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Abstract

Chromosomal imbalances and gene expression alterations play a central role in different types
of cancer. Microarray experiments are common techniques to generate data sets which contain
such information.
This diploma thesis has two goals. The first goal is to develop inhomogeneous Hidden Markov
Models to detect chromosomal imbalances and gene expression alterations and the second goal
is to test the performance of this novel approach on breast cancer data.
To achieve these goals we have extended the mathematical theory of standard Hidden Markov
Models to obtain inhomogeneous Hidden Markov Models with a few easily interpretable param-
eters. The improved quality of our novel approach in comparison with the standard Hidden
Markov Models is the result of using the chromosomal locations of genes and the microarray
measurements of theses genes as input data for our Hidden Markov Models. To our knowledge
the simultaneous usage of both, the chromosomal locations and the microarray measurements,
is a novel strategy. Previously described methods use the chromosomal locations only to inter-
polate the data.
The fact that our inhomogeneous Hidden Markov Models are able to find known candidate genes
for over-expression and in literature described losses and gains of DNA segments in breast cancer
data represents the good quality of this approach.
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Chapter 1

Introduction

Tumours are driven by an accumulation of mutations resulting in altered gene expression levels.
Altered gene expression patterns modify the normal cell growth and survival. In many types
of cancer are mutations as losses or gains of chromosomal regions frequently observed. One or
more mechanisms which normally control the genome stability or the cell cycle must be affected
in order to turn a normal cell into a tumour cell.
Two types of data can be measured with microarray experiments. That is, we are able to
determine the gene expression rates and the DNA copy number status of a tumour sample in
comparison with a sample of normal cells. Mutations can cause chromosomal imbalances which
include any change of the chromosomal structure or the number of chromosomes. In general
a diploid genome has two copies of each gene and therefore the copy number of each gene is
equal to two. A chromosomal imbalance as the loss or the gain of a gene leads to an altered
copy number. Most of the mutations affect large chromosomal regions and lead to insertions,
deletions and amplifications of DNA segments. The influences of gains and losses of genes on
the expression levels of these genes are shown by Pollack et al. [23]. The amplification of a
gene can cause a higher expression level of this gene and the loss of a gene can induce a lower
expression level. These relationships between gene copy numbers and gene expression levels are
often observed in many different types of cancer, but not each altered expression level of a gene
is the result of a changed copy number of this gene because the biological mechanisms can be
more complex.
Nevertheless, it is possible to recognise proximity effects of genes in microarray data. Genes
which are located close to each other on the chromosome are more likely amplified or deleted
together as genes which have a greater chromosomal distance. Our aim is to develop a method
which is able to model the proximity effects of genes in microarray data. Using this method
the microarray data of a chromosome is divided into different regions. That is, we can observe
regions of increased, unchanged and decreased DNA copy number status for DNA copy number
data and under-expressed, identically expressed and over-expressed regions for gene expression
data.
In particular, it is desirable to make use of the proximity effects of genes and to translate these
effects into dependencies of microarray data. All currently available methods to find chromoso-
mal imbalances in DNA copy number data do not consider these effects [16]. To our knowledge
MACAT - microarray chromosome analysis tool [25] is the only approach which links differential
gene expression to the chromosomal locations of genes by interpolating the data with distance-
dependent kernel functions.
The natural framework of our novel method is an Hidden Markov Model (HMM) approach using
the chromosomal distance between adjacent genes in microarray profiles to model the proxim-
ity effects of these genes. In order to obtain the basics of our HMM approach we modify the
inhomogeneous HMM s which were introduced by Knab [14] to get an inhomogeneous HMM
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with a few easily interpretable parameters. Our novel concept uses a predefined number of
coupled transition matrices whereby one of these transition matrices is individually selected for
each gene in a microarray profile by a distance-dependent switching function. The initial model
parameters of our HMM are determined on the basis of the given microarray data. That is,
we estimate a mixture model of normal distributions using the well known Expectation Max-
imisation algorithm. Afterwards the mixture components of this mixture model are clustered
to the states of our HMM as emission functions. The start distribution of our HMM is set to
the vector of prior probabilities of the clusters which represent the emission functions. A basic
transition matrix with an equilibrium distribution equal to the start distribution and a vector of
scaling parameters are also assigned to our HMM . The scaling parameters are used to generate
the coupled transition matrices by scaling the state durations of the basic transition matrix and
therewith a more realistic model of proximity effects can be described.
This diploma thesis occupies with the mathematical theory of our novel HMM s and the per-
formance of our novel HMM s in comparison with the homogeneous standard HMM s on breast
cancer microarray data. Finally, it is to emphasise that our developed method is able to work
with gene expression and DNA copy number data.

Structure of the diploma thesis

1. In Chapter 1 molecular basics of cancer, actual facts about breast cancer and microar-
ray experiments to measure gene expression rates and DNA copy number changes are
introduced.

2. In Chapter 2 the basics of homogeneous and inhomogeneous HMM s are presented.

3. In Chapter 3 the concept of coupled transition matrices is introduced and afterwards our
novel HMM s are defined and prepared for the training with microarray data.

4. In Chapter 4 mixture models for microarray data are estimated as basics for the agglom-
erative clustering algorithm which assigns the mixture components as emission functions
to the HMM .

5. In Chapter 5 we show how to create and use HMM s to analyse microarray data, we
introduce the role of chromosome 17 in breast cancer and we present our breast cancer
data set.

6. In Chapter 6 the performance of HMM s on our breast cancer data set is shown and the
results are compared with published literature.

7. In Chapter 7 we summarise and discuss the results of Chapter 6 and we give an outlook
to future research work in relation to our novel HMM s.

This chapter continues with some basics about cancer and microarray experiments.

1.1 Molecular Basics Of Cancer

About ten million cells divide in a human body per minute. Naturally the cell division takes
places without problems in strictly controlled patterns. When mutations in a cell occur, then
this cell can show abnormal behaviour. In most cases these mutations do not have consequences
for the organism, because the affected cell normally dies off and the surrounding cells countervail
this loss. The most important exception of this observation are mutations in genes which regulate
the cellular proliferation. Changes in such genes can cause the uncontrolled proliferation of a
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single cell, which is then called a cancerous cell, and these changes can lead to the development
of cancer. Cancer is a disease which is characterised by uncontrolled cell division and it often
occurs that some of the cancerous cells have the ability to invade in other tissues either through
invasion into adjacent tissue or through implantation into distant sites. A tumour develops
from a single cancerous cell and consits of a huge number of such cells. These development is an
individual evolutionary process with the aim to achieve a better independent cell proliferation.
It is estimated that five or six mutations in a cell are necessary to show the phenotype of a
cancerous cell. Two groups of genes are known to play a central role in the development of a
tumour. The one group consists of oncogenes and the other contains the tumour suppressor
genes. An oncogene is a mutated gene which increases the malignancy of a tumour cell. Such
genes encode for proteins which often work in signal cascades to activate the cell division and
therefore characteristic mutations can lead to increased activity or increased expression rates
of genes in a signal cascade. A tumour suppressor gene is a gene that reduces the probability
that a cell will turn into a cancerous cell. Such genes encode for proteins which can stop the
cell cycle and therefore a mutation or deletion of such a gene will increase the probability of
the formation of a tumour. In general both alleles that code for a particular protein must be
affected before an effect is manifested, but exceptions are also known.
Pathologists classify tumours on the basis of histological parameters as tumour size, tumour
grade and nodal status. This classification system is useful, but it can be improved using
molecular markers.
The analysis of microarray data as gene expression data and DNA copy number data will play
the central role in this diploma thesis where we develop an approach to detect molecular markers.

1.2 Breast Cancer

In the year 2000 twenty-two percent of all cancer among women were breast cancer and fifteen
percent of cancer deaths in women were caused by this disease. It is estimated that three
hundred twenty thousand women come down with breast cancer in Europe each year. Several
risk factors for breast cancer as age, reproductive factors, familial history of breast cancer and
others are intensively studied in literature. The works of Campbell [2] and Dumitrescu et al.
[5] offer a good introduction to statistics and risk factors in connection with breast cancer. The
National Cancer Institute has estimated the average chance for a woman of being diagnosed
with breast cancer for the whole population under consideration of the age. The results are
shown in the Table 1.1 and it is clearly to see that the probability for coming down with breast
cancer increases with the age.

Age Chance
30 - 39 1 in 229
40 - 49 1 in 68
50 - 59 1 in 37
60 - 69 1 in 26

Table 1.1: A woman’s chance of being diagnosed with breast cancer. These probabilities were estimated
by the National Cancer Institute (www.cancer.gov).

Various changes in DNA regions and gene expression patterns in breast cancer cells in comparison
with normal cells have been found with the help of microarray technologies.
Nevertheless, there is a great requirement for efficient analysis methods on the basis of more
realistic models to discover such alterations. Therefore we will develop an approach and test the
performance of this novel strategy on microarray data of breast cancer cells.
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1.3 Microarrays

For a better understanding of processes in cancerous cells it is necessary to have techniques to
analyse the differences between these cells and normal cells. Today microarray technologies are
standard in most of the labs. These technologies provide a good framework for the genome-wide
search for oncogenes and tumour suppressor genes. Let us first consider how microarrays are
used to measure expression levels of genes and afterwards we introduce how microarrays are
used to detect DNA copy number changes.

1.3.1 Measuring Gene Expression With Microarrays

Microarrays for gene expression analysis can be divided into cDNA microarrays and oligonu-
cleotide microarrays. The basis of cDNA microarrays are on the microarray fixed DNA molecules
which are derived from RNA transcripts. The oligonucleotide microarrays are manufactured ei-
ther in a photolithographic process which directly synthesises oligonucleotides on the glass slide
or oligonucleotides are deposited onto a glass slide. The molecules fixed on the microarray are
called probes. The information about the expression levels of genes in a cell is contained in the
transcriptome which consists of all RNA molecules in a cell at a particular time. The expres-
sion level of an individual gene is given by the number of RNA molecules for this gene in the
transcriptome. Normally, a RNA pool is generated using the transcriptomes of many cells with
the same expression status in the optimal case. The RNAs for genes of interest are rewritten in
cDNAs and thereby labelled with a fluorescent dye. The rewritten cDNAs of a gene are called
targets. The usage of different dyes for the labelling of targets allows the parallel measurement
of the relative expression status of two different tissue samples. This measurement is done by
competitive hybridisation of the target molecules from the two tissue samples with the specifi-
cally designed probes on the microarray. Afterwards the microarray undergoes a wash step to
remove unspecific attachments. It is possible to determine the relative intensity for each gene
in the two different labelled tissue samples, because the probes on a microarray are specifically
designed for the targets. The normalisation of the relative intensity for each gene in the two
tissue samples makes the gene expression levels of these two tissue samples comparable.
An introduction to cDNA microarrays and oligonucleotide microarrays is given in the review
of Garnis et al. [7]. The technical aspects of cDNA microarrays are described in the review of
Duggan et al. [4].

1.3.2 Measuring DNA Copy Number Changes With Microarrays

Microarray techniques to measure DNA copy number changes are summarised in the class of Ar-
ray Comparative Genomic Hybridisation (ArrayCGH ) approaches. ArrayCGH was developed
to improve the quality of Comparative Genomic Hybridisation (CGH ) and is now a widespread
technique to detect chromosomal imbalances in tumour tissues.
The CGH technique was first described by Kallioniemi et al. 1992 [11] and technically improved
by Kallioniemi et al. 1994 [12]. This technique is used to detect segmental DNA copy number
changes. Tumour DNA and an identical amount of control DNA are differentially labelled by nick
translation. Afterwards these two samples are mixed together for the following denaturation.
The resulting sample is hybridised with denatured normal lymphocyte metaphase chromosomes
on a slide. After several hours of hybridisation the intensities along the chromosome can be
determined for the tumour DNA and the control DNA. CGH was the first efficient approach to
scan a genome for variations in DNA copy number. A disadvantage of this approach is the low
resolution which is nowadays between three and five million base pairs for the minimal detectable
segment alteration and therefore it is difficult to determine alterations for specific genes.
The ArrayCGH approach was developed for the mapping of chromosomal imbalances at a higher
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resolution in comparison with CGH . Pollack et al. [23] have shown the usage of cDNA microar-
rays for analysing probes which are derived from genomic DNA. The problem of this approach
is the suboptimal hybridisation of the targets to the probes on the microarray, because the ge-
nomic targets have introns which are absent in the cDNA probes. Another technique is Bacterial
Artificial Chromosome ArrayCGH which also allows the detection of segmental copy number
changes at a higher resolution as CGH . This technique is similar to CGH except that it uses
segments of human DNA as hybridisation probes instead of prepared metaphase chromosomes.
In the review of Gebhart [8] the CGH technique is explained in more detail and the data which
was created by this approach in the last years is discussed. The review of Garnis et al. [7] gives
a good introduction to CGH and ArrayCGH .
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Chapter 2

Hidden Markov Models

The majority of papers on Hidden Markov Models (HMM s) belong to the speech recognition
literature where HMM s were applied first in the early 1970s. A general tutorial to this topic is
the review by Rabiner [24] which covers also the history of HMM s. Many problems in biological
sequence analysis have the same structure as speech recognition problems. Nowadays HMM s
are an accepted framework for analysing DNA and protein sequences.

The following topics are contained in this chapter:

1. A short introduction to the basics of HMM s is given in the Section 2.1.

2. The homogeneous HMM s with continuous emissions are introduced in the Section 2.2.

3. The inhomogeneous HMM s with continuous emissions and transition classes are introduced
in the Section 2.3.

4. The theoretical background of HMM s with continuous emissions and transition classes is
presented in the Section 2.4.

5. The basic questions for HMM s are given in the Section 2.5.

2.1 Basics of Hidden Markov Models

An HMM describes a stochastic process. This process contains two coupled sub-processes: a
Markov chain and an Emission Process. The Markov chain consists of a finite set of states
which are traversed in discrete time steps. During this traversion each state which is passed
through emits an output signal which is called emission. From the standpoint of the observer
the Markov chain is in a black box and therefore not visible. The Markov chain inside this black
box is called hidden Markov chain. The only thing the observer perceives are the output signals
from the black box. An HMM is plotted as a directed graph where the states of the hidden
Markov chain are represented by the nodes of this graph and the directed edges comply to the
transitions between the states of the Markov chain. Every edge is labelled with the transition
probability from the outgoing state to the incoming state of this edge. Edges with a transition
probability of zero are not shown. A stochastic function for emissions and a start probability
are assigned to each state of the HMM . In general the following assumptions for an HMM are
made:

1. The transition probability to move from a state to an other state depends only on that
two states and not on the previously traversed states of the Markov chain. This is called
the first-order Markov property.
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2. The emission probabilities of a state depend only on this state.

3. The Markov chain is time-homogeneous. That is, the transition probability does not
depend on the point in time when a transition is done.

HMM s can be divided into two basic classes. In the one class are the HMM s with discrete
emissions and the other class contains the HMM s with continuous emissions. For the analysis
of microarray data we are only interested in HMM s with continuous emissions and therefore we
describe this model class in more detail.

2.2 Hidden Markov Models With Continuous Emissions

First we present some basic knowledge about the probability density functions for emissions
(PDFE ) and afterwards we define HMM s with continuous emissions. Reestimation1 formulas
for the parameters of the PDFE are known for normal distributions and mixtures of normal
distributions [14]. In practice often mixtures of univariate normal distributions are used, and it
is known that each univariate density function can be approximated by this function class. The
parameter vector of a mixture which consists of Ni normal distributions is

~Ei := ((µ(i)
1 , σ

(i)
1 , α

(i)
1 ), . . . , (µ(i)

Ni
, σ

(i)
Ni

, α
(i)
Ni

)), where (2.1)

1 =
Ni∑

k=1

α
(i)
k and α

(i)
k ≥ 0.

Here, µ
(i)
k ∈ R is the mean, σ

(i)
k ∈ R+ is the standard deviation and α

(i)
k ∈ (0, 1) is the weight of

the k-th mixture component. The density M(x| ~Ei) of an emission x under a mixture model of
univariate normal distributions with the parameter vector ~Ei is defined as

M(x| ~Ei) :=
Ni∑

k=1

α
(i)
k · 1

σ
(i)
k

√
2π

e
− (x−µ

(i)
k

)2

2(σ
(i)
k

)2 .

Later we will denote with i a state in an HMM. An emission sequence O of length T for an
HMM with univariate continuous emissions is defined as

O := O1, . . . ,OT (2.2)

for each Ot ∈ R with t ∈ {1, . . . , T}.
Definition 2.2.1. An Hidden Markov Model λ with continuous emissions and N states is a
four tuple (~π,N , A, ~E) whose components are:

1. The start distribution ~π = (π1, . . . , πN ), where πi is the probability to start an hidden
Markov chain in state i.

2. The set of states N = {1, . . . , N}, where i ∈ N is a state of λ.

3. The stochastic transition matrix A, where the entry aij represents the probability to go
from state i to state j.

4. The parameter vector ~E = ( ~E1, . . . , ~EN ) of the probability density functions for emissions,
where ~Ei, which is defined in (2.1), represents the parameter vector of state i.

1reestimation: iterative update and improvement [24]

9



An internal state sequence Q of length T is denoted by

Q := Q1, . . . ,QT (2.3)

for each Qt ∈ N with t ∈ {1, . . . , T}. The emission Ot is emitted by the mixture M(x| ~EQt) of
state Qt. The general definitions for the start probability πi, the transition probability aij and
the emission Ot are:

∀i ∈ N : πi := P [Q1 = i|λ],

∀i, j ∈ N : ∀t ∈ N : aij := P [Qt+1 = j|Qt = i, λ],

∀t ∈ N : ∀j ∈ N : ∀x ∈ R : M(x| ~EQt) := P [Ot = x|Qt = j, λ].

2.3 Hidden Markov Models With Continuous Emissions And
Transition Classes

The basis of HMM s with continuous emissions and transition classes are HMM s with continuous
emissions. The concept to use one transition matrix which is also called transition class is
extended to use a set of transition matrices A := {A1, . . . , AL}. We assume that the probability
for a transition from a state to an other state at time step t depends on the for the time step t
predefined transition class which has to be element of A. This is modelled by mapping additional
information, like the chromosomal distance between consecutive genes in an emission sequence,
to one of the predefined transition classes. Hence, for an emission sequence O we must know a
transition class sequence CO which is defined by

CO := c1, . . . , cT (2.4)

for each ct ∈ {1, . . . , L} with t ∈ {1, . . . , T}. The HMM with continuous emissions and transition
classes always needs the transition class sequence CO to generate or to analyse an emission
sequence O. In both cases the transition class sequence CO is external previous knowledge
which is added to the HMM.
The HMM with continuous emissions and transition classes is time-inhomogeneous, because the
transition probabilities depend on the point in time when a transition is done.

Definition 2.3.1. An Hidden Markov Model λ with continuous emissions, L transition classes
and N states is a four tuple (~π,N ,A, ~E) whose components are:

1. The start distribution ~π = (π1, . . . , πN ), where πi is the probability to start an hidden
Markov chain in state i.

2. The set of states N = {1, . . . , N}, where i ∈ N is a state of λ.

3. The set of transition classes A = {A1, . . . , AL} consisting of stochastic transition matrices,
where aij(Al) represents the probability to go from state i to state j in the transition class
Al.

4. The parameter vector ~E = ( ~E1, . . . , ~EN ) of the probability density functions for emissions,
where ~Ei, which is defined in (2.1), represents the parameter vector of state i.

5. The implicit transition class sequence CO which is a variable part of the model parameters
and used by the HMM to generate or to analyse an emission sequence.
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For the internal state sequence Q, the emission sequence O, the start probability πi and the
mixture M(x| ~Ei) for state i the same definitions as for HMM s with continuous emissions are
used. The transition probability for a transition from state i to state j at time point t depends
on the predefined transition class ct,

∀t ∈ N : ∀i, j ∈ N : aij(ct) := aij(Act) := P [Qt+1 = j|Qt = i, CO, λ].

In the following section we introduce necessary notations which we will need later for the mod-
ification of HMM s with continuous emissions and transition classes.

2.4 Specific Definitions For Hidden Markov Models

The following definitions are for HMM s with continuous emissions and transition classes. These
definitions can be used to answer basic questions for given emission sequences or they are the
basis for modifications of HMM s.

Definition 2.4.1. The density of an emission sequence O (2.2) under a given transition class
sequence CO (2.4) and a given HMM λ (2.3.1) is

D[O|CO, λ] =
∑

Q∈NT

πQ1M(O1| ~EQ1)
T∏

t=2

aQt−1Qt(ct−1)M(Ot| ~EQt).

Definition 2.4.2. The density of an emission sequence O (2.2) and a state sequence Q (2.3)
under a given transition class sequence CO (2.4) and a given HMM λ (2.3.1) is

D[O,Q|CO, λ] = πQ1M(O1| ~EQ1)
T∏

t=2

aQt−1Qt(ct−1)M(Ot| ~EQt).

Using the logarithm on the expression D[O,Q|CO, λ] transforms this expression into three inde-
pendent parameter-terms

log(D[O,Q|CO, λ]) = log(πQ1) +
T−1∑

t=1

log(aQtQt+1(ct)) +
T∑

t=1

log(M(Ot| ~EQt)).

Definition 2.4.3. For two HMMs λ and λ∗ as in Definition 2.3.1 the Q-function Q(λ∗|λ) is
defined as

Q(λ∗|λ) :=
∑

Q∈NT

D[O,Q|CO, λ] log(D[O,Q|CO, λ∗]).

In the Definition 2.4.2 we have an expression for D[O,Q|CO, λ∗] which splits the Q-function into
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three independent parts:

Q(λ∗|λ) =
∑

Q∈NT

D[O,Q|CO, λ] log(π∗Q1
) +

∑

Q∈NT

D[O,Q|CO, λ]
T−1∑

t=1

log(a∗QtQt+1
(ct))

+
∑

Q∈NT

D[O,Q|CO, λ]
T∑

t=1

log(M(Ot| ~E∗
Qt

))

= QS(~π∗|λ) +QA(A|λ) +QE( ~E∗|λ), where (2.5)

QS(~π∗|λ) :=
∑

Q∈NT

D[O,Q|CO, λ] log(π∗Q1
), (2.6)

QA(A∗|λ) :=
∑

Q∈NT

D[O,Q|CO, λ]
T−1∑

t=1

log(a∗QtQt+1
(ct)) and (2.7)

QE( ~E∗|λ) :=
∑

Q∈NT

D[O,Q|CO, λ]
T∑

t=1

log(M(Ot| ~E∗
Qt

)). (2.8)

Definition 2.4.4. The Forward-Variable αt(i) represents the density for observing Ot
1 =

O1, . . . ,Ot v O (2.2) and being in state i at time step t for a given transition class sequence CO
(2.4) and an HMM λ (2.3.1),

αt(i) := D[O1, . . . ,Ot,Qt = i|CO, λ].

Definition 2.4.5. The Backward-Variable βt(i) represents the density for observing OT
t+1 =

Ot+1, . . . ,OT v O (2.2) given the HMM λ (2.3.1) which was in state i at time step t and the
transition class sequence CO (2.4),

βt(i) := D[Ot+1, . . . ,OT |Qt = i, CO, λ].

Definition 2.4.6. The probability εt(i, j) for going from state i to state j at time step t given
an emission sequence O (2.2), a transition class sequence CO (2.4) and an HMM λ (2.3.1) is
defined as

εt(i, j) := P[Qt = i,Qt+1 = j|O, CO, λ].

It is possible to compute εt(i, j) with the help of the Forward-Variable αt(i) and the Backward-
Variable βt+1(j),

εt(i, j) =
αt(i) · aij(ct) ·M(Ot+1| ~Ej) · βt+1(j)

D[O|λ]
.

Definition 2.4.7. The probability γt(i) for being in state i at time step t given an emission
sequence O (2.2), a transition class sequence CO (2.4) and an HMM λ (2.3.1) is

γt(i) := P[Qt = i|O, CO, λ].

It is possible to compute γt(i) with the help of the Forward-Variable αt(i) and the Backward-
Variable βt(i) and therefore we obtain

γt(i) =
αt(i) · βt(i)
D[O|CO, λ]

.
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In the next chapter we consider the function QA(A∗|λ) (2.7) in more detail and therefore we
show how to transform this function. Recall the definition of QA(A∗|λ) which is

QA(A∗|λ) =
∑

Q∈NT

D[O,Q|CO, λ]
T−1∑

t=1

log(a∗QtQt+1
(ct)).

First we sum over all N2 possibilities to go from state Qt = i to state Qt+1 = j at time step t
and so we obtain

QA(A∗|λ) =
N∑

i=1

N∑

j=1

T−1∑

t=1

log(a∗ij(ct))
∑

Q∈NT

Qt=i∧Qt+1=j

D[O,Q|CO, λ].

In the next step we rewrite the sum over all state sequences Q with the help of a simplification
and the Definition 2.4.6

∑

Q∈NT

Qt=i∧Qt+1=j

D[O,Q|CO, λ] = D[O,Qt = i,Qt+1 = j|CO, λ]

= D[O|CO, λ]P[Qt = i,Qt+1 = j|O, CO, λ]

= D[O|CO, λ]εt(i, j).

As result we obtain

QA(A∗|λ) = D[O|CO, λ]
N∑

i=1

N∑

j=1

T−1∑

t=1

εt(i, j) log(a∗ij(ct)). (2.9)

Similar transformations of the functions QS(~π∗|λ) (2.6) and QE( ~E∗|λ) (2.8) can be done.

2.5 Basic Questions For Continuous Hidden Markov Models

The application of HMM s in the modelling of emission sequences needs efficient methods to
solve the following basic questions:

1. What is the density D[O|λ] for an emission sequence O given an HMM λ? The Forward
algorithm is an efficient method to solve this problem.

2. What state sequence Q is the most probable state sequence given an emission sequence O
and an HMM λ? So we want to compute the Viterbi Path Q∗ which is defined by

Q∗ = argmax
Q

P[Q|O, λ].

This problem is efficiently solved by the Viterbi algorithm.

3. How is an emission sequence O used to optimise the parameters of a given HMM λ so
that the density D[O|λ] is maximised? The well known Baum-Welch algorithm is used to
solve this problem.

The solutions of these three problems are discussed for example by Durbin et al. [6], Knab [14]
or Rabiner [24]. The Forward algorithm, the Viterbi algorithm and the Baum-Welch algorithm
can be easily adapted to the HMM s with continuous emissions and transition classes. We can
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solve the basic questions for this class of HMM s on the basis of the Definitions for the Forward-
Variables (2.4.4) and the Backward-Variables (2.4.5).
The General Hidden Markov Model library (GHMM) (www.ghmm.org) includes the basic al-
gorithms for HMM s with continuous emissions and for HMM s with continuous emissions and
transition classes. We will use the GHMM as basis of the analysis of microarray data and we
will develop a modification for HMM s with continuous emissions and transition classes which
could be integrated in a new release of the GHMM.
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Chapter 3

Hidden Markov Models With
Coupled Transition Matrices

The inhomogeneous HMM s with transition classes extend the standard homogeneous HMM s.
More realistic models of biological phenomena can be created with the help of transition classes.
Nevertheless, the number of model parameters increases with every additional transition class.
To have the advantages of transition classes and to reduce the number of model parameters we
develop an HMM with coupled transition classes in this chapter.

The following topics are contained in this chapter:

1. The basics of coupled transition matrices are given in the Section 3.1.

2. The definition of HMM s with coupled transition classes is given in the Section 3.2.

3. The optimisation of transition parameters for HMM s with coupled transition classes is
shown in the Section 3.3.

4. An overview of the Baum-Welch algorithm and a general proof of the convergence are
presented in the Section 3.4.

5. Analytical solutions for the reestimation formulas of the transition parameters which proves
the equivalence of HMM s with one coupled transition class and standard HMM s are
derived in the Section 3.5.

6. Analytical solutions for the reestimation formulas of the transition parameters for HMM s
with two coupled transition classes are given in the Section 3.6.

3.1 Coupling Of Transition Matrices

Given a stochastic transition matrix A1 and a scaling vector ~S = (S1 := 1, S2, . . . , SL) with the
scaling parameters S1 < S2 < . . . < SL, Sl ∈ R+, we want to create a mapping which generates
transition matrices on the basis of A1 and ~S. Later we need the transition probabilities of A1

and therefore we define

A1 :=




a11(1) . . . a1N (1)
...

. . .
...

ai1(1) . . . aii(1) . . . aiN (1)
...

. . .
...

aN1(1) . . . aNN (1)




. (3.1)
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The expected state duration d
(1)
i for state i of A1 is given by

d
(1)
i :=

1
1− aii(1)

. (3.2)

The Definition (3.2) follows directly from the mean of the geometric distribution for staying in
state i. The vector of all expected state durations for A1 is

~d(1) := (d(1)
1 , . . . , d

(1)
N ).

The scaling parameter Sl is used to calculate the expected state durations of the transition
matrix Al and therefore we obtain

~d(l) := Sl · ~d(1). (3.3)

When we look at the definition of the scaling parameters, it follows the vector ~d(1) is the one with
the lowest expected state durations and the vector ~d(L) is the one with the highest expected state
durations. With the help of the Definition (3.3) and the generalisation of the Definition (3.2)
we can compute a diagonal element aii(l) with i ∈ {1, . . . , N} of Al,

d
(l)
i =

1
1− aii(l)

⇔ aii(l) = 1− 1

d
(l)
i

⇔ aii(l) = 1− 1

Sld
(1)
i

, and here

aii(l) =
aii(1)− 1 + Sl

Sl
. (3.4)

The non-diagonal elements aij(l) of Al, with i, j ∈ {1, . . . , N} and i 6= j, are computed by
multiplying the non-diagonal elements aij(1) of A1 with a scaling factor mi(l). We know that
A1 is a stochastic matrix and so each row i of A1 fulfils the following condition

1 =
N∑

j=1

aij(1).

Now we assume that the parameter aii(1) is substituted by aii(l) ∈ (0, 1). We are searching for a
scaling factor mi(l) ∈ R+ of the non-diagonal elements so that the following equation is fulfilled

1 = aii(l) + mi(l)
N∑

j=1
j 6=i

aij(1) ⇔ 1 = aii(l) + mi(l)(1− aii(1)) ⇔ mi(l) =
1− aii(l)
1− aii(1)

.

We use the Equation (3.4) to obtain the final expression

mi(l) =
1
Sl

,

and from the definition of the scaling parameters follows that 1 ≥ mi(l) > 0. With the help
of the scaling factor mi(l) the non-diagonal elements aij(l) of the transition matrix Al can be
calculated in the following manner

aij(l) = mi(l)aij(1) =
aij(1)

Sl
. (3.5)
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The Equations (3.4) and (3.5) are the basis to couple the transition matrix Al to the basic
transition matrix A1 and so we define

Al :=




a11(1)−1+Sl

Sl
. . . a1N (1)

Sl
...

. . .
...

ai1(1)
Sl

. . . aii(1)−1+Sl

Sl
. . . aiN (1)

Sl
...

. . .
...

aN1(1)
Sl

. . . aNN (1)−1+Sl

Sl




. (3.6)

The matrix Al is a stochastic matrix on the basis of the stochastic transition matrix A1 and the
predefined scaling parameters ~S

∀i ∈ {1, . . . , N} : 1 =
aii(1)− 1 + Sl

Sl
+

N∑
j=1
j 6=i

aij(1)
Sl

=
aii(1)− 1 + Sl

Sl
+

1− aii(1)
Sl

= 1.

With the help of the transition matrix Al, which is given in (3.6), we can define the coupling
function

COUPLE(A1, ~S) := (A1, . . . , AL). (3.7)

3.2 Definition Of Hidden Markov Models With Coupled Tran-
sition Classes

The HMM s with coupled transition classes are defined on the basis of the HMM s with contin-
uous emissions and transition classes. The transition matrices are coupled with the help of the
coupling function (3.7). The standard HMM with continuous emissions, N states and L tran-
sition classes has LN2 transition parameters. The extended HMM with continuous emissions,
N states and L coupled transition classes has also LN2 transition parameters, but (L − 1)N2

of these parameters are coupled to the basis transition matrix and that reduces the number of
free transition parameters to N2.

Definition 3.2.1. An Hidden Markov Model λ with N states, continuous emissions and L
coupled transition classes is a five tuple (~π,N , A1, ~S, ~E) whose components are:

1. The start distribution ~π = (π1, . . . , πN ), where πi is the probability to start an hidden
Markov chain in state i.

2. The set of states N = {1, . . . , N}, where i ∈ N is a state of λ.

3. The basic stochastic transition matrix A1 which is defined in (3.1).

4. The vector of scaling parameters ~S = (S1 := 1, S2, . . . , SL), where Sl is the scaling param-
eter for the transition matrix Al. The scaling parameters have to fulfil S1 < S2 < . . . < SL

for S1 = 1 and Sl ∈ R+ for all l ∈ {2, . . . , L}.
5. The vector of parameters ~E = ( ~E1, . . . , ~EN ) of the probability density functions for emis-

sions, where ~Ei, which is defined in (2.1), represents the parameter vector of state i.

6. The implicit generated L transition classes A = COUPLE(A1, ~S). The coupling function
COUPLE is defined in (3.7).
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7. The implicit transition class sequence CO (2.4) which is a variable part of the model pa-
rameters and used by the HMM to generate or to analyse an emission sequence.

3.3 Estimation Of Transition Matrices

The basis of the estimation of transition parameters is the optimisation of the functionQA(A∗|λ).
The HMM s in the Definition 3.2.1 use coupled transition matrices which depend on the transition
matrix A1 and the scaling vector ~S. Our aim is to maximise the function QA(A∗|λ) which is
henceforth written as QA(A∗~S |λ) to refer to the coupling of the transition matrices.
Recall the function

QA(A∗~S |λ) = D[O|CO, λ]




N∑

i=1

N∑

j=1

T−1∑

t=1

εt(i, j) log(a∗ij(ct))




which is also defined in (2.9). First we split QA(A∗~S |λ) into diagonal elements a∗ii(ct), with i ∈ N ,
and non-diagonal elements a∗ij(ct), with i, j ∈ N and i 6= j, and so we obtain

QA(A∗~S |λ) = D[O|CO, λ]




N∑

i=1

N∑
j=1
j 6=i

T−1∑

t=1

εt(i, j) log(a∗ij(ct)) +
N∑

i=1

T−1∑

t=1

εt(i, i) log(a∗ii(ct))


 . (3.8)

In the next step the diagonal elements a∗ii(ct) and the non-diagonal elements a∗ij(ct) are replaced
by their Transformations (3.4) and (3.5) and we add also the constraints for the parameter
estimation

QA(A∗~S |λ) = D[O|CO, λ]
N∑

i=1

N∑
j=1
j 6=i

T−1∑

t=1

εt(i, j) log
(

a∗ij(1)
Sct

)

+ D[O|CO, λ]
N∑

i=1

T−1∑

t=1

εt(i, i) log
(

a∗ii(1)− 1 + Sct

Sct

)

−
N∑

i=1

λi







N∑

j=1

a∗ij(1)


− 1


 .

Now we are able to compute the partial derivatives of the non-diagonal elements a∗ij(1) and the
diagonal elements a∗ii(1).

∀i, j ∈ N ∧ i 6= j :
∂QA(A∗~S |λ)

∂a∗ij(1)
= D[O|CO, λ]

(
T−1∑

t=1

εt(i, j)
1

a∗ij(1)

)
− λi (3.9)

∀i ∈ N :
∂QA(A∗~S |λ)

∂a∗ii(1)
= D[O|CO, λ]

(
T−1∑

t=1

εt(i, i)
1

a∗ii(1)− 1 + Sct

)
− λi (3.10)

We set the Derivative (3.9) equal to zero and bring the parameter a∗ij(1) to the left site to get
the zero of this derivative.

∀i, j ∈ N ∧ i 6= j : a∗ij(1) =
D[O|CO, λ]

λi

T−1∑

t=1

εt(i, j) (3.11)
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In the next step we use the constraint to determine an expression for the Lagrange multiplier
λi. We have to pay attention that we only know values for the non-diagonal elements at the
moment.

1 =
N∑

j=1

a∗ij(1) =




N∑
j=1
j 6=i

a∗ij(1)


 + a∗ii(1) =




N∑
j=1
j 6=i

D[O|CO, λ]
λi

T−1∑

t=1

εt(i, j)


 + a∗ii(1)

λi =
D[O|CO, λ]
1− a∗ii(1)




T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)


 (3.12)

The zero a∗ij of the Derivative (3.9) can be rewritten by substituting λi in the Equation (3.11) by
the Equation (3.12). As result we obtain an expression which depends on the diagonal element
a∗ii(1)

∀i, j ∈ N ∧ i 6= j : a∗ij(1) =

(1− a∗ii(1))
T−1∑

t=1

εt(i, j)

T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)

. (3.13)

We set the Derivative (3.10) equal to zero to obtain an expression which will give us the possibility
to determine the zero a∗ii(1) of this derivative. However, it is not possible to bring a∗ii(1) to the
left side because a∗ii(1) is bound in the denominator which depends on the parameter t of the
sum. So we get the following expression

∀i ∈ N : λi = D[O|CO, λ]
T−1∑

t=1

εt(i, i)
1

a∗ii(1)− 1 + Sct

. (3.14)

The Lagrange multiplier λi is known from the Equation (3.12) and therefore we substitude λi in
Equation (3.14) and obtain the following equation after dividing by D[O|CO, λ] and multiplying
with 1− a∗ii(1).

∀i ∈ N :
T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j) =
T−1∑

t=1

εt(i, i)
1− a∗ii(1)

a∗ii(1)− 1 + Sct

(3.15)

The Equation (3.15) is the starting point to determine the zeros of the diagonal elements. For
one (L = 1) or two (L = 2) transition classes the analytical solution can be found as we will see
later. Cases with more than two (L > 2) transition classes are too complex and so we have to
use a numerical procedure to find a solution. However, we want to know how many solutions of
the Equation (3.15) exist and whether we get such a solution in every case. To find answers we
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transform the Equation (3.15).

T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j) = −
T−1∑

t=1

εt(i, i)
1− a∗ii(1)

1− a∗ii(1)− Sct

T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j) = −
T−1∑

t=1

(
1 +

Sct

1− a∗ii(1)− Sct

)
εt(i, i)

T−1∑

t=1

γt(i) = −
T−1∑

t=1

Sct

1− a∗ii(1)− Sct

εt(i, i)

T−1∑

t=1

γt(i) =
T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i) (3.16)

0 =
T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i)−
T−1∑

t=1

γt(i)

︸ ︷︷ ︸
=:fi(a∗ii(1))

We obtain a zero â∗ii(1) when the Equation fi(a∗ii(1)) = 0 can be solved. It is necessary to
understand the behaviour of fi(a∗ii(1)). We choose a transition matrix A1 as defined in (3.1)
where each transition probability aij(1) for i, j ∈ N is in the interval (0, 1) and therefore each
εt(i, j) for i, j ∈ N is also in the interval (0, 1). We start to analyse the first term f i

1(a
∗
ii(1)) of

fi(a∗ii(1)) which is

f i
1(a

∗
ii(1)) :=

T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i).

The function f i
1(a

∗
ii(1)) consists of a sum of hyperbolas. Each of these hyperbolas has a point

of discontinuity for a∗ii(1) = 1− Sct , but if we look at the definition of the scaling factor Sct we
see that such a point of discontinuity is always less than zero for ct > 1 and equal to zero for
ct = 1. These points of discontinuity are excluded because we choose every a∗ii(1) ∈ (0, 1) and
therewith the denominator a∗ii(1)− 1 + Sct of such a hyperbola is always greater than zero.

Proposition 3.3.1. The function f i
1(a

∗
ii(1)) is strictly monotonic decreasing in the interval

(0, 1).

Proof: We have to prove the following:

∀a∗ii(1) ∈ (0, 1) : ∃ε ∈ R+ : a∗ii(1) + ε ∈ (0, 1) ∧ f i
1(a

∗
ii(1)) > f i

1(a
∗
ii(1) + ε).

To show this we consider the denominator a∗ii(1)− 1+Sct of the t-th hyperbola of f i
1(a

∗
ii(1)) and

use the previous knowledge that a∗ii(1) + ε > a∗ii(1):

a∗ii(1) + ε− 1 + Sct > a∗ii(1)− 1 + Sct

T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i) >
T−1∑

t=1

Sct

a∗ii(1) + ε− 1 + Sct

εt(i, i)

f i
1(a

∗
ii(1)) > f i

1(a
∗
ii(1) + ε).

¤

20



Proposition 3.3.2. The limit of f i
1(a

∗
ii(1)) for a∗ii(1) → 0+ is ∞ if a t′ ∈ {1, . . . , T} exists

which fulfils ct′ = 1.

Proof: We assume that the transition class sequence CO (2.4) contains a ct′ = 1. Now we have
to recall that S1 = 1 and therefore the denominator a∗ii(1)− 1 + Sct′ is zero for a∗ii(1) = 0.

lim
a∗ii(1)→0+

f i
1(a

∗
ii(1)) = lim

a∗ii(1)→0+

T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i) →∞

¤

Proposition 3.3.3. The limit of f i
1(a

∗
ii(1)) for a∗ii(1) → 1− is

T−1∑

t=1

εt(i, i).

Proof:

lim
a∗ii(1)→1−

f i
1(a

∗
ii(1)) =

T−1∑

t=1

Sct

1− 1 + Sct

εt(i, i) =
T−1∑

t=1

εt(i, i) := U

¤

Now that we have analysed the behaviour of f i
1(a

∗
ii(1)) we give a short summary of the results.

• The result of Proposition 3.3.1 is that f i
1(a

∗
ii(1)) is strictly monotonic decreasing in the

interval (0, 1).

• The Proposition 3.3.2 shows that f i
1(a

∗
ii(1)) can be infinite if at least one ct = 1 in CO

exists and therefore no upper bound for f i
1(a

∗
ii(1)) can be found.

• The Proposition 3.3.3 gives us a lower bound of the function f i
1(a

∗
ii(1)) in the interval

(0, 1).

• If at least one ct = 1 in CO exists, then it follows from the Propositions 3.3.2, 3.3.3 and
3.3.1 that for each y ∈ (U,∞) only one a∗ii(1) ∈ (0, 1) exists which fulfils the condition
f i
1(a

∗
ii(1)) = y.

These results will help us to study the behaviour of fi(a∗ii(1)). The second term f i
2 of fi(a∗ii(1))

is a constant which is always greater than zero because each εt(i, j) is greater than zero.

f i
2 :=

T−1∑

t=1

γt(i) =
T−1∑

t=1

N∑

j=1

εt(i, j) >

T−1∑

t=1

εt(i, i) > 0

This implies that the constant f i
2 is always in the interval (U,∞). The function fi(a∗ii(1)) is

composed of f i
1(a

∗
ii(1)) and f i

2 and can be written as

fi(a∗ii(1)) = f i
1(a

∗
ii(1))− f i

2.

We assume to have at least one ct = 1 in CO. In this case we know from the Propositions 3.3.2,
3.3.3 and 3.3.1 that we can exactly find one â∗ii(1) ∈ (0, 1) which fulfils the following condition

f i
1(â

∗
ii(1)) = f i

2.

This â∗ii(1) is the only zero of fi(â∗ii(1)). We can determine the â∗ii(1) for each fi(â∗ii(1)) with
i ∈ N using the same proceeding.
It is interesting to see what happens when we assume that no ct = 1 in CO (2.4) exists. In such
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a case the upper bound of f i
1(a

∗
ii(1)) is

∑T−1
t=1

Sct
Sct−1εt(i, i) and we cannot ensure that this sum

is greater or equal than f i
2 and so there can be cases where no zero in (0, 1) exists.

From now on we only consider the case where we can find the zero for fi(a∗ii(1)). It follows from
the Equation (3.13) that each non-diagonal element â∗ij(1) depends on the diagonal element
â∗ii(1). The values of the diagonal elements â∗ii(l) and the non-diagonal elements â∗ij(l) are
calculated by the Equations (3.4) and (3.5). The parameter space D of the zeros for the diagonal
elements â∗ii(1) is

D = {(a∗11(1), . . . , a∗NN (1))| ∀ : 1 ≤ i ≤ N : a∗ii(1) ∈ (0, 1)}.

We have seen how to determine the ~d ∈ D which fulfils f1(a∗11(1)) = 0, . . . , fN (a∗NN (1)) = 0
and we know how we can calculate the critical point Â∗~S of QA(A∗~S |λ) (3.8). This critical point

is a stochastic transition matrix. To analyse the behaviour of QA(A∗~S |λ) at the critical point Â∗~S
we consider the Hessian matrix.

∀i, j ∈ N ∧ i 6= j :

∂QA(A∗~S |λ)

∂a∗ij(1)∂a∗ij(1)
= −D[O|CO, λ]

T−1∑

t=1

εt(i, j)
1

(a∗ij(1))2
:= δij (3.17)

∀i, j, n, m ∈ N ∧ i 6= j ∧ n 6= i ∧m 6= j :
∂QA(A∗~S |λ)

∂a∗ij(1)∂a∗nm(1)
= 0

∀i ∈ N :

∂QA(A∗~S |λ)

∂a∗ii(1)∂a∗ii(1)
= −D[O|CO, λ]

T−1∑

t=1

εt(i, i)
1

(a∗ii(1)− 1 + Sct)2
:= δii (3.18)

∀i, n, m ∈ N ∧ n 6= i ∧m 6= i :
∂QA(A∗~S |λ)

∂a∗ii(1)∂a∗nm(1)
= 0

So the resulting Hessian matrix QA(A∗~S |λ)′′ has the following structure.

QA(A∗~S |λ)′′ =




∂QA(A∗~S |λ)

∂a∗11(1)∂a∗11(1)

∂QA(A∗~S |λ)

∂a∗11(1)∂a∗12(1) . . .
∂QA(A∗~S |λ)

∂a∗11(1)∂a∗NN (1)
...

...
...

∂QA(A∗~S |λ)

∂a∗ij(1)∂a∗11(1)

∂QA(A∗~S |λ)

∂a∗ij(1)∂a∗12(1) . . .
∂QA(A∗~S |λ)

∂a∗ij(1)∂a∗NN (1)

...
...

...
∂QA(A∗~S |λ)

∂a∗NN (1)∂a∗11(1)

∂QA(A∗~S |λ)

∂a∗NN (1)∂a∗12(1) . . .
∂QA(A∗~S |λ)

∂a∗NN (1)∂a∗NN (1)




=




δ11 0 0 . . . 0
0 δ12 0 . . . 0
...

. . .
...

0 0 0 . . . δNN


 (3.19)

This matrix is symmetric and all δij are less than zero as the Functions (3.17) and (3.18) show.
Hence, this matrix is negative definite and therefore the critical point Â∗~S maximises QA(A∗~S |λ).
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This result plays an important role because we will be able to show the convergence of the
Baum-Welch algorithm.
Before we analyse the convergence of the Baum-Welch algorithm we prepare the function
fi(a∗ii(1)) for Newton’s method. The derivative of fi(a∗ii(1)) is

f ′i(a
∗
ii(1)) = −

T−1∑

t=1

Sct

(a∗ii(1)− 1 + Sct)2
εt(i, i)

and therewith we can use Newton’s method to determine the zero for each fi(a∗ii(1)) with

a∗ii(1)(t+1) = a∗ii(1)(t) − fi(a∗ii(1)(t))
f ′i(a

∗
ii(1)(t))

.

3.4 Convergence Of The Baum-Welch Algorithm

The Baum-Welch algorithm is a widely used method to optimally adapt model parameters
to observed training data and therefore good models for real processes can be created. An
analytical way to determine solutions for the model parameters which maximise the probability
of the training data is unknown. However, we can use the Baum-Welch algorithm to train our
HMM s. Good introductions for the Baum-Welch algorithm are given by Rabiner [24], Knab
[14] or Durbin et al. [6]. We only recapitulate the general steps of this algorithm.

Baum-Welch algorithm

• Initialisation: Choose initial model parameters.

• Recurrence: Calculate the Forward-Variables and the Backward-Variables for the training
data and determine the new model parameters using known reestimation formulas or
numerical procedures.

• Termination: Stop if the change in the likelihood is less than a predefined threshold value
or when the maximum number of iterations is exceeded.

The final result of the Baum-Welch algorithm is called a maximum likelihood estimate of the
HMM , and the Baum-Welch algorithm stops in general in a local maxima. There is no optimal
way known how to estimate the model parameters and in most problems the optimisation surface
is very complex and has many local maxima [24].
Now that we have an overview of the Baum-Welch algorithm we want to prove the convergence
of this algorithm. The proof which we develop here can be seen as a general proof of the
convergence of the Baum-Welch algorithm for HMM s with transition classes. The same strategy
works also for the standard HMM s. The basis of this proof is that we have determined model
parameters which improve the likelihood of the training data under the given HMM . That is,
we have calculated improved start probabilities, improved transition probabilities and improved
emission parameters by independent maximisation of the functions QS(~π∗|λ) (2.6), QA(A∗~S |λ)

(2.7) and QE( ~E∗|λ) (2.8).
Reestimation formulas for the model parameters are known for the standard HMM s in the
Definition 2.2.1 and the HMM s with transition classes in the Definition 2.3.1. In more detail
Rabiner [24], Knab [14] and Durbin et al. [6] have introduced reestimation formulas for the
standard HMM s and Knab [14] has determined reestimation formulas for HMM s with transition
classes.
We have introduced HMM s with continuous emissions and coupled transition classes in the
Definition 3.2.1 and therefore we have only modified the function QA(A∗~S |λ) (2.7). That means
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we can use the reestimation formulas for the start probabilities and the emission functions which
have been determined by Knab [14]. In the Section 3.3 we have shown that we always obtain
a stochastic matrix Â∗~S which maximises QA(A∗~S |λ) (3.8) if at least one ct = 1 in the transition
class sequence CO (2.4). So we have everything to prove the convergence of the Baum-Welch
algorithm.

Structure of the convergence proof

1. We assume that λ is our current HMM for the training data and that λ∗ is the newly
estimated HMM which improves the likelihood of the training data in comparison with λ.

2. In Proposition 3.4.1 we use the results of the independent maximisation of QS(~π|λ) (2.6),
QA(A~S |λ) (2.7) and QE( ~E|λ) (2.8) to prove that the estimated model parameters for the
HMM λ∗ increase Q(λ∗|λ) (2.5) in comparison with Q(λ|λ) (2.5) of the given HMM λ.

3. In Proposition 3.4.2 we start with the results of the Proposition 3.4.1 and show that the
likelihood for an emission sequence O (2.2) is increased under the newly estimated HMM
λ∗.

Proposition 3.4.1. If QS(~π∗|λ) ≥ QS(~π|λ), QA(A∗~S |λ) ≥ QA(A~S |λ) and QE( ~E∗|λ) ≥ QE( ~E|λ)

for the two HMMs λ∗ = (~π∗,N , A∗1, ~S, ~E∗) and λ = (~π,N , A1, ~S, ~E), then Q(λ∗|λ) ≥ Q(λ|λ).

Proof: Let us consider the Q-functions (2.5) for the two HMMs λ and λ∗ and so we have

Q(λ∗|λ) = QS(~π∗|λ) +QA(A∗~S |λ) +QE( ~E∗|λ) and

Q(λ|λ) = QS(~π|λ) +QA(A~S |λ) +QE( ~E|λ).

Now we can compute the difference between Q(λ∗|λ) and Q(λ|λ) and obtain

Q(λ∗|λ)−Q(λ|λ) = QS(~π∗|λ)−QS(~π|λ) +QA(A∗~S |λ)−QA(A~S |λ) +QE( ~E∗|λ)−QE( ~E|λ).

We know that QS(~π∗|λ) ≥ QS(~π|λ), QA(A∗~S |λ) ≥ QA(A~S |λ) and QE( ~E∗|λ) ≥ QE( ~E|λ) and so
the following conditions

QS(~π∗|λ)−QS(~π|λ) ≥ 0, QA(A∗~S |λ)−QA(A~S |λ) ≥ 0 and QE( ~E∗|λ)−QE( ~E|λ) ≥ 0

are fulfilled. The result is that Q(λ∗|λ) − Q(λ|λ) can be transformed to Q(λ∗|λ) − Q(λ|λ) ≥ 0
and therefore we obtain Q(λ∗|λ) ≥ Q(λ|λ).

¤

Proposition 3.4.2. If Q(λ∗|λ) ≥ Q(λ|λ), then D[O|CO, λ∗] ≥ D[O|CO, λ].

Proof: We know that Q(λ∗|λ) ≥ Q(λ|λ). Let us look at the definition of the Q-function (Defini-
tion 2.4.3):

Q(λ∗|λ) =
∑

Q∈Q
D[O, Q|CO, λ] log(D[O, Q|CO, λ∗]).

To prove the proposition we use the logsum-inequality which is

∀al, bl ∈ R+ :
n∑

i=1

ai log
ai

bi
≥

n∑

i=1

ai log

∑n
j=1 aj∑n
j=1 bj
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and therewith we give the following proof.

D[O|CO, λ] log
(
D[O|CO, λ]
D[O|CO, λ∗]

)
=

∑

Q∈Q
D[O, Q|CO, λ] log

( ∑
Q∈QD[O, Q|CO, λ]∑
Q∈QD[O, Q|CO, λ∗]

)

D[O|CO, λ] log
(
D[O|CO, λ]
D[O|CO, λ∗]

)
≤

∑

Q∈Q
D[O, Q|CO, λ] log

(
D[O, Q|CO, λ]
D[O, Q|CO, λ∗]

)

−D[O|CO, λ] log
(
D[O|CO, λ∗]
D[O|CO, λ]

)
≤ −

∑

Q∈Q
D[O, Q|CO, λ] log

(
D[O, Q|CO, λ∗]
D[O, Q|CO, λ]

)

D[O|CO, λ] log
(
D[O|CO, λ∗]
D[O|CO, λ]

)
≥

∑

Q∈Q
D[O, Q|CO, λ] log

(
D[O, Q|CO, λ∗]
D[O, Q|CO, λ]

)

D[O|CO, λ] log
(
D[O|CO, λ∗]
D[O|CO, λ]

)
≥

∑

Q∈Q
D[O, Q|CO, λ] log(D[O, Q|CO, λ∗])

−
∑

Q∈Q
D[O, Q|CO, λ] log(D[O, Q|CO, λ])

log
(
D[O|CO, λ∗]
D[O|CO, λ]

)
≥ Q(λ∗|λ)−Q(λ|λ)

D[O|CO, λ]

We know that Q(λ∗|λ)−Q(λ|λ) ≥ 0 and therefore the following equations are fulfilled.

log
(
D[O|CO, λ∗]
D[O|CO, λ]

)
≥ 0

log(D[O|CO, λ∗]) ≥ log(D[O|CO, λ])

D[O|CO, λ∗] ≥ D[O|CO, λ]

¤
With the result of the Proposition 3.4.2 we have given a general proof of the convergence of the
Baum-Welch algorithm. Whenever we modify model components of HMM s we can go back to
this proof if the preconditions can be fulfilled.

3.5 Analytical Solution For One Transition Class

Let us consider an HMM with one coupled transition class. For such an HMM each ct in the
transition class sequence CO is one. In this case the reestimation formulas for the diagonal ele-
ments a∗ii(1) and the non-diagonal elements a∗ij(1) have to be equal to the reestimation formulas
of an HMM without transition classes. Let us first prove that the reestimation formulas for the
diagonal elements are identical. Therefore we have to solve the Equation (3.16). Recall, the
scaling factor S1 is one and so we obtain

T−1∑

t=1

γt(i) =
T−1∑

t=1

1
a∗ii(1)

εt(i, i) and this can be transformed to

a∗ii(1) =

T−1∑

t=1

εt(i, i)

T−1∑

t=1

γt(i)

. (3.20)
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This reestimation formula of the diagonal element a∗ii(1) is equal to the reestimation formula of
the diagonal element a∗ii(1) in an HMM without transition classes. We have already mentioned
that the reestimation formulas for standard HMM s are discussed by Rabiner [24], Knab [14]
and Durbin et al. [6].
Now we have the possibility to determine the reestimation formula of the non-diagonal ele-
ment aij(1)∗ by substituting a∗ii(1) in Equation (3.13) by the expression of aij(1)∗ in the Equa-
tion (3.20).

a∗ij(1) =

T−1∑

t=1

γt(i)
T−1∑

t=1

εt(i, j)−
T−1∑

t=1

εt(i, i)
T−1∑

t=1

εt(i, j)

T−1∑

t=1

γt(i)
T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)

=

T−1∑

t=1

εt(i, j)

(
T−1∑

t=1

γt(i)−
T∑

t=1

εt(i, i)

)

T−1∑

t=1

γt(i)
T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)

=

T−1∑

t=1

εt(i, j)
T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)

T−1∑

t=1

γt(i)
T−1∑

t=1

N∑
j=1
j 6=i

εt(i, j)

a∗ij(1) =

T−1∑

t=1

εt(i, j)

T−1∑

t=1

γt(i)

The reestimation formula of the non-diagonal element a∗ij(1) is equal to the reestimation formula
of the non-diagonal element a∗ij(1) in an HMM without transition classes.

3.6 Analytical Solution For Two Transition Classes

We have to solve the Equation (3.16) to get the analytical solutions of the reestimation formulas
for an HMM with two coupled transition classes. Recall, the scaling factor S1 is one. First we
make some basic definitions

Ki
1 :=

T−1∑

t=1

γt(i), Ki
2 :=

T−1∑
t=1
ct=1

εt(i, i) and Ki
3 :=

T−1∑
t=1
ct=2

εt(i, i).

The lower and the upper bounds for these constants are

0 < Ki
1 < T − 1, 0 < Ki

2 < T − 1 and 0 < Ki
3 < T − 1,
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because each εt(i, j) for i, j ∈ N is in the interval (0, 1).
Now we start to determine the analytical solution for the Equation (3.16).

T−1∑

t=1

γt(i) =
T−1∑

t=1

Sct

a∗ii(1)− 1 + Sct

εt(i, i)

T−1∑

t=1

γt(i) =
T−1∑
t=1
ct=1

1
a∗ii(1)

εt(i, i) +
T−1∑
t=1
ct=2

S2

a∗ii(1)− 1 + S2
εt(i, i)

T−1∑

t=1

γt(i) =
1

a∗ii(1)

T−1∑
t=1
ct=1

εt(i, i) +
S2

a∗ii(1)− 1 + S2

T−1∑
t=1
ct=2

εt(i, i)

Ki
1 =

1
a∗ii(1)

Ki
2 +

S2

a∗ii(1)− 1 + S2
Ki

3

0 = (a∗ii(1))2 +
(S2 − 1)Ki

1 −Ki
2 − S2Ki

3

Ki
1︸ ︷︷ ︸

p

a∗ii(1) +
(1− S2)Ki

2

Ki
1︸ ︷︷ ︸

q

The result is a quadratic equation which has the two solutions

a∗ii(1)1 = −p

2
+

√
p2

4
− q and a∗ii(1)2 = −p

2
−

√
p2

4
− q.

The term q is always less than zero because S2 > 1, Ki
2 > 0 and Ki

1 > 0. The following inequality
is fulfilled for each q < 0

p

2
<

√
p2

4
− q.

So we can exclude the second solution a∗ii(1)2 because a∗ii(1)2 is always less than zero. Another
observation on the basis of this inequality is that the first solution a∗ii(1)1 is always greater than
zero.
Now we show that a∗ii(1)1 is less than one. Let us assume that Ki

2 = T − 1 then Ki
2 is equal to

Ki
1, Ki

3 is equal to zero, p is equal to S2 − 2 and q reaches its minimal value 1− S2. The result
is that a∗ii(1)1 is equal to one and this is the maximal value which a∗ii(1)1 can reach if we would
allow the upper bound of Ki

2.
The non-diagonal elements a∗ij(1)1 are determined by the Equation (3.13) and the diagonal
element a∗ii(2)1 and the non-diagonal elements a∗ij(2)1 are calculated by the Equations (3.4) and
(3.5).
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Chapter 4

Emission Densities For Hidden
Markov Models

The definitions of HMM s with continuous emissions in the Definitions 2.2.1, 2.3.1 and 3.2.1
request that an emission density is assigned to every state of the HMM. We have decided to
model the microarray data with a mixture of normal distributions. The mixture is estimated
by the well known expectation maximisation algorithm (EM algorithm). This is followed by the
assignment of each mixture component to a state of the HMM. Now we describe our proceeding
in more detail, and for the EM algorithm we follow the tutorial of Bilmes [1].

The following topics are contained in this chapter:

1. A general introduction of the EM algorithm and the application of this algorithm for
the estimation of a mixture model of univariate normal distributions are presented in the
Section 4.1.

2. An agglomerative clustering algorithm to assign mixture components to the states of an
HMM is developed in the Section 4.2.

3. Two examples for the agglomerative clustering on microarray data are shown in the Sec-
tion 4.3.

4.1 EM Algorithm

The EM algorithm is a widely spread method for parameter estimation in incomplete data
problems. The parameter estimation is computed iteratively and the monotonic convergence of
this process is guaranteed. A well known application of the EM algorithm is the estimation of
mixture models. An incomplete data set is obtained if some components of the data can and
others cannot be measured. In the case of a mixture model the output signals of the system
are known, but the internal mixture components which have created these output signals are
unknown.
Let us consider an observation sequence x = (x1, . . . , xN ) which is generated by some distribution
and modelled as an instance of the random vector X = (X1, . . . ,XN ). We assume that a complete
data set Z = (X,Y) exists and we also suppose the following joint density function

D[Z|Θ] = D[X,Y|Θ] = D[Y|X,Θ]D[X|Θ].

This joint density comes from the marginal density function D[X|Θ] and the assumptions of
hidden variables or relationships between the missing and the observed values. We can define
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the likelihood function L[Θ|X,Y] with this density function and therefore we assume

L[Θ|X,Y] = D[X,Y|Θ].

The likelihood is also a random variable since the missing information is unknown and random.
That is, we can think of L[Θ|X,Y] as a function where X and Θ are constant and Y is a random
variable. In the first step of the EM algorithm, the E-step, the expectation value of the log-
likelihood log(L[Θ|X,Y]) is computed with respect to the unknown data Y given the observed
data X = x and the current parameter estimates Θt. That is, we define

L[Θ|X,Θt] = E[log(L[Θ|X,Y])|X, Θt]

=
∫

y
log(D[X = x,Y = y|Θ])D[Y = y|X = x,Θt].

The current parameter estimates Θt are used to evaluate L[Θ|X, Θt] and Θ contains the new
parameters that we optimise to increase the expectation value. The expression D[Y|X,Θt] is the
marginal distribution of the missing data Y.
In the second step of the EM algorithm, the M-step, the computed expectation value L[Θ|X, Θt]
of the E-step is maximised. That is, we find

Θt+1 = argmax
Θ

L[Θ|X,Θt].

The M-step and the E-step are repeated until a local maximum of the likelihood function is
reached, but this is not shown here.
In the following subsection we use the EM algorithm to find the maximum likelihood parameters
of a mixture model which consists of univariate normal distributions.

4.1.1 Mixture Of Univariate Normal Distributions

The parameter estimation of a mixture model is one of the most widely used applications of the
EM algorithm. We assume the following probabilistic model

D[X = x|Θ] =
M∑

i=1

αiN (x|µi, σi)

with Θ = ((α1, µ1, σ1), . . . , (αM , µM , σM )). The parameter αi > 0 is the weight, the parameter
µi the mean and the parameter σi is the standard deviation of the i-th mixture component. The
sum over all mixture component weights is one. In other words, we assume to have a model
with M mixture components which are mixed together with respect to their mixture weight.
We model the observed data x = (x1, . . . , xN ) as a random vector X = (X1, . . . ,XN ) which
consists of independent, identically distributed random variables Xi ∼ X. The likelihood of X
under the assumed model is given by

L[Θ|X = x] =
N∏

i=1

D[Xi = xi|Θ] =
N∏

i=1

D[X = xi|Θ] =
N∏

i=1

M∑

j=1

αjN (xi|µj , σj)

and therefore the log-likelihood is

log(L[Θ|X = x]) =
N∑

i=1

log




M∑

j=1

αjN (xi|µj , σj)


 .
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The log-likelihood is difficult to optimise because of the logarithm of a sum. Let us consider X
as incomplete and posit the existence of unobserved data y = (y1, . . . , yN ) which is modelled
as a random vector Y = (Y1, . . . ,YN ) consisting of independent, identically distributed random
variables Yi ∼ Y . The component yi ∈ {1, . . . , M} informs us which mixture component has
generated the observation xi. If we know the values of Y, the likelihood becomes

L[Θ|X = x,Y = y] =
N∏

i=1

D[Xi = xi,Yi = yi|Θ] =
N∏

i=1

D[X = xi, Y = yi|Θ]

=
N∏

i=1

D[Y = yi|Θ]D[X = xi|Y = yi,Θ]

=
N∏

i=1

αyiN (xi|µyi , σyi)

and therefore the log-likelihood is

log(L[Θ|X = x,Y = y]) =
N∑

i=1

log(αyiN (xi|µyi , σyi))

which is easily to optimise. Of course we do not know the values of Y, but we assume that Y is
a random vector and therefore we can use the EM algorithm.
First we must derive an expression for the distribution of the unobserved data Y. We guess the
initial parameters Θt = ((αt

1, µ
t
1, σ

t
1), . . . , (α

t
M , µt

M , σt
M )) of the likelihood L[Θt|X = x,Y = y].

So we can easily compute N (xi|µyj , σyj ) for each i and j. The weight αi can be interpreted as
prior probability of a mixture component. Therefore we use Bayes’s rule to compute

D[Y = yi|X = xi, Θt] =
D[Y = yi|Θt]D[X = xi|Y = yi, Θt]

D[X = xi|Θt]

=
αyiN (xi|µyi , σyi)

M∑

j=1

αyjN (xi|µyj , σyj )

and

D[Y = y|X = x, Θt] =
N∏

i=1

D[Yi = yi|Xi = xi, Θt]

=
N∏

i=1

D[Y = yi|X = xi, Θt].

We have obtained the desired marginal density by assuming the existence of hidden vari-
ables Yi and guessing the initial parameters Θt of their distribution. The expectation value
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L[Θ|X = x,Θt] takes the form

L[Θ|X = x,Θt] =
∑

y

log(L[Θ|X = x,Y = y])D[Y = y|X = x,Θt]

=
∑

y

N∑

i=1

log(αyiN (xi|µyi , σyi))
N∏

j=1

D[Y = yj |X = xj , Θt]

=
M∑

y1=1

. . .
M∑

yN=1

N∑

i=1

log(αyiN (xi|µyi , σyi))
N∏

j=1

D[Y = yj |X = xj , Θt]

=
M∑

y1=1

. . .
M∑

yN=1

N∑

i=1

M∑

l=1

δ(l, yi) log(αlN (xi|µl, σl))
N∏

j=1

D[Y = yj |X = xj ,Θt]

=
M∑

l=1

N∑

i=1

log(αlN (xi|µl, σl))
M∑

y1=1

. . .

M∑

yN=1

δ(l, yi)
N∏

j=1

D[Y = yj |X = xj ,Θt].

This can be simplified if we consider the last sums for a fixed i and l

M∑

y1=1

. . .

M∑

yN=1

δ(l, yi)
N∏

j=1

D[Y = yj |X = xj , Θt]

=




M∑

y1=1

. . .
M∑

yi−1=1

M∑

yi+1=1

. . .
M∑

yN=1

N∏
j=1
j 6=i

D[Y = yj |X = xj , Θt]


D[Y = l|X = xi, Θt]

=
N∏

j=1
j 6=i




M∑

yj=1

D[Y = yj |X = xj , Θt]


D[Y = l|X = xi, Θt]

= D[Y = l|X = xi, Θt].

The tricks behind this simplification are to exclude cleverly and to use

M∑

k=1

D[Y = k|X = xj , Θt] = 1.

Now it is possible to rewrite L[Θ|X = x,Θt] and so we obtain

L[Θ|X = x,Θt] =
M∑

l=1

N∑

i=1

log(αlN (xi|µl, σl))D[Y = l|X = xi, Θt]

=
M∑

l=1

N∑

i=1

log(αl)D[Y = l|X = xi, Θt]

+
M∑

l=1

N∑

i=1

log(N (xi|µl, σl))D[Y = l|X = xi, Θt].
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This function can be maximised to get the model parameters Θt+1.

∀l ∈M : αt+1
l =

1
N

N∑

i=1

D[Y = l|X = xi, Θt] µt+1
l =

N∑

i=1

xiD[Y = l|X = xi,Θt]

N∑

i=1

D[Y = l|X = xi, Θt]

σt+1
l =

√√√√√√√√√√

N∑

i=1

(xi − µt+1
l )2D[Y = l|X = xi, Θt]

N∑

i=1

D[Y = l|X = xi, Θt]

.

These new model parameters are taken for the next iteration of the EM algorithm. The likelihood
increases in each iteration and so always a local maximum is reached asymptotically for t →∞,
but this is not shown here.
To estimate a mixture model for microarray data as it is shown in the Figures 4.1 and 4.2 we
generate mixture models for a different number of mixture components M . To compare these
models we use the Akaike (AIC ) and the Bayesian information criterion (BIC ) and choose
some candidate models.

4.2 Clustering Mixture Components

To motivate this section we consider the upper left images of the Figures 4.1 and 4.2. Here
we see two histograms which are nearly symmetric around zero. That is the normal situation
when we consider the log ratios of microarray data. The upper left image of the Figure 4.1
shows the log ratios of gene expression data and we are interested in under-, identically and
over-expressed genes. Suppose that we have a mixture model for the data in the Figure 4.1
with M ≥ 3 mixture components. Now our aim is to divide the mixture components into an
under-, an identically and an over-expressed cluster. So each cluster should represent a mixture
model and should describe the properties of the dedicated gene class. If we suppose to have a
histogram of ArrayCGH log ratios we are interested in DNA regions which have a decreased,
an unchanged or an increased copy number. These DNA regions can also be modelled by three
clusters as we have motivated for the gene expression data.
Let Θ = ((α1, µ1, σ1), . . . , (αM , µM , σM )) be the vector of model parameters for an univariate
mixture model of normal distributions (Section 4.1.1). The mean µi of the i-th normal distri-
bution represents the centre of this normal distribution and therefore µi is an ideal attribute to
cluster the mixture components.

Agglomerative Clustering

• Initialisation
Each mixture component is modelled as a cluster.

∀i ∈M : Ci := {(αi, µi, σi)}
C := {C1, . . . ,CM}
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• Iteration
The two most similar clusters form a new cluster.

while |C| > 3

//determine the two most similar clusters

(C∗i ,C∗j ) := argmin
1≤i,j≤|C|

i6=j

D(Ci,Cj)

//remove the two most similar clusters and add their union

C = (C \ {C∗i ,C∗j}) ∪ {C∗i ∪ C∗j}

Here we use single linkage to determine the distance D(Ci,Cj) between the two clusters
Ci and Cj and define

D(Ci,Cj) = min
(α1,µ1,σ1)∈Ci
(α2,µ2,σ2)∈Cj

|µ1 − µ2|.

• Result
We obtain the three clusters

C := {C1,C2,C3}.

The weight Wi of a cluster Ci is calculated by summing up all weights αj in this cluster
and so we get

Wi =
∑

(αj ,µj ,σj)∈Ci

αj .

The weight of a cluster i is used to normalise each weight αj in the cluster Ci by dividing
αj by Wi. Therefore the sum of all weights in a cluster is one and therewith the cluster
is a mixture model. Afterwards we determine the mean value Mi of each cluster Ci with
respect to the mean µj and obtain

Mi =
1
|Ci|

∑

(αj ,µj ,σj)∈Ci

µj .

Now we have an attribute for each cluster that gives us the possibility to determine the
class of a cluster. We sort the three cluster means in ascending order and obtain the
following permutation Mπ1 ≤Mπ2 ≤Mπ3 . This is the basis to assign the following cluster
classes

1. Cπ1 is the under-expressed,

2. Cπ2 is the identically expressed and

3. Cπ3 is the over-expressed cluster.

4.3 Example Analysis

Here we want to show how the methods of the last two sections work in practice. Let us consider
the histogram of preprocessed gene expression data in the upper left image of the Figure 4.1. It
shows a nearly symmetric distribution of log ratios around zero for test versus reference. The
log ratios which are significantly less than zero can give hints for under-expressed and log ratios
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which are significantly greater than zero can give hints for over-expressed genes in the test set.
Now we want to estimate a mixture model for this histogram using the EM algorithm. One
of the best models is shown in the upper right image of the Figure 4.1. It consists of three
mixture components and therefore the agglomerative clustering algorithm has only to determine
the classes of the three components. So we obtain the red coloured under-expressed, the grey
coloured identically expressed and the green coloured over-expressed cluster. In the lower image
of the Figure 4.1 each probability density function of a cluster is shown. Here we see the un-
weighted clusters of the upper right image of the Figure 4.1. When we use a three-state HMM
as in the Figure 5.1 to model microarray data, then each probability density function is assigned
to a state of the HMM as a state emission function.
In the Figure 4.2 the same graphics are shown for the preprocessed ArrayCGH data for chromo-
some 1 of the breast cancer data set form Pollack et al. [23]. The nearly symmetric histogram
of the log ratios is shown in the upper left image of the Figure 4.2. The upper right image
of the Figure 4.2 contains the associated mixture model with five mixture components. The
agglomerative clustering algorithm has assigned three mixture components to the grey cluster
which represents the unchanged DNA copy number status. The green cluster which represents
the increased DNA copy number status consists of one mixture component and the red cluster
which represents the decreased DNA copy number status consists also of one mixture compo-
nent. In summary, the mixture model was chosen to demonstrate the good performance of the
agglomerative clustering algorithm. The densities around zero are slightly too high, but other
regions look better. As above the probability density functions in the lower subfigure of Fig-
ure 4.2 can be assigned to a state of the three-state HMM as shown in the Figure 5.1.
In general we search for a mixture model which has a small or nearly no overlap between the red
and the green cluster and this mixture model has also to approximate the histogram of the given
microarray data very well. Such models have shown the best performance with a three-state
HMM as in the Figures 5.1 or 5.2.
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Figure 4.1: Analysis of the gene expression values for chromosome 17 of the breast cancer data set
from Pollack et al. [23]. Histogram: Histogram of the log ratios for test versus normal. Mixture
Model: The associated mixture model for the histogram. The black curve is the probability density
function of the mixture model. The red area shows the proportion of the under-expressed, grey area
shows the proportion of the identically expressed and the green area shows the proportion of the over-
expressed cluster. Emission Densities: (a) shows the probability density function of the cluster Cπ1

(under-expressed). (b) shows the probability density function of the cluster Cπ2 (identically expressed).
(c) shows the probability density function of the cluster Cπ3 (over-expressed).
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Figure 4.2: Analysis of the ArrayCGH values for chromosome 1 of the breast cancer data set from
Pollack et al. [23]. Histogram: Histogram of the log ratios for test versus normal. Mixture Model:
The associated mixture model for the histogram. The black curve is the probability density function of
the mixture model. The red area shows the proportion of the decreased, grey area shows the proportion of
the unchanged and the green area shows the proportion of the increased copy number cluster. Emission
Densities: (a) shows the probability density function of the cluster Cπ1 (decreased copy number). (b)
shows the probability density function of the cluster Cπ2 (unchanged copy number). (c) shows the
probability density function of the cluster Cπ3 (increased copy number).
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Chapter 5

Modelling Microarray Data

The huge progress in life sciences is reflected in the amounts of data which are created by
microarray experiments. These amounts of data cannot be analysed without the help of efficient
bioinformatics strategies. Microarray data can be seen as a sequence of measurements. HMM s
are an ideal framework to analyse sequences of measurements. This chapter has two main parts.
The first part shows how to create HMM s to annotate profiles of microarray data and the second
part introduces the role of chromosome 17 in breast cancer.

The following topics are contained in this chapter:

1. How to create HMM s to analyse microarray data is described in the Section 5.1.

2. How microarray profiles are annotated and some quality criterions for the annotation
results are explained in the Section 5.2.

3. Selected breast cancer publications are introduced in the Section 5.3.

4. A general overview of our breast cancer data set is given in the Section 5.4.

5.1 Creating HMM s For Microarray Data

The basic components of homogeneous HMM s in the Definition (2.2.1) and the inhomogeneous
HMM s with coupled transition matrices in the Definition (3.2.1) are a set of states, a start
distribution, emission density functions and a transition matrix. The individual selection of
these components give us the possibility to create HMM s to analyse microarray data.
Let us recall the agglomerative clustering in the Section 4.2 which we use to divide the microarray
data into three clusters. So it is obvious that we propose an HMM with three states and one
transition matrix as our basic model. This basic model is shown in the Figure 5.1. The colour
of an emission density function represents the assigned cluster and therewith we refer to the
results of the agglomerative clustering.
An extension of the basic model is shown in the Figure 5.2. Here we use two transition matrices to
model microarray data and therefore it is necessary to have functions which can map additional
information as the distance between neighbour genes into a transition class sequence CO (2.4).
The following general overview describes how an HMM for the analysis of microarray data is
created.

Creating an HMM to analyse microarray data

1. Create a mixture model using mixture estimation (Section 4.1.1).
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Figure 5.1: Three State Model: HMM with continuous emissions and one transition class. If gene
expression profiles are modelled, then the state − represents under-expressed, the state = represents
identically expressed and the state + represents over-expressed regions in these profiles. If ArrayCGH
profiles are modelled, then the state − represents decreased, the state = represents unchanged and the
state + represents increased copy number regions in these profiles.

2. Create a clustered mixture model using agglomerative clustering for the mixture model
above (Section 4.2).

3. Choose a three state HMM either with one or more than one transition matrix (Figures
5.1 and 5.2).

4. Assign the emission density funcitions from the second step to the HMM . Choose the
initial start distribution and the initial transition matrix. If we select an HMM with
coupled transition matrices, then the scaling parameters and a transition class switching
function are required.

5. Train the HMM with the microarray data using the Baum-Welch algorithm.

In the next section we introduce how to choose the start distribution and how to create transition
matrices.

5.1.1 Modelling Start Distributions And Transition Matrices

It is important for the training of the HMM to choose good initial model parameters because
otherwise the risk is higher that the Baum-Welch algorithm stops in a bad local maxima. There-
fore the initial parameters have to include information about the modelled microarray profiles.
Let us consider the results of the mixture estimation on the basis of microarray data after we
have used the agglomerative clustering. We obtain the cluster weights W−, W= and W+ which
contain information how great the probability for a microarray measurement is to be created by
one of these clusters. It follows that the expected number of microarray measurements which
are created by the cluster i is nWi for n microarray measurements. These weights can be used
to set the Markov chain which underlies the HMM to these expectation values. We do this
by modelling the equilibrium distribution of the Markov chain and therefore we choose the
start distribution ~π = (W=,W+,W−) and model a transition matrix A(~π,S, n) with the equi-
librium distribution equal to ~π. The equilibrium distribution does not completely determine the
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Figure 5.2: Three State Model: HMM with continuous emissions and two transition classes. The first
class is represented by normal arrows and the second by thicker arrows. If gene expression profiles are
modelled, then the state − represents under-expressed, the state = represents identically expressed and
the state + represents over-expressed regions in these profiles. If ArrayCGH profiles are modelled, then
the state − represents decreased, the state = represents unchanged and the state + represents increased
copy number regions in these profiles.

transition matrix and so we can model different transition matrices of the following type, for
S ∈ (0, n ·min{W−,W=,W+}),

A(~π, S, n) =




a== a=+ a=−
a+= a++ a+−
a−= a−+ a−−


 =




1− S
nW=

S
2nW=

S
2nW=S

2nW+
1− S

nW+

S
2nW+

S
2nW−

S
2nW− 1− S

nW−




which all have the predefined equilibrium distribution ~π. This can be easily proven by multi-
plying A(~π, S, n) with ~π. The probability to change the current state i ∈ {−,=,+} is 1 − aii.
The transition probability to go from a state i to another state j is modelled by a uniform
distribution. The self-transition probabilities can be scaled by the parameter S and therefore we
can influence the state durations. The parameter n is set to the mean length of all microarray
profiles.
These transition matrices are the basis of all our HMM s. Let us assume we have assigned
the emission density functions of the agglomerative clustering and an initial transition matrix
A(~π,S, n) to an HMM with continuous emissions as in the Definition 2.2.1. Now we are able to
approximate the distribution of the underlying microarray data if we use the cluster weights as
initial start distribution.

5.1.2 Modelling Transition Class Switching Functions

The extensions of the homogeneous HMM s are inhomogeneous HMM s which can model relations
between microarray measurements. We have extended the standard HMM s to be able to consider
such relations.
When we use the standard HMM s it is not possible to model effects which can be caused by the
distance between adjacent genes. In this case we have to work with the simplification that all
adjacent genes have the same distance. The distance between adjacent genes can be modelled
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with the extended HMM s in the Definitions 2.3.1 and 3.2.1 and therefore we can include the
possibility of mutations.
For instance, it could make sense to assume that a mutation between two adjacent genes occurs
more often the greater the distance between these two genes is. The result of such a mutation
could be decoupled expression levels of these two genes in affected cells instead of coupled
expression levels of these genes in normal cells. Such simple models can be easily adapted to
other problems as copy number changes or the correlation of gene expression between adjacent
genes. Later we motivate the usage of transition classes with the help of special mutations which
frequently occur in breast cancer.
The effects of additional information are modelled by an HMM with L transition matrices. To
work with such an HMM we need a transition class switching function to generate a transition
class sequence CO (2.4). We assume that we have a sequence of additional information

IO = IO1 , . . . , IOT
for each emission sequence O (2.2). Now we can define the transition class switching function

SWITCH : IO 7→ CO.

For example let us model the distance between adjacent genes with the help of two transition
matrices. The following transition class switching function maps all adjacent gene distances
IOt ∈ R+ to one of the two transition classes using a threshold value T ∈ R+ and so we define

SWITCH(IOt ) =
{

1, IOt > T
2, IOt ≤ T .

(5.1)

The HMM has to use the transition matrix Act = SWITCH(IOt ) at time step t and therewith
the complete transition class sequence CO can be calculated by the same proceeding. We can
use this defined transition class switching function for the HMM with two transition matrices
which is shown in the Figure 5.2.
This short example should illustrate how additional information is used to generate a transition
class sequence. To proceed in that way is flexible and allows us to model different relations
between data.

5.2 Annotating Microarray Profiles

A microarray profile is annotated by an HMM using the Viterbi algorithm which is introduced
in the Section 2.5. So we obtain for each gene expression profile O (2.2) the Viterbi Path Q∗O
(2.3) which is the most probable state path through the HMM . To get a better impression of the
performance of the HMM we use the state posterior as a quality criterion for the Viterbi Path
Q∗O. The state posterior γt(i) is already defined in the Definition 2.4.7. Recall that it represents
the probability for being in state i at time step t given the emission sequence O. We will use
the following quality criteria:

1. The state posterior γt(Q∗t ) of each state in the Viterbi Path Q∗O = Q∗1, . . . ,Q∗T .

2. The state posterior γt(=) for being in the state = for each time step t ∈ {1, . . . , T}.
3. The state posterior γt(+) for being in the state + for each time step t ∈ {1, . . . , T}.
4. The state posterior γt(−) for being in the state − for each time step t ∈ {1, . . . , T}.
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Each of these criteria is used to display a state posterior profile for all t ∈ {1, . . . , T} when we
consider the annotation results in more detail. The profiles of γt(=), γt(+) and γt(−) should give
us the possibility to recognise segments in a microarray profile where the measurements show the
same behaviour. That is, we can find segments in these state posterior profiles where the state
posterior is significantly greater than zero. We can also obtain hints for segments in a microarray
profile which have been annotated in another way by the HMM . Cases for this behaviour could
be that the HMM is not able to model a good segment structure or that measurements are
marginal cases in the annotation process of the HMM . The profile of γt(Q∗t ) should mostly
consist of state posteriors which are only slightly less than one, but it is also possible that this
profile contains regions where the state posteriors are significantly less than one. The HMM
is relatively unsure how to annotate such regions in these cases. Smaller values of γt(Q∗t ) can
occur for microarray data values which are marginal cases in the annotation process.
The state posteriors γt(=), γt(+) and γt(−) allow us also to determine the absolute proportion
SSP(.) of microarray measurements which are seen as identically expressed, over-expressed or
under-expressed in a microarray profile O independent of the most probable annotation which
is given by the Viterbi Path Q∗O. Therefore we calculate the sums over the state posteriors

SSP(=) =
T∑

t=1

γt(=), SSP(+) =
T∑

t=1

γt(+) and SSP(−) =
T∑

t=1

γt(−).

We can also determine how many of each of the absolute proportions SSP(=), SSP(+) and
SSP(−) is included in theViterbi Path Q∗O. This is done by summing over the suitable annotation
values and so we obtain

SV(=) =
T∑

t=1

γt(=)δ(Q∗t , =), SV(+) =
T∑

t=1

γt(+)δ(Q∗t , +) and SV(−) =
T∑

t=1

γt(−)δ(Q∗t ,−)

with the help of the function δ(i, j) which is one if i is equal to j or zero in the other case. The
structure of the Viterbi Path always fulfils SV(i) ≤ SSP(i) and this is the basis to compute the
relative proportion of SSP(i) in the Viterbi Path. That is, we determine

S(=) =
SV(=)
SSP(=)

, S(+) =
SV(+)
SSP(+)

and S(−) =
SV(−)
SSP(−)

(5.2)

and therewith we get an impression how many of the basic state posterior profiles γt(=), γt(+)
and γt(−) for all t ∈ {1, . . . , T} is contained in the Viterbi Path. If we think of a state posterior
profile where for each time step t exactly a j ∈ {=, +,−} exists which fulfils γt(j) = 1, then all
relative proportions S(=), S(+) and S(−) are one (if each state is at least used one time). This
means that the HMM is always sure how to annotate the microarray profile O. Such a state
posterior profile is unrealistic and not possible for the HMM s that we use and therefore S(=),
S(+) and S(−) are less than one.
We finally consider the quality of the Viterbi Path by summing up the state posteriors of this
path and dividing by the length T of the microarray data O and therewith we obtain

S =
1
T

T∑

t=1

γt(Q∗t ). (5.3)

If we recall an unrealistic state posterior profile, then S is equal to one because no other anno-
tation of the microarray data exists.
In summary, all the introduced quality criteria above can help us to describe the quality of
a microarray profile. Nevertheless, it is necessary to choose good initial model parameters to
generate reliable annotations.
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5.3 The Role Of Chromosome 17 In Breast Cancer

The chromosome 17 is one of the smallest human chromosomes with the highest gene density
and it is known that this chromosome is often rearranged in breast cancer and therefore losses
and gains of DNA regions are intensively studied [21]. A lot of publications as for example
Orsetti et al. 1999 [20], Kauraniemi et al. 2001 [13], Monni et al. 2001 [17], Hyman et al. 2002
[9], Clark et al. 2002 [3], Pollack et al. 2002 [23], Willis et al. 2003 [27], Nugoli et al. 2003 [19]
and Orsetti et al. 2004 [21] have analysed chromosome 17 in breast cancer cells with different
techniques. We summarise the main results which will help us to analyse the results of our own
analysis of the microarray data for chromosome 17 from Pollack et al. [23].

Selected Breast Cancer Publications

• Orsetti et al. 1999 [20] did allelotyping studies and molecular cytogenetics and found at
least four regions of allelic imbalances for chromosome 17 in breast cancer. That is the
chromosome 17 can get lost, the regions 17q and 17q22-q24 can contain gains of DNA
segments and the regions 17q11-q21 or 17q25-qter or both together can be affected by
losses of DNA segments. They found that gains of DNA segments are most commonly
observed in the region 17q23-q24.

• Kauraniemi et al. 2001 [13] found that the amplification of DNA segments in the region
17q12 leads to simultaneous elevation of expression levels of several genes. They identified
for example the genes CDC6, GRB7, MLN51, MLN64, ZNF144 and ERBB2 to be always
over-expressed when their DNA is amplified. The gene ERBB2 is a well-known oncogene
which contributes to a poor clinical outcome when it is amplified. They also found the
genes GRB7, MLN64, TRAF4 and PPARBP to be coamplified with ERBB2 and that
this observation might also have some clinical impact on breast cancer.

• Monni et al. 2001 [17] used a combination of molecular, genomic and microarray technolo-
gies to analyse the region 17q23 in six breast cancer cell lines. They were able to define two
common regions of amplification within the region 17q23. Their cDNA microarray studies
have shown that several over-expressed genes exist and that the genes RPS6KB1, MUL,
APPBP2 and TRAP240 are located in the two defined regions above. They also identified
that the gene expression patterns varied from a cell line to another. The structure of the
17q23 amplicon in the MCF7 breast cancer cell line was described to consist of two sepa-
rate highly amplified regions which are flanked by a region of low-level amplification. The
17q23 amplicon of the breast cancer cell line BT474 was described to consist of a single
large segment which is amplified and overlaps both of the regions that were identified in
the MCF7 cell line.

• Hyman et al. 2002 [9] made a high-resolution comparative genomic hybridisation analysis
on cDNA microarrays for breast cancer to compare DNA copy number and gene expression.
They found that high- and low-level copy number changes have substantial impacts on gene
expression and a novel amplicon at 17q21.3 which leads to over-expression of the genes
HOXB7 and HOXB2 is described.

• Clark et al. 2002 [3] used comparative genomic hybridisation and cDNA microarrays to
identify candidate oncogenes in breast cancer cell lines. They found the amplicons 20q13,
17q11-21 and 17q22-23 for the cell line BT474. The amplification of the region 17q22-23
was seen with the over-expression of HBOA and TRAP100 was observed as over-expressed
in the amplified the region 17q11-21.

42



• Willis et al. 2003 [27] performed a high-resolution expression array analysis and a com-
parative genomic hybridisation analysis of genes mapped to the entire region 17q12-23
to identify novel candidate oncogenes. They identified significantly over-expressed genes
when gains of DNA segments in the region 17q12-23 had occurred. Several of these genes
were previously identified oncogenes. They concluded that chromosome 17 contains at
least two frequent amplifications in the regions 17q12-21 and 17q23 which contain the
candidate oncogenes RPS6KB1, APPB2, MUL, TRAP240 and TBX2.

• Nugoli et al. 2003 [19] made comparative genomic hybridisation and gene expression
profiles of MCF7 breast cancer sublines. They found that the sublines contain important
differences in DNA copy number alterations. Gains of 17q22-24 and losses of 17p11-13
were observed.

• Orsetti et al. 2004 [21] performed ArrayCGH and cDNA analyses. They were able to
subdivide the chromosome 17 into thirteen consensus segments, the four regions 17p,
17q11.2, 17q21 and 17q24 which mainly contain DNA losses, the six regions one at 17q12
and five at 17q22-25 which mainly contain DNA gains and the three regions 17q21.3, 17q22
and 17q25 which either show gains or losses.

• Pollack et al. 2002 [23] performed genome wide ArrayCGH and cDNA microarray analyses
to determine the influences of variation in gene copy number on the gene expression in
breast cancer cells. They found that highly amplified genes can show moderately or highly
elevated expression. So they were able to conclude that the gene expression is influenced
across a wide range of DNA copy number alterations and that widespread DNA copy
number alterations can lead directly to global deregulation of gene expression and therefore
induce the development or the progression of breast cancer.

5.4 Breast Cancer Data Set

We use the ArrayCGH and the gene expression data from Pollack et al. [23] to analyse chro-
mosomal imbalances on chromosome 17 in breast cancer cells.

Normalisation and data set creation

First we have inspected the data of Pollack et al. [23] and thereby we have found that the
gene expression data was not normalised as described by Pollack et al. [23]. Therefore we
have normalised each experiment in the gene expression data set to mean zero and standard
deviation one. The ArrayCGH data of Pollack et al. [23] looks better than the gene expression
data and therefore we use these data without an additional normalisation. After that we have
used the ArrayCGH and the gene expression data to create our own data set for chromosome
17. In addition we have added the newest available chromosomal location of each gene using
the Entrez Gene at the NCBI. Our data set contains forty-one experiments with two hundred
sixty-five genes for both data classes. A measurement for a gene g in our data set represents

log2

Intensity of g in the test sample
Intensity of g in the reference sample

.

Correlation between gene expression data and correlation between ArrayCGH data

The Figure 5.3 shows the correlations between the experiments in our data set. The correlation
matrix for the gene expression experiments contains only some weak positive correlations except
the cell lines. We see another behaviour for the correlations between ArrayCGH experiments
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where most of the correlations are positive. In general we can expect that the ArrayCGH
profiles look more similar than the gene expression profiles. A profile of microarray data for
an experiment contains all measurements sorted by the chromosomal locations of the measured
genes.

'

&

$

%
Figure 5.3: Left : The correlation matrix of all gene expression profiles of chromosome 17 in our breast
cancer data set. Right : The correlation matrix of all ArrayCGH profiles of chromosome 17 in our breast
cancer data set. In general the green fields show negative correlation between profiles, black fields show
no correlation and red fields show positive correlation. The first four profiles are the cell lines.

Overview of gene expression data and ArrayCGH data

Let us consider the overviews in the Figures 5.4 and 5.5 to get a more detailed impression of
chromosome 17 in our breast cancer data set. The Figure 5.4 represents an overview of the
gene expression profiles in our data set. On the basis of the upper graphic we can see in nearly
every band of the chromosome 17 that log ratios can be found which differ from other log ratios
at the same chromosomal location. Such extreme log ratios are candidates for over- or under-
expression. The middle graphic shows the mean and the median log ratios of all genes over all
experiments mapped to the chromosomal location. The values of the mean log ratio per gene
are close to zero and the median values contain information where most of the log ratios for a
gene over all experiments lie. The lower graphic represents the variance of the log ratios per
gene over all experiments. Regions with high variance refer to chromosomal locations which
have been observed with different expression levels over all experiments. In summary, we should
expect that most of the gene expression profiles are individual and this fortifies the results which
are shown in the correlation matrix of the gene expression profiles in the Figure 5.3.
The same graphics are shown in the Figure 5.5 for all ArrayCGH profiles in our data set.
Extreme log ratios are mostly found in the regions 17p13.1, 17q11.2 and 17q12-q25. These
regions represent candidates which are affected by losses or gains of DNA segments. The mean
values and the median values lie close to each other and therefore the profiles should be more
homogeneous as the gene expression profiles. The variance values are mostly close to zero and
support the statement of homogeneous ArrayCGH profiles.
The Table 5.1 shows the number of measured data values per band for an experiment in our
breast cancer data set of chromosome 17. The bands 17q21.1, 17q22, 17q23.1, 17q24.1, 17q24.3
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and 17q25.2 have at most six measured data values and therefore general statements about the
gene expression or DNA alterations in such a band are not possible because a lot of genes which
are not considered are located their. The region 17q11.1 contains no data value.

Candidate genes for over-expression

The Table 5.2 contains candidate genes for over-expression which are mentioned by Pollack et
al. [23]. The genes from the Table 5.2 are located in the characteristic regions which we have
described above.

Sensitivity of the ArrayCGH data

Pollack et al. [23] have tried to test the sensitivity of their ArrayCGH approach by analysing the
cell lines 45-X0, 46-XX, 47-XXX, 48-XXXX and 49-XXXXX. Each of these cell lines contains a
different number of X chromosomes. They reported that the mean fluorescence ratio of such a
cell line to the normal cell line 46-XX is linearly proportional to the slightly underestimated copy
number ratios. We have analysed this observation for a better understanding of the background.
We found that the mean fluorescence ratios for all cell lines contain information about the number
of X chromosomes in these cell lines, but the histograms of the fluorescence ratios of the cell
lines overlap. This is the result of the high variances of the fluorescence ratios of a cell line
and therefore it should not be possible to determine the degree of a loss or a gain of a segment
without previous knowledge.
We have determined the ranges of the ArrayCGH and the gene expression log ratios in our
data set. The range for the ArrayCGH data is from -2.56 to 3.73 and the range for the gene
expression data is from -4.63 to 6.88. The hybridisation signals for ArrayCGH data are smaller
than for gene expression data. If we assume that one copy of a gene is lost in a breast cancer
cell, then we will observe a log ratio of log2

1
2 = −1. Or let us assume that two copies of a gene

are gained in a breast cancer cell so we would expect a log ratio of log2
4
2 = 1. Both cases are

assumed ideal cases and we should not be able to determine the quantity of copy number changes
for genes because of the high variances in the control experiments with different numbers of X
chromosomes.
In summary, the analysis of ArrayCGH profiles should be done carefully when we test the
performance of our HMM s on these profiles.
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Band p13.3 p13.2 p13.1 p12 p11.2∑
9 17 21 8 17

Band q11.1 q11.2 q12 q21.1 q21.2∑
0 24 29 1 20

Band q21.31 q21.32 q21.33 q22 q23.1∑
24 15 12 4 1

Band q23.2 q23.3 q24.1 q24.2 q24.3∑
12 9 2 6 2

Band q25.1 q25.2 q25.3∑
22 1 9

Table 5.1: Number of measured data values per band for an experiment in our breast cancer data set
for chromosome 17.

Gene Band Gene Band Gene Band Gene Band
KIAA0524 q11.2 CACNB1 q12 JUP q21.2 TRAP240 q23.2
UNC119 q11.2 RPL19 q12 HOXB5 q21.32 ICAM2 q23.3
SDF2 q11.2 MLN64 q12 NDP52 q21.32 PECAM1 q23.3
TRAF4 q11.2 ERBB2 q12 NGFR q21.33 ABCA5 q24.2
FLJ10700 q11.2 GRB7 q12 HBOA q21.33 SLC9A3R1 q25.1
TIAF1 q11.2 NR1D1 q21.1 DLX4 q21.33 AD023 q25.1
KIAA1321 q11.2 CDC6 q21.2 ABCC3 q21.33 GRB2 q25.1
SCYA3 q12 TOP2A q21.2 RAD51C q23.2 ITGB4 q25.1
SCYA4 q12 SMARCE1 q21.2 RPS6KB1 q23.2 HCNGP q25.1
MLLT6 q12 KRT20 q21.2 APPBP2 q23.2 BIRC5 q25.3
ZNF144 q12 KRTHA4 q21.2 PPM1D q23.2 LGALS3BP q25.3
PIP5K2B q12 KRT19 q21.2 TBX2 q23.2

Table 5.2: Table of candidate genes for over-expression on chromosome 17. The genes are taken from
the results of Pollack et al. [23].
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Figure 5.4: Overview of our gene expression profiles for chromosome 17. The upper graphic shows the
log ratios of all experiments mapped to their chromosomal location. The middle graphic represents the
mean and the median log ratio per gene over all experiments mapped to the chromosomal locations of
the genes. The lower graphic shows the variance of a log ratio per gene over all experiments mapped to
the chromosomal locations of the genes.
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Figure 5.5: Overview of our ArrayCGH profiles for chromosome 17. The upper graphic shows the log
ratios of all experiments mapped to their chromosomal location. The middle graphic represents the mean
and the median log ratio per gene over all experiments mapped to the chromosomal locations of the
genes. The lower graphic shows the variance of a log ratio per gene over all experiments mapped to the
chromosomal locations of the genes.
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Chapter 6

Analysing Microarray Data

A microarray experiment produces an huge amount of data and therefore efficient and realistic
models to analyse these data are required. To get an impression how good our developed HMM
approach works on real microarray data for gene expression and ArrayCGH experiments the
comparison of the annotation results with published results is a necessary step. In this chapter we
present detailed information about the performance of our method on breast cancer microarray
data.

The following topics are contained in this chapter:

1. In the Section 6.1 we analyse the performance of the standard HMM s and the extended
HMM s on our breast cancer gene expression data set of chromosome 17.

2. The performance of the the extended HMM s on our breast cancer ArrayCGH data set of
chromosome 17 is analysed in the Section 6.2.

3. The influences of DNA copy number changes on the gene expression levels are described
in the Section 6.3.

6.1 Analysing Gene Expression Profiles

We start to analyse the gene expression profiles of our data set of chromosome 17. In the first
part of the analysis we use the standard HMM s of the Definition 2.2.1 and in the second part
we show how the performance is improved using the HMM s with coupled transition matrices
(extended HMM s) which are introduced in the Definition 3.2.1. The results of the analysis with
the extended HMM are directly compared with the results of the standard HMM .

6.1.1 Standard HMM s

The standard HMM s are created as we have described in the Section 5.1. We have tested
the standard HMM s with the same estimated mixture model and different initial transition
matrices. The annotation quality of these HMM s were nearly equal. For that reason we present
the representative results which have been created by a single HMM .

Over-expression

The Table 6.5 shows an overview of genes which have been annotated as over-expressed in all
gene expression profiles. The segmentation of these genes to their bands allows us to find regions
which have been frequently annotated as over-expressed. In general this table confirms that the
gene expression profiles of all experiments differ from each other and this fact is consistent with
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the gene expression correlation matrix in the Figure 5.3 and the overview of all gene expression
profiles in the Figure 5.4.
Less of the genes on the p-arm of chromosome 17 have been annotated as over-expressed as on
the q-arm. Let us consider the annotation results for the p-arm and the q-arm over all gene
expression profiles. Ten genes have been annotated as over-expressed in the region 17p13.3-
17p12 and twenty-four of such annotations are located in the chromosomal band 17p11.2. The
q-arm contains the eight regions 17q11.2, 17q12, 17q21.2, 17q21.32, 17q21.33, 17q23.2, 17q25.1
and 17q25.3 where more than twenty genes have been annotated as over-expressed and thereby
more than forty of these annotations are located in each of the regions 17q11.2, 17q12, 17q21.2,
17q21.33 and 17q25.1.
This general overview includes chromosomal regions which have been mentioned in literature.
Kauraniemi et al. [13] and Willis et al. [27] have found that the band 17q12 can be over-expressed
in breast cancer. The region 17q23 has been seen as over-expressed by Monni et al. [17], and
Hyman et al. [9] have observed over-expressed genes in 17q21.3. The analyses of Pollack et al.
[23] and Orsetti et al. [20] confirm that the main reason for most of the over-expressed genes
are amplifications of DNA segments where these genes are located. Later when we analyse the
ArrayCGH data we will see which bands are mainly affected by DNA amplifications.
Now we consider which genes have been annotated as over-expressed. The Table 5.2 contains
genes which are known to be over-expressed in some types of breast cancer. All these genes
have been annotated as over-expressed by the standard HMM , but the gene ABCA5 represents
an annotation error as we will see later. In total one hundred sixty-seven genes of the two
hundred sixty-five genes in the data set have been annotated as over-expressed over all gene
expression profiles. This is about sixty-three percent of all genes. The annotation attributes Nr,
Max, Min and Mean of the candidate genes for over-expression from Table 5.2 the are shown
in the Table 6.1. These attributes give us a good overview how significant the annotations of
the candidate genes are. The value Nr of a gene g counts in how many gene expression profiles
the gene g has been annotated as over-expressed. The attribute Max of a gene g contains the
maximum log ratio of the gene g and the attribute Min of a gene g represents the minimum
log ratio of the gene g for all gene expression profiles where the gene g has been annotated as
over-expressed. The value of the attribute Mean of gene g shows the mean log ratio of gene g
for all gene expression profiles where the gene g has been annotated as over-expressed. In the
ideal case the value of Nr counts several gene expression profiles and the values of Max, Min
and Mean are significantly greater than zero. In general the attributes of the Table 6.1 fulfil
these criterions. An exception is the gene ABCA5 which has not correctly been annotated.
The attributes Max, Min and Mean of this gene are significantly less than zero and therefore
these attribute values refer to under-expression. This annotation error has occurred because
ABCA5 is located in a region with a high expression level and therewith the standard HMM
has problems to separate such a region into over-expressed and under-expressed segments. Form
time to time we can observe these problems as negative Min values in the Table 6.1 show. These
cases are counted in the attribute E of the Table 6.5.
The Table 6.2 contains genes that have been annotated as over-expressed in addition to the
Table 5.2. To get a more general view on the additional candidates we use a threshold value which
is the minimal number of profiles where a gene must have been annotated as over-expressed. We
choose the threshold value three for the p-arm and four for the q-arm and therewith we make
a compromise to the low correlations between the gene expression profiles. We use the Entrez
Gene at the NCBI to get a better impression what functions some of these candidate genes
have.

• MAPK7 encodes a protein which is a member of the MAP kinase family. The mitogen-
activated protein kinase 7 MAPK7 is specifically activated by the mitogen-activated pro-
tein kinase kinase 5 MAP2K5. MAPK7 is involved in the downstream signalling processes
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of various receptor molecules including receptor type kinases and G protein-coupled re-
ceptors. In response to extracellular signals MAPK7 translocates to cell nucleus where
it regulates the gene expression by phosphorylating and activating different transcription
factors.

• MFAP4 encodes a protein with similarity to a bovine microfibril-associated protein. This
protein has binding specificities for both collagen and carbohydrate. It is thought to be an
extracellular matrix protein which is involved in cell adhesion or intercellular interactions.

• SCYA14 is one of several cytokine genes clustered on the q-arm of chromosome 17. These
cytokines are secreted proteins which are characterised by two adjacent cysteines. The cy-
tokine which is encoded by this gene induces changes in intracellular calcium concentration
and enzyme release in monocytes. The gene SCYA3L1 encodes a cytokine, too.

• KRT17 encodes the type I intermediate filament chain keratin 17. Rijn et al. [26] have
found that the expression of KRT17 is associated with a poor clinical outcome of breast
cancer.

• FLJ22041 encodes a protein which belongs to the FKBP-type peptidyl-prolyl cis/trans
isomerase family. This protein is located in endoplasmic reticulum and acts as molecular
chaperones.

• HOXB6 is a member of the Antp homeobox family and encodes a protein with a homeobox
DNA-binding domain. It is included in a cluster of homeobox B genes which are located on
chromosome 17. The encoded protein functions as a sequence-specific transcription factor
that is involved in development and has been localised to both the nucleus and cytoplasm.
Altered expression of this gene or a change in the subcellular localisation of its protein is
associated with some cases of acute myeloid leukaemia and colorectal cancer.

• COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in
most connective tissues, and the only component of the collagen found in cartilage. Mu-
tations in this gene are associated with osteogenesis imperfecta, Ehlers-Danlos syndrome,
and idiopathic osteoporosis. Reciprocal translocations between chromosomes 17 and 22,
where this gene and the gene for platelet-derived growth factor beta are located, are as-
sociated with a particular type of skin tumour called dermatofibrosarcoma protuberans,
resulting from unregulated expression of the growth factor.

The candidate genes HOXB6 has been observed to play a role in cancer and the attributes Max,
Min and Mean could indicate that this gene could have an important role in specific types of
breast cancer. KRT17 has an already known role in the outcome of breast cancer as Rijn et al.
[26] have found. Also genes that act in signalling processes can be targets for mutations that
can cause cancer and when we consider our additional candidate genes then MAPK7 could be
such a candidate gene.
The Table 6.2 contains also genes as PNMT and SC65 or others with questionable attribute
values Max, Min and Mean for over-expressed genes. As we have explained above such annota-
tions can happen when the affected genes are located in a segment with a higher expression level.
The standard HMM has problems to find the start or the end of such segments and therefore
segments with higher expression levels which are located close to each other can be annotated
as one segment with higher expression and therewith genes with lower expression levels can
get wrong annotations. Later we will observe this behaviour in the graphics of selected gene
expression profiles.
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Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KIAA0524 q11.2 3 2.11 0.55 1.46 JUP q21.2 5 2.77 -0.87 1.48
UNC119 q11.2 3 2.9 2.48 2.71 HOXB5 q21.32 5 4.28 1.98 3.06
SDF2 q11.2 2 3.16 2.49 2.83 NDP52 q21.32 2 1.81 1.61 1.71
TRAF4 q11.2 3 3.41 2.63 2.91 NGFR q21.33 3 2.5 -1.98 0.47
FLJ10700 q11.2 3 5.7 1.98 3.91 HBOA q21.33 4 3.97 0.67 2.42
TIAF1 q11.2 3 4.34 1.88 2.99 DLX4 q21.33 7 4.74 -0.02 2.79
KIAA1321 q11.2 3 3.61 1.73 2.43 ABCC3 q21.33 5 5.01 -1.18 2.83
SCYA3 q12 6 2.64 0.38 1.68 RAD51C q23.2 2 2.55 2.43 2.49
SCYA4 q12 6 2.6 -0.95 1.23 RPS6KB1 q23.2 6 2.98 1.81 2.36
MLLT6 q12 5 4.89 0.34 2.54 APPBP2 q23.2 5 2.18 1.12 1.63
ZNF144 q12 5 3.67 0.03 2.32 PPM1D q23.2 5 2.83 0.61 1.77
PIP5K2B q12 4 4.34 2.94 3.58 TBX2 q23.2 3 1.22 0.52 0.79
CACNB1 q12 5 3.85 -0.22 2.04 TRAP240 q23.2 3 2.86 1.32 2.06
RPL19 q12 6 2.06 0.21 0.77 ICAM2 q23.3 2 2 1.39 1.69
MLN64 q12 10 4.9 1.98 3.62 PECAM1 q23.3 2 2.4 1.7 2.05
ERBB2 q12 10 5.07 2.4 3.64 ABCA5 q24.2 1 -2.08 -2.08 -2.08
GRB7 q12 10 6.16 2.43 4.22 SLC9A3R1 q25.1 2 4 2.81 3.4
NR1D1 q21.1 8 2.28 -1.1 0.71 AD023 q25.1 2 2.78 2.5 2.64
CDC6 q21.2 9 4.54 -0.96 1.82 GRB2 q25.1 3 2.32 1.73 2.1
TOP2A q21.2 7 5.18 1.02 1.94 ITGB4 q25.1 5 5.18 0.17 2.72
SMARCE1 q21.2 6 6.48 1.06 4.06 HCNGP q25.1 5 2.32 0.07 1.29
KRT20 q21.2 2 1.74 1.1 1.42 BIRC5 q25.3 3 2.64 1.68 2.22
KRTHA4 q21.2 2 1.44 0.32 0.88 LGALS3BP q25.3 4 2.93 1.41 2.29
KRT19 q21.2 7 3.29 -2.38 1.2

Table 6.1: Over-expressed candidate genes from Table 5.2 which have been annotated as over-expressed
by the standard HMM . Max represents the highest log ratio which was measured for the Nr experiments
where the gene has been annotated as over-expressed. Min represents the lowest log ratio which was
measured for the Nr experiments where the gene has been annotated as over-expressed. Mean is the
mean log ratio of the measured log ratios for the Nr experiments where the gene has been annotated as
over-expressed.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
MAPK7 p11.2 4 3.06 0.25 1.61 KRT17 q21.2 10 5 -1.01 2.2
MFAP4 p11.2 6 4.83 -2.71 2.28 SC65 q21.2 5 1.55 0.53 1.19
ALDH10 p11.2 3 2.86 -0.55 1.47 FLJ22041 q21.2 5 2.64 -1.64 1.32
ALDOC q11.2 4 2.92 -0.21 1.26 HOXB6 q21.32 5 5.23 1.93 3.58
SCYA14 q12 6 5.28 -2.17 2.4 UGTREL1 q21.33 4 4.12 0.2 1.97
SCYA18 q12 4 3.95 1.8 2.94 COL1A1 q21.33 5 3.69 -4.63 -0.39
SCYA3L1 q12 7 2.46 -2.21 0.66 CLTC q23.2 4 5.04 0.37 2.56
TCF2 q12 4 3.92 0.05 1.54 CEP4 q25.1 4 3.28 1.36 2.43
NAP4 q12 5 5.12 2.19 3.64 H3F3B q25.1 4 2.7 0.42 1.46
PNMT q12 10 0.7 -0.52 0 WBP2 q25.1 4 3.23 -0.34 1.59
KRT13 q21.2 6 5.47 -1.76 1.36 ACOX1 q25.1 4 3.53 0.04 1.67

Table 6.2: Additional genes on chromosome 17 which have been annotated as over-expressed by the
standard HMM . For the p-arm a threshold value of Nr ≥ 3 has been used. The threshold value for the
q-arm has been set to Nr ≥ 4. Max represents the highest log ratio which was measured for the Nr
experiments where the gene has been annotated as over-expressed. Min represents the lowest log ratio
which was measured for the Nr experiments where the gene has been annotated as over-expressed. Mean
is the mean log ratio of the measured log ratios for the Nr experiments where the gene has been annotated
as over-expressed.
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Under-expression

Let us now consider in what regions of chromosome 17 the genes are located which have been
annotated as under-expressed. The Table 6.6 represents an overview of genes which have been
annotated as under-expressed in all gene expression profiles. The p-arm shows only twenty
genes which have been annotated as under-expressed over all gene expression profiles. Each of
the bands 17p13.2, 17p13.1 and 17p11.2 contains five of these candidates and every band of the
p-arm has at least two of these annotations. In general it seems that the p-arm does not play
the main role in the development of breast cancer. The situation on the q-arm is different. Here
the bands 17q11.2, 17q12, 17q21.2, 17q21.32, 17q21.33, 17q25.1 and 17q25.3 are mainly affected
by genes which have been annotated as under-expressed. Each of the regions 17q12, 17q21.2 and
17q21.33 contains more than nineteen of these genes. Candidate genes for under-expression that
play a more general role in breast cancer could be located in these regions. The bands which
have been affected by under-expression are also known in literature to be candidates for losses of
DNA segments. Orsetti et al. 1999 [20] found that the regions 17q11-q21 and 17q25 can contain
losses of DNA segments. A newer study of Orsetti et al. 2004 [21] refined these results. They
have found that the regions 17p, 17q11.2 and 17q21 are mainly affected by DNA losses and that
the bands 17q21.3, 17q22 and 17q25 can contain losses or gains of DNA segments.
When genes are located in a DNA segment which has been lost then this can cause the under-
expression of these genes if the other copy on the homologous chromosome is not able to com-
pensate this loss. This could have happened with some of the genes which have been annotated
as under-expressed. But it is also thinkable that regulation mechanisms which control the gene
expression have been affected by mutations and therefore we can also observe genes as under-
expressed. The analysis of ArrayCGH profiles could give more security for individual genes.
As we mentioned at the end of the Section 5.3 the bands 17q21.1, 17q22, 17q23.1, 17q24.1,
17q24.3 and 17q25.2 contain too less genes to make a general statement about the gene expres-
sion in these regions. From the Table 5.1 we know that twelve gene expression values have been
measured per profile for the band 17q23.2 when we ignore missing data values. On the basis
of the Tables 6.5 and 6.6 we know that the band 17q23.2 is mainly affected by over-expression.
Only one gene in this region has been annotated as under-expressed and twenty-nine genes have
been annotated as over-expressed over all gene expression profiles.
Now we consider which genes have been annotated as under-expressed. The basis of our data set
is the study of Pollack et al. [23]. In this study no under-expressed genes have explicitly been
mentioned, but the figures of the microarray data show that they exist. Orsetti et al. [21] have
mainly found under-expressed genes in the regions 17q11 and 17q21, but they have used other
cell lines and cell probes in comparison with Pollack et al. [23] and therefore the results are not
directly comparable. We compare the ninety-two genes which have been annotated as under-
expressed with the over-expressed candidate genes of the Table 5.2 to get a better impression
what candidate genes are also affected by under-expression. The genes CACNB1, TRAP240,
UNC119, RPL19, SDF2, NDP52, ABCA5, TIAF1, AD023, KIAA1321, RAD51C, RPS6KB1,
MLLT6, KRT20, APPBP2, ZNF144, KRTHA4, PPM1D, PIP5K2B and TBX2 are the twenty
candidate genes for over-expression which have never been annotated as under-expressed. All
other candidate genes for over-expression of the Table 5.2 are listed in the Table 6.3. The
attributes Max, Min and Mean of the genes SMARCE1 and JUP indicate more to identical
gene expression than to under-expression. In particular, the genes ERBB2, GRB7, SCYA3 and
LGALS3BP have been observed as under-expressed more than four times. Perou et al. [22] have
characterised variations in gene expression patterns in human breast tumours and a result has
been that they have found two breast cancer tumour groups, the one group expresses ERBB2
on a high level and the other failed to express ERBB2. Security for our results is given by the
fact that Perou et al. [22] have used some of the tumour cell lines as Pollack et al. [23] have
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done.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KIAA0524 q11.2 1 -1.93 -1.93 -1.93 HOXB5 q21.32 3 -1.5 -2.78 -2.3
TRAF4 q11.2 1 -1.72 -1.72 -1.72 NGFR q21.33 2 -2.53 -2.7 -2.61
FLJ10700 q11.2 1 -2.53 -2.53 -2.53 HBOA q21.33 2 -1.12 -1.61 -1.37
SCYA3 q12 6 -1.33 -2.82 -1.9 DLX4 q21.33 3 -1.97 -3.15 -2.6
SCYA4 q12 4 -0.36 -1.76 -1.36 ABCC3 q21.33 4 -1.42 -2.48 -1.83
MLN64 q12 2 -2.36 -3.1 -2.73 ICAM2 q23.3 3 -0.55 -2.45 -1.67
ERBB2 q12 7 -2.07 -3.13 -2.44 PECAM1 q23.3 3 -3.31 -4.5 -3.9
GRB7 q12 7 -1.7 -2.42 -2.11 SLC9A3R1 q25.1 2 -2.47 -3.76 -3.12
NR1D1 q21.1 2 -0.36 -1.82 -1.09 GRB2 q25.1 2 -1.53 -2.01 -1.77
CDC6 q21.2 2 -2.27 -2.82 -2.55 ITGB4 q25.1 3 -1.92 -2.69 -2.32
TOP2A q21.2 2 -1.86 -2.93 -2.4 HCNGP q25.1 1 -2.66 -2.66 -2.66
SMARCE1 q21.2 1 -0.38 -0.38 -0.38 BIRC5 q25.3 1 -2.59 -2.59 -2.59
KRT19 q21.2 3 -0.45 -3.36 -2.35 LGALS3BP q25.3 5 -1.92 -3.43 -2.72
JUP q21.2 1 -0.91 -0.91 -0.91

Table 6.3: Over-expressed candidate genes from Table 5.2 which have also been annotated as under-
expressed by the standard HMM . Max represents the highest log ratio which was measured for the Nr
experiments where the gene has been annotated as under-expressed. Min represents the lowest log ratio
which was measured for the Nr experiments where the gene has been annotated as under-expressed.
Mean is the mean log ratio of the measured log ratios for the Nr experiments where the gene has been
annotated as under-expressed.

Let us now consider the genes in the Table 6.4 which have additionally been annotated as
under-expressed. These genes are only a subset of the ninety-two different genes that have been
annotated as under-expressed over all gene expression profiles. The attributes Max, Min and
Mean are in general significantly less than zero and therefore the annotation should be reliable.
As above we use the Entrez Gene at the NCBI to get a better impression what functions some
of these candidate genes have.

• KPNA2 encodes a protein which is involved in the nuclear transport of proteins and could
also play a role in recombination processes.

• CLDN7 encodes a protein which is involved in the formation of tight junctions between
epithelial cells. Kominsky et al. [15] have found that the loss of CLDN7 correlates with
the histological grade of in situ and invasive ductal carcinomas of the breast. They have
also described the potential role of CLDN7 in the progression and ability of breast cancer
cells to disseminate. The expression of CLDN7 is lower in invasive ductal carcinomas of
the breast than in normal breast epithelium. This is exactly what we have found for some
of the gene expression profiles.

• LGALS9 encodes a galectin which is implicated in modulating cell-cell and cell-matrix
interactions. Irie et al. [10] have found that LGALS9 is a possible prognostic factor with
antimetastatic potential in breast cancer. They have observed that tumours with a low
expression level of LGALS9 do not form tight clusters during the in vitro proliferation.

• The genes SCYA2, SCYA7, SCYA11, SCYA13, SCYA14, SCYA18 and SCYA3L1 are
cytokines which are clustered on the q-arm of chromosome 17. These cytokines are secreted
proteins which are involved in immunoregulatory and inflammatory processes.

• SOX9 encodes a protein which interacts with chromatin and activates the transcription
via regulation of chromatin modification.
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Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KPNA2 p13.3 2 -2.09 -2.58 -2.33 SCYA13 q12 6 -1.53 -2.07 -1.75
RAB5EP p13.2 3 -2.39 -2.64 -2.54 SCYA14 q12 7 -1.45 -4.41 -2.55
CLDN7 p13.1 2 -2.6 -2.71 -2.65 SCYA18 q12 6 -0.34 -2.85 -1.9
PMP22 p12 2 -3.81 -3.92 -3.86 SCYA3L1 q12 3 -2.18 -4.3 -3.09
MFAP4 p11.2 2 -1.88 -2.41 -2.15 KRT17 q21.2 6 -2.18 -4.29 -3.1
ALDH10 p11.2 2 -1.37 -1.88 -1.63 FLJ22041 q21.2 4 -1.95 -2.72 -2.3
LGALS9 q11.2 4 -2.38 -4.23 -3.12 COPZ2 q21.32 4 -1.34 -2.85 -2.25
EVI2B q11.2 4 -1.68 -2.73 -2.07 SKAP55 q21.32 3 -2.91 -3.15 -3.03
EVI2A q11.2 4 -1.83 -3.36 -2.63 COL1A1 q21.33 7 -2.06 -4.26 -3.05
SCYA2 q12 5 -1.55 -4.04 -2.65 CD79B q23.3 3 -1.53 -3.78 -2.59
SCYA7 q12 3 -1.21 -2.38 -1.92 SOX9 q24.3 4 -2.46 -3.6 -2.94
SCYA11 q12 3 -1.22 -1.83 -1.63 TIMP2 q25.3 4 -1.56 -2.65 -2.19

Table 6.4: Additional genes on chromosome 17 which have been annotated as under-expressed by the
standard HMM . For the p-arm a threshold value of Nr ≥ 2 has been used. The threshold value for
the q-arm has been set to Nr ≥ 3. Max represents the highest log ratio which was measured for the
Nr experiments where the gene has been annotated as under-expressed. Min represents the lowest log
ratio which was measured for the Nr experiments where the gene has been annotated as under-expressed.
Mean is the mean log ratio of the measured log ratios for the Nr experiments where the gene has been
annotated as under-expressed.

• TIMP2 encodes a protein which is a member of the TIMP gene family. This protein is an
inhibitor of matrix metalloproteinases and supresses directly the proliferation of endothelial
cells. The gene product of TIMP2 is involved in the maintenance of a tissue. Nakopoulou
et al. [18] have found that TIMP2 is involved in the degradation of extracellular matrix
which leads to the invasion of cancer into the surrounding matrix. The basis of this study
have been breast cancer cells.

• The function of COL1A1 have been mentioned above as we discussed the results of genes
which have been annotated as over-expressed.

In summary, for the genes CLDN7, LGALS9 and TIMP2 publications are available which
describe the role of these genes in breast cancer when low expression levels have been observed.
The standard HMM s are able to find such candidate genes.

Selected gene expression profiles

The individually selected gene expression profiles in the Figures 6.1, 6.2, 6.3, 6.4 and 6.5 are
now described in detail. Thereby we will discuss the quality of the annotations and so we will
obtain a better impression of strengths and weaknesses of the standard HMM approach.

• The Figure 6.1 shows the annotations of the cell lines BT474 and SKBR3. In the profile
of BT474 are the bands 17p13.1, 17q11.2, 17q12, 17q21.2, 17q21.32 and 17q25.3 affected
by genes which have been annotated as under-expressed. All these genes have log ratios
which are significantly less than zero and the state posteriors sp(−) := γt(−) for these genes
are significantly greater than zero and so these annotations should be reliable. The genes
which have been annotated as over-expressed are located in the three segments 17q12-21.2,
17q21.32-22 and 17q23.2. The obviously higher expression levels in these regions can also
be seen in the high state posterior sp(+) := γt(+) within these regions. Some annotation
problems have occurred in the over-expressed segments. Genes with log ratios around zero
or significantly less than zero have been annotated as over-expressed. We have explained
these problems above in more detail. The state posterior sp(+) has only a little smaller
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values for such annotation problems as for the rest of the over-expressed genes in such a
segment. In general, the standard HMM has some problems to model the start and the
end of segments.
The cell line SKBR3 contains genes in the bands 17p12, 17q11.2, 17q12, 17q21.33 and
17q23.3 which have been annotated as under-expressed. The log ratios of these genes are
significantly less than zero and the state posterior sp(−) shows peaks for these genes. This
cell line contains one gene in the band 17p13.3 and a segment in the region 17q12-21.2
which both have been annotated as over-expressed. This segment overlaps with the over-
expressed segment 17q12-21.2 of the cell line BT474 and includes also some genes with
log ratios less than zero. The mainly high state posterior values sp for the Viterbi Path
show that these annotations are significant and that the standard HMM has computed a
Viterbi Path which has a higher probability than other annotation paths.

• The Figure 6.2 contains the annotations of the primary breast tumours NORWAY 14 and
NORWAY 26. The NORWAY 14 profile shows two regions which have been annotated as
under-expressed, the one in the band 17q21.31 and the other in the band 17q25.3. The
segments which have been annotated as over-expressed are smaller and more widespread
than the over-expressed segments in the cell lines above. Nevertheless, the state posterior
profiles sp(−) and sp(+) of the states − and + show significant peaks in such segments.
The over-expressed segments are located in the bands 17q11.2, 17q12, 17q21.2, 17q21.31
and 17q21.32. Genes which have log ratios which are significantly less than zero have
not been annotated as over-expressed. The state posterior profile sp of the Viterbi Path
illustrates the good quality of this annotation.
The primary tumour NORWAY 26 contains only one gene in the band 17q23.3 which has
been annotated as under-expressed. The state posterior profile sp(−) of the state − has
also peaks in the bands 17q11.2 and 17q25 and therefore it is thinkable that the affected
genes in these bands could also be under-expressed. This example motivates how it is
possible to find additional candidates by comparing the annotation with the state posterior
profiles. The NORWAY 26 profile contains one segment in the band 17q12 which has been
annotated as over-expressed. The state posterior profile sp(+) of the state + contains also
peaks in the bands 17p13.1, 17q11.2, 17q22, 17q23.3 and 17q25.1. In the state posterior
profile sp of the Viterbi Path are such regions represented by smaller probabilities. In
summary, such regions are contained in nearly every gene expression profile and in most of
these cases the log ratios of gene expression values are not significant enough to get other
annotations for these genes.

• The Figure 6.3 shows the annotations of the primary breast tumours NORWAY 47 and
NORWAY 53. The profile NORWAY 47 does not contain genes which have been annotated
as under-expressed, but the state posterior profile sp(−) of the state − has peaks in the
bands 17p13.3, 17p13.1, 17p11.2, 17q12, 17q21.32 and 17q21.33. Thus, the insecurity of
the annotation process is visible in the state posterior profile sp of the Viterbi Path. The
segments 17q11.2, 17q12-21.2, 17q24.3-25.1 and 17q25.1 which have been annotated as
over-expressed show significantly high expression levels. The segment in the region 17q12-
21.2 contains a subsegment with a lower expression level than the rest of this segment.
This subsegment is clearly visible in the state posterior profile sp of the Viterbi Path and
therewith it is imaginable that this subsegment could be identically expressed.
The profile NORWAY 53 shows one segment in the band 17q12 which has been annotated
as under-expressed and three segments which have been annotated as over-expressed are
located in the regions 17p11.2-q11.2, 17q12-21.2 and 17q25.3. The state posterior profile
sp(+) of the state + shows also a peak in the region 17q23.3-24.1. The segment 17p11.2-
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q11.2 contains a subsegment with a lower expression level. We have observed the same
behaviour in the profile of NORWAY 47.

• The Figure 6.4 represents the primary breast tumours NORWAY 100 and STANFORD 2.
The NORWAY 100 profile shows two segments in the regions 17q12 and 17q12-21.2 which
have been annotated as under-expressed. The segment in 17q12-21.2 contains some genes
with higher expression levels as we can observe for other genes in this segment. These
genes with higher expression levels are clearly visible on the basis of the peaks in the state
posterior profiles sp and sp(−) of the Viterbi Path and the state −. Three segments in
the bands 17q12, 17q21.2 and 17q21.32 have been annotated as over-expressed. These
segments are small and have significantly higher expression levels.
The profile of the primary breast tumour STANFORD 2 shows one segment in the band
17p13.2 which has been annotated as under-expressed and two segments which have been
annotated as over-expressed are located in the regions 17q11.2 and 17q12-21.2. The stan-
dard HMM has problems to end the first over-expressed segment and the second segment
contains subsegments of lower expression which lead to peaks in the state posterior pro-
files. The state posterior profile sp(−) of the state − shows peaks in the bands 17q11.2,
17q12, 17q23.2 and 17q25.3 and the state posterior profile sp(+) of the state + contains
peaks in the bands 17q21.2 and 17q21.33.

• The Figure 6.5 contains the primary breast tumours STANFORD 24 and STANFORD A.
The profile STANFORD 24 shows seven segments with significantly low expression levels
in the bands 17p11.2, 17q11.2, 17q12, 17q21.33, 17q25.1 and 17q25.3 which have been
annotated as under-expressed. This profile does not contain over-expressed annotations,
but peaks in the state posterior profile sp(+) of the state + are located in the bands
17p13.1, 17p11.2 and 17q21.1 and therefore we could expect over-expressed candidates in
these regions.
The profile STANFORD A shows two genes in the bands 17q11.2 and 17q21.2 which have
been annotated as under-expressed and five segments which have been annotated as over-
expressed are located in the regions 17q11.2, 17q12, 17q21.2, 17q21.32-33 and 17q23.2-23.3.
The under-expressed and the over-expressed regions have characteristic expression levels
and the whole profile has a good annotation quality.

Summary of the annotation process

Now we consider the summary of the whole annotation process of our breast cancer gene expres-
sion data set. The Figure 6.6 contains the four subfigures Unchanged Segments, Over-expressed
Segments, Under-expressed Segments and Gene Counts.
The subfigure Unchanged Segments shows the locations and the absolute frequencies of segments
which have been annotated as identically expressed. The inhomogeneity of gene expression pro-
files can be seen in the variability of the lengths of identically expressed segments. These lengths
are in general greater than the lengths of the segments in the subfigures Over-expressed Segments
and Under-expressed Segments. The darker hexagons indicate that some identically expressed
segments with nearly the same locations exist in the gene expression profiles.
The subfigure Over-expressed Segments represents the locations and the absolute frequencies of
segments which have been annotated as over-expressed. These segments are smaller and show
lower variability in comparison with identically expressed segments.
The subfigure Under-expressed Segments shows the locations and the absolute frequencies of
segments which have been annotated as under-expressed. These segments behave like the over-
expressed segments, but in general their lengths are smaller. We have already seen this in the
Figures 6.1, 6.2, 6.3, 6.4 and 6.5 of the gene expression profiles. The darker hexagons in the
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subfigures Over-expressed Segments and Under-expressed Segments are the locations where basic
candidate genes for different gene expression in subtypes of breast cancer can be found.
The subfigure Gene Counts represents the absolute frequencies of under-expressed and over-
expressed annotations of a gene in the breast cancer data set. The under-expressed frequencies
are shown in the upper subfigure and the over-expressed frequencies in the subfigure below. The
overview clarifies that most of the genes which have been annotated as over-expressed have also
been annotated as under-expressed. The counts are in general reliable because the log ratios of
over-expressed and under-expressed annotations are significantly different from zero. In more
detail, the under-expressed annotations do not contain log ratios greater than zero, but the
over-expressed annotations include fifty-five log ratios which are less than zero. An overview of
annotation errors is given in the column E of the Table 6.5. So we have to say that some of the
genes which have been annotated as over-expressed can have too high counts. Nevertheless, we
see that the region 17q22-24.2 is mainly affected by over-expression and only some genes in this
region have been annotated as under-expressed. The expression level of this region could follow
the results of Orsetti et al. [21] and [20] and Nugoli et al. [19] which we have described above.
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(3) SKBR3      [ S = 0.93; S(=) = 0.97; S(+) = 0.75; S(−) = 0.61 ]
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Figure 6.1: Gene expression profiles of chromosome 17 which have been annotated by the standard
HMM . The first profile shows the BT474 and the second the SKBR3 data. In general, the headline of a
profile contains the unique profile number (n) which is used in the Figure 5.3, the profile name, the sum S
(5.3) of the state posteriors for the Viterbi Path and the relative proportion S(i) (5.3), with i ∈ {−, =, +},
of the state posterior profile i in the Viterbi Profile. Top down the five graphics per experiment show the
state posterior profiles for the states =, + and −, the state posterior profile of the Viterbi Path and the
annotated gene expression profile. The annotation of a gene is represented by the colour of the log ratio
line. A red line represents an as under-expressed, a grey line an as identically expressed and a green line
an as over-expressed annotated gene.
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(9) NORWAY 14      [ S = 0.95; S(=) = 0.99; S(+) = 0.65; S(−) = 0.37 ]
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(15) NORWAY 26      [ S = 0.94; S(=) = 1; S(+) = 0.48; S(−) = 0.16 ]
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Figure 6.2: Gene expression profiles of chromosome 17 which have been annotated by the standard
HMM . The first profile shows the NORWAY 14 and the second the NORWAY 26 data. In general, the
headline of a profile contains the unique profile number (n) which is used in the Figure 5.3, the profile
name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion S(i) (5.3),
with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down the five graphics per
experiment show the state posterior profiles for the states =, + and −, the state posterior profile of the
Viterbi Path and the annotated gene expression profile. The annotation of a gene is represented by the
colour of the log ratio line. A red line represents an as under-expressed, a grey line an as identically
expressed and a green line an as over-expressed annotated gene.
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(19) NORWAY 47      [ S = 0.88; S(=) = 0.96; S(+) = 0.78; S(−) = 0 ]
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(21) NORWAY 53      [ S = 0.92; S(=) = 0.95; S(+) = 0.81; S(−) = 0.2 ]
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Figure 6.3: Gene expression profiles of chromosome 17 which have been annotated by the standard
HMM . The first profile shows the NORWAY 47 and the second the NORWAY 53 data. In general, the
headline of a profile contains the unique profile number (n) which is used in the Figure 5.3, the profile
name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion S(i) (5.3),
with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down the five graphics per
experiment show the state posterior profiles for the states =, + and −, the state posterior profile of the
Viterbi Path and the annotated gene expression profile. The annotation of a gene is represented by the
colour of the log ratio line. A red line represents an as under-expressed, a grey line an as identically
expressed and a green line an as over-expressed annotated gene.
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(26) NORWAY 100      [ S = 0.93; S(=) = 0.99; S(+) = 0.5; S(−) = 0.47 ]
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(33) STANFORD 2      [ S = 0.94; S(=) = 0.99; S(+) = 0.74; S(−) = 0.13 ]
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Figure 6.4: Gene expression profiles of chromosome 17 which have been annotated by the standard
HMM . The first profile shows the NORWAY 100 and the second the STANFORD 2 data. In general,
the headline of a profile contains the unique profile number (n) which is used in the Figure 5.3, the
profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion
S(i) (5.3), with i ∈ {−, =, +}, of the state posterior profile i in the Viterbi Profile. Top down the five
graphics per experiment show the state posterior profiles for the states =, + and −, the state posterior
profile of the Viterbi Path and the annotated gene expression profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents an as under-expressed, a grey line
an as identicallyexpressed and a green line an as over-expressed annotated gene.
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(38) STANFORD 24      [ S = 0.93; S(=) = 0.98; S(+) = 0; S(−) = 0.58 ]
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(41) STANFORD A      [ S = 0.93; S(=) = 0.99; S(+) = 0.81; S(−) = 0.31 ]
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Figure 6.5: Gene expression profiles of chromosome 17 which have been annotated by the standard
HMM . The first profile shows the STANFORD 24 and the second the STANFORD A data. In general,
the headline of a profile contains the unique profile number (n) which is used in the Figure 5.3, the profile
name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion S(i) (5.3),
with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down the five graphics per
experiment show the state posterior profiles for the states =, + and −, the state posterior profile of the
Viterbi Path and the annotated gene expression profile. The annotation of a gene is represented by the
colour of the log ratio line. A red line represents an as under-expressed, a grey line an as identically
expressed and a green line an as over-expressed annotated gene.
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Figure 6.6: Overview of annotations for the standard HMM . In general a segment is a sequence of
successive genes which have been annotated in the same way. Each segment has a start and an end point
on the chromosome. The figure Unchanged Segments gives a summary of segments on chromosome
17 which have been annotated as identically expressed. The figure Over-expressed Segments shows
a summary of segments on chromosome 17 which have been annotated as over-expressed. The figure
Under-expressed Segments represents a summary of segments on chromosome 17 which have been
annotated as under-expressed. The figure Gene Counts shows the absolute frequency of over-expressed
and under-expressed annotations per gene. The absolute frequencies of under-expressed annotations are
shown in the upper subfigure and the absolute frequencies of over-expressed annotations are given in the
subfigure below.
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6.1.2 HMM s With Transition Classes

The HMM s with transition classes are created as we have described in the Section 5.1. These
HMM s extend the standard HMM approach to consider proximity effects and thus develop a
more realistic model of the effects which can influence the alteration of gene expression levels
over regions. The positional proximity of genes on a chromosome and the gene expression levels
of these genes can show characteristic patterns. When we consider breast cancer we can easily
motivate the usage of the transition class switching approach including the proximity of adjacent
genes. All the literature which we have reported at the beginning of the Section 5.3 shows that
losses or gains of DNA segments can have important influences on the gene expression levels of
genes in these segments.

Modelling of chromosomal imbalances

A natural approach should be able to model over-expression or under-expression in DNA seg-
ments respecting the proximity of adjacent genes. So we assume that the chance for two adjacent
genes to be both in the same lost or gained segment increases the closer the distance between
these two genes is and therefore the probability that these two adjacent genes show the same
expression status should be higher. It is realistic to assume that the loss or the gain of a DNA
segment does not affect both adjacent genes when the distance between these genes is greater
as in the case before. The probability that both genes show the same expression status should
be less as in the other case.
We model proximity effects between adjacent genes by mapping the distance between these genes
into a set of predefined transition matrices. The mapping is done by a transition class switching
function as for example in the Definition (5.1). The transition matrices are coupled with the
coupling function of the Definition (3.7). The extended HMM requires additional parameters
for the transition class switching function and the coupling function. That is, we have to choose
threshold values for the distance between adjacent genes which will model the proximity effects,
and we have to determine scaling factors for the coupling of the transition matrices which will
modify the expected number of genes in a segment. Both together describes our more realistic
model from above, because the distance between adjacent genes is used to determine a transition
matrix which is scaled by a predefined factor. The choice of good additional parameters without
previous knowledge about the underlying biological processes is difficult. The current choice is
done by testing the extended HMM with different additional parameters and the selection of
the HMM which shows the best performance. We hope that the progress in cancer research
will lead to chromosomal maps where losses and gains of segments are known in detail. Such
previous knowledge could be used to determine additional parameters.

Now we represent the annotation results of an HMM with two transition classes (extended
HMM ). We use the same estimated mixture model as we have done for the standard HMM
to have the same initial emission densities. The basic initial transition matrix is equal to the
transition matrix of the standard HMM and the second is scaled by a factor of two. That is, we
use the scaling factors one and two which define the scaling vector ~S = (1, 2). The transition
class switching function of the Definition (5.1) is used with a distance threshold value T = 30000
base pairs.

Over-expression

The Table 6.12 represents an overview of genes over all gene expression profiles in our breast
cancer data set which have been annotated as over-expressed. The segmentation of this table
into chromosomal bands allows the detection of bands which have been frequently annotated by
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the extended HMM . The comparison of these results with the annotation results of the stan-
dard HMM is also possible. The inhomogeneity of the gene expression profiles in our data set
is reflected in the structure of this table. For instance, look at the correlation matrix in the
Figure 5.3 or the overview of the gene expression profiles in the Figure 5.4 to recall the quality
structure of our breast cancer data set. The general overview of genes which have been anno-
tated as over-expressed includes three hundred fourteen counts for over-expression over all gene
expression profiles and only nine of these annotations have log ratios less than zero. In total
there are one hundred thirty-two different genes which have been annotated as over-expressed
by the extended HMM . When we look at the over-expressed annotations of the standard HMM
we have five hundred seven genes over all profiles which have been annotated as over-expressed
and in total one hundred sixty seven different genes have been annotated as over-expressed. The
standard HMM has done fifty-five over-expressed annotations with log ratios less than zero.
To get a better impression of the annotation quality of the extended HMM we analyse the Ta-
ble 6.12 and compare this table with the Table 6.5. The p-arm of the chromosome 17 contains
seventeen genes which have been annotated as over-expressed over all profiles. The chromosomal
bands 17p13.3, 17p13.2 and 17p12 contain the equal number of counts for the same gene ex-
pression profiles in comparison with the over-expressed annotations of the standard HMM . The
extended HMM has not done over-expressed annotations in the band 17p13.1, but the standard
HMM has annotated a gene in the profile NORWAY 18 as over-expressed. Therefore we have
inspected both profiles which are not shown here and we have found that the log ratio of this gene
is less significant as other log ratios for over-expressed genes. The chromosomal band 17p11.2
contains the first wide differences in the comparison of the extended HMM with the standard
HMM . That is, the extended HMM has annotated eight genes over all profiles as over-expressed
and the standard HMM has found twenty-four. The comparison of these two annotations for
the band 17p11.2 shows that the profiles NORWAY 53 and NORWAY 102 are the main sources
for the differences in the annotation results. The annotation results of the standard HMM for
the profile NORWAY 53 are shown in the Figure 6.3. Log ratios with questionable significance
can clearly be seen in the over-expressed region of the band 17p11.2. The extended HMM has
done a better annotation which is shown in the Figure 6.9. The region 17p11.2-q11.2 which has
been annotated as over-expressed by the standard HMM has been splitted into differently anno-
tated regions by the extended HMM so that the significant genes are surrounded by identically
expressed regions. The profile NORWAY 102 seems not to have log ratios that are significant
enough to be annotated as over-expressed by the extended HMM . Such effects as observed in
the profiles NORWAY 53 and NORWAY 102 on the p-arm are also seen on the q-arm which
we will consider now.
The q-arm contains two hundred seven genes over all gene expression profiles which have been
annotated as over-expressed. Each of the chromosomal bands 17q11.2, 17q12, 17q21.2, 17q21.33,
17q23.2 and 17q25.1 has more than nineteen genes which have been annotated as over-expressed.
Kauraniemi et al. [13] have found over-expression in the region 17q12. Willis et al. [27] have ob-
served over-expression in the region 17q12-23. Monni et al. [17] have measured over-expression
in the region 17q23. The extended HMM has annotated these regions as over-expressed in our
breast cancer data set and after the inspection of the annotations we can conclude that the
extended HMM is able to detect these regions.
The Table 6.7 represents the number of over-expressed annotations per band for the q-arm on
chromosome 17 for the standard and the extended HMM . This table shows that the extended
HMM has annotated less or the same number of over-expressed genes per band in comparison
with the annotation results of the standard HMM . We have inspected the annotations of both
HMM s to find out more about this interesting fact. One result of the analysis of the gene
expression profiles with the standard HMM is that this approach has problems to model the
start and the end of a segment. This has led to questionable annotations for genes whose log
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Band standard HMM extended HMM Band standard HMM extended HMM
q11.2 51 38 q23.2 29 20
q12 123 98 q24.1 2 2
q21.1 8 4 q24.3 3 1
q21.2 87 33 q25.1 55 39
q21.31 6 5 q25.2 1 0
q21.33 44 22 q25.3 23 2
q22 4 4

Table 6.7: The number of genes per band on the q-arm of chromosome 17 which have been annotated
as over-expressed by the standard HMM and the extended HMM with two transition classes.

ratios do not support these annotations. For instance, look at the genes with negative attribute
values in the Tables 6.1 and 6.2. The extended HMM is able to model the start and the end of
a segment better as the standard HMM . We will see this later in more detail when we discuss
selected gene expression profiles. Another important observation is that the extended HMM has
annotated in general only the genes with significant log ratios as over-expressed in comparison
with the standard HMM .
Now we discuss some gene expression profiles which mainly contribute to the conclusions of the
Table 6.7. The basis of this analysis are the Tables 6.12 and 6.5 and selected annotations of
both HMM s. We concentrate on gene expression profiles whose annotations are shown in the
Figures 6.1, 6.3, 6.7 and 6.9. The annotations in the Figures 6.1 and 6.3 have been created by
the standard HMM . The extended HMM has created the annotations in the Figures 6.7 and
6.9.

• The gene expression profile NORWAY 53 has nine genes in the band 17q11.2 which have
been annotated as over-expressed by the standard HMM and two such annotations which
have been done by the extended HMM . When we compare these annotations with the help
of the Figures 6.3 and 6.9 we see that the annotation of the extended HMM has a better
quality because the start and the end of the over-expressed segment is modelled better.

• The breast cancer cell line BT474 shows fourteen over-expressed annotations in the band
17q12 and twelve such annotations in the band 17q21.33 in the annotation results of the
standard HMM . The annotation results of the extended HMM contain nine over-expressed
annotations in the band 17q12 and one in the band 17q21.33. The reason for these different
annotations is also the fact that the extended HMM has better characterised these over-
expressed regions.

• The primary breast tumour NORWAY 47 has nineteen genes in the band 17q12 and thir-
teen in the band 17q25.1 which have been annotated as over-expressed by the standard
HMM . The annotation results of the extended HMM show eleven over-expressed annota-
tions in the band 17q12 and five in the band 17q25.1. The extended HMM has splitted the
over-expressed region 17q12 into three segments. The two external segments have been
annotated as over-expressed and these external segments surround an identically expressed
segment. The log ratios in these regions indicate such an annotation. Only the genes in the
band 17q25.1 which have more significant log ratios have been annotated as over-expressed
by the extended HMM . Both annotations are shown in the Figures 6.3 and 6.9.

The presented examples generalise the differences in over-expressed annotations between the
standard HMM and the extended HMM .
Let us consider which genes have been annotated as over-expressed by the extended HMM .
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The Table 5.2 represents genes on chromosome 17 which have been found as over-expressed by
Pollack et al. [23]. All these genes, excepted TBX2, have been annotated as over-expressed by the
extended HMM . TBX2 has been found by the standard HMM as we can see in the Table 6.1,
but the attribute values Max, Min and Mean are not very significant. The overview of the
known over-expressed candidate genes which have also been annotated as over-expressed by the
extended HMM is shown in the Table 6.8. The gene ABCA5 should be emphasised because the
standard HMM has done an annotation error as we can see in the Table 6.1, but the extended
HMM has annotated this gene as over-expressed with significant attribute values. For the genes
SDF2, TRAF4, FLJ10700, TIAF1, PIP5K2B, ERBB2, GBR7, KRT20, KRTHA4, HOXB5,
NDP52, RAD51C, SLC9A3R1, AD023, GRB2 and ITGB4 nothing changes in the annotation
in comparison of the standard HMM with the extended HMM . All the other genes of the
Table 6.8 have improved annotation attributes Max, Min and Mean. This observation confirms
the finding that the extended HMM annotates in general more significant log ratios as over-
expressed. Fifty percent of all two hundred sixty-five genes in our breast cancer data set have
been annotated as over-expressed over all gene expression profiles. The genes MLN64, GRB7,
NR1D1, CDC6, TOP2A and SMARCE1 are located in direct adjacence to the gene ERBB2 and
these genes show more significant attributes Nr, Max, Min and Mean in comparison with the
standard HMM . Pollack et al. [23] have found that the genes MLN64 and GRB7 are always co-
amplified with ERBB2. They have reported the possible role of these genes in the pathogenesis
and that these genes could be potential useful targets in the treatment of ERBB2 -positive
tumours. The genes MLLT6, ZNF144, PIP5K2B and TOP2A have been seen amplified and
highly expressed in a subset of the ERBB2 -coamplified tumours. These genes may contribute
to the specific phenotypic features of ERBB2 -positive tumours. The findings of Pollack et al.
[23] are consistent with the work of Kauraniemi et al. [13], and our annotations in the Table 6.8
match good with both publications.
The Table 6.9 contains additional genes which have been annotated as over-expressed by the
extended HMM . We have used the same threshold values for the p-arm and the q-arm as in
the Table 6.2 which has been created by the standard HMM . The Table 6.9 presents less genes
in comparison with the Table 6.2. The cause of this is that the extended HMM , as described
above, needs more significant values for such annotations. All the genes in the Table 6.9 are
also contained in the Table 6.2. In more detail, the annotations of the genes SCYA18, PNMT,
HOXB6 and CLTC have not changed when we have used the extended HMM in comparison with
the annotation results of the standard HMM . The other genes MFPA4, SCYA14, SCYA3L1 and
KRT17 show better attribute values Max, Min and Mean for the over-expressed annotations.
The rest of the genes of the Table 6.2 which are not contained in the Table 6.9 have also been
annotated as over-expressed by the extended HMM , but these genes are not shown here because
these genes have too low values for the attribute Nr. The functions of some additional candidate
genes for over-expression are explained above where we have analysed the gene expression profiles
with the standard HMM . Recall that HOXB6 is known to play a role in acute myeloid leukaemia
and colorectal cancer, and that KRT17 has functions in the outcome of breast cancer [26].

Under-expression

Now we consider which regions on chromosome 17 are mainly affected by under-expression. The
Table 6.13 represents an overview of genes which have been annotated as under-expressed by the
extended HMM over all gene expression profiles. One hundred sixty-seven genes over all profiles
have been annotated as under-expressed by the extended HMM . The analysis of these genes
has identified seventy-nine different genes in the annotation process. The standard HMM has
annotated two hundred eighteen genes as under-expressed over all profiles and under these genes
are ninety-two different genes. The trend that the extended HMM requires more significant log
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Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KIAA0524 q11.2 2 2.11 1.71 1.91 KRT19 q21.2 3 3.29 2.71 3
UNC119 q11.2 2 2.9 2.75 2.82 JUP q21.2 2 2.77 2.28 2.52
SDF2 q11.2 2 3.16 2.49 2.83 HOXB5 q21.32 5 4.28 1.98 3.06
TRAF4 q11.2 3 3.41 2.63 2.91 NDP52 q21.32 2 1.81 1.61 1.71
FLJ10700 q11.2 3 5.7 1.98 3.91 NGFR q21.33 1 0.88 0.88 0.88
TIAF1 q11.2 3 4.34 1.88 2.99 HBOA q21.33 2 3.97 2.53 3.25
KIAA1321 q11.2 2 3.61 1.96 2.78 DLX4 q21.33 5 4.74 2.48 3.45
SCYA3 q12 4 2.64 1.69 2.15 ABCC3 q21.33 4 5.01 3.09 3.83
SCYA4 q12 4 2.6 1.13 1.68 RAD51C q23.2 2 2.55 2.43 2.49
MLLT6 q12 4 4.89 0.34 3.01 RPS6KB1 q23.2 5 2.98 1.81 2.4
ZNF144 q12 4 3.67 1.86 2.9 APPBP2 q23.2 4 2.18 1.45 1.76
PIP5K2B q12 4 4.34 2.94 3.58 PPM1D q23.2 3 2.83 2.01 2.32
CACNB1 q12 4 3.85 1.04 2.61 TRAP240 q23.2 1 2.86 2.86 2.86
RPL19 q12 4 2.06 0.21 0.79 ICAM2 q23.3 1 2 2 2
MLN64 q12 9 4.9 2.62 3.8 PECAM1 q23.3 1 2.4 2.4 2.4
ERBB2 q12 10 5.07 2.4 3.64 ABCA5 q24.2 1 2.7 2.7 2.7
GRB7 q12 10 6.16 2.43 4.22 SLC9A3R1 q25.1 2 4 2.81 3.4
NR1D1 q21.1 4 2.28 -0.29 1.04 AD023 q25.1 2 2.78 2.5 2.64
CDC6 q21.2 3 4.54 2.78 3.48 GRB2 q25.1 3 2.32 1.73 2.1
TOP2A q21.2 3 5.18 1.45 2.85 ITGB4 q25.1 5 5.18 0.17 2.72
SMARCE1 q21.2 5 6.48 1.74 4.66 HCNGP q25.1 3 2.32 1.44 1.83
KRT20 q21.2 2 1.74 1.1 1.42 BIRC5 q25.3 1 2.64 2.64 2.64
KRTHA4 q21.2 2 1.44 0.32 0.88 LGALS3BP q25.3 1 2.93 2.93 2.93

Table 6.8: Over-expressed candidate genes from Table 5.2 which have been annotated as over-expressed
by the HMM with two transition classes. Max represents the highest log ratio which was measured for
the Nr experiments where the gene has been annotated as over-expressed. Min represents the lowest log
ratio which was measured for the Nr experiments where the gene has been annotated as over-expressed.
Mean is the mean log ratio of the measured log ratios for the Nr experiments where the gene has been
annotated as over-expressed.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
MFAP4 p11.2 3 4.83 3.43 4.17 PNMT q12 9 0.7 -0.52 0.01
SCYA14 q12 4 5.28 2.34 3.8 KRT17 q21.2 6 5 2.26 3.39
SCYA18 q12 4 3.95 1.8 2.94 HOXB6 q21.32 5 5.23 1.93 3.58
SCYA3L1 q12 4 2.46 1.46 1.86 CLTC q23.2 4 5.04 0.37 2.56
NAP4 q12 4 5.12 2.5 4

Table 6.9: Additional genes on chromosome 17 which have been annotated as over-expressed by the
HMM with two transition classes. For the p-arm a threshold value of Nr ≥ 3 has been used. The
threshold value for the q-arm has been set to Nr ≥ 4. Max represents the highest log ratio which was
measured for the Nr experiments where the gene has been annotated as over-expressed. Min represents
the lowest log ratio which was measured for the Nr experiments where the gene has been annotated as
over-expressed. Mean is the mean log ratio of the measured log ratios for the Nr experiments where the
gene has been annotated as over-expressed.
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ratios as the standard HMM to annotate genes as over-expressed or under-expressed is also
discerned here on the basis of these numbers. Let us first look at the p-arm of chromosome 17
which has in total nineteen genes which have been annotated as under-expressed over all profiles.
The extended HMM has annotated the bands 17p13.3, 17p13.2 and 17p13.1 in the same manner
as the standard HMM . The chromosomal band 17p12 contains two new under-expressed anno-
tations with significant log ratios in the primary breast cancer tumour STANFORD 17. The
region 17p11.2 includes three changes. That is, the profiles STANFORD23 and STANFORD 24
do not show genes which have been annotated as under-expressed in this band and the profile
NORWAY 18 shows a new annotation in this band. The inspection of the profiles STANFORD
23 and STANFORD 24 let us assume that the log ratios of the affected genes are marginal
cases, because the state posterior sp(−) for the state − shows a good visible peak. The profile
NORWAY 18 has been annotated with a better quality by the extended HMM in comparison
with the annotation results of the standard HMM . The gene which has now been annotated as
under-expressed has a log ratio which is significantly less than zero. The standard HMM has
annotated this gene as over-expressed because this gene is located in front of an over-expressed
segment. As we have mentioned several times the standard HMM has problems to model the
start or the end of segments. The extended HMM shows in general much better annotations in
such cases.
Let us look at the under-expressed annotations over all gene expression profiles for the q-arm of
chromosome 17. The q-arm contains one hundred forty-eight genes which have been annotated
as under-expressed. The bands 17q24.1, 17q24.2 and 17q24.3 have been annotated in the same
manner by the standard and the extended HMM . The extended HMM has annotated less genes
as under-expressed in the chromosomal regions 17q11.2, 17q12, 17q21.1, 17q21.31, 17q21.32,
17q21.33, 17q23.2, 17q23.3, 17q25.1 and 17q25.3 in comparison with the annotation results of
the standard HMM . The extended HMM has annotated one gene more as under-expressed in
the band 17q21.2 as the standard HMM has done. The distribution of annotations in this region
includes more profiles in the annotation results of the extended HMM as in the annotation re-
sults of the standard HMM . Mainly affected by under-expression are the bands 17q11.2, 17q12,
17q21.2, 17q21.32, 17q21.33 and 17q25.3 which all show more than ten annotations. As we
have reported for the annotation results of the standard HMM the bands 17q12 and 17q21.2
are also the regions with the most annotations in the annotation results of the extended HMM .
Orsetti et al. 1999 [20] found that the regions 17q11-21 and 17q25 can contain losses of DNA
segments. In the year 2004 Orsetti et al. [21] refined these results and reported that the regions
17p, 17q11.2 and 17q21 are mainly affected by DNA losses and that the bands 17q21.3, 17q22
and 17q25 can contain losses or gains of DNA segments. Our annotation results which have
been created by the extended HMM with two transition classes match good with the results of
Orsetti et al. [21]. We have explained what processes could lead to low expression levels as we
have discussed the annotation results of the standard HMM .
In the next step of our analysis we consider which genes are mostly affected by under-expression.
Pollack et al. [23] have not explicitly mentioned under-expressed genes. Orsetti et al. [21] have
found under-expression in the bands 17q11 and 17q21, but they have used other cell lines and
therefore the results are not directly comparable with our results. To get an impression which
of the known candidate genes for over-expression of the Table 5.2 have also been annotated
as under-expressed by the extended HMM we have compared the seventy-nine under-expressed
candidates with the genes in the Table 5.2. The results are shown in the Table 6.10. All genes in
this table have significant attributes Max and Min and that is what has conducted to the under-
expressed annotation. Let us recall the annotation results of the standard HMM which are shown
in the Table 6.3. We have compared these results with the results of the extended HMM and
we have found that the genes KIAA0524, NR1D1, JUP and HBOA have never been annotated
as under-expressed by the extended HMM . The genes NR1D1, JUP and HBOA do not have
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significant log ratios for such annotations and the log ratio of KIAA0524 is a marginal case. The
extended HMM has annotated the over-expressed candidate gene RAD51C as under-expressed
in contrast to the standard HMM and this annotation is significant as the attributes Max, Min
and Mean show. In summary, the over-expressed candidate genes KIAA0524, UNC119, SDF2,
TIAF1, KIAA1321, MLLT6, ZNF144, PIP5K2B, CACNB1, RPL19, NR1D1, KRT20, KRTHA4,
JUP, NDP52, HBOA, RPS6KB1, APPBP2, PPM1D, TBX2, TRAP240, ABCA5, AD023 and
GRB2 have never been annotated as under-expressed by the extended HMM .

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
TRAF4 q11.2 1 -1.72 -1.72 -1.72 NGFR q21.33 2 -2.53 -2.7 -2.61
FLJ10700 q11.2 1 -2.53 -2.53 -2.53 DLX4 q21.33 2 -2.68 -3.15 -2.91
SCYA3 q12 3 -1.61 -2.82 -2.16 ABCC3 q21.33 1 -2.48 -2.48 -2.48
SCYA4 q12 2 -1.59 -1.76 -1.68 RAD51C q23.2 1 -2.36 -2.36 -2.36
MLN64 q12 1 -3.1 -3.1 -3.1 ICAM2 q23.3 2 -2.02 -2.45 -2.24
ERBB2 q12 6 -2.07 -3.13 -2.45 PECAM1 q23.3 3 -3.31 -4.5 -3.9
GRB7 q12 6 -1.7 -2.42 -2.12 SLC9A3R1 q25.1 3 -2.27 -3.76 -2.83
CDC6 q21.2 2 -2.27 -2.82 -2.55 ITGB4 q25.1 1 -2.69 -2.69 -2.69
TOP2A q21.2 2 -1.86 -2.93 -2.4 HCNGP q25.1 1 -2.66 -2.66 -2.66
SMARCE1 q21.2 1 -2.29 -2.29 -2.29 BIRC5 q25.3 1 -2.59 -2.59 -2.59
KRT19 q21.2 4 -1.88 -3.36 -2.71 LGALS3BP q25.3 6 -1.92 -3.43 -2.65
HOXB5 q21.32 2 -2.63 -2.78 -2.7

Table 6.10: Over-expressed candidate genes from Table 5.2 which have also been annotated as under-
expressed by the HMM with two transition classes. Max represents the highest log ratio which was
measured for the Nr experiments where the gene has been annotated as under-expressed. Min represents
the lowest log ratio which was measured for the Nr experiments where the gene has been annotated as
under-expressed. Mean is the mean log ratio of the measured log ratios for the Nr experiments where the
gene has been annotated as under-expressed.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KPNA2 p13.3 2 -2.09 -2.58 -2.33 SCYA18 q12 4 -1.69 -2.85 -2.43
RAB5EP p13.2 3 -2.39 -2.64 -2.54 SCYA3L1 q12 3 -2.18 -4.3 -3.09
CLDN7 p13.1 2 -2.6 -2.71 -2.65 KRT13 q21.2 3 -1.76 -2.52 -2.16
PMP22 p12 2 -3.81 -3.92 -3.86 KRT17 q21.2 8 -2.18 -4.29 -2.9
LGALS9 q11.2 4 -2.38 -4.23 -3.12 SKAP55 q21.32 3 -2.91 -3.15 -3.03
EVI2B q11.2 3 -1.68 -2.73 -2.11 COL1A1 q21.33 8 -2.06 -4.63 -3.33
EVI2A q11.2 3 -2.38 -3.36 -2.89 SOX9 q24.3 4 -2.46 -3.6 -2.94
SCYA2 q12 5 -1.55 -4.04 -2.65 TIMP2 q25.3 3 -2.01 -2.65 -2.4
SCYA14 q12 5 -2.08 -4.41 -2.85

Table 6.11: Additional genes on chromosome 17 which have been annotated as under-expressed by
the HMM with two transition classes. For the p-arm a threshold value of Nr ≥ 2 has been used. The
threshold value for the q-arm has been set to Nr ≥ 3. Max represents the highest log ratio which was
measured for the Nr experiments where the gene has been annotated as under-expressed. Min represents
the lowest log ratio which was measured for the Nr experiments where the gene has been annotated as
under-expressed. Mean is the mean log ratio of the measured log ratios for the Nr experiments where the
gene has been annotated as under-expressed.

The Table 6.11 contains the under-expressed candidate genes which have frequently been an-
notated as under-expressed over all gene expression profiles. To get general candidate genes
for under-expression we have used the same threshold values for the p-arm and the q-arm of
chromosome 17 as in the Table 6.4 which was generated by the standard HMM . All genes of

73



the Table 6.11 are included in the Table 6.4, excepted KRT13. The genes MFAP4, ALDH10,
SCYA7, SCYA11, SCYA13, FLJ22041, COPZ2 and CD79B have also been annotated as under-
expressed by the extended HMM , but the values of the attribute Nr for these genes are too low
to be contained in the Table 6.11. The reason for this behaviour is that the extended HMM has
annotated in general more significant log ratios as over-expressed or under-expressed. We have
reported this above several times. For some genes in the Table 6.11 we have presented their
functions as we have analysed the annotation results of the standard HMM . Here we summarise
only the main results which show that the extended HMM is able to detect known candidate
genes for under-expression.

• Kominsky et al. [15] have found that the loss of CLDN7 correlates with the histological
grade of in situ and invasive ductal carcinomas of the breast. Invasive ductal carcinomas of
the breast show lower expression levels of CLDN7 than normal breast cells and so CLDN7
has a potential role in the progression and ability of breast cancer cells to disseminate.

• Irie et al. [10] have reported that LGALS9 is a prognostic factor for antimetastatic po-
tential in breast cancer. Cells with a low expression level of LGALS9 do not show tight
clusters during the in vitro proliferation.

• Nakopoulou et al. [18] have observed that TIMP2 is involved in the maintenance of a
tissue and that the under-expression of TIMP2 leads to the degradation of the extracellular
matrix. The degradation of the extracellular matrix is followed by the invasion of cancer
into the surrounding matrix. Nakopoulou et al. [18] have studied this behaviour on breast
cancer cells.

Selected gene expression profiles

The Figures 6.7, 6.8, 6.9, 6.10 and 6.11 show selected gene expression profiles which have been
annotated by the extended HMM . The annotations for the same profiles have also been created
by the standard HMM . These annotations are presented in the Figures 6.1, 6.2, 6.3, 6.4 and
6.5. We have described these annotations in detail as we have analysed the performance of the
standard HMM approach. Now we will compare the results of both HMM s.

• The Figures 6.7 and 6.1 represent the annotations of the breast cancer cell lines BT474
and SKBR3. First we consider the BT474 profile. The extended HMM has not done an
under-expressed annotation in the region 17p13.1 as the standard HMM has done, but
both state posterior profiles sp(−) of the state − have a peak in this region. The standard
HMM has not been able to model a good over-expressed segment structure in the regions
17q12-21.2 and 17q21.32-22. That is, we can see log ratios which are significantly less than
zero with over-expressed annotations. The extended HMM has improved the segment
structure in these regions by dividing the over-expressed segments into over-expressed,
under-expressed and identically expressed segments and therefore no genes with log ratios
which are significantly less than zero have been annotated as over-expressed. This altered
segmentation can also be seen in the state posterior profiles of the extended HMM .
The breast cancer cell line SKBR3 has been annotated in the same manner by both HMM s
excepted a segment in the band 17q21.2 which has been annotated as over-expressed by
the standard and as identically expressed by the extended HMM .

• The Figures 6.8 and 6.2 contain the primary breast tumour profiles NORWAY 14 and
NORWAY 26. Both HMM approaches show a good annotation quality and therefore the
profile NORWAY 14 contains only a little change in the under-expressed segment which is
located in the chromosomal band 17q25.3. The standard HMM has annotated two genes
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as under-expressed and the extended HMM has only annotated the one with the smaller
log ratio as under-expressed.
The profile NORWAY 26 has been annotated in the same manner by both HMM s.

• The Figures 6.9 and 6.3 show the profiles of the primary breast tumours NORWAY 47 and
NORWAY 53. The standard HMM has had problems to achieve a good over-expressed
segment structure in the bands 17q12 and 17q25 of the profile NORWAY 47 and as we
can see the extended HMM has been able to annotated these regions much better.
When we consider the annotations of the primary tumour NORWAY 53 it is clearly to see
that the annotation of the extended HMM is of better quality in the regions 17p11.2-q11.2
and 17q12-21.2 in comparison with the annotation of the standard HMM .

• The profiles NORWAY 100 and STANFORD 2 are shown in the Figures 6.10 and 6.4. The
over-expressed segments in the profile NORWAY 100 have been annotated in the same
manner by both HMM s. The under-expressed segment in the region 17q12-21.2 looks
better in the annotation of the extended HMM , because log ratios which are close to zero
in this segment have been annotated as identically expressed.
The standard HMM has had problems in the annotation of the over-expressed segments in
the regions 17q11.2 and 17q12-21.2 of the profile STANFORD 2, but the extended HMM
has been able to improve the annotation performance in these regions.

• The Figures 6.11 and 6.5 show the profiles STANFORD 24 and STANFORD A which
have nearly the same annotation quality for both HMM approaches.

The comparison of the annotations of the gene expression profiles confirms the fact that the
extended HMM with two transition classes is able to model the start and the end of a segment
in a profile much better as the standard HMM . The analysis of gene expression profiles with
HMM s in consideration of proximity effects between genes represents a good strategy to find
candidate genes for under-expression or over-expression.

Summary of the annotation process

We finally consider the summary of the whole annotation process in the Figure 6.12 which con-
tains the subfigures Unchanged Segments, Over-expressed Segments, Under-expressed Segments
and Gene Counts. The data which is used to create this summary has been created by the
extended HMM .
The subfigure Unchanged Segments gives an overview of the locations and absolute frequencies
of segments which have been annotated as identically expressed in the gene expression profiles of
our breast cancer data set. The distribution of the hexagons is consistent with the inhomogene-
ity of the gene expression profiles in our data set. The segments with identical expression levels
between tumour and normal tissue are longer than over-expressed or under-expressed segments.
The dark hexagons are an evidence that some gene expression profiles could show the same
subtype of breast cancer.
The subfigure Over-expressed Segments represents where and how frequently over-expressed seg-
ments have been observed in the breast cancer data set. This subfigure has improved quality
in comparison with the subfigure in the Figure 6.6 for the annotation results of the standard
HMM . The improved quality is the result of the observation that the extended HMM can model
the segment structure much better. The dark hexagons show segments which have often been
annotated as over-expressed and therefore we should find candidate genes for some breast cancer
subtypes in such regions.
The overview of the locations and the absolute frequencies of under-expressed segments is shown
in the subfigure Under-expressed Segments. The lengths of under-expressed segments are smaller
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than the lengths of over-expressed segments. We have also observed this in the Figures 6.7, 6.8,
6.9, 6.10 and 6.11 of the gene expression profiles. It should be possible to find general candidate
genes for under-expression in the dark hexagons.
The subfigure Gene Counts represents the absolute frequencies of over-expressed and under-
expressed annotations on chromosome 17. The frequencies of under-expressed annotations are
shown in the upper subfigure and the frequencies of over-expressed annotations are presented
in the subfigure below. As we can see genes which have frequently been annotated as over-
expressed have also been annotated as under-expressed. We have also observed this behaviour
for the subfigure in the Figure 6.6. The Gene Counts overview for the extended HMM is of
better quality as the overview for the standard HMM because the extended HMM has improved
performance to model segments. The region 17q23.2-23.3 has mainly been annotated as over-
expressed and this observation could follow the results of Orsetti et al. [20], [21], Monni et al.
[17], Nugoli et al. [19] and Clark et al. [3] which we have explained in detail in the Section 5.3.
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(1) BT474      [ S = 0.96; S(=) = 0.99; S(+) = 0.85; S(−) = 0.66 ]
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(3) SKBR3      [ S = 0.97; S(=) = 0.99; S(+) = 0.75; S(−) = 0.65 ]
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Figure 6.7: Gene expression profiles of chromosome 17 which have been annotated by the extended
HMM with two transition classes. The first profile shows the BT474 and the second the SKBR3 data.
In general, the headline of a profile contains the unique profile number (n) which is used in the Figure 5.3,
the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion
S(i) (5.3), with i ∈ {−, =, +}, of the state posterior profile i in the Viterbi Profile. Top down the five
graphics per experiment show the state posterior profiles for the states =, + and −, the state posterior
profile of the Viterbi Path and the annotated gene expression profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents an as under-expressed, a grey line
an as identically expressed and a green line an as over-expressed annotated gene.
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(9) NORWAY 14      [ S = 0.98; S(=) = 0.99; S(+) = 0.86; S(−) = 0.68 ]
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(15) NORWAY 26      [ S = 0.98; S(=) = 1; S(+) = 0.78; S(−) = 0.44 ]
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Figure 6.8: Gene expression profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the NORWAY 14 and the second the NORWAY 26
data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated gene expression profile. The annotation of a gene
is represented by the colour of the log ratio line. A red line represents an as under-expressed, a grey line
an as identically expressed and a green line an as over-expressed annotated gene.
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(19) NORWAY 47      [ S = 0.97; S(=) = 0.99; S(+) = 0.93; S(−) = 0 ]
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(21) NORWAY 53      [ S = 0.98; S(=) = 0.99; S(+) = 0.83; S(−) = 0.42 ]
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Figure 6.9: Gene expression profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the NORWAY 47 and the second the NORWAY 53
data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated gene expression profile. The annotation of a gene
is represented by the colour of the log ratio line. A red line represents an as under-expressed, a grey line
an as identically expressed and a green line an as over-expressed annotated gene.
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(26) NORWAY 100      [ S = 0.98; S(=) = 0.99; S(+) = 0.81; S(−) = 0.63 ]
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(33) STANFORD 2      [ S = 0.97; S(=) = 0.99; S(+) = 0.78; S(−) = 0.57 ]

sp
(=

)

0.
0

1.
0

sp
(+

)

0.
0

1.
0

sp
(−

)

0.
0

1.
0

Figure 6.10: Gene expression profiles of chromosome 17 which have been annotated by the extended
HMM with two transition classes. The first profile shows the NORWAY 100 and the second the STAN-
FORD 2 data. In general, the headline of a profile contains the unique profile number (n) which is used
in the Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the
relative proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile.
Top down the five graphics per experiment show the state posterior profiles for the states =, + and −,
the state posterior profile of the Viterbi Path and the annotated gene expression profile. The annotation
of a gene is represented by the colour of the log ratio line. A red line represents an as under-expressed,
a grey line an as identically expressed and a green line an as over-expressed annotated gene.
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(38) STANFORD 24      [ S = 0.97; S(=) = 0.99; S(+) = 0; S(−) = 0.71 ]
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(41) STANFORD A      [ S = 0.97; S(=) = 0.99; S(+) = 0.91; S(−) = 0.67 ]
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Figure 6.11: Gene expression profiles of chromosome 17 which have been annotated by the extended
HMM with two transition classes. The first profile shows the STANFORD 24 and the second the
STANFORD A data. In general, the headline of a profile contains the unique profile number (n) which is
used in the Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and
the relative proportion S(i) (5.3), with i ∈ {−, =, +}, of the state posterior profile i in the Viterbi Profile.
Top down the five graphics per experiment show the state posterior profiles for the states =, + and −,
the state posterior profile of the Viterbi Path and the annotated gene expression profile. The annotation
of a gene is represented by the colour of the log ratio line. A red line represents an as under-expressed,
a grey line an as identically expressed and a green line an as over-expressed annotated gene.
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Figure 6.12: Overview of annotations for the extended HMM with two transition classes. In general
a segment is a sequence of successive genes which have been annotated in the same way. Each segment
has a start and an end point on the chromosome. The figure Unchanged Segments gives a summary
of segments on chromosome 17 which have been annotated as identically expressed. The figure Over-
expressed Segments shows a summary of segments on chromosome 17 which have been annotated as
over-expressed. The figure Under-expressed Segments represents a summary of segments on chro-
mosome 17 which have been annotated as under-expressed. The figure Gene Counts represents the
absolute frequency of over-expressed and under-expressed annotations per gene. The absolute frequen-
cies of under-expressed annotations are shown in the upper subfigure and the absolute frequencies of
over-expressed annotations are given in subfigure below.
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6.2 Analysing ArrayCGH Profiles

Now we analyse the ArrayCGH profiles of our data set of chromosome 17. The analysis of the
gene expression profiles have shown that the HMM s with coupled transition matrices outperform
the standard HMM s in the modelling of the segmentation structure of these profiles. On the
basis of this knowledge we will only consider the HMM s with coupled transition classes in this
section.

6.2.1 HMM s With Transition Classes

The HMM s with transition classes are created as we have described in the Section 5.1. These
HMM s extend the standard HMM approach to consider proximity effects of DNA segments and
thus develop a more realistic model of the effects which can influence the alteration of DNA
copy numbers on a chromosome. The positional proximity of genes on a chromosome can lead
to characteristic gene expression patterns of these genes. These patterns can be observed for
breast cancer cells when some DNA segments are lost or gained. It is realistic to assume that
DNA segments which are located close to each other have a greater chance to show the same
behaviour when a mutation occurs as DNA segments which have a greater distance to each
other. Most of the copy number changes in breast cancer are the results of amplifications of
DNA segments as the literature which we have reported at the beginning of the Section 5.3
shows. Nevertheless, there are also regions with deleted DNA segments known.

Modelling of chromosomal imbalances

A natural approach should be able to model gains and losses of genes respecting the proximity
of adjacent genes. So we assume that the chance for two adjacent genes to be both in the same
lost or gained segment increases the closer the distance between these two genes is and therefore
the probability that these two adjacent genes show the same DNA copy number status should
be higher. It is realistic to assume that the loss or the gain of a DNA segment does not affect
both adjacent genes when the distance between these genes is greater as in the case before. The
probability that both genes show the same DNA copy number status should be less as in the
other case.
The proximity effects between adjacent genes are modelled by mapping the distance between
these genes into a set of predefined transition matrices. We have explained this in detail in the
Section 6.1.2 as we have motivated the usage of HMM s with transition classes to analyse gene
expression data.

We have tested different HMM s with transition classes on the ArrayCGH data and so we
have been able to conclude that the quality of the annotation results depends mainly on the
used mixture model. The annotation results which we present have been created by an HMM
with two transition classes (extended HMM ). We have used a mixture model which consists of
three normal distributions and we have also applied the same scaling vector ~S = (1, 2) for the
transition classes and the same distance threshold value T = 30000 base pairs for the transition
class switching function as we have done in the analysis of the gene expression profiles with the
extended HMM .

Gains of DNA segments

The Table 6.18 shows an overview of genes in all ArrayCGH profiles which have been anno-
tated by the extended HMM to have an increased DNA copy number status. The segmentation
of the genes to their bands allows us to find regions which have frequently been annotated to
have an increased DNA copy number status. In general this table confirms that the ArrayCGH
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profiles of all experiments are more homogeneous as the gene expression profiles and this fact is
consistent with the correlation matrices in the Figure 5.3 and the overviews of both data types
in the Figures 5.4 and 5.5. All genes which have been annotated to have an increased DNA
copy number status are located on the q-arm of chromosome 17 excepted one annotation on
the p-arm in the chromosomal band 17p13.3 of the breast cancer cell line MCF7. The q-arm
contains the ten regions 17q11.2, 17q12, 17q21.1, 17q21.2, 17q21.32, 17q21.33, 17q23.2, 17q23.3,
17q25.1 and 17q25.1 with more than twenty genes of increased DNA copy number status over
all ArrayCGH profiles and thereby more than forty of these genes are located in each of the
regions 17q11.2, 17q12, 17q23.2 and 17q25.1. The mostly affected chromosomal band over all
ArrayCGH profiles is the band 17q12 with one hundred eleven genes which have been annotated
to have an increased DNA copy number status. This general overview includes chromosomal
regions which have been mentioned in literature. The band 17q12 has been observed as amplified
by Kauraniemi et al. [13] and Willis et al. [27]. The region 17q21 has been seen as amplified
by Hyman et al. [9], Clark et al. [3], Willis et al. [27] and Orsetti et al. [21]. The chromosomal
band 17q23 has been observed as amplified by Orsetti et al. [20], Monni et al. [17], Clark et al.
[3], Willis et al. [27] and Nugoli et al. [19]. Orsetti et al. [21] have found that the chromosomal
region 17q25 can be amplified.
Now we consider which genes have been annotated to have an increased DNA copy number sta-
tus. The Table 5.2 contains genes which are known to be over-expressed in some types of breast
cancer. All these genes have been annotated to have an increased DNA copy number status.
In total one hundred forty-seven genes of the two hundred sixty-five genes in the ArrayCGH
data set have been annotated to have an increased DNA copy number status over all ArrayCGH
profiles. That are fifty-five percent of the genes. The Table 6.14 represents an overview of the
annotation attributes Nr, Max, Min and Mean of the candidate genes for over-expression of
the Table 5.2. The definitions of these attributes are given in the caption of the Table 6.14.
With the help of these attributes we have a good overview how significant the annotations are.
In general, the attribute values of genes which have been annotated to have an increased DNA
copy number status are significant enough to show such annotations. The genes RPL19, NR1D1,
CDC6 and NDP52 have negative attribute values for the attribute Min. Such annotation errors
occur when the affected genes are located in a region with increased DNA copy number which
cannot be divided into a better annotation structure by the extended HMM . We have already
discussed these problems as we have analysed the gene expression profiles. From time to time
negative Min values have occurred and such cases have been counted in the attribute E of the
Table 6.14.
The Table 6.15 contains genes that have been annotated to have an increased DNA copy number
status in addition to the Table 5.2. To get a more general view on the additional candidates we
use a threshold value which represents the minimal number of profiles where a gene must have
been annotated with an increased DNA copy number status. The threshold value for the q-arm
has been set to four. The p-arm has been excluded from this table because this arm contains
only one annotation. We use the Entrez Gene at the NCBI to get a better impression what
functions some of these candidate genes have. We have only found two interesting candidate
genes which we have not mentioned in our previous analysis of the gene expression profiles.

• SUPT6H is a transcription elongation factor that enhances the rate of RNA polymerase
II elongation.

• FLOT2 encodes an integral membrane protein and is associated with melanoma progres-
sion.

The amplification of SUPT6H could play an important role for the gene expression rate of this
gene and of other genes which are affected by an enhanced elongation in their transcription. The
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Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
KIAA0524 q11.2 2 1.34 1.08 1.21 JUP q21.2 2 0.97 0.83 0.9
UNC119 q11.2 3 0.68 0.41 0.54 HOXB5 q21.32 3 2.23 0.77 1.26
SDF2 q11.2 4 1.4 0.49 1 NDP52 q21.32 3 1.96 -0.12 0.81
TRAF4 q11.2 5 2.64 0.53 1.19 NGFR q21.33 3 2.06 1.83 1.96
FLJ10700 q11.2 5 2.79 0.49 1.22 HBOA q21.33 3 1.55 0.75 1.15
TIAF1 q11.2 3 1.63 0.44 0.9 DLX4 q21.33 3 1.8 1.08 1.56
KIAA1321 q11.2 5 1.42 0.62 0.88 ABCC3 q21.33 3 1.88 0.75 1.43
SCYA3 q12 7 1.49 0.63 1.01 RAD51C q23.2 4 2.48 0.7 1.35
SCYA4 q12 7 1.51 0.66 0.96 RPS6KB1 q23.2 5 2.65 0.52 1.38
MLLT6 q12 5 0.94 0.24 0.59 APPBP2 q23.2 4 2.34 0.82 1.38
ZNF144 q12 5 2.7 1.21 1.8 PPM1D q23.2 4 3.41 1.17 1.98
PIP5K2B q12 5 2.34 1.01 1.49 TBX2 q23.2 3 0.19 0.06 0.11
CACNB1 q12 7 3.16 1.07 2.12 TRAP240 q23.2 3 1.01 0.48 0.78
RPL19 q12 7 0.6 -0.07 0.34 ICAM2 q23.3 3 2.71 0.51 1.29
MLN64 q12 10 3.73 1.33 2.46 PECAM1 q23.3 4 2.8 0.62 1.51
ERBB2 q12 10 3.48 1.38 2.23 ABCA5 q24.2 1 0.88 0.88 0.88
GRB7 q12 10 2.73 0.1 1.22 SLC9A3R1 q25.1 1 1.21 1.21 1.21
NR1D1 q21.1 8 1.46 -0.07 0.95 AD023 q25.1 2 2.04 1.1 1.57
CDC6 q21.2 4 0.73 -0.17 0.41 GRB2 q25.1 2 2 1.02 1.51
TOP2A q21.2 3 1.25 0.6 0.93 ITGB4 q25.1 2 0.95 0.83 0.89
SMARCE1 q21.2 3 1.18 0.19 0.55 HCNGP q25.1 2 1.63 1.12 1.37
KRT20 q21.2 3 1.77 1.44 1.63 BIRC5 q25.3 3 1.02 0.62 0.88
KRTHA4 q21.2 2 1.63 1.11 1.37 LGALS3BP q25.3 4 1.22 0.77 1.06
KRT19 q21.2 2 0.97 0.73 0.85

Table 6.14: Over-expressed candidate genes from Table 5.2 which have been annotated by the HMM
with two transition classes to have an increased DNA copy number status. Max represents the highest
log ratio which was measured for the Nr experiments where the gene has been annotated to have an
increased DNA copy number status. Min represents the lowest log ratio which was measured for the Nr
experiments where the gene has been annotated to have an increased DNA copy number status. Mean is
the mean log ratio of the measured log ratios for the Nr experiments where the gene has been annotated
to have an increased DNA copy number status.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
SUPT6H q11.2 4 1.29 0.7 1.05 PNUTL2 q23.2 4 0.8 0.38 0.56
FLOT2 q11.2 5 1.89 0.6 1.09 CLTC q23.2 5 1.49 0.53 0.89
CRYBA1 q11.2 5 0.82 0 0.43 DDX5 q24.1 4 0.44 -0.04 0.29
SCYA3L1 q12 7 1.57 0.65 1.14 SMURF2 q24.1 4 0.81 0.12 0.44
NAP4 q12 4 0.64 0.21 0.42 APOH q24.2 4 0.89 0.7 0.79
PNMT q12 10 0.29 -0.2 0.01 SRP68 q25.1 4 1.18 0.58 0.9
SFRS1 q23.2 4 0.61 0.25 0.4 TIMP2 q25.3 4 1.2 0.21 0.61
MPO q23.2 4 1.21 0.45 0.75 GAA q25.3 4 1.1 0.25 0.7

Table 6.15: Additional genes on chromosome 17 which have been annotated by the HMM with two
transition classes to have an increased DNA copy number status. The threshold value for the q-arm has
been set to Nr ≥ 4. Max represents the highest log ratio which was measured for the Nr experiments
where the gene has been annotated to have an increased DNA copy number status. Min represents the
lowest log ratio which was measured for the Nr experiments where the gene has been annotated to have
an increased DNA copy number status. Mean is the mean log ratio of the measured log ratios for the Nr
experiments where the gene has been annotated to have an increased DNA copy number status.

87



fact that we have observed SUPT6H as over-expressed in the annotation results of the standard
and the extended HMM supports the possible role of this gene. SUPT6H has only been seen
as over-expressed in three gene expression profiles and that is why this gene is not contained in
the tables of the additional genes which have been annotated as over-expressed.

Losses of DNA segments

Let us now consider in which regions of chromosome 17 losses of DNA segments are located.
The Table 6.19 represents an overview of genes over all ArrayCGH profiles which have been
annotated to have a decreased DNA copy number status. The p-arm shows only nine genes
which have been annotated to have a decreased DNA copy number status over all ArrayCGH
profiles. The number of losses on the p-arm is greater than the number of gains which is one.
Both chromosomal bands 17p13.2 and 17p11.2 contain one gene which has been annotated to
have a decreased DNA copy number status over all profiles. The region 17p12 has three such
annotations and the band 17p13.1 has four losses of DNA segments. When we consider the
q-arm we can find thirty-nine genes which have been annotated to have a decreased DNA copy
number status. The chromosomal bands 17q11.2 with twelve and 17q12 with nine annotations
are mainly affected by losses of DNA segments. The regions 17q21.2, 17q21.31, 17q21.33, 17q22,
17q23.1, 17q23.2 and 17q25.1 contain only some genes which have been annotated to have a
decreased DNA copy number status. Most of the annotations are in the breast cancer cell line
SKBR3 and only some annotations are contained in the primary tumours as NORWAY 27,
NORWAY 39, NORWAY 41 and NORWAY 65. It seems that losses of DNA segments do not
play an important role in most of the primary breast tumours. The chromosomal bands which
have been annotated to have a decreased DNA copy number status are also known in literature
to be candidates for losses of DNA segments. Orsetti et al. 1999 [20] found that the regions
17q11-q21 and 17q25 can contain losses of DNA segments. A newer study of Orsetti et al. [21]
refined these results and that is that the bands 17p, 17q11.2 and 17q21 are mainly affected by
DNA losses and the bands 17q21.3, 17q22 and 17q25 can contain losses of DNA segments. In
summary, the p-arm of chromosome 17 shows only one gain and nine losses of DNA segments
and this is confirm with the results of Orsetti et al. [21] which mainly show losses on this arm.
Now we consider which genes have been annotated to have a decreased DNA copy number
status. First we compare the thirty-four different genes which show such an annotation with the
over-expressed candidate genes in the Table 5.2 to get an impression which of this candidates
can also be affected by losses. The results are shown in the Table 6.16. Only six of the over-
expressed candidate genes have been annotated to have a decreased DNA copy number status
in one of the ArrayCGH profiles. The annotation attributes Max, Min and Mean support these
annotations. The candidate genes GRB7, NGFR, HBOA and DLX4 have been annotated as
under-expressed by the standard HMM and the candidates GRB7, NGFR, DLX4, RAD51C
have been annotated as under-expressed by the extended HMM . It can be possible that the loss
of such a gene could cause the under-expression which we have observed.
Let us now consider the genes which are not included in the Table 5.2, but which have also been
annotated to have a decreased DNA copy number status. The additional candidates with such
an annotation are listed in the Table 6.17. We have not used a threshold value because of the low
number of candidates. Most of the additional candidates show good annotation attributes Max,
Min and Mean excepted the gene CDK5R1 which has attribute values close to zero. As above
we have used the Entrez Gene at the NCBI to get a better impression what functions some of
these candidate genes with Nr values greater than one have, but we have not found functions
which are directly associated with breast cancer or which should necessarily be reported. The
genes EVI2B, EVI2A and SCYA2 have been annotated as under-expressed by the standard and
the extended HMM and these genes have also been annotated to have a decreased DNA copy
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Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
GRB7 q12 1 -1.85 -1.85 -1.85 DLX4 q21.33 1 -0.79 -0.79 -0.79
NGFR q21.33 1 -0.62 -0.62 -0.62 RAD51C q23.2 1 -1.36 -1.36 -1.36
HBOA q21.33 1 -0.88 -0.88 -0.88 PPM1D q23.2 1 -1 -1 -1

Table 6.16: Over-expressed candidate genes from Table 5.2 which have also been annotated by the
HMM with two transition classes to have a decreased DNA copy number status. Max represents the
highest log ratio which was measured for the Nr experiments where the gene has been annotated to have
a decreased DNA copy number status. Min represents the lowest log ratio which was measured for the Nr
experiments where the gene has been annotated to have a decreased DNA copy number status. Mean is
the mean log ratio of the measured log ratios for the Nr experiments where the gene has been annotated
with a decreased DNA copy number status.

Gene Band Nr Max Min Mean Gene Band Nr Max Min Mean
SLC25A11 p13.2 1 -1.12 -1.12 -1.12 SCYA11 q12 1 -0.94 -0.94 -0.94
ACADVL p13.1 4 -1.12 -2.25 -1.48 SCYA13 q12 1 -0.64 -0.64 -0.64
MAP2K4 p12 1 -0.94 -0.94 -0.94 LIG3 q12 1 -0.86 -0.86 -0.86
COX10 p12 1 -0.74 -0.74 -0.74 NAP4 q12 1 -1.06 -1.06 -1.06
ZNF286 p12 1 -0.97 -0.97 -0.97 KRT10 q21.2 1 -1.15 -1.15 -1.15
MFAP4 p11.2 1 -1.32 -1.32 -1.32 GCN5L2 q21.2 1 -1.79 -1.79 -1.79
TNFAIP1 q11.2 1 -1 -1 -1 IFI35 q21.31 1 -1 -1 -1
FLOT2 q11.2 1 -1.79 -1.79 -1.79 DUSP3 q21.31 1 -1 -1 -1
OMG q11.2 1 -0.81 -0.81 -0.81 UBTF q21.31 1 -1.18 -1.18 -1.18
EVI2B q11.2 2 -0.94 -1.09 -1.02 NSF q21.31 1 -0.94 -0.94 -0.94
EVI2A q11.2 2 -0.67 -0.74 -0.71 SPOP q21.33 1 -0.56 -0.56 -0.56
ZNF207 q11.2 3 -0.4 -2.47 -1.73 UGTREL1 q21.33 1 -0.58 -0.58 -0.58
PSMD11 q11.2 1 -0.81 -0.81 -0.81 TOM1L1 q22 1 -1.69 -1.69 -1.69
CDK5R1 q11.2 1 -0.09 -0.09 -0.09 PCTP q23.1 2 -1.43 -2.56 -2
SCYA2 q12 3 -0.47 -1.28 -0.94 AKAP1 q23.2 1 -0.74 -0.74 -0.74
SCYA7 q12 1 -0.38 -0.38 -0.38 ACOX1 q25.1 1 -1.69 -1.69 -1.69

Table 6.17: Additional genes on chromosome 17 which have been annotated by the HMM with two
transition classes to have a decreased DNA copy number status. Max represents the highest log ratio
which was measured for the Nr experiments where the gene has been annotated to have a decreased DNA
copy number status. Min represents the lowest log ratio which was measured for the Nr experiments
where the gene has been annotated to have a decreased DNA copy number status. Mean is the mean
log ratio of the measured log ratios for the Nr experiments where the gene has been annotated to have a
decreased DNA copy number status.
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number status. In summary, the decreased copy numbers of these genes are also visible in the
expression levels of these genes.

Selected ArrayCGH profiles

Now we describe the selected ArrayCGH profiles in the Figures 6.13, 6.14, 6.15, 6.16 and 6.17
in detail. We have taken the profiles of the same breast cancer cell lines and primary tumours
as we have done in the analysis of the gene expression profiles and therefore it is possible to see
the influences of DNA copy number changes on the gene expression levels of affected genes. But
now we concentrate on the quality of the ArrayCGH annotations to get an impression of the
performance of the extended HMM .

• The Figure 6.13 shows the annotations of the cell lines BT474 and SKBR3. The profile
BT474 does not contain genes which have been annotated to have a decreased DNA copy
number status. The state posterior profile sp(−) of the state − is close to zero and contains
only a small peak in the chromosomal band 17q23.3. Increased copy numbers of genes are
located in the two segments 17q12 and 17q21.32-17q23.2 and the state posterior sp(+) is
significantly greater than zero in these segments. Clark et al. [3] have analysed the DNA
copy number status of BT474 and they have found gains of DNA segments in 17q11-21
and 17q22-23. These results support the good quality of our findings.
The cell line SKBR3 contains genes which have been annotated to have a decreased DNA
copy number status. These genes are located in the regions 17q11.2-17q12, 17q21.31,
17q21.33 and 17q23.2. The state posterior sp(−) of the affected segments in these regions
is significantly greater than zero for most of the genes in these segments. Gains of DNA
segments are found in the regions 17q11.2, 17q12-17q21.2 and 17q25.3 and the state pos-
terior sp(+) supports this annotations with high values except smaller values at the end
of the segment in 17q11.2.

• The Figure 6.14 represents the annotations of the primary breast tumours NORWAY 14
and NORWAY 26. The ArrayCGH profile of NORWAY 14 does not contain segments
with deleted genes, but there is a peak in the state posterior profile sp(−) in the region
17q12. One gene in the whole profile has been annotated to have an increased DNA copy
number status and this is supported by a significant peak in the state posterior profile
sp(+). In general, most of the log ratios are close to zero as we can also see in the state
posterior profile sp(=).
The primary tumour NORWAY 26 shows no segments of decreased DNA copy number
status and there are no peaks in the state posterior profile sp(−). One segment of increased
DNA copy number status is located in the region 17q12-17q21.2 and this segment is clearly
visible in the state posterior profile sp(+).

• The Figure 6.15 contains the annotations of the primary breast tumours NORWAY 47
and NORWAY 53. The profile NORWAY 47 contains one segment of decreased DNA
copy number status in the region 17p13.1. This segment can also be seen in the state
posterior profile sp(−). Increased DNA copy number status is found in two segments
which are located in the chromosomal regions 17q11.2 and 17q12-17q21.2 and these both
segments are clearly to see in the state posterior profile sp(+).
The ArrayCGH profile of NORWAY 53 contains one gene in the chromosomal band 17q12
which has been annotated to have a decreased DNA copy number status. Two peaks can
be seen in the state posterior profile sp(−) the one for the gene in 17q12 and the other in
the chromosomal band 17p13.1. Two regions of increased DNA copy number status have
been annotated by the extended HMM . These regions are located close to each other the

90



one in the region 17q12-21.1 and the other in 17q21.2. Both regions show characteristic
patterns in the state posterior profile sp(+).

• The Figure 6.16 represents the annotations of the primary breast tumours NORWAY 100
and STANFORD 2. The profile NORWAY 100 does not contain segments of decreased
DNA copy number status and state posterior profile sp(−) does not contain peaks. All
log ratios in this profile are close to zero.
The profile of the primary breast tumour STANFORD 2 does not show segments of de-
creased DNA copy number status. The state posterior profile sp(−) of this annotation
does not give hints that such segments exist. The regions 17q11.2 an 17q12-17q21.3 con-
tain segments which have been annotated to have an increased DNA copy number status.
These both segments are clearly visible in the state posterior profile of sp(+).

• The Figure 6.17 shows the annotations of the primary breast tumours STANFORD 24 and
STANFORD A. The ArrayCGH profile of STANFORD 24 has completely been annotated
to have an unchanged DNA copy number status. All log ratios are close to zero except
the log ratio of one gene in the region 17q21.31. The log ratio of this gene is less than zero
and the state posterior profile sp(−) shows a peak for this gene.
The profile of STANFORD A does not contain segments of decreased DNA copy number
status and only two small peaks in the state posterior profile sp(−) which could give hints
for such segments are visible in the chromosomal bands 17p13.1 and 17p12. The four
regions 17q11.2, 17q12, 17q21.32-17q21.33 and 17q23.2-17q24.2 contain segments which
have been annotated to have an increased DNA copy number status. All these segments
are clearly visible in the state posterior profile sp(+).

The ArrayCGH profiles which we have analysed in more detail give a general overview of all
ArrayCGH profiles. The annotation performance of the extended HMM with two transition
classes is good. As we have already observed for the gene expression profiles the extended
HMM is able to model a good segment structure and this improved modelling leads to a good
annotation quality. Nevertheless, it would be a good strategy to test the performance of the
extended HMM on simulated ArrayCGH data or on real data with a known annotation.

Summary of the annotation process

Let us consider the whole annotation process for our breast cancer ArrayCGH data set. The
Figure 6.18 contains the four subfigures Unchanged Segments, Gained Segments, Lost Segments
and Gene Counts.
The subfigure Unchanged Segments shows the locations and the absolute frequencies of segments
which have been annotated to have an unchanged DNA copy number status. Most of the
ArrayCGH profiles have an individual segment structure, but there are also some common
segments with unchanged DNA copy number status which are represented by darker hexagons.
The lengths of the unchanged segments are in general longer than the lengths of the segments
in the subfigures Gained Segments and Lost Segments.
The subfigure Gained Segments represents the locations and the absolute frequencies of segments
which have been annotated to have an increased DNA copy number status. These segments are
smaller as the segments with unchanged DNA copy number status. The variability of segments
with increased DNA copy number status is low as the subfigure shows. Two segments occur
more often than others as the dark hexagons show.
The subfigure Lost Segments gives an overview of the locations and absolute frequencies of
segments which have been annotated to have a decreased DNA copy number status. These
segments behave like the segments with increased DNA copy number status, but in general
their lengths are smaller. One segment occurs more often than others as a dark hexagon shows.
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The smaller lengths of these segments in comparison with the segments of increased DNA copy
number status can be also seen in the ArrayCGH profiles of the Figures 6.13 and 6.15.
The subfigure Gene Counts represents the absolute frequencies for decreased and for increased
DNA copy number status of genes over all ArrayCGH profiles in the breast cancer data set. The
absolute frequencies for decreased DNA copy number status of genes are shown in the upper
subfigure and the absolute frequencies for increased DNA copy number status of genes are
shown in the subfigure below. Genes which have frequently been annotated to have a decreased
DNA copy number status are located in the regions 17p13.1, 17q11.2, 17q12 and 17q22-17q23.2.
These findings are supported by the analysis of Orsetti et al. [21] who have observed losses in
17p, 17q11.2 and 17q22. Increased DNA copy number status can be mainly seen for genes in
the regions 17q11.2, 17q12 and 17q21.32-17q25.3. These regions are known from the results of
Orsetti et al. [21], Monni et al. [17], Kauraniemi et al. [13], Willis et al. [27] and Hyman et al.
[9] which have been described above in detail.
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(1) BT474      [ S = 0.99; S(=) = 0.99; S(+) = 0.99; S(−) = 0 ]
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(3) SKBR3      [ S = 0.95; S(=) = 0.97; S(+) = 0.95; S(−) = 0.75 ]
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Figure 6.13: ArrayCGH profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the BT474 and the second the SKBR3 data. In
general, the headline of a profile contains the unique profile number (n) which is used in the Figure 5.3,
the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative proportion
S(i) (5.3), with i ∈ {−, =, +}, of the state posterior profile i in the Viterbi Profile. Top down the five
graphics per experiment show the state posterior profiles for the states =, + and −, the state posterior
profile of the Viterbi Path and the annotated ArrayCGH profile. The annotation of a gene is represented
by the colour of the log ratio line. A red line represents a decreased, a grey line an unchanged and a
green line an increased DNA copy number status of a gene.
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(9) NORWAY 14      [ S = 1; S(=) = 1; S(+) = 0.67; S(−) = 0 ]
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(15) NORWAY 26      [ S = 0.99; S(=) = 1; S(+) = 0.87; S(−) = 0 ]
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Figure 6.14: ArrayCGH profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the NORWAY 14 and the second the NORWAY 26
data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated ArrayCGH profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents a decreased, a grey line an unchanged
and a green line an increased DNA copy number status of a gene.

96



'

&

$

%

chromosomal location

lo
g 

ra
tio

s

p13.3

p13.2

p13.1

p12

p11.2

q11.1

q11.2

q12

q21.1

q21.2

q21.31

q21.32

q21.33

q22

q23.1

q23.2

q23.3

q24.1

q24.2

q24.3

q25.1

q25.2

q25.3

0e+00 2e+07 4e+07 6e+07 8e+07

−
6

−
2

0
2

4
6

sp

0.
0

1.
0

(19) NORWAY 47      [ S = 0.99; S(=) = 0.99; S(+) = 0.98; S(−) = 0.87 ]
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(21) NORWAY 53      [ S = 0.99; S(=) = 1; S(+) = 0.71; S(−) = 0.56 ]
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Figure 6.15: ArrayCGH profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the NORWAY 47 and the second the NORWAY 53
data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated ArrayCGH profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents a decreased, a grey line an unchanged
and a green line an increased DNA copy number status of a gene.
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(26) NORWAY 100      [ S = 1; S(=) = 1; S(+) = 0; S(−) = 0 ]
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(33) STANFORD 2      [ S = 1; S(=) = 1; S(+) = 0.97; S(−) = 0 ]
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Figure 6.16: ArrayCGH profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the NORWAY 100 and the second the STANFORD
2 data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated ArrayCGH profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents a decreased, a grey line an unchanged
and a green line an increased DNA copy number status of a gene.
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Figure 6.17: ArrayCGH profiles of chromosome 17 which have been annotated by the extended HMM
with two transition classes. The first profile shows the STANFORD 24 and the second the STANFORD
A data. In general, the headline of a profile contains the unique profile number (n) which is used in the
Figure 5.3, the profile name, the sum S (5.3) of the state posteriors for the Viterbi Path and the relative
proportion S(i) (5.3), with i ∈ {−, =,+}, of the state posterior profile i in the Viterbi Profile. Top down
the five graphics per experiment show the state posterior profiles for the states =, + and −, the state
posterior profile of the Viterbi Path and the annotated ArrayCGH profile. The annotation of a gene is
represented by the colour of the log ratio line. A red line represents a decreased, a grey line an unchanged
and a green line an increased DNA copy number status of a gene.
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Figure 6.18: Overview of annotations for the extended HMM with two transition classes. In general
a segment is a sequence of successive genes which have been annotated in the same way. Each segment
has a start and an end point on the chromosome. The figure Unchanged Segments gives a summary
of segments on chromosome 17 which show an unchanged DNA copy number status. The figure Gained
Segments shows a summary of segments on chromosome 17 which have an increased DNA copy number
status. The figure Lost Segments represents a summary of segments on chromosome 17 which show a
decreased DNA copy number status. The figure Gene Counts represents the absolute frequencies for
decreased and for increased DNA copy number status of genes over all ArrayCGH profiles. The absolute
frequencies for decreased DNA copy number status of genes are shown in the upper subfigure and the
absolute frequencies for increased DNA copy number status of genes are given in the subfigure below.
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6.3 Comparing Gene Expression And ArrayCGH Profiles

With the help of an example we will show the direct relation between copy number changes
and changes in gene expression levels. The loss of one gene copy in a diploid cell can cause the
decreased gene expression of this gene when the other gene copy is not able to compensate this
loss. If a gene is amplified, then this can cause the increased gene expression of this gene. There
are also a lot of effects thinkable which a loss or a gain of a gene could have on the regulation
of the gene expression of other genes.
In our example we consider the ArrayCGH and the gene expression profile of the primary breast
tumour STANFORD A. Both annotated profiles are shown in the Figure 6.19. The effects of
gene amplifications are clearly visible in the gene expression levels of the affected genes. The
annotations of the profiles are taken from the extended HMM s which we have used to analyse the
ArrayCGH and the gene expression data. The annotation of the ArrayCGH profile contains the
four regions 17q11.2, 17q12, 17q21.32-17q21.33 and 17q23.2-17q24.2 which have been annotated
to have an increased DNA copy number status. The regions 17q11.2, 17q12 and 17q21.32-
17q21.33 of increased DNA copy number status have also been annotated as over-expressed in
the gene expression profile. The amplification of genes in these regions has led to a significant
elevation of the gene expression levels of these genes. The chromosomal region 17q23.2-17q24.2
which has been annotated to have an increased DNA copy number status has only partly been
annotated as over-expressed in the gene expression profile. That is, some genes in 17q23.2 have
been annotated as over-expressed, but the others have been annotated as identically expressed
because the changes in the expression signals are too low to be detected by the extended HMM .
Nevertheless, the state posterior profile sp(+) of the gene expression profile for STANFORD
A in the Figure 6.11 shows higher values for some of the genes which have been annotated as
identically expressed in the direct neighbourhood of over-expressed genes.
In summary, the comparison of ArrayCGH and gene expression profiles is a good starting point
to analyse the effects of losses and gains of DNA segments on the gene expression of affected
genes. HMM s are able to find such regions in both data classes.
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Figure 6.19: The gene expression and the ArrayCGH profile of the primary breast tumour STANFORD
A on chromosome 17 which have been annotated by extended HMM s with two transition classes. The
annotation of a gene is represented by the colour of the log ratio line. A red line represents an under-
expressed (decreased), a grey line an identically expressed (unchanged) and a green line an over-expressed
(increased) expression level (DNA copy number status) of a gene.
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Chapter 7

Discussion Of The HMM Approach

The goal of this chapter is to review the developed HMM approach (Section 7.1), to summarise
the performance of this approach on breast cancer microarray data (Section 7.2) and to give an
outlook of future developments on the basis of this approach (Section 7.3).

7.1 Summary And Discussion Of The HMM Approach

In this diploma thesis we have developed a general strategy how to create HMM s to analyse
microarray data. Our concept is able to work with homogeneous and inhomogeneous HMM s
and therewith the comparison of both HMM classes is possible. The main attention has been
focused on the development of a novel approach using the proximity of genes in the analysis of
microarray data to create more realistic models for the detection of chromosomal imbalances
and gene expression alterations. The theoretical background of our novel HMM s with coupled
transition matrices has intensively been studied in this diploma thesis and can be used as basis
for future modifications.
The losses and gains of DNA segments in breast cancer cells have been an ideal starting point to
test the performance of the novel HMM s with coupled transition matrices in comparison with
the standard HMM s.
Let us now review important steps in the development of HMM s to analyse microarray data.
The first critical step in our strategy is the selection of a fitting mixture model as basis for the
emission functions of our proposed three-state HMM as for instance shown in the Figures 5.1
and 5.2. The mixture estimation using the EM algorithm in combination with BIC and AIC
has shown good performance and is therefore the method of choice. Nevertheless, the selection
of a mixture model from the estimated candidates requires some experience. Good candidate
models should not show great overlaps between the clustered mixture components. The mixture
model in the Figure 4.1 is such a good candidate. The goal is to have initial emission functions
which are able to model the data classes in the microarray data that we expect. In summary, we
require emission functions which can model the ranges of under-expressed, identically expressed
and over-expressed genes. It should be obvious how to adjust this goal to ArrayCGH data.
The selected mixture model determines the start distribution of our HMM s and therewith
the distribution of the microarray measurements can be modelled by these HMM s when a
transition matrix with an equilibrium distribution equal to the start distribution is used. We have
proposed a function class of transition matrices which allows a flexible modelling of the initial
transition probabilities. Therewith, it should be possible to include previous knowledge about
the frequencies of segment changes in microarray data into the initial transition probabilities of
the HMM . The training of homogeneous and inhomogeneous HMM s has shown that different
initial transition matrices have mostly led to nearly equal annotation results. In particular, this
has been observed as we have tried to improve the performance of homogeneous HMM s.
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Our novel developed inhomogeneous HMM s with coupled transition matrices make use of the
distance between adjacent genes. The transitions between successive measurements of genes are
divided into distance classes using a predefined distance-dependent transition class switching
function as for instance in the Definition (5.1). Each pair of successive measurements for genes
is mapped into a predefined transition matrix which the HMM has to use to model the transition
between this pair of measurements. All these information are included in the estimation of a
basic transition matrix for the HMM with coupled transition matrices. Afterwards the basic
transition matrix is mapped into the other transition matrices of the HMM by scaling the state
durations with predefined scaling factors.
However, to determine the number of transition classes, to define distance-dependent transition
class switching functions and to choose good scaling parameters are difficult steps if no detailed
information about the losses or gains of DNA segments are available. That is why we have
tested many different models to get an impression how the performance of our novel HMM s
with coupled transition matrices is on breast cancer microarray data. Our presented annotation
results have been created by HMM s with two coupled transition matrices. HMM s with three
coupled transition matrices have shown nearly the same results. For a better understanding
how to choose the parameters in our developed approach a test on simulated data or on real
biological data with known annotation should give us more information about the parameter
selection.
The annotation of a microarray profile represents the most probable state path through the
HMM and this Viterbi Path is computed by the Viterbi algorithm. Each gene in a microarray
profile is characterised by its assigned annotation in the Viterbi Path. The state posterior of
a gene annotation has been used as an indirect quality criterion for the significance of a gene
annotation. Nevertheless, we should try to establish a quality criterion in terms of P-Values.
We have done the first steps to achieve this, but we have not integrated it at this time because
there will be a lot of additional work to finish it.
The comparison of the annotation performance between HMM s with coupled transition matrices
and standard HMM s on breast cancer microarray data has revealed the following advantage for
the usage of the HMM s with coupled transition matrices:

• The annotations of microarray profiles show an improved segmentation structure.

The improved segmentation structure is the basis for a better characterisation of the locations
of altered regions in a microarray profile. However, the standard HMM s have problems to
determine the start and the end of a segment and therefore often questionable starts and ends of
segments have been observed. These problems have sometimes led to subsegments with lower log
ratios in over-expressed segments. All these problems have rarely been seen in the annotation
results which have been created by HMM s with coupled transition matrices. We have discussed
this observation several times in the Chapter 6.
Now that we have summarised and discussed the theory behind our developed HMM approach
the main results of the analysis of breast cancer microarray data are considered.

7.2 Performance Of The HMM Approach On Breast Cancer
Data

In the Chapter 6 we have intensively studied the performance and the results of our developed
HMM approach on breast cancer microarray data from Pollack et al. [23]. We have analysed
the supporting information to the study of Pollack et al. [23] and so we have been able to create
a list of candidate genes for over-expression which is shown in the Table 5.2. All these candidate
genes for over-expression have been annotated as over-expressed by a standard homogeneous
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HMM and an inhomogeneous HMM with two coupled transition matrices (extended HMM ).
The standard HMM has done an annotation error for the gene ABCA5, but the extended HMM
has annotated this gene as over-expressed in an other gene expression profile where this gene
has a high log ratio. The general view on the annotation attributes of the candidate genes for
over-expression shows that these attributes are more characteristic in the annotation results of
the extended HMM . This can be seen in the associated Tables 6.1 and 6.8. The extended HMM
is able to improve the segment structures in gene expression profiles in comparison with the
standard HMM and that has led to these results. Therefore we can report:

• Our HMM approach is able to detect in literature known candidate genes for over-
expression.

• The extended HMM which makes use of the proximity effects between genes has improved
the quality of the annotation attributes for over-expressed genes.

In addition to the candidate genes for over-expression from the study of Pollack et al. [23]
we have found other differentially expressed genes which can play a role in subtypes of breast
cancer. An interesting observation is that the works which discovered these genes have been
published at a later time as the study of Pollack et al. [23]. Let us first review these genes.

• KRT17 encodes the type I intermediate filament chain keratin 17. Rijn et al. [26] have
found that the expression of KRT17 is associated with a poor clinical outcome of breast
cancer.

• CLDN7 encodes a protein which is involved in the formation of tight junctions between
epithelial cells. Kominsky et al. [15] have found that the loss of CLDN7 correlates with
the histological grade of in situ and invasive ductal carcinomas of the breast. They have
also described the potential role of CLDN7 in the progression and ability of breast cancer
cells to disseminate. The expression of CLDN7 is lower in invasive ductal carcinomas of
the breast than in normal breast epithelium.

• LGALS9 encodes a galectin which is implicated in modulating cell-cell and cell-matrix
interactions. Irie et al. [10] have found that LGALS9 is a possible prognostic factor with
antimetastatic potential in breast cancer. They have observed that tumours with a low
expression level of LGALS9 do not form tight clusters during the in vitro proliferation.

• TIMP2 encodes a protein which is a member of the TIMP gene family. This protein is an
inhibitor of matrix metalloproteinases and supresses directly the proliferation of endothelial
cells. The gene product of TIMP2 is involved in the maintenance of a tissue. Nakopoulou
et al. [18] have found that TIMP2 is involved in the degradation of extracellular matrix
which leads to the invasion of cancer into the surrounding matrix. The basis of this study
have been breast cancer cells.

The annotation attributes of these genes are significant and, as before, the extended HMM
shows better results. For the gene KRT17 this can be seen in the Tables 6.2 and 6.9 and the
other genes are shown in the Tables 6.4 and 6.11.
For our method we can report:

• Our HMM approach has the potential to detect novel candidate genes for over-expression
and under-expression.

Now we summarise the main results for the analysis of breast cancer ArrayCGH data using
an HMM with two coupled transition matrices. The annotation results have intensively been
studied in the Chapter 6.
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We have analysed the ArrayCGH data of chromosome 17. Losses and gains of DNA segments
on this chromosome are reported in several publications. The main results of some interesting
publications have been presented in the Section 5.3. The fact that these studies have mostly
been made on the basis of other or only on a subset of our breast cancer cell lines and breast
cancer primary tumours makes it difficult to directly compare the results of these studies with
our annotation results. Nevertheless, we have the possibility to look for trends in our ArrayCGH
data and so we can determine where losses and gains of DNA segments in our data are mainly
located.
On the p-arm of chromosome 17 we have mainly observed losses of genes and this follows the
study of Orsetti et al. [21]. The overview of the annotation results for the ArrayCGH data in the
Figure 6.18 shows this observation. The situation on the q-arm of chromosome 17 is different.
This arm is affected by amplifications and deletions of genes. Each of the chromosomal bands
17q11.2, 17q12, 17q23.2 and 17q25.1 has been annotated more than forty times to have an
increased DNA copy number status. Most of the amplified genes are located in the band 17q12
which has been annotated one hundred twelve times to have an increased DNA copy number
status. Deletions of genes are mainly located in the regions 17q11.2 and 17q12. Losses of DNA
segments play only a role in a subset of our ArrayCGH profiles. The annotation results for
the q-arm of chromosome 17 are supported by the publications in the Section 5.3. For more
information about the annotation results for the ArrayCGH data we refer to the Section 6.2.
For our developed method we can report:

• Our HMM approach is able to detect known regions which are affected by amplifications
and deletions of DNA segments.

In summary, HMM s with coupled transition classes make use of the chromosomal locations
as additional input data. These HMM s improve the detection of candidate genes for over-
expression and under-expression in comparison with the standard HMM s. Known regions of
amplifications and deletions can be detected with this novel model class. This observation could
lead to a better characterisation of chromosomal imbalances in newer ArrayCGH studies which
have higher chromosomal resolutions.

7.3 Outlook

We have developed HMM s with coupled transition matrices which make use of the chromoso-
mal locations of genes to achieve an improved characterisation and detection of chromosomal
imbalances and gene expression alterations. The chromosomal locations of genes are only one
source of information which can be included to improve the quality of the annotation results. A
future source of information could be detailed information about the locations of chromosomal
breakpoints and therewith it should be possible to model specific hotspots of mutations.
The combination of gene expression and DNA copy number data to analyse microarray profiles
or the clustering on the Viterbi Paths of microarray profiles are possible future developments
on the basis of our novel HMM approach. The combination of both types of data, the gene
expression data and the DNA copy number data, could give us a better understanding of the
influences of chromosomal imbalances on the gene expression levels of genes. In the Section 6.3
we have discussed such effects and the Figure 6.19 shows such influences which have been ob-
served for breast cancer microarray data. The Clustering on the Viterbi Paths could lead to
improvements in the taxonomy of cancer.
Our developed HMM approach could play a role in other fields of bioinformatics or computer
science where the integration of additional information is required.
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Holger Dietrich, Rob Seitz, Doug Ross, David Botstein, and Pat Brown. Expression of
Cytokeratins 17 and 5 Identifies a Group of Breast Carcinomas with Poor Clinical Outcome.
The American Journal of Pathology, 161:1991–1996, December 2002.

[27] Simon Willis, Anne-Marie Hutchins, Fleur Hammet, John Ciciulla, Wee-Kheng Soo, David
White, Peter van der Spek, Michael A. Henderson, Kurt Gish, Deon J. Venter, and E. Jane
Armes. Detailed Gene Copy Number and RNA Expression Analysis of the 17q12-23 Region
in Primary Breast Cancers. Genes, Chromosomes and Cancer, 36:382–392, 2003.

109


