2pi/2;

if (m.mKValues.count(nw) !'= 0){
return m.mKValues.find(nw)->second.at(j);

3

// compute K(n_w, j) for all states and save the walue in the map

m.mKValues[nw] = std::vector<wahmm::real t>();
for(size_t i = 0; i < m.mStates.size(); i++){
wahmm: :real_t first = (nw-1)*m.mLogTransitions[i] [i];
wahmm: :real_t second = nwx(m.mStates[i].logStdDev() +
pow(m.mStates[i] .mean() /m.mStates[i] .stdDev(),2)/2 +
log_2pi_over2);
m.mKValues [nw] .push_back(first - second);

3

return m.mKValues.find(nw)->second.at(j);

}

/*% Compute E_w(j) */

wahmm: :real_t compute_e(Model& m, size_t j, blockdata bd){
wahmm: :real_t num = 2+m.mStates[j].mean()*bd.sl - bd.s2;
wahmm: :real_t den = 2x*pow(m.mStates[j].stdDev(),2);
return (num/den) + compute_k(m, j, bd.nw);

3

VELS

* Prints a matriz in a compressed form with the following format (exzample 10z3):

* [00 ©z_ 01 z_02]

XLI

B. Appendix 2

[z 10 ¢ 11 = 12]

[z 70 .71 =z_72]

[2. 80 2 81 = 82]

[£z 90 z 91 = 92]

If the matriz is smaller than 5 rows, it will be printed fully.
©@param m the matriz to print

O@param Tows

O@param cols

Oparam matrizName printed before the matrir as a header

* ¥ %X X ¥ %X X ¥ ¥ % %

Oparam byRow if true prints by row, otherwise by columns
*/
void printMatrixSummary(wahmm::real_t **m, size_t rows, size_t cols,
std: :string matrixName, bool byRow){
cout << "[>] === " << matrixName << " ===" << endl;
if (byRow){
if(cols <= 5){
for(int x = 0; x < rows; x++){
for(int y = 0; y < rows; y++)
cout << m[x][y] << "\t";
cout << endl;

}
}
else{
for(int y = 0; y < cols; y++)
cout << m[0] [y] << "\t";
cout << endl;
for(int y = 0; y < cols; y++)
cout << m[1][y] << "\t";
cout << endl;
cout << "..." << endl;
for(int y = 0; y < cols; y++)
cout << m[rows-3][y] << "\t";
cout << endl;
for(int y = 0; y < cols; y++)
cout << m[rows-2][y] << "\t";
cout << endl;
for(int y = 0; y < cols; y++)
cout << m[rows-1] [y-1] << "\t";
cout << endl;
}
} else {

if(cols <= 5){
for(int y = 0; y < cols; y++){
for(int x = 0; x < rows; x++)
cout << m[x][y] << "\t";
cout << endl;
}
}
elseq
for(int x = 0; x < rows; x++)
cout << m[x][0] << "\t";
cout << endl;
for(int x = 0; x < rows; x++)
cout << m[x][1] << "\t";
cout << endl;

XLII

B. Appendix 2

cout << "..." << endl;

for(int x = 0; x < rows; x++)
cout << m[x] [cols—-3] << "\t";

cout << endl;

for(int x = 0; x < rows; x++)
cout << m[x][cols-2] << "\t";

cout << endl;

for(int x = 0; x < rows; x++)
cout << m[x][cols-1] << "\t";

cout << endl;

}
}
cout << '"======" << endl;
}
#endzf

B.1.9 WaHMM.hpp

#include "parser.hpp"

#include "commons.hpp"

#include "State.hpp"

#include "Model.hpp"

#include "algorithms.hpp"

#include "Compressor.hpp"

#include "algorithms_compressed.hpp"
#include <stdio.h>

int main(int argc, const char* argv[]){
// std::string filename("data");
// Compressor comp (filename) ;
// comp.printAllBlocks();
//std::cout.precision(8);
//std::cout << std::scientific; // print numbers with scientific notation
auto result = parse(argc, argv);

Model model, estimate;

std: :vector<State> states;

std: :vector<wahmm: :real_t> relTrans;

std: :vector<wahmm: :real_t> relPi;
std::vector<wahmm: :real_t> observations;
std: :string fileObs, fileModelIn, pathOut;
bool evaluation = false, decoding = false, training = false;
bool binary = false, tofile = false;

bool compressed = false;

bool verbose = false, silence = false;
Compressor *compressor;

FILE *finObs, *finPath;

// parsing arguments from command line

if (result.count("model")){ // read the model from a file
fileModelIn = result["model"].as<std::string>(Q);
// Read the file with input observations
std: :ifstream modelFileInput(fileModelln) ;

XLIIT

B. Appendix 2

if (modelFilelInput.is_open()){
modelFileInput >> model;

}

else {
std::cerr << "Cannot read file " + fileModellIn + " !" << std::endl;
return -1;

¥

modelFileInput.close();
}
else { // read the model from command line
if (result.count("state"))q{
std: :vector<double> stateParams = result["state"]
.as<std: :vector<double>>();
wahmm: :real_t mean, stdDev;
for(std::size_t i = 0; i < result.count("state"); i++){
mean = stateParams[i*2];
stdDev = stateParams[i*2 + 1];
states.push_back(State(mean, stdDev));
}
}
if (result.count("transitions")){
std: :vector<double> transParams = result["transitions"]
.as<std::vector<double>>();
for(double d : transParams)
relTrans.push_back((wahmm: :real_t)d);
}
if (result.count("initial")){
std: :vector<double> logParams = result["initial"]
.as<std: :vector<double>>();
for(double d : logParams)
relPi.push_back((wahmm: :real_t)d);
}
model = Model(states, relTrans, relPi);
}
if (result.count ("estimate"))q{
fileModelIn = result["estimate"].as<std::string>();
// Read the file with input observations
std: :ifstream modelFileInput(fileModelln) ;
if (modelFilelInput.is_open()){
modelFileInput >> estimate;

}

else {
std::cerr << "Cannot read file " + fileModelln + " !" << std::endl;
return -1;

}

modelFileInput.close();

}

if (result.count("obs")){
fileObs = result["obs"].as<std::string>();

}

if (result.count ("binary"))
binary = true;

if (result.count("tofile"))
tofile = true;

if (result.count("evaluation"))
evaluation = true;

XLIV

B. Appendix 2

if (result.count("decoding"))
decoding = true;

if (result.count("training"))
training = true;

if (result.count ("compressed"))
compressed = true;

if (result.count ("verbose"))
verbose = true;

if (result.count("silence"))
silence = true;

// some tinput checks

if (states.size() != relPi.size()){
std::cerr << "[Error] Wrong initial distribution size" << std::endl;
return -1;

¥

if (states.size()*states.size() != relTrans.size()){
std::cerr << "[Error] Wrong number of transition probabilities";
std::cerr << std::endl;
return -1;

¥

if (fileObs.empty()){
std::cerr << "[Error] Input file for observations not specified";
std::cerr << std::endl;
return -1;

}

if(silence == true && verbose == true){
std::cerr << "[Error] Silence + Verbose flags cannot be used together";
std::cerr << std::endl;
return -1;

X

// read observations
if (! compressed) {
if (!binary){
if (verbose)
std::cout << "[>] Reading observations... " << std::endl;
wahmm: :real_t number;
// efficient file reading in C style
// Read the file with input observations
finObs = fopen(fileObs.c_str(), "r");
if (finObs != NULL){
while(fscanf (finObs, "%1f", &number) !'= EOF)
observations.push_back (number) ;

} else {
std::cerr << "Cannot read file " + fileObs + " !" << std::endl;
return -1;
}
fclose(finObs);
if (verbose)
std::cout << "[>] ... done." << std::endl;
}
else {
if (verbose){
std::cout << "[>] Reading observations from binary file... ";
std::cout << std::endl;
}

XLV

B. Appendix 2

finObs = fopen (fileObs.c_str() , "rb");

if (£finObs==NULL){
std::cerr << "Cannot read file " + fileObs + " !" << std::endl;
return -1;

}

double n;

// read one number

while(fread(&n,1,sizeof (double),finObs) == sizeof (double))
observations.push_back((wahmm: :real_t)n);

// terminate

fclose (fin0Obs);

if (verbose)

std::cout << "[>] ... done." << std::endl;
}
}
else {
if (verbose)
std::cout << "[>] Creating Compressor... " << std::endl;
compressor = new Compressor(fileObs, binary);
if (verbose)
std::cout << "[>] ... done." << std::endl;
}

// print acquired model
if(!silence)
model.printModel () ;

// exzecute the actual algorithms
if (! compressed){
if (verbose)
std::cout << "[>] Starting standard algorithms." << std::endl;
if (evaluation)
evaluation_problem(model, observations, verbose, silence, tofile);
if (decoding)
decoding_problem(model, observations, verbose, silence, tofile);
if (training)
training_problem(estimate, observations, 1le-9, 100, verbose,
silence, tofile);

}
else {
if (verbose)
std::cout << "[>] Starting compressed algorithms" << std::endl;
if (evaluation)
evaluation_compressed(model, compressor, verbose, silence, tofile);
if (decoding)
decoding_compressed(model, compressor, verbose, silence, tofile);
if (training)
training_compressed(estimate, compressor, le-9, 100, verbose,
silence, tofile);
¥
return O;

XLVI

B. Appendix 2

B.2 Python

B.2.1 automated_ test.py

#1/usr/bin/env python3

—-*- coding: utf-8 —*-

import subprocess

import sys

import viterbi_comparison

import utilities_io as uio

from math import exp, log, isnan
import numpy as np

import time

helper functions
using a relative difference
def compute_error(real, measured):
if abs(real) > abs(measured):
maximum = abs(real)

else:
maximum = abs(measured)
if real == 0 and measured ==
return O

return abs((real - measured) / maximum)

compute KL divergence between two univariate gaussians with means m and
standard deviation s
= log(s1/s0) + (sO02 + (mO-m1) 2)/(2*s172) - 1/2
def k1_divergence_gaussians(m0, sO, ml, si1):
a = log(s1/s0)
b = (s0%*2 + (mO-m1)#*%2) /(2% (s1%%2))
return a + b - 0.5

def savetofile(suffix, list):
n = len(list)
f = prefix + suffix
out_file = open(f, "w")
for i in range(0, n):
out_file.write(str(list[i]) + " ")
out_file.close()

OPTIONS
topology = "fully-connected" # not used yet
states = [2, 3, 5, 7, 11, 13]

states = [2, 3, 5]

etas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
etas = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, O.

n_tests = 100
sequence_length

1000000 # used ONLY to calculate relative errors in decoding

topology_prefix = "FC"

verbose = True

f_eval_prob = "results/evaluation_prob"
f_compr_eval_prob = "results/compressed_evaluation_prob"

f_decod_prob = "results/decoding_prob"

XLVII

B. Appendix 2

f_compr_decod_prob = "results/compressed_decoding_prob"
f_train_mod = "results/training_model"
f_compr_train_mod = "results/compressed_training model"
output files

f_eval_out = "evaluation"

f_eval_time_std_out = "evaluation_std_time"
f_eval_time_compr_out = "evaluation_compr_time"

f_decod_prob_out = "decoding_prob"
f_decod_path_std_out = "decoding_std_path"
f_decod_path_compr_out = "decoding_compr_path"
f_decod_time_std_out = "decoding_std_time"

f_decod_time_compr_out = "decoding_compr_time"
f_train_std_out = "training_ std"

f_train_compr_out = "training_compr"

f_train_model_std_out = "training_model_std"

f_train_model_compr_out = "training model_compr"
f_train_time_std_out = "training_std_time"
f_train_time_compr_out = "training_compr_time"

SCRIPTS PATHS

f_generate_states = "python/generate_states.py"
f_generate_model = "python/create_model_file.py"
f_generate_data = "python/generate_data.py"
f_wahmm = "bin/WaHMM"

MAIN PROGRAM ARGUMENTS

—-—import data/model --obs data/bin_observations --binary —--tofile
-—evaluation --decoding —-training
wahmm_args = []
wahmm_args .append ("bin/WaHMM")

wahmm_args .append("--model")
wahmm_args.append("data/model")
wahmm_args.append("--estimate")
wahmm_args.append("data/kmeans_model")
wahmm_args .append("--obs")
wahmm_args.append("data/bin_observations")
wahmm_args.append("--binary")
wahmm_args.append("--silence")
wahmm_args.append("--tofile")

eval_std_args = wahmm_args.copy()
eval_std_args.append("--evaluation")
decod_std_args = wahmm_args.copy ()
decod_std_args.append("--decoding")
train_std_args = wahmm_args.copy()
train_std_args.append("--training")
eval_compr_args = eval_std_args.copy()
eval_compr_args.append("--compressed")
decod_compr_args = decod_std_args.copy()
decod_compr_args.append ("--compressed")
train_compr_args = train_std_args.copy()
train_compr_args.append("--compressed")

if verbose:
print("=== WaHMM AUTOMATED TESTING ===")
print("eta:",etas," #states:",states," #tests:",n_tests)

skip_index = O
test_count 1

XLVIII

B. Appendix 2

for eta in etas:
print("[Test] --- Using Eta:",eta,"---")
for n_states in states:

print (" [Test] --- Model with",n_states,"states ---")

if verbose:

print (" [Test] Generating states... ",end="",flush=True)
arguments = [f_generate_states, str(eta), str(n_states)]

subprocess.call (arguments)

if verbose:
print("done.",flush=True)

if verbose:

print (" [Test] Generating model... ",end="",flush=True)

subprocess.call(f_generate_model)
if verbose:
print("done.",flush=True)

TEST THE MODEL
evaluation_errors = []
evaluation_times_std = []
evaluation_times_compr =
decoding_errors = []
decoding_paths_std_errors = []
decoding_paths_compr_errors = []
decoding_times_std = []
decoding_times_compr = []
ur_model_diff = []
cr_model_diff = []
u_model = []
c_model = []
training_times_std = []
training_times_compr = []
for iteration in range(l, n_tests+1):
Step 1: data generation
if verbose:

(1

print (" [Test",test_count,"] Generating data... ",end="",
flush=True)
subprocess.call(f_generate_data)
if verbose:
print("done.",flush=True)
Step 2: ewaluation problem
if verbose:
print (" [Test",test_count,"] -- Running WaHMM uncompressed "

"evaluation...")
start = time.perf_counter()
subprocess.call(eval_std_args)
end = time.perf_counter ()
evaluation_times_std.append(end - start)
if verbose:

print (" [Test",test_count,"] WaHMM uncompressed evaluation "

"finished.")
if verbose:

print (" [Test",test_count,"] Running WaHMM compressed "

"evaluation...")
start = time.perf_counter()
subprocess.call(eval_compr_args)

XLIX

B. Appendix 2

end = time.perf_counter()
evaluation_times_compr.append(end - start)
if verbose:
print (" [Test",test_count,"] WaHMM compressed evaluation "
"finished.")

in_eval_file = open(f_eval_prob, "r")
evaluation_prob = float(in_eval_file.read())
in_eval_file.close()
in_eval_file = open(f_compr_eval_prob, "r"
compressed_evaluation_prob = float(in_eval_file.read())
in_eval_file.close()
eval_relative_error = compute_error(evaluation_prob,
compressed_evaluation_prob)
if verbose:
print (" [Test",test_count,"] Uncompressed evaluation
"probability:", evaluation_prob)
print (" [Test",test_count,"] Compressed evaluation "
"probability:", compressed_evaluation_prob)
print (" [Test",test_count,"] Relative Error:",
eval_relative_error)
evaluation_errors.append(eval_relative_error)

Step 3: decoding problem
if verbose:
print (" [Test",test_count,"] -- Running WaHMM uncompressed "
"decoding...")
start = time.perf_counter()
subprocess.call(decod_std_args)
end = time.perf_counter()
decoding_times_std.append(end - start)
if verbose:
print (" [Test",test_count,"] WaHMM uncompressed decoding "
"finished.")
if verbose:
print (" [Test",test_count,"] Running WaHMM compressed "
"decoding...")
start = time.perf_counter()
subprocess.call(decod_compr_args)
end = time.perf_counter()
decoding_times_compr.append(end - start)
if verbose:
print (" [Test",test_count,"] WaHMM compressed decoding "
"finished.")

in_decod_file = open(f_decod_prob, "r"
decoding_prob = float(in_decod_file.read())
in_decod_file.close()
in_decod_file = open(f_compr_decod_prob, "r"
compressed_decoding_prob = float(in_decod_file.read())
in_decod_file.close()
decod_relative_error = compute_error(decoding_prob,
compressed_decoding_prob)
if verbose:
print (" [Test",test_count,"] Uncompressed decoding probability:",
decoding_prob)

B. Appendix 2

print (" [Test",test_count,"] Compressed decoding probability:",
compressed_decoding_prob)
print (" [Test",test_count,"] Relative Error:",
decod_relative_error)
decoding_errors.append(decod_relative_error)
path_errors = viterbi_comparison.count_differences_uncompressed() /
sequence_length
if verbose:
print (" [Test",test_count,"] Fraction of errors in path for "
"uncompressed:", path_errors)
decoding_paths_std_errors.append(path_errors)
path_errors = viterbi_comparison.count_differences_compressed() /
sequence_length
if verbose:
print (" [Test",test_count,"] Fraction of errors in path for "
"compressed:", path_errors)
decoding_paths_compr_errors.append(path_errors)

Step 4: training problem
if verbose:
print (" [Test",test_count,"] -- Running WaHMM uncompressed "
"training...")
start = time.perf_counter()
subprocess.call(train_std_args)
end = time.perf_counter()
training_times_std.append(end - start)
if verbose:
print (" [Test",test_count,"] WaHMM uncompressed training "
"finished.")
if verbose:
print (" [Test",test_count,"] Running WaHMM compressed "
"training...")
start = time.perf_counter()
subprocess.call(train_compr_args)
end = time.perf_counter()
training_times_compr.append(end - start)
if verbose:
print (" [Test",test_count,"] WaHMM compressed training "
"finished.")

r stands for "real”, u for "uncompressed" and c for "compressed"

r_nstates, r_means, r_stddevs, r_trans, r_init = uio
.read_model ()

u_nstates, u_means, u_stddevs, u_trans, u_init
.read_model (f_train_mod)

c_nstates, c_means, c_stddevs, c_trans, c_init = uio
.read_model (f_compr_train_mod)

uio

ur_diff
cr_diff

(]
(]

Save differences

number of states, just to Temember that
ur_diff.append(r_nstates)
cr_diff.append(r_nstates)

states

LI

B. Appendix 2

for i in range(0, r_nstates):
ur_diff.append(kl_divergence_gaussians(r_means[i], r_stddevs[i],
u_means[i], u_stddevs[i]))
cr_diff.append(kl_divergence_gaussians(r_means[i], r_stddevs[i],
c_means[i], c_stddevs[i]))
transitions
for i in range(0, r_nstates):
for j in range(0, r_nstates):
ur_diff.append(compute_error(r_trans[i*r_nstates+j],
u_trans[i*r_nstates+j]))
cr_diff.append(compute_error(r_trans[i*r_nstates+j],
c_trans[i*r_nstates+j]))
tnitial distributions
ur_diff.append(compute_error(r_init[0], u_init[0]))
cr_diff.append(compute_error(r_init[0], c_init[0]))

ur_model_diff.append(ur_diff)
cr_model_diff.append(cr_diff)

test_count = test_count + 1

Save testing results to file
prefix = "tests/" + topology_prefix + "_" + str(n_states) + "_" +
str(eta) + "_"
print (" [Test] Saving files with prefix:",prefix)
Evaluation
savetofile(f_eval_out, evaluation_errors)
savetofile(f_eval_time_std_out, evaluation_times_std)
savetofile(f_eval_time_compr_out, evaluation_times_compr)
Decoding
savetofile(f_decod_prob_out, decoding_errors)
savetofile(f_decod_path_std_out, decoding_paths_std_errors)
savetofile(f_decod_path_compr_out, decoding_paths_compr_errors)
savetofile(f_decod_time_std_out, decoding_times_std)
savetofile(f_decod_time_compr_out, decoding_times_compr)
Training
out_file = open(prefix+f_train_std_out, "w")
for i in range(0, n_tests):
for x in range(0, len(ur_model_diff[i])):
out_file.write(str(ur_model diff[i][x]) + " ")
out_file.write("\n")
out_file.close()
out_file = open(prefix+f_train_compr_out, "w")
for i in range(0, n_tests):
for x in range(0, len(cr_model_diff[i])):
out_file.write(str(cr_model _diff[i][x]) + " ")
out_file.write("\n")
out_file.close()
savetofile(f_train_time_std_out, training_times_std)
savetofile(f_train_time_compr_out, training_times_compr)

print("\n[Test] -- Testing is finished.")

LII

B. Appendix 2

B.2.2 create__model_ file.py

#!/usr/bin/env python3

—*- coding: utf-8 —*-
from math import log
import utilities_io as uio

Creates a model file; the input params can be inserted by hand

The file should be written with the following format

n_states mean std_dev ... log(transitions) ... log(initial_distribution)
OPTIONS

automatic = True

states_file = "data/states"

trans_prob = 10.0/100000.0 # wanted_trans_n / sequence length = 10/1076
topology = "fully-connected"

out_file = open(uio.model_file, "w")

if automatic:
in_file = open(states_file, "r")
line = in_file.read()
string_list = line.split()
number of states
n_states = len(string_list)
out_file.write(str(n_states) + " ")
states distribution (mean, std_dev)
for i in range(0, n_states):
out_file.write(string_list[i] + " 1 ")
if topology == "fully-connected":
transition matriz
self_trans_prob = 1 - trans_prob
out_trans_prob = trans_prob / (n_states - 1)
for i in range(0, n_states):
for j in range(0, n_states):
if i ==
out_file.write(str(log(self_trans_prob)) + " ")
else:
out_file.write(str(log(out_trans_prob)) + " ")
inittal distridbution
out_file.write(str(log(1)) + " ")
for i in range(l, n_states):
out_file.write("-inf ")
if topology == "left-to-right":
transition matriz
self_trans_prob = 1 - trans_prob
out_trans_prob = trans_prob
for i in range(0, n_states):
for j in range(O, n_states):
last state is absorbing
if 1 == j and 1 == n_states-1:
out_file.write(str(log(1)) + " ")
self-transition
elif i == j:
out_file.write(str(log(self_trans_prob)) + " ")

LIII

B. Appendix 2

transition out
elif i == j-1:
out_file.write(str(log(out_trans_prob)) + " ")
else:
out_file.write("-inf ")
inittal distridbution
out_file.write(str(log(1)) + " ")
for i in range(l, n_states):
out_file.write("-inf ")
if topology == "circular":
transition matriz
self_trans_prob = 1 - trans_prob
out_trans_prob = trans_prob
for i in range(0, n_states):
for j in range(0O, n_states):
last state

if j == 0 and 1 == n_states-1:
out_file.write(str(log(out_trans_prob)) + " ")

self-transition

elif i == j:

out_file.write(str(log(self_trans_prob)) + " ")
transition out
elif j == i+1l:
out_file.write(str(log(out_trans_prob)) + " ")
else:
out_file.write("-inf ")
inittal distribution
out_file.write(str(log(1)) + " ")
for i in range(l, n_states):
out_file.write("-inf ")
else:
number of states
out_file.write("2 ")
states distributions (mean, std_dev)
out_file.write("0 1 10 1 ")
transition matriz

out_file.write(str(log(0.999)) + " " + str(log(0.001)) + " ™)
out_file.write(str(log(0.001)) + " " + str(log(0.999)) + " ")
initial distribution

out_file.write(str(log(1)) + " " + "-inf ")

out_file.close()

B.2.3 generate_data.py

#!/usr/bin/env python3

—*= coding: utf-8 —*-—

import pomegranate as pm
import numpy as np

import utilities_io as uio
import utilities_kmeans as ukm

OPTIONS
Lenght of the observations sequence

LIV

B. Appendix 2

sequence_length = 100000

Choose tf kmeans should be performed or not

perform_kmeans = True

Write the sequence to a binary file

output_binary = True

Write the sequencel 1in a human Teadable format

output_readable = True

Also produce a file for the gemerating path (always human readable)
output_path = True

read model from input file
n_states, means, std_devs, transitions, initial = uio.read_model()

create Pomegranate model
dists = []
for i in range(0O, n_states):

dists.append(pm.NormalDistribution(means[i], std_devs[i]))
trans_mat = []
for i in range(0, n_states):

trans_mat.append ([])

for j in range(0O, n_states):

trans_mat[i] .append(transitions[i*n_states + j])

trans_mat = np.array(trans_mat)
starts = np.array(initial)
model = pm.HiddenMarkovModel.from_matrix(trans_mat, dists, starts)
model . bake ()

generate samples from the model
if output_path:
samples = model.sample(length=sequence_length, path=True, random_state=None)
observations = samples[0]
state_path = samples[1]
else:
samples = model.sample(length=sequence_length, path=False,
random_state=None)
observations = samples

if output_readable:
uio.write_observations(observations)

if output_binary:
uio.write_observations_binary(observations)

if output_path:
uio.write_path(state_path)

if perform_kmeans:
ukm.estimate_model (k=n_states)

B.2.4 generate_states.py

#!/usr/bin/env python3

—*- coding: utf-8 —*-

import sys

SYNTAX: generate_states.py <eta> <n_states>

LV

B. Appendix 2

Generate the states means given a certain Eta as defined in the thesis
(currently at (2.39)); standard deviation is always one

if len(sys.argv) != 3:
print ("Error. Please execute as: generate_states.py <eta> <n_states>")
exit (1)

OPTIONS

eta = float(sys.argv[1]) # 0 is total overlap, 1 is nmon-overlapping within
+/- 3 sigmas

n_states = int(sys.argv[2])

filename = "data/states"
means = []
#print ("Using eta =",eta, "and n_states =",n_states)

the first state is always the standard normal Z(0,1)
means . append (0.0)
for i in range(l, n_states):
means . append (6*eta + means[i-1])
#print ("Generated states:",means)

save to file for test automation
out_file = open(filename, "w"
for i in range(0, n_states):
out_file.write(str(means[i]))
if i < n_states-1:
out_file.write(" ")
out_file.close()

B.2.5 plot__data.py

#!/usr/bin/env python3

—-*- coding: utf-8 —*-

import matplotlib.pyplot as plt
import utilities_io as uio

OPTIONS
use_binary_file = True
input_limit = 1000

if use_binary_file:
observations = uio.read_observations_binary()
state_path = uio.read_path()

else:
observations = uio.read_observations(limit=input_limit)
state_path = uio.read_path(limit=input_limit)

n_states, means, std_devs, transitions, initial = uio.read_model()
means_path = state_path
for i in range(0, len(state_path)):

means_path[i] = means[state_path[i]]

if input_limit > O and use_binary_file == False:
x = range(l,input_limit+1)

LVI

B. Appendix 2

else:
x = range(l,len(observations)+1)

plt.scatter(x, observations, color='blue')
plt.step(x, means_path, color='red')
plt.show()

B.2.6 plot_kmeans.py

#!/usr/bin/env python3

—-*- coding: utf-8 —x-

import matplotlib.pyplot as plt
from math import exp

import utilities_io as uio
import utilities_kmeans as ukm

read kmeans model from input file
n_states, means, std_devs, transitions, initial = ukm.read_kmeans_model ()

read kmeans labels from file
labels = ukm.read_kmeans_labels()

read observations from input file

in_file = open(uio.observations_file, "r")

line = in_file.read()

string_list = line.split()

value_list = []

value x = []

for i in range(0O, n_states):
value_list.append([])
value_x.append([])

input_limit = 1000000

counter = 0

for s in string list:
value_list[labels[counter]].append(float(s))
value_x[labels[counter]].append(counter)
counter = counter + 1
if counter > input_limit:

break
in_file.close()

for i in range(0, n_states):
print("State",i,"- Mean:",means[i],"- StdDev:",std_devs[i])

x = range(l, counter+1)

means_plot = []

std_low_plot = []

std_high_plot = []

for i in range(0O, n_states):
means_plot.append([means[i]] * len(x))
std_low_plot.append([means[i] - 3*std_devs[i]] * len(x))
std_high_plot.append([means[i] + 3*std_devs[i]] * len(x))

plt.scatter(z, value_list, color='blue')

LVII

B. Appendix 2

for i in range(0O, n_states):

—-- either differentiate clusters
plt.scatter(value_x[i], value_list[i])
—-— or just print observations

plt.scatter(value_z[i], wvalue_list[i], color='blue')

plt.plot(x, means_plot[i], color='black')

plt.plot(z, std_low plot[i], color='red’')

plt.plot(z, std_high_plot[i], color='red')
plt.show()

B.2.7 pomegranate_ test.py

#!/usr/bin/env python3

—*x= coding: utf-8 —*-—

import pomegranate as pm
import numpy as np

import math

import json

import utilities_io as uio
import utilities_kmeans as ukm

OPTIONS

do_evaluation = True

do_decoding = True

do_training = True

evaluation_file = "results/pm_evaluation_prob"
viterbipath_file = "results/pm_decoding_path"
viterbilogp_file = "results/pm_decoding_prob"
training_file = "results/pm_training model"

read model from input file
n_states, means, std_devs, transitions, initial = uio.read_model()

create Pomegranate model
dists = []
for i in range(0, n_states):

dists.append(pm.NormalDistribution(means[i], std_devs[i]))
trans_mat = []
for i in range(0O, n_states):

trans_mat.append([])

for j in range(0, n_states):

trans_mat[i] .append(transitions[i*n_states + j])

trans_mat = np.array(trans_mat)
starts = np.array(initial)
model = pm.HiddenMarkovModel.from_matrix(trans_mat, dists, starts)
model . bake ()

read observations from input file
observations = uio.read_observations_binary()

problem 1 : mazimum likelihood, forward algorithm
To compare log probabilities, you can consider the ratio between them:
spectifically, with two states we can see that:

LVIII

B. Appendix 2

prob_1/prob_2 = exp(log(prob_1) - log(prob_2))
if do_evaluation:
print("--- PM Evaluation problem ---")
forward_matrix = model.forward(observations)
print (forward_matrix)
computer evaluation probability
inf = float("inf")
neg_inf = float("-inf")
evaluation = neg_inf
for alpha in forward_matrix[-1]:
if evaluation == inf or alpha == inf:
evaluation = inf
break # the end result will be +inf no matter what
elif evaluation == neg_inf:
evaluation = alpha
elif alpha == neg_inf:
evaluation = evaluation
elif evaluation > alpha:

evaluation = evaluation + math.log(l + math.exp(alpha-evaluation))

else:

evaluation = alpha + math.log(l + math.exp(evaluation-alpha))

print("P(0 | lambda):", evaluation)

save evaluation prob to file for future comparisons
out_file = open(evaluation_file, "w"
out_file.write(str(evaluation))

out_file.close()

problem 2 : Viterbi decoding, Viterbi algorithm

compute the predicted_path using Viterb: algorithm and count errors

if do_decoding:
print ("--- PM Decoding problem ---")
path_logp, path_tuples = model.viterbi(observations)
print("P(0 | Q,lambda):",path_logp)
state_path = []
for tuple in path_tuples:
state_path.append (tuple[0])
state_path = state_path[1:]
save logp to file for future comparisons
out_file = open(viterbilogp_file, "w"
out_file.write(str(path_logp))
out_file.close()
save the state path to file for future comparisons
out_file = open(viterbipath_file, "w"
for p in state_path:
out_file.write(str(p) + " ")
out_file.close()
print a shortened wversion of the state path
print ("Most likely path: ",end='"')
if len(state_path) > 10:
for i in range(0, 5):
print(state_path[i], end=' ')
print("...", end=" ')
for i in range(-5, 0):
print(state_path[i], end=' ')
print("")
else:

LIX

B. Appendix 2

for i in range(0, len(state_path)):
print(state_path[i], end=' ')
print (Il Il)

problem 3 : expectation mazimization, baum-welch
read model estimated with kmeans
if do_training:
print("--- PM Training problem ---")
n_states, means, std_devs, transitions, initial = uio.read_model()
create Pomegranate model
dists = []
for i in range(0O, n_states):
dists.append(pm.NormalDistribution(means[i], std_devs[i]))
trans_mat = []
for i in range(0, n_states):
trans_mat.append([])
for j in range(0, n_states):
trans_mat[i] .append(transitions[i*n_states + j])
trans_mat = np.array(trans_mat)
starts = np.array(initial)
estimate_model = pm.HiddenMarkovModel.from_matrix(trans_mat, dists, starts)
estimate_model.bake ()

estimate_model.fit(list([np.array(observations)]))

edges in json have the following format:

- (start node, end node, probability, pseudocount, label)
print(estimate_model.to_json())

out_file = open(training file, "w"
out_file.write(estimate_model.to_json())
out_file.close()

B.2.8 results_ aggregation.py

#1/usr/bin/env python3

—-*- coding: utf-8 —*-

from __future__ import print_function
import utilities_io as uio

from math import sqrt

import sys

from os import listdir

import subprocess

import matplotlib.pyplot as plt

from statistics import median, pstdev

OPTIONS

n_tests = 100

save_boxplots = True

topologies = ["FC", "CI", "LR"]

n_states = ["2", "3", "5"]

etas = ["0.1", "0.2", "0.3", "0.4", "0.5", "O0.6", "O.7", "0.8", "0.9", "1.0"]
x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

folder = "plots/"

LX

B. Appendix 2

base_savename = folder+"PLOT_"

file mames

f_ev = "evaluation"

f_de_pr = "decoding_prob"
f_de_std_pa = "decoding_std_path"
f_de_compr_pa = "decoding_compr_path"
f_tr_std = "training_std"

f_tr_compr = "training_compr"
f_ev_std_t = "evaluation_std_time"
f_ev_compr_t = "evaluation_compr_time"
f_de_std_t = "decoding_std_time"
f_de_compr_t = "decoding_compr_time"
f_tr_std_t = "training_std_time"
f_tr_compr_t = "training_ compr_time"

def save_boxplot(data, title, topology, suffix, ybot, ytop, ylabel, xlabel):
f = base_savename + topology + "_" + suffix
plt.title(title)
fig, ax = plt.subplots(len(n_states), constrained_layout=True)
for i in range(0, len(n_states)):
ax[i] .set(title=n_states[i]+" states")
ax[i] .yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)
ax[i] .set_ylim(ybot[i], ytop[il)
ax[i] .set_xticklabels(etas)
ax[i] .boxplot(datalil)
plt. figure(figsize=(2,1))
plt.tight_layout ()
ax[i] .set_xlabel(xlabel)
ax[i] .set_ylabel(ylabel)
plt.savefig(f)
plt.close()
plt.clf()

def save_plot(x, y_allstates, title, topology, suffix, ylabel, xlabel):
f = base_savename + topology + "_" + suffix
line_styles = ['-', '-=', ':']
for i in range(0, len(n_states)):
plt.title(title)
plt.plot(x, y_allstates[i], label=n_states[i]+" states", \
linestyle=line_styles[i], marker="o")
plt.legend(loc="'upper right', frameon=False)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.savefig(f)
plt.close()
plt.clfO

def plot_evaluation(topology) :
ev_list = []
y_all = []
for n in n_states:

LXI

B. Appendix 2

ev = []
y =10
for eta in etas:
f = Iltests/ll + topology + ll_ll + n + II_II + eta + II_U

list = uio.read_file_to_list(f+f_ev)
floatlist = [float(e) for e in list]
y.append(median(floatlist))
ev.append(floatlist)
ev_list.append(ev)
y_all.append(y)
save_plot(x, y_all, "Evaluation: probability relative error", topology, \

"evaluation", "Error (relative)", "State separation")
if topology == "LR":

tmp_ybot = [0.0,0.0,0.0]

tmp_ytop = [0.0005, 0.0005, 0.001]
else:

tmp_ybot = [0.0,0.0,0.0]
tmp_ytop = [0.003, 0.003, 0.003]

save_boxplot(data=ev_list, title="Evaluation: probability error", \
topology=topology, suffix="evaluation_boxplot", ybot=tmp_ybot, \
ytop=tmp_ytop, ylabel="Error (relative)", xlabel="State separation")

def plot_decoding(topology) :
de_list = []
y_all = []
for n in n_states:
de = []
y = []
for eta in etas:
f = "tests/" + topology + "_" + m + "_" + eta + "_"
list = uio.read_file_to_list(f+f_de_std_pa)
floatlist_std = [float(e) for e in list]
list = uio.read_file_to_list(f+f_de_compr_pa)
floatlist_compr = [float(e) for e in list]
floatlist_diff = []
for i in range(0, len(floatlist_std)):
floatlist_diff.append(floatlist_compr[i] - floatlist_std[i])
de.append(floatlist_diff)
y.append (median(floatlist_diff))
de_list.append(de)
y_all.append(y)
save_plot(x, y_all, "Decoding: relative path error", topology, \
"decoding", "Error (relative)", "State separation")
if topology == "LR":
tmp_ybot = [0.0,0.0,0.0]
tmp_ytop = [0.001, 0.001, 0.001]
else:
tmp_ybot [0.0,0.0,0.0]
tmp_ytop = [0.001, 0.001, 0.001]
save_boxplot(data=de_list, title="Decoding: path error increment", \
topology=topology, suffix="decoding_boxplot", ybot=tmp_ybot, \
ytop=tmp_ytop, ylabel="Error (relative)", xlabel="State separation")

def summarize_training(filename):

LXII

B. Appendix 2

k1l = []
tr = []
pi = []

list = uio.read_file_to_list(filename)
index = 0
for t in range(0O, n_tests):
statesnum = int(list[index])
index = index + 1
average state kl
current_kl1 = 0
for i in range(0, statesnum):
current_kl = current_kl + float(list[index])
index = index + 1
current_kl = current_kl/statesnum
k1l.append(current_k1)
average transition relative error
current_tr = 0
for i in range(0, statesnum):
for j in range(0, statesnum):
current_tr = current_tr + float(list[index])
index = index + 1
current_tr = current_tr / (statesnumx*2)
tr.append(current_tr)
average initial distridbution relative error
pi.append(float(list[index]))
index = index + 1
return k1, tr, pi

def plot_training(topology):

tr_kl1_list [1
tr_tr_list []
tr_in_list = []

y_k1_all = []

y_tr_all = []

y_in_all = []

for n in n_states:

tr k1 = []
tr_tr = []
tr_in = []
y k1l =[]
y_tr = []
y_in = []

for eta in etas:
tr_kl_std = []
tr_tr_std = []
tr_in_std = []
tr_kl_compr = []
tr_tr_compr = []
tr_in_compr = []
tr_k1 _diff = []

tr_tr_diff = []
tr_in_diff = []
f = ||tests/ll + topology + ll_ll + n + ll_ll + eta + ll_U

read standard training results
tr_kl_std, tr_tr_std, tr_in_std = summarize_training(f +

LXIII

B. Appendix 2

f_tr_std)
read compressed training results
tr_kl_compr, tr_tr_compr, tr_in_compr = summarize_training(f +
f_tr_compr)
for i in range(0, len(tr_kl_std)):
tr_kl_diff.append(tr_k1_compr[i] - tr_k1_std[i])
for i in range(0, len(tr_tr_std)):
tr_tr_diff.append(tr_tr_compr[i] - tr_tr_std[i])
for i in range(0, len(tr_in_std)):
tr_in_diff.append(tr_in_compr[i] - tr_in_std[i])
tr_kl.append(tr_kl_diff)
tr_tr.append(tr_tr_diff)
tr_in.append(tr_in_diff)
y_k1l.append(median(tr_k1l_diff))
y_tr.append(median(tr_tr_diff))
y_in.append(median(tr_in_diff))
tr_kl_list.append(tr_k1)
tr_tr_list.append(tr_tr)
tr_in_list.append(tr_in)
y_k1_all.append(y_k1)
y_tr_all.append(y_tr)
y_in_all.append(y_in)

save_plot(x, y_kl_all, "Training: KL-divergence difference", topology,
"training k1", "Difference (abs)", "State separation")

save_plot(x, y_tr_all, "Training: Transitions relative error difference",
topology, "training tr", "Difference (abs)", "State separation")

save_plot(x, y_in_all, "Training: Initial distribution error difference",
topology, "training_in", "Difference (abs)", "State separation")

Training KL

if topology == "CI":
tmp_ybot = [-0.01, -0.5, -2]
tmp_ytop = [0.01, 0.3, 0.5]
elif topology == "FC":

tmp_ybot = [-0.02, -1, -2]
tmp_ytop = [0.01, 0.3, 1]

elif topology == "LR":
tmp_ybot [-0.1, -8, -14]
tmp_ytop = [0.05, 8, 10]

save_boxplot(data=tr_kl_list, title="Training: states error", \
topology=topology, suffix="training_kl_boxplot", ybot=tmp_ybot, \
ytop=tmp_ytop, ylabel="Difference (abs)", \
xlabel="State separation")

Training TR

tmp_ybot = [-0.5, -0.5, -0.5]

tmp_ytop = [0.5, 0.5, 0.5]

save_boxplot(data=tr_tr_list, title="Training: transitions error", \
topology=topology, suffix="training_ tr_boxplot", ybot=tmp_ybot, \
ytop=tmp_ytop, ylabel="Difference (abs)", \
xlabel="State separation")

Training IN

if topology == "LR":
tmp_ybot = [-0.000011, -0.000011, -0.000011]
tmp_ytop = [0.0000005, 0.0000005, 0.0000005]

else:

LXIV

B. Appendix 2

tmp_ybot = [-0.00000025, -0.000005, -0.00001]

tmp_ytop = [0.00000005, 0.0000005, 0.0000005]
save_boxplot(data=tr_in_list, title="Training: initial distribution error",\

topology=topology, suffix="training_in_boxplot", ybot=tmp_ybot, \

ytop=tmp_ytop, ylabel="Difference (abs)", \

xlabel="State separation")

def plot_speedup(topology) :
titles = ["Speedup: evaluation", "Speedup: decoding", "Speedup: training"]

problems = ["evaluation", "decoding", "training"]
files = dict(Q)

files["evaluation"] = [f_ev_std_t, f_ev_compr_t]
files["decoding"] = [f_de_std_t, f_de_compr_t]

files["training"] = [f_tr_std_t, f_tr_compr_t]
for p in problems:
speedup_list = []
y_all = []
for n in n_states:
speedup = []
y =[]
for eta in etas:
f = "tests/" + topology + "_" +n + "_" + eta + "_"
list = uio.read_file_to_list(f+files[p] [0])
floatlist_std = [float(e) for e in list]
list = uio.read_file_to_list(f+files[p][1])
floatlist_compr = [float(e) for e in list]
floatlist_ratio]
for i in range(0, len(floatlist_std)):
floatlist_ratio.append(floatlist_std[i]/floatlist_compr[i])
speedup . append (floatlist_ratio)
y.append (median(floatlist_ratio))
speedup_list.append (speedup)
y_all.append(y)
save_plot(x, y_all, "Speedup: "+p, topology, "speedup_"+p, \
"Speedup", "State separation")
if topology == "CI":
if p == "evaluation":
tmp_ybot = [0.0, 0.5, 1.0]
tmp_ytop = [1.0, 1.5, 2.0]
elif p == "decoding":
tmp_ybot = [0.5, 0.5, 0.5]
tmp_ytop = [1.5, 1.5, 1.5]
elif p =="training":
tmp_ybot = [0, 0, 0]
tmp_ytop = [300, 600, 1500]
elif topology == "FC":
if p == "evaluation":
tmp_ybot = [0.4, 0.75, 2]
tmp_ytop = [0.9, 1.75, 4]
elif p == "decoding":
tmp_ybot = [0.5, 0.5, 0.75]
tmp_ytop = [1.25, 1.25, 1.75]
elif p == "training":
tmp_ybot = [0, 0, 0]
tmp_ytop = [300, 700, 1500]

LXV

B. Appendix 2

elif topology == "LR":
if p == "evaluation":
tmp_ybot = [0.25, 0.5, 1.25]
tmp_ytop = [1, 1.25, 2.25]
elif p == "decoding":
tmp_ybot = [0.5, 0.75, 1]
tmp_ytop = [1.25, 1.5, 2]
elif p == "training":
tmp_ybot = [0, 0, 0]
tmp_ytop = [400, 700, 1700]
save_boxplot(data=speedup_list, title="Speedup: "+p, \
topology=topology, suffix="speedup_"+p+"_boxplot", ybot=tmp_ybot, \
ytop=tmp_ytop, ylabel="Speedup", \
xlabel="State separation")

if __name__ == "_ _main_ _
produce plots
for topology in topologies:
f = base_savename + topology + "_"
plot_evaluation(topology)
plot_decoding(topology)
plot_training(topology)
plot_speedup(topology)
join plots with corresponding boxplot
files = listdir(folder)
for £ in files:
if "boxplot" not in f and "MERGE" not in f:
subprocess.call("convert "+folder+f+" "+folder+f[:-4]+ \
"_boxplot.png +append " + \
folder+"MERGE_"+f[5:], shell=True)

B.2.9 utilities__io.py

mmnn

Functions in this file:

def read_observations(f=observations_file, limit=0):
def read_observations_binary(f=bin_observations_file):
def read_path(f=state_path_file, limit=0):

def read_model (f=model_file):

def read_kmeans_model (f=kmeans_model_file) :

import numpy as np

from math import sqrt, log, exp

common parameters

observations_file = "data/observations"
bin_observations_file = "data/bin_observations"
state_path_file = "data/path"

model_file = "data/model"

tests_folder = "tests/"

Observations are a series of floats on a single line separated by spaces
def read_observations(f=observations_file, limit=0):
in_file = open(f, "r")

LXVI

B. Appendix 2

line = in_file.read()

string_list = line.split()

observations = []

counter = 1

for s in string_list:
observations.append(float(s))
counter = counter + 1
if limit !'= O and counter > limit:

break
in_file.close()
return observations

def write_observations(observations, f=observations_file):
out_file = open(f, "w"
obs_written = 1
for o in observations:

if obs_written == len(observations):
out_file.write(str(o))

else:
out_file.write(str(o) + " ")

obs_written = obs_written + 1
out_file.close()

Observations are the binary representation of a np.float64 array
def read_observations_binary(f=bin_observations_file):

in_file = open(f, "rb")

observations = np.fromfile(in_file, dtype=np.float64)

return observations

def write_observations_binary(observations, f=bin_observations_file):
out_file = open(f, "wb")
np.array(observations, dtype=np.float64).tofile(out_file)
out_file.close()

Path is a series of ints on a single line separated by spaces
def read_path(f=state_path_file, 1limit=0):
path_file = open(f, "r"
line = path_file.read()
string_list = line.split()
path_list = []
counter = 1
for s in string_list:
path_list.append(int(s))
counter = counter + 1
if limit !'= O and counter > limit:
break
path_file.close()
return path_list

state path param is from pomegranate model.sample()
def write_path(state_path, f=state_path_file):
path_file = open(f, "w");
for s in state_path:
if s.name == ("None-start"): # initial silent state
continue
strip the 's' from state name "s0", "s1",

LXVII

B. Appendix 2

path_file.write(str(s.name) [-1:] + " ")
path_file.close()

The model is a series of numbers separated by spaces, following this format:
n_states mean std_dev ... log(transitions) ... log(initial_distribution)
def read_model(f=model_file):
in_file = open(f, "r")
line = in_file.read()
v = line.split()
n_states = int(v[0])
means = []
std_devs = []
offset =1
for i in range(0, n_states):
means . append (float (v[offset + 2*i]))
std_devs.append(float(v[offset + 2*i + 1]))
transitions = []
offset = 1 + n_states*2
for i in range(0, n_states):
for j in range(0, n_states):
transitions.append(exp(float(v[offset])))
offset = offset + 1
initial = []
for i in range(0, n_states):
initial.append(exp(float(v[offset])))
offset = offset + 1
in_file.close()
return n_states, means, std_devs, transitions, initial

Write list to a file
def write_list(f, 1):
out_file = open(f, "w")
for x in 1:
out_file.write(str(x)+" ")
out_file.close()

Read file that ts space-separated into a list
def read_file_to_list(f):
in_file = open(f, "r"
list = in_file.read().split()
in_file.close()
return list

B.2.10 utilities_ kmeans.py

mmnn

Functions in this file:

def read_observations(f=observations_file, limit=0):
def read_observations_binary(f=bin_observations_file):
def read_path(f=state_path_file, limit=0):

def read_model (f=model_file):

def read_kmeans_model (f=kmeans_model_file) :

nmmnn

import numpy as np

LXVIII

B. Appendix 2

import pandas as pd

from sklearn.cluster import KMeans
from math import sqrt, log, exp
import utilities_io as uio

kmeans_model_file = "data/kmeans_model"
kmeans_labels_file = "data/kmeans_labels"

def

def

def

def

def

read_kmeans_model (f=kmeans_model_file):
return uio.read_model (f)

write_kmeans_model (centroids, std_devs, f=kmeans_model_file):
out_file = open(f, "w")
k = len(centroids)

out_file.write(str(k) + " ") # number of states
for a in range(0, k): # states, from kmeans
out_file.write(str(centroids[a]l[0]) + " " + str(std_devs[a]l) + " ")

for a in range(0, k): # transitions, from uniform distribution
for b in range(0, k):
out_file.write(str(log(1/k)) + " ");
for a in range(0, k): # initial distributions, from uniform distribution
out_file.write(str(log(1/k)) + " ");
out_file.close()

read_kmeans_labels(f=kmeans_labels_file):

in_file = open(f, "r"

line = in_file.read()

string_list = line.split()

labels_list = []

for s in string_list:
labels_list.append(int(s))

return labels_list

write_kmeans_labels(labels, f=kmeans_labels_file):
out_file = open(f, "w"
for x in labels:

out_file.write(str(x) + " ") # number of states
out_file.close()

kmeans (observations, k):

df = pd.DataFrame(observations)

kmeans = KMeans(n_clusters=k)

kmeans.fit(df)

centroids = kmeans.cluster_centers_ # means

calculate the standard deviations

o_count = 0

std_devs = [0] * k

state_counts = [0] * k

for o in observations:
i = kmeans.labels_[o_count] # state of the current observation
std_devs[i] = std_devs[i] + (o - centroids[i])**2
state_counts[i] = state_counts[i] + 1
o_count = o_count + 1

for a in range(0, k):
std_devs[al = sqrt(std_devs[al/state_counts[a])

labels = kmeans.labels_

LXIX

B. Appendix 2

def

return centroids, std_devs, labels

estimate_model (k, use_binary_file=True):
if use_binary_file == True:
observations = uio.read_observations_binary()
else:
observations = uio.read_observations()
centroids, std_devs, labels = kmeans(observations, k)
sort states by increasing mean
initial_order = []
new_order = []
for i in range(0, len(centroids)):
initial_order.append (i)
new_order . append (i)
for i in range(0, len(centroids)):
for j in range(l, len(centroids)-i):
if centroids[j-1] > centroids[j]:
tmp = new_order[j-1]
new_order[j-1] = new_order[j]
new_order [j] = tmp
sorted_centroids = []
sorted_devs = []
for i in range(0, len(centroids)):
sorted_centroids.append(centroids [new_order[i]])
sorted_devs.append(std_devs [new_order[i]])
sorted_labels = []
for i in range(0, len(labels)):
sorted_labels.append(new_order[labels[i]])

write_kmeans_model (sorted_centroids, sorted_devs)
write_kmeans_labels(sorted_labels)

B.2.11 viterbi__ comparison.py

#!/usr/bin/env python3
—*x— coding: utf-8 —*-—
import utilities_io as uio

OPTIONS
verbose = False

def count_differences(pl, p2):

difference_count = 0
for i in range(0, len(pl)):
if p1[i] !'= p2[il:
difference_count = difference_count + 1
if verbose:
print("index:",i,"pl:",p1[i],"p2:",p2[i])
if verbose:
print ("Number of matches: ", len(pl)-difference_count)
print ("Number of differences: ", difference_count)
return difference_count

def count_differences_uncompressed():

LXX

B. Appendix 2

state_path = uio.read_path()
wahmm_path = uio.read_path("results/decoding_path")
return count_differences(state_path, wahmm_path)

def count_differences_compressed():
state_path = uio.read_path()
compressed_path = uio.read_path("results/compressed_decoding_path")
return count_differences(state_path, compressed_path)

if __name__ == "__main__":

verbose = True

pm_path = uio.read_path("results/pm_decoding_path")

wahmm_path = uio.read_path("results/decoding_path")

compressed_path = uio.read_path("results/compressed_decoding_path")

print("--- PM decoding vs. WaHMM decoding -—-")

count_differences(pm_path, wahmm_path)

#

print ("--- PM decoding vs. Compressed decoding ——-")

count_differences(pm_path, compressed_path)

print("--- WaHMM decoding vs. Compressed decoding ---")
count_differences(wahmm_path, compressed_path)

B.2.12 WaHMM.py

#!/usr/bin/env python3
—*x— coding: utf-8 —*-—
import subprocess
import sys

Wrapper around compiled C++ WaHMM

arguments = sys.argv
arguments [0] = "bin/WaHMM"

#print ("###STARTH###")
subprocess.call (arguments)
#print ("##AEND##A")

LXXI

	List of Figures
	Introduction
	Motivation and previous research
	Hidden Markov Models
	Wavelet compression

	Theory
	Evaluation problem
	Forward algorithm
	Backward algorithm

	Decoding problem
	Training problem
	Starting model

	Compressed algorithms
	Formal transformations
	Forward algorithm
	Backward algorithm
	Viterbi algorithm
	Baum-Welch algorithm

	Relevant model parameters
	State separation
	Self-transition probabilities

	Methods
	Framework description
	Implementation details
	Parser
	Numerical errors
	State representation
	Data generation
	Wavelet compression
	Logarithms summation
	Saving results
	Test automation
	Other Python files

	Standard algorithms
	Evaluation problem
	Decoding problem
	Training problem

	Compressed algorithms
	Evaluation problem
	Decoding problem
	Training problem

	Results
	Testing setup
	Choosing the parameters
	Results evaluation

	Evaluation problem
	Decoding problem
	Training problem

	Conclusion
	Main takeaways
	Wrapping up

	Bibliography
	Appendix 1
	Fully-connected model
	Circular model
	Left-to-right model

	Appendix 2
	C++
	algorithms_compressed.hpp
	algorithms.hpp
	commons.hpp
	Compressor.hpp
	Model.hpp
	parser.hpp
	State.hpp
	utilities.hpp
	WaHMM.hpp

	Python
	automated_test.py
	create_model_file.py
	generate_data.py
	generate_states.py
	plot_data.py
	plot_kmeans.py
	pomegranate_test.py
	results_aggregation.py
	utilities_io.py
	utilities_kmeans.py
	viterbi_comparison.py
	WaHMM.py

