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Abstract
Due to the prohibitive cost of downtime in large complex systems, it is important
to reduce or entirely eliminate any downtime that might happen as a result of
degradation in system quality.
This thesis paper presents a newly developed model for network congestion detec-
tion in large scale networks, using Gaussian Mixture Model and Isolation Forest
algorithms to improve early detection of failure in the Ericsson EBM data. The
results from the evaluation suggests that the developed method is more robust and
precise in finding anomalies, compared to the current method used by Ericsson.

Keywords: machine learning, anomaly detection, packet loss, telecommunication,
prediction
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1
Introduction

The following sections provide background information about the purpose of the
thesis, the problem description and presents the goals and challenges of this thesis.

1.1 Background

Due to the high cost that is incurred from downtime in large complex IT systems, one
can easily see why predicting failures in real-time before they occur and applying
preventive methods would be of interest [2]. In the Ericsson telecommunications
system’s core there are multiple network nodes involved that together are capable
of handling millions of mobile broadband subscribers simultaneously. These nodes
are responsible for functionality such as mobility, payload, charging, subscription
handling and end user security.

The demands for availability on these nodes are extremely high. Nevertheless (par-
tial) system restarts do occur for reasons spanning from anything from a process
that crashes and restarts to an entire node restarting, causing a network outage.
Since network outages can affect millions of mobile users, this is highly undesirable.

A node provides several real-time streams that are constantly supplying information
about its status, e.g. for network monitoring and troubleshooting purposes. This
data constitutes a huge amount of information including system logs, alarms, process
monitoring, and Event Based Monitoring (EBM) data.

Since the system nodes are built for extremely high availability, there is a low proba-
bility of severe crashes occurring. What is more likely to happen is that the network
quality decreases over time, due to network congestion or a functional problem with
one or more nodes in the system, causing a performance degradation.

Although the system has many preventing measures and alarms that can facilitate
a fast recovery if a problem would occur, the end users would still experience a per-
formance degradation until the problem is solved. Another big problem for Ericsson
is also that the available alarms in their system aren’t that smart, causing a lot of
false alarms and alarms that are hard to debug.

In order to improve the availability of the system, it is proposed that by using ma-
chine learning one could possibly be able to predict an upcoming network congestion
before a performance degradation occurs, and also facilitate the debugging process.

When the latency of a signal is too high, a timeout occurs. When a timeout occurs,
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1. Introduction

the signal either does a retry or gets dropped. In the presence of traffic congestion,
the latency of many signals would therefore increase, and some would reach timeout
or get dropped. By analyzing the log data, this pattern of increasing latency and
timeouts could be detected before the congestion becomes too severe, causing a
network outage.

Since the amount of data is incredibly large, it is nearly impossible to detect any
patterns manually. If those patterns could be detected in real-time by a machine,
preventive measures could be applied to minimize the damage to the system.

1.2 Project Goals

This thesis was divided into three goals, visualized in Figure 1.1. The main goal
was to develop and evaluate a method for online detection of increasing packet loss
in a multi-node telecommunication system. The method had to be able to detect
an increasing trend in a certain amount of time before a severe problem occurred,
in order for preventive measures to be applied in time.

The second goal was for the prediction to also include a classification of the failure, to
facilitate debugging. The classifications would indicate the nature of the congestion,
e.g if a Denial Of Service attack was taking place, or if there’s a failure in one of the
system nodes that causes a bottleneck for the system.

Lastly, the third goal was for the prediction method to also perform a root cause
analysis, which would identify the source of the problem, in order to further facilitate
debugging.

The goal of using failure prediction was to be able to apply preventive measures and
minimize damage on the system. However, this project was focused on performing
failure predictions, not on applying countermeasures. Furthermore, although many
different logs existed, the focus was on using the available EBM data from the MME
node, which will be discussed in Section 3.1.2.

Due to complications throughout the project, only the first goal was implemented.
This will be further discussed in this thesis. The second and third goal are proposed
as work to be done. This is discussed in Section 5.4.

1.3 Related Work

Online failure prediction is a well-studied topic, and there exist several methods that
suits different types of systems [3]. Recent work by Felix Salfner et al. on online
failure prediction in telecommunication system explored the possibility of predict-
ing failures in real-time by using semi-Markov chains combined with clustering [1].
Their work was to compare their own failure prediction method, Similar Events Pre-
diction (SEP), with two other well-known prediction methods. Their results showed
a promising improvement of the performance of the predictions, compared to other
popular prediction methods, with a precision of 80%. Their model did however rely
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1. Introduction

on a full understanding of all error patterns that the model should be able to pre-
dict. If a new unknown form of error would occur, their model would not be able to
predict it.

Recent work by Balaji et al. studied prediction of network congestion in wireless
networks [4]. They analyzed TCP Ack flags and used a Multi Step Clustering method
to identify abnormal levels of packet loss in their wireless network. The results look
promising and show a good efficiency in identifying packet loss. However, the method
is limited to analyzing TCP and UDP packets only.

1.4 Report Disposition

In Section 2, a thorough explanation of the basic theory needed to understand
the foundation of the project is provided. In Section 3, the methods used in the
development of the model are explained. In Section 4, the evaluation of the model,
as well as the results are provided. Lastly, Section 5 discusses the results.

Figure 1.1: Visualization of the work flow and goals of this thesis
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2
Theoretical Background

In this following section, detailed information needed to understand the rest of this
thesis is presented. Firstly, basic information about machine learning is presented.
Secondly, information about the algorithms used in this thesis is presented.

2.1 Machine Learning

Machine learning is a broad term that can be defined as the field of study where
computers have the ability to learn without being explicitly programmed [5]. There
exists many different machine learning algorithms, which can be divided into two
major categories; unsupervised- and supervised learning, which are explained in the
following sections [6]. It is well known that machine learning comes from, and has
its roots, in statistical modeling.

Leo Breiman suggests that the data models used in statistical analysis are becoming
more cumbersome due to increased complexity of the data used [7]. Instead, he
proposes that a better solution would be to try more algorithmic approaches, where
the model is a black box, created by finding some function y = f(x), with y being
the response to the input x. A basic overview what these two approaches looks like
can be seen in Figure 2.1.

Figure 2.1: Simplified view of Broman’s comparison between Data Modeling and
Algorithmic Modeling

2.1.1 Supervised Learning

In supervised learning, the goal of the algorithm is to take a set of input vectors,X,
and their corresponding labels, Y, in order learn the mapping between these values
[8]. By doing so, the algorithm should be able to infer the labels for previously
unseen values of X . These models are trained by being fed the aforementioned list
of feature vectors Xi = {xi1, ..., xin} coupled with their corresponding output labels

5



2. Theoretical Background

Yi. The result of this is a decision function that should be able to label new values
of X. Bishop [9] states that there’s two different approaches, when dealing with
discrete variables (classification) or continuous variables (regression):

• Classification:
The objective of classification is to determine categories for data, based on its
features. As the name implies, the decision function is split into ’classes’, each
of these being described by a combination of the before mentioned features.
Examples of this could be medical research where the health status of individ-
uals are classified by their test results or deciding the sub-species of a plant
based on its phenotype.

• Regression:
The field of regression is based on its namesake in statistical analysis. In
machine learning the result of the regression analysis is used as a basis for the
decision function. This function is then used to predict a real value from new
input.

2.1.2 Unsupervised Learning

Unsupervised learning is used to identify a function that describes a hidden structure
of some unlabeled data.

An unsupervised algorithm is given a training set which only contains a set of input
vectors without any corresponding output values. Since it can’t map the input
values to the output values, its goal is instead to map the structure of the input
data. This can then be used to find groups of similar data, called clustering, or to
determine the distribution of data, known as density estimation.

2.2 Anomaly Detection

Anomaly detection is the method of identifying observations in a data set which
do not conform to an expected pattern. This a common approach in many Net-
work Intrusion Detection systems, because it doesn’t rely on knowledge of all pos-
sible anomalous patterns and is therefore very robust in finding unknown types of
anomalies [10]. Most methods for anomaly detection are based on unsupervised
algorithms, mainly clustering. By clustering normal data points together, the al-
gorithm can classify new data points as anomalous if they lie to far away from the
normal cluster. This approach will be the main focus of this thesis.

2.3 Decision Tree Learning

A popular method for machine learning is decision trees, a predictive model that
uses tree-like graphs, similar to a flowchart. Each internal node in these trees repre-
sents a test, with each child branching out from this internal node being one of the
possible outcomes. The terminal nodes, or leaves, of the tree represents a label or
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2. Theoretical Background

classification, that is the decision that is made from traversing the tree (hence the
name decision trees. This type of model works almost "off-the shelf", since they’re
invariant when applying monotone transformations to the predictor data [11]. An-
other great benefit is the internal feature selection, where outliers are partitioned
into small subspaces.

The decision tree works by performing a recursive partitioning in each step, where
each predictor variable is compared and the ’best’ choice is greedily selected. This
selection is done based on purity of the partitions, that is how well each class is
divided at each split, calculated through

purity(Ω,C) = 1
N

∑
k

max
j
|ωk ∩ cj| (2.1)

where N is the sample count, Ω = ω1, ω2, ..., ωk is the possible clusters, which in
the case of decision trees takes the form of two partitions, and C = c1, c2, ..., cj

is the possible decision classes that the sample data belongs to [12]. Basically, the
purity function gives a measure of how well each class is separated into its respective
cluster.

Figure 2.2: Example of partitioning used in purity calculation

Using the clustering of Figure 2.2 as an example, the purity would be

purity({ω1, ω2}, {c1, c1}) = |ω1 ∩ c1|+ |ω2 ∩ c2|
N

= 6 + 5
14 ≈ 0.79 (2.2)

From this example one can see that when k = N , i.e. when the number of clusters
and samples is equal, one would get a perfect purity score of 1 at the cost of a high
generalization error.

This greedy approach, where the cluster partitioning performed in order to achieve
the highest purity, ends up being a common problem in decision trees. Since the
recursion only stops once the purity increase is small to none, the trees are prone to
overfit on noise in the sample data as you get further from the root [13].

There’s two major methods to deal with over-fitting in decision trees, namely early
stopping and post-pruning [14]. The former works by using a statistical test to
stop earlier and creates an external leaf at a point before the process would usually
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2. Theoretical Background

end. In post-pruning the whole tree is created normally and the resulting tree is
then trimmed down by removing sub-trees that doesn’t have a big effect on the
classification outcome.

2.3.1 Random Forest

One way to mitigate the over-fitting of decision trees is to use random forests where
the prediction is made based on an ensemble of fully grown decision trees [15]. The
decision is then made through majority vote, in the case of classification, or average
value, in the case of regression.

There is a key difference however, instead of using the optimal split each of the trees
makes the selection within a random sample of the predictors [16]. This means that
the kth tree hk(x,Θk) is grown from a random subset Θk of the input variables,
which, given the input x, results in a forest of random tree classifiers

randomForest(x) = {h1(x,Θ1), · · · , hk(x,Θk)} (2.3)

The resulting value from this forest is the majority voted/average among the trees,
as mentioned before. Due to the Law of Large Numbers this value is guaranteed
to converge, meaning that the problem with over-fitting in regular decision trees is
avoided [16].

2.3.2 Isolation Forest

Isolation Forest (iForest) is an unsupervised algorithm for outlier detection that uses
random forests [17]. The approach of most existing models for anomaly detection
is to learn a profile for normal data sets, and then comparing new data samples to
the normal data in order to identify anomalous data points.

The method itself has a similar approach to random forests. An ensemble of fully
grown decision trees is built through random sampling of the input predictors. Given
that an outlier, by definition, is more likely to exist further away from other obser-
vations, one can use this distance to determine how ’abnormal’ an observation is
[18]. An example of this can be seen in Figure 2.3 where it’s the anomaly is easily
partitioned, resulting in a shorter path length in the tree.

8



2. Theoretical Background

Figure 2.3: Example of partitioning in an isolation forest

Given that a tree in the iForest is a proper binary tree, it has the same properties
as a Binary Search Tree (BTS) [17] . This means that the average path length of a
decision tree is equal to an unsuccessful search in the BTS, which gives you

c(n) = 2ln(n− 1) + γ − 2n− 1
n

, (2.4)

where n is the size of the input data set and γ is Euler’s constant. This average
length, c(n), is then used in order to get a normalized path length used in the
calculation of the anomaly score

s(x, n) = 2−
ĥ(x)
c(n) (2.5)

where x is the current sample in a data set of n samples and ĥ(x) is the number of
partitions needed in order to isolate x. Based on Equation 2.5, it can be seen that for
low values of ĥ(x), the anomaly score trends towards 1. This can be interpreted as x
having a high likelihood of being an anomaly, since, on average it’s easily partitioned
in the iForest.

s =

0, ĥ(x)→ (n− 1)
1, ĥ(x)→ 0

(2.6)

Since a recursive partitioning can be represented by a tree structure, the number
of splits that are required to isolate an observation is equivalent to the path length
from the root node to the final node. The path length from all random trees can
then be used as a measure of abnormality. Anomalous data points are highly likely
to produce noticeably shorter paths in a random partitioning. [19].

One of the advantages of the iForest model is that it’s well suited for large and
high-dimensional data, due to the lack of distance and/or density calculations that
many other methods use, which are heavy in computational cost.
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2. Theoretical Background

2.4 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a probabilistic model that is used to identify
a number of Gaussian distributions, or components, with unknown parameters in a
given data set. The model uses a generalized k-means clustering method to identify
the covariance structure of the data as well as the means of the latent Gaussian
components. The algorithm definition can be shown by:

p(x) =
K∑

i=1
ΦiN(x|µi, σi) (2.7)

N(x|µi, σi) = 1
σi

√
2π
exp

(
−(x− µi)2

2σ2
i

)
(2.8)

K∑
i=1

φi = 1 (2.9)

For a Gaussian mixture model with K components, the kth component has a weight
of φk, mean of µk and a variance of σk.

The Scikit-learn library contains different implementations of GMM, that each corre-
spond to a different estimation strategy. Two of these implementations are Gaussian
Mixture and Variational Bayesian Gaussian Mixture.

2.4.1 Gaussian Mixture

The Gaussian Mixture implementation uses the estimation algorithm expectation-
maximization (EM). EM is a well-founded statistical algorithm that is used to
compute the probability that a given point belongs to each component of the model.
The algorithm iterates over the parameters in order to maximize the likelihood of
the data belonging to a component. As the name implies, the EM algorithm cycles
between the two steps Expectation & Maximization until it converges to a local
optimum.

In each iteration, the EM algorithm starts by calculating the expected lower bound
shown in Equation 2.10. This is done by using a set of observations, X, the latent
variables, Z, and the current parameter expectations, Θt

Q
(
Θ|Θt

)
= Ep(Z|x,Θt) [log P (X,Z|Θ)] (2.10)

This is then used as a basis for the maximization part, where the parameter estima-
tion for the next time step ,Θt+1, is calculated by maximizing the new parameters
Θt+1 as shown in Equation 2.11. As mentioned before, this process is repeated until
it converges, which is guaranteed to reach a local maximum. [20][21]

Θt+1 = arg maxΘ Q(Θ|Θt) (2.11)

10
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One advantage of using the Expectation-Maximization method to estimate a Gaus-
sian Mixture is that it’s one of the fastest algorithms for learning mixture models.
However, if there are insufficiently many points in a mixture, it has difficulties in
estimating the covariance matrices. This causes the algorithm to diverge and find
solutions with infinite likelihood.

2.4.2 Variational Bayesian Gaussian Mixture

The Bayesian Gaussian Mixture implementation uses the estimation algorithm Vari-
ational Inference (VI), which is an extension of the expectation-maximization
algorithm [22]. VI maximizes a lower bound on model evidence instead of data
likelihood as EM does.

The process is the same as for EM, where it iterates through the probability for each
point belonging to a mixture component. However, it also adds regularization by
integrating information from previous distributions. This avoids the problem that
is often found in EM, where it might diverge and find infinite likelihood. It does
however also introduce some subtle biases to the model.

2.5 Online Failure Prediction

The goal of online failure prediction is to, in real-time, forecast if a failure will
occur in the system in the nearest future. Compared to reliability prediction in
software, that is made offline, the online predictions depends on the current state of
the system and handles shorter time intervals. The concept is visualized in Figure
2.4. A prediction made at time t should predict if at time t+ ∆t1 a failure is going
to occur or not. ∆t1, which is called lead time, has a lower-bound ∆tw which is
called warning time. The warning time refers to the time it takes for the system to
restart or perform preventive measures if a failure is predicted. Therefore, for the
prediction to be of any use, the lead time has to be at least as long as the warning
time. But if ∆t1 is too large, the predictions will loose accuracy. The period of
the prediction, ∆tp, refers to the time for which a prediction holds. A large ∆tp
increases the chance that a failure occurs within the period. However, if ∆tp is too
large, the prediction loses its usefulness.

Figure 2.4: Definition of online failure prediction [1]

11



2. Theoretical Background

12



3
Implementation

The following sections present the different tools that were used, background infor-
mation about the Ericsson telecommunication system and how the developed model
was implemented.

3.1 System background

The Ericsson telecommunication system has a highly complex architecture with
numerous nodes collaborating in order to provide their service to millions of mobile
users. The system consists of many areas that provide different services, but the
area in focus for this thesis is the Evolved Packet Core.

3.1.1 Evolved Packet Core

Evolved Packet Core (EPC) is the core network of the Long Term Evolution (LTE)
system, and is the latest evolution in the 3GPP core network architecture . EPC is
capable of providing millions of users with mobile packet data services. The network
consists of a number of components, or nodes, which handles different tasks in the
system. An overview of the architecture of EPC, with all of its major nodes, is
shown in Fig 3.1. The main nodes of the system are the Serving Gateway (SGW),
the PDN Gateway (PGW) and the Mobility Management Entity (MME).

The SGW node handles all the incoming IP packets, and serves as a local mobility
anchor for when the users move between different mobile zones. It also performs
some administrative functions, such as collecting information for charging (e.g the
volume of data that a user sends or receives).

The PGW node is responsible for IP address allocation, as well as Quality of Service
enforcement for guaranteed bit rate. It is also responsible for the filtering of downlink
user IP packets.

The MME is in charge of processing the signals between the users and the network
and is the node of interest in this thesis. The node handles the mobility of all the
users, and routes the traffic to the right destination in the network. The MME
consist of multiple identical physical cards that cooperate in handling the incoming
traffic. There is a balancing algorithm in place to control that all the cards handle

13
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the same amount of traffic, to make sure that all cards are used efficiently. The node
is highly scalable and can handle up to 36 million users.

Figure 3.1: Overview of the EPC network architecture

3.1.2 Event Based Monitoring

EBM is a flexible performance monitoring solution for real-time event provisioning,
which logs successful and unsuccessful events for completed mobility and session
management procedures. The format itself is proprietary to Ericsson. However, it
maps 1:1 to the GTPv2 (GPRS Tunneling Protocol v2) standard [23]. This is spec-
ified by the 3rd Generation Partnership Project (3GPP), which is an international
partnership that unites several telecom development organizations [24].

A MME node generates an EBM event for every incoming signal that it processes.
The EBM data stream is stored in a binary format in a configurable time interval.
Each event consists of approximately 70 features of detailed information about the
nature of the event between an User Equipment (UE) and the MME node, e.g
when a session is created, deleted or if data packets are sent. The events contain
information such as event type, time stamps, round trip time of the message, cause
codes that describe what caused the event to happen, the ID of the user and more.
For this thesis the duration parameter, which represents the round trip time for an
event, is the parameter that is mainly used. An example of how the EBM data looks
like is shown in Figure 3.2

Figure 3.2: Example of the EBM duration data when analyzed by EBM Log Tool
3.3.

By analyzing the EBM data streams, one could find patterns in the events that
indicate that the performance of the system might be deteriorating. If for example
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the duration parameter of an event suddenly spiked above normal levels, this might
indicate that a connection between nodes is congested or failing. By using the cause
codes that are included in the EBM data, one could do further examination in order
to find the source of the problem.

3.2 Data Preprocessing

An important part of machine learning is the process of cleaning the data and
parsing it to a format that the machine learning model can use. Since the EBM
data is stored in a binary format, it had to be parsed to a readable format before
being passed to the model. A proprietary Perl script was used to achieve this, which
created a text file with parsed data in CSV-format. Since the data consists of many
features that are not necessary for this work, the appropriate features had to be
extracted before passing the data to the model.

The loading of the data was done by using the Pandas library, which is a high
performance python library for data analysis [25]. In order to speed up the loading
process, the duration parameters could be explicitly specified to be extracted, thus
ignoring all other parameters.

Ericsson has a large database of stored EBM logs that was used to study the struc-
ture of the data. There was however no data from a scenario where packet loss
increased over time available. A simple data simulator was therefore created in or-
der create a data set that could be used for evaluation. The simulator takes a given
mean, variance and probability of packet loss and draws random data points with
a normal distribution that represents the latency of events from a simulated traffic
scenario. The data that was created for evaluation is further described in Section
4.2.

3.3 Tools and Frameworks

A proprietary tool, called EBMLogTool, was used to get statistical summary of all
the different events in the EBM data. It could provide a detailed description of the
average behaviour of each event type. This made it easier to analyze the different
parameters, which would be used as features in the model. The average values
observed in the summary were also used to get a baseline value that would later be
used in the simulated data, described in Section 4.2.

For the development of the model, the platform Anaconda was used, which is a
high performance distribution of data science packages for both Python and R. The
platform provides access to hundreds of packages, but for this thesis the Python
library scikit-learn was mainly used. The scikit-learn library is a simple and effi-
cient open source library that contains a wide range of powerful machine learning
algorithms [26]. Its simple yet powerful API makes it a great choice for this kind of
machine learning problem.
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3.4 Model development

After analyzing the EBM latency data, one could see that the behavior of the data
confined to a finite number of Gaussian components. Furthermore, one could see
that the latency data had a high variance, and a small appearance of extreme values.
Using only the raw latency data as input to the Isolation Forest was concluded to
not be feasible, since the high spread of the data made it difficult for the Isolation
Forest to properly identify true anomalies. This information lead to the decision of
using GMM in order to identify the Gaussian components and transform the raw
latency data into a fixed number of classes, making it easier for the Isolation Forest
algorithm to cluster the data and find anomalies.

Development of the anomaly detection model was separated into two mayor mod-
ules, one for each algorithm that was used, Isolation Forest (iForest) and Gaussian
Mixture Model (GMM), described in Section 2.3.2 and 2.4 respectively. The model
went through two phases during development, training phase and testing phase. An
overview of the model is shown in Fig 3.3

Figure 3.3: Overview of the anomaly detection model

3.4.1 Training Phase

In the training phase, GMM was fed a two-dimensional array of training data,
consisting of event latencies where each row has one column with an integer value
that represented the latency sample of one EBM event. The GMM then identified
the parameters of the Gaussian components existing in the training data. The same
training data was then fed to the GMM again for prediction, which returned a
one-dimensional array of classifications for each sample, as shown in Equation 3.1.

Classification =


0, F irst Gaussian Component

1, Second Gaussian Component

2, Third Gaussian Component

(3.1)

Using the list of classifications returned from the GMM, ratios of how the data laid
between the components were then extracted by using a rolling window method on
the classification data. This method is used to smoothen out irregularities in the
data and create a new data set of ratio data based on the classification data.

The rolling window method works as the name suggests. It takes a subset of x
samples from the data and performs an operation on that subset, which in this
case was the operation in which the GMM for each sample predicts which Gaussian
distribution the sample belongs to. It then rolls the window with a step k, thus
removing last k samples and adding k new samples to the window. This process is
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iterated throughout the whole data set, and produces a new data set of smoothed
data. This is visualized in Figure 3.4

Figure 3.4: Illustration of the rolling window method

For each window, the data subset was fed to the GMM, which returned a prediction
of which distribution each sample belongs to. The ratio between the components
in which the data lays could then be calculated. An example of how the ratio data
looks after the rolling window method is applied is shown in Table 3.1. Last step of
the training phase was to feed the resulting ratio data from the GMM as training
data to iForest, which does a clustering of the data in order to learn the parameters
of the cluster of the normal data.

3.4.2 Testing Phase

After the training phase was completed, the testing phase began. Firstly, the test
data set was fed to the trained GMM using the same rolling window method as
described in the training phase, and new ratio data was extracted for the test data.
The ratio data could then be fed to the iForest module for prediction, which returned
a list of anomaly predictions for each sample, as Equation 3.2 shows. The resulting
list of anomalies could then be used to evaluate the method. The method of the
evaluation is further described in the next chapter.

Anomaly classification =

0, Normal data

1, Anomaly
(3.2)

Table 3.1: Example of ratio data from the GMM

sample Component 1 Component 2 Component 3
1 0.95 0.04 0.01
2 0.92 0.05 0.03
3 0.93 0.06 0.01
4 0.94 0.04 0.02
5 0.91 0.07 0.02

17



3. Implementation

18



4
Evaluation

The developed model was evaluated in two steps. Firstly, the precision of the clas-
sifications from the GMM module was evaluated. Secondly, the precision of the
iForest module was evaluated by comparing it to the currently used moving average
method applied by Ericsson.

In the following sections the experimental setup used for the evaluations is presented.
The evaluation metrics and the result of the evaluations are also presented.

4.1 Evaluation metrics

Precision, recall and F-measure are evaluation metrics that are commonly used to
measure the quality of classifications [27].

Precision is the ratio between the number of correctly identified anomalies and
total number of predicted anomalies

precision = true positives

true positives+ false positives
(4.1)

Recall is the ratio between the number of correctly identified anomalies and the
total number of true anomalies

recall = true positives

true positives+ false negatives
(4.2)

F-measure is the harmonic mean of precision and recall, and is approximately the
average of the two

recall = 2 · precision · recall
precision+ recall

(4.3)

4.2 Experimental setup

In order to evaluate the developed model, data was generated to simulate a scenario
where an increase of packet loss could be detected by the anomaly detection model.
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The evaluation of the developed model was then compared to the current naive
method of moving averages that is used by Ericsson.

With the help of one of Ericsson’s experts and some manual observations of EBM
data from a MME-node with normal traffic, a test case scenario could be constructed
using the following assumptions:

• The latency of the EBM events conform to a normal distribution.

• When a packet is lost, a configured timeout value is added to the latency,
representing a retry in sending.

• A packet performs a maximum of 2 retries before giving up.

• Normal traffic scenarios have a packet loss of approximately 5%.

• The system is considered to be in failure state when the packet loss is above
8%.

With the help of these assumptions data could be created to evaluate the model.
Firstly, training data was created by generating 100 000 normally distributed random
samples, with each sample representing the latency of an event. The training data
was then injected with a constant 5% packet loss, which is considered a normal and
accepted level of packet loss. An occurrence of a lost packet was simulated by adding
the timeout value to a random generated sample, thus simulating a connection retry
after a failed attempt. A second retry was also simulated on 1% of the data samples,
by adding 2 timeout values to the generated sample, simulating two connection
retries. The Gaussian distributions of the training data are shown in Figure 4.1.

Secondly, testing data was created which consisted of 20000 samples of normal data,
which was similar to the training data, with a constant 5% packet loss. This was
combined with 30000 samples of ’bad’ data, which had an increasing packet loss
over time. To simulate the increase of packet loss, the probability of a packet loss
happening was increased every time a packet loss occurred. In order to make the
data more realistic, some extreme outliers were also injected with a 1% probability.
The test data is shown in Figure 4.2.
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Figure 4.1: Histogram of simulated training data. The first Gaussian distribution
represents normal data and the other two distributions represent packets that timed
out at least once.

Figure 4.2: Histogram of simulated test data with increased packet loss

The generated data sets were then used to evaluate the model. The method of the
evaluation is further explained in the following sections.

4.3 Gaussian Mixture Model Evaluation

The goal of the GMMmodule was to predict which Gaussian component each latency
sample belonged to, so ratios between the found components could be calculated.
In order to evaluate the accuracy of the GMM, the generated test data was labeled
with either 0, 1 or 2, depending on if the sample was drawn from the normal data
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distribution or one of the timeout distributions. The labeled data could then be
compared to what labels the GMM predicted for the same data.

The result shows that the GMM does an excellent job in classifying the samples,
with an accuracy of 100%. Figure 4.3 shows how the GMM has divided the data
points into different classes with different colors. This great result does however
depend on the value of the timeout, which in this case is quite distinct. This will
be further discussed in Chapter 5

Figure 4.3: Result of GMM classification test

A big question when choosing this approach was if it would perform better then
the moving average method in cases where there are extreme outliers present in the
data, in regards to sensitivity. In order to evaluate the sensitivity of both approaches
the generated training data was used. The data went through the rolling window
method and ratio data and average data were extracted. The same process was done
once again, but this time extreme outliers were injected into the training data first.
Figure 4.4 shows the resulting data sets. The packet loss ratio on the y axis of the
bottom plots represents the ratio of data samples that were not classified to be in
the first Gaussian, meaning that these data samples were lost and did either one or
two retries.

Figure 4.4: Result of sensitivity test

Firstly, the mean value was calculated for each data set. Secondly, the percentage
increase of the mean value from the normal data set to the data set with extreme
outliers was calculated. The resulting means and the increase are shown in Table
4.1

22



4. Evaluation

Table 4.1: Mean values of each data set, taken from the sensitivity test

GMM ratio Moving Average
Normal data 0.050815 186.818
Data with outliers 0.060459 288.932
Mean value increase 18.97% 54.66%

4.4 Model Evaluation

In order to evaluate the developed model properly, a comparison against the cur-
rent method of finding anomalies had to be done. As mentioned before, the current
method applied by Ericsson is a naive method where they monitor the average la-
tency over time and manually set a threshold for which a latency above this threshold
is considered an anomaly. So to implement this method in this case, the generated
train and test data was put through a rolling window method where the average
latency of each window was calculated, creating new data sets of average latency’s.
The data created from the training data was used to find a threshold that would be
used to find anomalies in the test data.

One of the assumptions made in Section 4.2 was that the system is considered to
be in a failure state when the packet loss is above 8%. This assumption was used
to calculate the point in the data set where the packet loss crossed this limit and
continued increasing over time. That limit was found approximately after sample
24000 in the test data. This limit was used to measure the precision and recall of
the compared methods by assuming that all anomalies found after the limit were
true positives, and anomalies found before the limit were false positives. The normal
samples that occur before the limit are true negatives and the ones that occurs after
the limit are false negatives.

The sensitivity of both models depend on the window size used in the rolling window
method. Therefore, different window sizes were tested from the range 500-2000, and
precision scores were calculated for each method with each tested window size.

Firstly, the model was trained using the generated training data from the experi-
mental setup. The GMM learned the parameters of the normal data and ratio data
could then be extracted from the module. The ratio data with window size 1000 is
shown in Figure 4.5. The ratio data was then fed to the iForest for training.

Figure 4.5: Ratio data extracted from the GMM training, with a window size of
1000 samples.

23



4. Evaluation

Secondly, the generated test data with increasing packet loss was fed to the model
and the output returned was a list of anomaly predictions for all samples. The ratio
data extracted from the GMM for the test data with window size 1000 is shown in
Figure 4.6. The anomaly predictions made by iForest is shown in Figure 4.7

Each anomaly found in the prediction was then checked, to see if it occurred before
or after the specified time limit of failure. A precision and recall score could then
be calculated using Equation 4.1 and 4.2.

Figure 4.6: Ratio data extracted from the GMM evaluation test, with a window
size of 1000 samples.

Figure 4.7: Anomaly prediction produced by Isolation Forest, using test ratio data

The same process was then performed with the moving average method. When
applied on the training data, a new data set of averaged data was produced. The
averaged data set from the test with window size 1000 is shown in Figure 4.8. A
threshold was then manually specified by observing the training data.

Figure 4.8: Data produced by the moving average method using training data,
with a window size of 1000 samples.

The moving average method was then applied to the test data, shown in Figure 4.9
for window size 1000. Each sample that was above the specified threshold observed
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from the training data was considered an anomaly. As was done with the iForest
data, if an anomaly occurred after the specified time limit of failure it was considered
a true positive, otherwise it was considered a false positive, vice versa with the
normal samples being true negatives or false negatives. A precision and recall score
could then be calculated and compared to the scores calculated from the developed
model.

This process was done with both methods for each window size tested. The tested
window sizes and the resulting scores for each method are presented in Table 4.2.

Figure 4.9: Data produced by the moving average method using test data, with a
window size of 1000 samples.

Table 4.2: Precision and recall scores of Moving Average (MA) and Isolation Forest
(iF), using different window sizes.

Window Size MA Prec(%) MA Recall (%) iF Prec (%) iF Recall (%)
500 80.8 9.1 94.4 40.2
1000 80.4 22.6 95.9 60.3
1500 80.3 44.5 87.8 73.6
2000 81.3 69.6 88.7 82.7
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5
Discussion

The following sections discusses the results from the thesis, the method used and
the ethical aspects of the thesis. Proposals for future work are also mentioned.

5.1 Result

The results from the evaluation test indicate that the proposed method of using
Gaussian Mixture Models to classify data, and Isolation Forest to identify anoma-
lies, is more robust and better suited for finding anomalies than the currently used
method with moving averages. This is mainly due to the fact that the moving aver-
age method is very sensitive to extreme outliers, which occurs frequently in the EBM
latency data. The proposed method is more robust because it normalizes the data,
making it less sensitive to said extreme outliers, as could be seen in the evaluation
Figure 4.4.

The evaluation tests performed in Section 4.3 were performed to evaluate if Gaussian
Mixture Models could be used to classify the EBM latency data, and also if it would
be less sensitive to extreme outliers than the moving average method. The result
from the test showed that the introduction of extreme outliers to the data had
lesser effect on the ratio data from the GMM compared to the data from the moving
average method. This has to do with the fact that the GMM method has a fixed
set of components, where the extreme outliers would end up in the same component
class no matter how extreme they are. Compare this to the moving average, where a
value that is several magnitudes larger than usual would severely pollute the average.

The GMM method only depends on the amount of outliers that are identified, not
on the actual value of the data points. This is what makes it less sensitive to few
extreme outliers. Whereas the moving average method is greatly affected by few
extreme outliers, since a large value on one point can increase the average of a
window a lot.

The result from the test of the accuracy of the GMM classification was perfect for
the generated data set. When the Gaussian components in the data set are as well
separated as they are in this data set, the GMM does a perfect job in classifying the
data points to the correct component.

These results might however not be as great as conducted tests show, due to the fact
that simulated data was used instead of real data. As mentioned before, there didn’t
exist any EBM data of known issues in regards to latency and network congestion.
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Therefore, the simulated data was created with the help of Ericsson experts to model
a somewhat real scenario. The complexity of the Ericsson network does however
make the issue more complex than what has been modeled in the simulated data.

Furthermore, some of the assumptions made for the simulated data and for the
method might not be entirely accurate. The data is assumed to be normally dis-
tributed, which might not be true in all cases. This assumption was based on an
observation from one hour of real live data from a MME node. Furthermore, the
Gaussian components are assumed to be well separated by a timeout value, which
makes it fairly easy for the GMM to classify the data. The is quite simplified com-
pared to real data where there might be many polluted data points in between the
components. This would make it harder for the GMM to classify the data points
correctly, compared to this case where it scored 100% in accuracy. However, since
the assumptions are based on real observations and expert knowledge, it’s consid-
ered to be a good starting point for further development of anomaly detection in
large scale networks.

5.2 Method

An important part of the performed method was to use the rolling window method to
smooth out the latency data. The result from this method is greatly affected by the
window size used, since a larger window can smooth out the data too much, thus
producing a non-sensitive new data set. This would result in anomalies possibly
not being detected until the problem has become too large and it’s too late for
countermeasure to be applied.

On the other hand, a small window size can produce a data set that is highly
sensitive to few extreme outliers. This would result in a huge amount of false alarms
being produced by the model. Finding the perfect window size proved itself to be
challenging, and more tests would have to be conducted to establish the correct
answer to this problem.

As mentioned before, using GMM for classifying data might not be the most optimal
approach for this task. The main problem with the approach is that the data is
assumed to be normally distributed, which might not be the case for real data.
In order to find the best approach, one would have to examine live data over an
extended period of time to conclude that the behavior of the data is indeed normally
distributed.

5.3 Ethical aspects

There are some ethical issues when working with this type of data. The EBM data
contains detailed information about the signaling from users to the network, which
means that the behavior and location of a user can easily be tracked through analysis
of the EBM data. This was a major concern which resulted in no data being available
for analyzing. In order to acquire data from live nodes, all the sensitive information
would have to be censored before it could be analyzed by any machine learning
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model. There does exist some processes for censoring the EBM data automatically,
but it has to be manually supervised to make sure that no sensitive information is
leaked. This is obviously very time consuming, due to the sheer amount of data that
is produced, and causes a lot of trouble when performing this type of experiment.

5.4 Future Work

The work that has been done in this thesis has made ground for further work in
the area of anomaly detection in telecommunication systems. What needs to be
done in future work is to firstly make sure to have the appropriate data available.
Working with real live data is essential for a proper evaluation of the method that
has been used. It would also be necessary to collect data from known cases where
network congestion has caused a performance degradation on the network. This
data is needed for analysis, in order to learn the correct behavior of the system
when network congestion occurs.

For future development, using more of the available information in the EBM data
would be preferred. This thesis focused on its latency parameter due to lack of real
data, which ended up stripping away all the complexity of the problem by only using
one feature. Many other features in the data, such as cause code and event result,
may contribute greatly to a better prediction by the model. Using these might also
make way for the prediction of other types of problems in the network.

Another feature that needs more work is to make sure that the anomaly detection
model can analyze the EBM data and detect anomalies in real-time. Some investi-
gation will have to be made on how to stream the EBM data in real-time, since as
for now the data is sent out in 15 minute intervals by default. The goal was to use
this feature in the thesis, however due to the problems with acquiring the data this
was not feasible.

The method of using GMM would also need to be further evaluated, before starting
any extensive development using it. In this thesis, it was assumed that the latency
data had a well separated timout intervals timeou, which created a perfect scenario
for the GMM. Since this might not be the case when dealing real live data, another
approach might be required. Especially if more features from the EBM data were
to be used, in which case a more complex classification method would be needed.

Due to the EBM data being such a complex and feature-rich format, it’s possible
that a neural network would be helpful in order to find some hidden patterns. One
potential area is root cause analysis, where the neural network could possibly identify
the source such as a distant link failure or another network node going down.
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6
Conclusion

When looking back at the goals that were set for this thesis, which are described
in Section 1.2, one can see that there were some shortcomings in the method. The
first goals, which was to develop a packet loss detection model, could be considered
complete although not entirely optimal. A first prototype of a detection model was
developed and evaluated, which could be viewed at as a success.

However, due to the delays caused by not having the proper data needed for the
development, the second and third goal were never implemented. We are however
confident that it would be possible to implement both, if more data and time were
available.

Due to the lack of the aforementioned data, a lot of time had to be spent trying
to build a simulation model that reflects reality. Obviously there are some major
problems with this approach. The foremost being that, due to the sensitivity and
size of the data, there’s no EBM-records containing these errors happening in a
system. Instead they are modelled based on descriptions that we acquired from an
expert in the subject matter. This time spent on building a data model could have
been spent on other more important things, such as development of the detection
model.

Furthermore, since no proper data was available, trying to find the correct method
for the job was a bit challenging. In order to progress in the project, many assump-
tions had to be made. This could have been done a lot differently if the proper data
was available, and the result of the thesis could have been a lot different.

Most of the problems faced in this thesis are all based on the fact that real live data
wasn’t available. This is of course very unfortunate, but the best was done with the
cards that were dealt, and the resulting work is considered a good foundation for
future work in this area.
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