
Bird Species Identification using
Convolutional Neural Networks
Master’s thesis in Computer Science - Algorithms, Languages and Logic

JOHN MARTINSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Bird Species Identification using
Convolutional Neural Networks

JOHN MARTINSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Bird Species Identification using Convolutional Neural Networks
JOHN MARTINSSON

© JOHN MARTINSSON, 2017.

Supervisor: Alexander Schliep, Department of Computer Science and Engineering
Examiner: Richard Johansson, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of a time-spectral representation of a bird song recording

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Bird Species Identification using Convolutional Neural Networks
JOHN MARTINSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
An area of interest in ecology is monitoring animal populations to better understand
their behavior, biodiversity, and population dynamics. Acoustically active animals
can be automatically classified by their sounds, and a particularly useful ecological
indicator is the bird, as it responds quickly to changes in its environment.
The aim of this study is to improve upon the state-of-the-art bird species classifier [1],
which is implemented and used as a baseline. The questions asked are: Can deep
residual neural networks learn to classify bird species based on bird song and how
well to they perform? Do multiple-width frequency-delta data augmentation or
meta-data fusion further increase the accuracy of the model?
The questions are answered by training a deep residual neural network on one of
the largest bird song data sets in the world, with and without the use of multiple-
width frequency-delta data augmentation and meta-data fusion, and by comparing
the results with the baseline.
The study shows that deep residual neural networks can learn to classify bird species
based on bird song and that the mean average precision of the classifier nearly
matches the state-of-the-art. We further develop a proof of concept for meta-data
fusion which indicates that fusion of elevation data can be used to increase the
accuracy of the model, and in particular decrease its coverage error.
Possible ways forward are to tune the hyper parameters of the deep residual neural
network, fuse time of recording and geological location data into the model, or to
move towards the more realistic, but less studied, open set problem of continuous
classification rather than the N-class problem which is studied in this thesis.

Keywords: Machine Learning, Convolutional Neural Networks, Bioacoustical Mon-
itoring, Bird Species Classification

v

Acknowledgements
After six months of thesis work, I’m finally able to say that I’m finished. The
experience has been testing at times, but also interesting and fun. Taking a project
from idea to proposal, to plan, and, finally, to reality has been a rewarding process.
I have received great help throughout the project, and would like to thank the
people involved. To my supervisor, Alexander Schliep, thank you for taking on my
thesis, and for your insights, guidance and the positive atmosphere you brought to
the project. Elias Sprengel, thank you for guiding me during the development of
the baseline, and for answering my questions. Alexis Joy and Hervé Goeau, thank
you for kindly agreeing to evaluate my submission runs for the hidden test set of
the BirdCLEF 2016 competition. Richard Johansson, thank you for taking on the
examination of the project, and for a fruitful half-time discussion.

John Martinsson, Gothenburg, April 2017

vii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problem Formulation . 1

1.1.1 Signal Classification . 2
1.1.2 Feature Extraction . 3

1.2 Goals and Questions . 3
1.3 Outline . 4

2 Previous Work 5
2.1 Bird Classification Challenges . 5

2.1.1 MLSP 2013 . 5
2.1.2 NIPS4B 2013 . 6
2.1.3 BirdCLEF 2016 . 6
2.1.4 Summary . 7

2.2 Signal Processing . 7
2.2.1 Spectrogram . 7
2.2.2 Mel Frequency Cepstral Coefficients 8

2.3 Bird Species Classification . 8
2.3.1 Preprocessing . 8
2.3.2 Data Augmentation . 9
2.3.3 Convolutional Neural Network 11

3 Methods 17
3.1 Multiple-Width Frequency-Delta Data Augmentation 17
3.2 Deep Residual Neural Network . 18

3.2.1 Residual Unit . 18
3.2.2 Architecture . 20

3.3 Meta-Data Fusion . 20
3.3.1 Elevation . 22

3.4 Data set . 23
3.5 Evaluation . 24

3.5.1 Mean Average Precision . 25

ix

Contents

3.5.2 Area Under the ROC Curve 26
3.5.3 Top-n Accuracy . 26
3.5.4 Coverage Error . 26

4 Results 29
4.1 Multiple-Width Frequency-Delta Data Augmentation 29
4.2 Deep Residual Neural Networks . 30
4.3 Meta-Data Fusion . 32
4.4 Data Analysis . 33
4.5 Optimization Methods . 34

5 Discussion 39

6 Conclusions 43

A Implementation Details and Usage I
A.1 Data set . I
A.2 Preprocessing . II
A.3 Training . II

A.3.1 Configuration File . III
A.4 Run Predictions . IV
A.5 Evaluation . IV
A.6 Hardware . IV

x

List of Figures

2.1 The figure shows how the binary image changes after each step (from
top to bottom): (i) the spectrogram of the signal used as reference, (ii)
the binary image after median clipping of the amplitude spectrogram,
(iii) the binary image after performing a binary erosion, and (iv)
the binary image after performing a binary dilation. The mask is
then derived from the final binary image by checking which columns
contain at least one non-zero value. 10

3.1 A simplified residual unit which consists of two stacked convolutional
layers activated using ReLUs. The input of the first convolutional
layer is additively merged with the output of the last convolutional
layer, which is what we refer to as a shortcut. 19

3.2 This figure shows the architecture of the original residual [2] (left),
and the improved residual, unit using "full pre-activation" [3] (right).
Note that the activation is no longer done after the residual unit, but
rather inside it, hence "pre-activation". This means that the function
f in Equation 3.4, which is applied to the data flowing through the
shortcut, becomes an identity function. 20

4.1 The training history for the baseline method. The figure shows the
change in training and validation loss (top image), and the change in
training and validation accuracy (bottom image) with respect to the
training epoch. 30

4.2 The training history for the 18-layer residual neural network. The
figure shows the change in training and validation loss (top image),
and the change in training and validation accuracy (bottom image)
with respect to the training epoch. 31

4.3 The accuracy of the model for the sound classes ranked by accuracy.
The plot shows that the accuracy of the model varies a lot between
different sound classes. It is 100% for the highest ranked and 0% for
the lowest ranked classes. 33

xi

List of Figures

4.4 Confusion matrices for the residual neural network (a) and (b), and
the baseline (c) and (d) when each has been trained and evaluated
twice on the BCResnetBot100, and BCCubeRunBot100 respectively.
A perfect accuracy would result in a clean diagonal line. The rows are
the ground truth labels, and the columns are the classes predicted by
the model. Some sound classes seem to pick up more predictions than
others, meaning that the network seems to favor prediction of some
sound classes over others. 35

4.5 The figure shows the number of training segments (blue) plotted on
the right y-axis with respect to 5% chunks of the sound classes ranked
by the number of training segments in each 5% chunk. It also shows
the average number of predictions that the chunks of sound classes
receive (red) and the expected average number of predictions for each
chunk (green) plotted on the left y-axis. 36

4.6 Validation loss (top) and accuracy (bot) for seven different optimizers
when training the baseline model on the BCSubset data set. 37

xii

List of Tables

2.1 The network architecture used in the baseline. The first column con-
tains the type of the layer, the second column contains the configura-
tion of the layer, and the third column contains the output shape of
the layer (rows, columns, channels). 14

3.1 The architecture of the 18-layer deep residual neural. The configura-
tion of a basic block, e.g., "64 3x3 kernels, 2x2 stride" should be read
as: the number of filters of the convolutional layers in the basic block
is 64, their kernel sizes are 3x3, the stride size of the first convolu-
tional layer is 2x2, whereas the stride size of the second convolutional
layer is 1x1. 21

3.2 The architecture of a basic block. The input layer is simply the output
of the layer to which the basic block has been connected. Meaning that
if the previous layer has an output of shape (n, m, d) then the input
layer gets that output shape. Both convolutional layers use the number
of filters which is specified when constructed (see Table 3.1), but only
the first convolutional layer uses the specified stride size, the second
always has a stride size of 1x1. 21

3.3 The names of the data sets used in this thesis, how many sound classes
each data set contains, and a short description of each data set.
BCWhole is the entire BirdCLEF 2016 data set, BCSubset consists
of 20 randomly chosen sound classes from BCWhole, BCCubeRun-
Bot100 consists of the 100 sound classes for which the baseline had
the worst accuracy, and BCResnetBot100 consists of the 100 sound
classes for which the residual neural network had the worst accuracy;
when trained on BCWhole. 24

4.1 The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of
the baseline when trained with the raw spectrogram, MFCCs, and
MWFD features. Each of these models was trained on BCSubset. . . . 29

4.2 The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of
the baseline, and the residual neural network. Each method has been
trained on the BCWhole data set three times, and then the average of
the evaluation scores and their standard deviation has been computed. 31

4.3 The MAP score for the baseline, the residual neural network, and the
previous state-of-the-art when evaluated on the hidden BirdCLEF test
set with and without consideration of the background species. 32

xiii

List of Tables

4.4 The MAP, AUROC, top-1 accuracy, top-5 accuracy, and CE of the
baseline, and the residual neural network when meta-data fusion of
the elevation is used. Each method has been trained on the BCWhole
data set three times, and then the average evaluation and the standard
deviation of these have been taken. 32

4.5 The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of
the baseline, and the residual neural network when trained on dataset
BCCubeRunBot100 and BCResnetBot100 respectively. 34

A.1 The main software libraries used during development, their respective
version numbers, and their most useful methods for this project. . . . I

xiv

List of Abbreviations

AUROC Area Under the Receiver Operating Characteristic Curve. 23, 24

BN Batch Normalization. 17

CE Coverage Error. 23
CNN Convolutional Neural Network. 1, 3

FFT Fast Fourier Transform. 8

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 3, 37

MAP Mean Average Precision. 7, 23, 29
MFCC Mep Frequency Cepstral Coefficients. xiii, 3, 8, 15, 16, 27, 37
MLSP Machine Learning for Signal Processing. 1, 5–7
MWFD Multiple-Width Frequency-Delta. xiii, 3, 4, 27, 37, 38

NIPS4B Neural Information Processing Scaled for Bioacoustics. 1, 6, 7

ReLU Rectified Linear Unit. 12, 16

SIBL Single-Instance Binary-Label. 2
SIML Single-Instance Multi-Label. 2
SISL Single-Instance Single-Label. 2
STFT Short-Time Fourier Transform. 7, 8

xv

List of Abbreviations

xvi

1
Introduction

An important problem in ecology, which is the study of interactions between organ-
isms and their environment, is to monitor animal populations, especially with the
continuing threat of climate change [4].

The use of acoustics to monitor and classify animals in their natural environ-
ments has received a lot of interest lately [5–13]. Classification of animal species
based on recorded sound data is, for example, useful when monitoring breeding be-
havior, biodiversity, and population dynamics [7,14]. Birds are a particularly useful
ecological indicator, as they respond quickly to changes in their environment.

Bird classification can be done manually by domain experts; however, with grow-
ing amounts of data, this rapidly becomes a tedious and time-consuming process.
Therefore automatic tools which can aid in this process are needed. Several bird
species identification challenges such as the BirdCLEF [15], the Neural Information
Processing Scaled for Bioacoustics (NIPS4B) 2013, and the Machine Learning for
Signal Processing (MLSP) 2013 Bird Classification Challenge [8] have been held re-
cently, all with the goal of creating and evaluating such automatic classifiers on bird
song recordings taken from the field. A promising classification technique has proven
to be convolutional neural networks [1,8]. In the 9th annual MLSP competition the
authors conclude with the words "convolutional neural nets achieved excellent results
without extensive feature engineering, hence further investigation of such methods
is warranted" [8], and the winners of BirdCLEF 2016 used a convolutional neural
network (CNN) which was trained on augmented spectrogram data computed from
bird song audio files [1]. In this thesis, a new convolutional neural network archi-
tecture called deep residual neural networks [2] is evaluated in this problem domain
to see if this model, originally designed for image recognition, is useful in the audio
domain. A new data augmentation technique called multiple-width frequency-delta
data augmentation is investigated [16], and a proof of concept for a meta-data fu-
sion method is developed. (The full source code for the project can be found at:
https://github.com/johnmartinsson/bird-species-classification.)

1.1 Problem Formulation

The challenges addressed in this thesis could be divided into two main parts: (i)
signal classification, and (ii) feature extraction. In this section, these challenges are
described in more detail and each challenge is formulated as a problem which the
thesis aims to address.

1

https://github.com/johnmartinsson/bird-species-classification

1. Introduction

1.1.1 Signal Classification
There are several ways of defining a bird species classification problem. First of all,
we need to establish what we want to classify: Are we interested in the absence
or presence of a bird in the recording? Are we interested in how many individuals
there are? Do we need to classify the actual species of the birds present? Or is it
the start and end timings of each individual song that we seek?

Considering only the presence or absence of a bird in a recording makes it a
single-instance binary-label (SIBL) problem. That is, for each audio recording there
are two possible classes, either a bird is present (singing) in the recording, or it is
not. This is useful in, e.g, a system which collects data out in the field. If the system
is able to recognize when a bird is present in a data sample, then it can make an
informed decision about whether or not to store that sample to disk.

If we are interested in the actual species of the singing bird the number of possible
classes increases to the number of observable bird species making it a single-instance
single-label (SISL) problem. There is still only one instance to classify, namely the
recording, but there are a lot of different bird species around the world, which means
that the sound classes are no longer binary. This is useful if we want to reason about
the data collected out in the field, and answer questions such as: What bird species
are present? How diverse is the bird population? Et cetera.

If we are interested in all the singing species in a recording we need the ability to
classify multiple bird species per recording, making it a single-instance multi-label
(SIML) problem. Which is an accurate formulation of the problem at hand, but it
is also a hard problem to solve.

In this thesis we consider only the most prominently singing bird species in each
recording, i.e., we treat it as a single-instance single-label problem. However, the
data used will contain recordings where multiple birds are singing at the same time
which means that in these instances the background species will be treated as noise.

Formally, let X = {x̄1, . . . , x̄n} be the set of bird song recordings, or training
samples where each x̄i ∈ X is associated with a main species yj ∈ Y . Let Y =
{y1, . . . , yn} be the set of all species labels, and let f : X → Y be a function
which maps a training sample to the ground truth main species. Then the SISL
classification problem is to find a parameter set w such that the parameterized
function fw : X → Y is a good estimate of f . How good the estimate fw is can be
determined by introducing a loss function where loss(f(x̄), fw(x̄)) is defined to be
small if the estimate fw(x̄) is close to the ground truth f(x̄), and larger otherwise.
That is, the loss tends towards zero if the prediction is close to the ground truth.
The optimization problem can then be defined as:

w = arg min
w

∑
x̄∈X

loss(f(x̄), fw(x̄)). (1.1)

That is, we want to find the parameter set w such that the total loss for the
model fw when evaluated on the training data X is as small as possible. However,
keep in mind that the optimization is based on the loss of the training data. This
does not guarantee that the model performs well on data which it has not seen
before. If it does we say that the model generalizes well. In order to estimate how
well the model generalizes the data is usually split into training data and test data,

2

1. Introduction

and then optimized, or trained, on the former, but only evaluated on the latter.
In this thesis, fw will be modeled using a convolutional neural network (CNN) as

in the winning solution of the BirdCLEF 2016 bird classification challenge [1]. How-
ever, in addition to a conventional CNN, we propose the use of residual learning [2]
with identity mappings [3] as part of the CNN architecture. These modifications to
the CNN architecture have shown promising results and was part of the winning so-
lution of the ILSVRC 2015 classification task. The modifications should enable the
training of much deeper networks, and deeper networks are commonly associated
with better classification results.

1.1.2 Feature Extraction
Another problem when training neural networks is deciding what features to use
as input to the network. In particular, how to extract abstract features, which
contain as much information about the original input as possible, but with a lower
dimensionality to enable efficient training.

The design of a feature extraction method can be seen as a trade-off between
separability and contraction [17]. We want a contractor, or feature extractor, Φ(x)
which reduces the dimensions of data point x without sacrificing separability, that
is, we want Φ(x) 6= Φ(x′) if f(x) 6= f(x′), where f is a true classifier. If this property
holds we say that Φ separates f .

Sprengel et. al [1] use a spectral computation as the contractor, and input noise-
filtered chunks of spectrograms to the CNN. These chunks are augmented in four
ways: time shifting, pitch shifting, noise adding, and combining same class audio
files. This thesis proposes an alternative feature representation where Mel-frequency
cepstral coefficients (MFCCs) are augmented with multiple-width frequency-delta
data augmentation (MWFD) [16] to see if it can improve classification accuracy in
the bird song domain.

1.2 Goals and Questions
The goal of this thesis is to improve upon the state-of-the-art bird species classi-
fier [1] which was used to win the BirdCLEF 2016 bird recognition challenge. We
propose the use of a new convolutional neural network architecture [2] and a recently
published technique for augmenting features extracted from audio signals [16]. We
also investigate the use of meta-data, in addition to the audio data, as a way of
increasing classification accuracy. The classifier should be able to identify the most
prominently singing bird in an acoustical soundscape. An acoustical soundscape
is the composition of geophony (e.g., wind, trees, and rain), biophony (e.g., birds,
frogs, and insects) and anthropophony (e.g., airplanes, cars, and trains).

With this goal in mind there are three main research questions which this the-
sis aims to answer: (i) Can deep residual neural networks be used to classify bird
species based on acoustical data recordings, and how well do they perform? (ii)
Can multiple-width frequency-delta data augmentation be used to improve classifi-
cation accuracy in this problem domain? And (iii) can additional meta-data of the
recordings be used to improve classification accuracy?

3

1. Introduction

1.3 Outline
In this chapter, we have explained to the reader why the problem is important, what
it can be used for, and have given the reader an introduction and formulation of the
problem at hand. The outline of the rest of the thesis is:

• In Chapter 2 we review the results produced during several of the most recent
bird species identification challenges, and present the theory of a state-of-the-
art bird species classifier which will be used as the baseline in this thesis.

• In Chapter 3 we present the theory for the multiple-width frequency-delta
data augmentation technique, the deep residual neural network, the meta-
data fusion and the evaluation methods used to produce the results in the
thesis.

• In Chapter 4 the results of the baseline, the MWFD data augmentation, the
residual neural network, and the data-fusion method are presented and com-
pared. We also show results from an analysis of the used data set.

• In Chapter 5 we summarize and discuss what we set out to do, what has been
achieved, what problems arose, and propose possible routes for future work.

• Lastly, in Chapter 6 we draw conclusions from the results and the discussion.

4

2
Previous Work

In this chapter previous work on automated species classification using bioacous-
tics is reviewed with a strong focus on the literature where acoustical classification
methods have been used to identify singing birds in audio recordings.

2.1 Bird Classification Challenges
Several bird species classification challenges with closely related, but different, task
descriptions have been held during the last few years. The interest and participation
in these challenges have been high which indicates that these are relevant problems
and that there is a need to solve them.

The challenges are usually to predict which species are present in a set of record-
ings with hidden labels, called the test set, and to submit the predicted species for
each test data point for evaluation against the ground truth labels. The task descrip-
tion can vary from predicting only the presence or absence of birds in a recording to
predicting all actively singing bird species [8]. That is, the challenges have a varying
degree of difficulty. In the rest of this section, we present the results of some of the
most recent such challenges in chronological order.

2.1.1 MLSP 2013
The IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
announced a bird species classification challenge in the year of 2013 [8]. The chal-
lenge was to determine all of the acoustically active bird species in each audio
recording of a test set with a total of 19 different bird species. That is, the task was
treated as a single-instance multi-label problem.

The data set consisted of 645 ten-second audio recordings which were split into
a training set (50%) and a test set (50%). The bird species labels for each recording
in the training set was made public, but the labels for each recording in the test set
was kept secret.

79 teams participated in the challenge, and 8 out of 10 of the top-ranking teams
supplied a two-page summary of their methods [8], showing a strong interest in the
problem. The winning team used a random forest (RF) classifier, where features
were extracted from the input using template matching.

Templates were computed using a custom time-frequency segmentation technique
where each boxed segment was stored as a template [18] and computed only from the
81 audio recordings which were labeled with a single sound class. The spectrogram

5

2. Previous Work

of each recording was then computed. Features were extracted for each spectrogram
by computing the normalized cross-correlation map between the spectrogram and
each template, the similarity between the template and the spectrogram were then
evaluated at the maximum value of the normalized cross-correlation map using a
template matching method, meaning that each spectrogram yields a feature vector
with the same length as the number of templates that was extracted from the 81
signal label recordings. The method also used features available as a baseline in the
challenge such as histogram of segments, which were appended to the feature vector
and used as input to the classifier.

Many of the teams designed task specific features; however, one team which came
in fourth place used raw spectrogram data to train a convolutional neural network.
It is stated by Briggs et. al [8] that further investigation of the use of convolutional
neural networks in this problem domain is warranted.

2.1.2 NIPS4B 2013
In the Neural Information Processing Scaled for Bioacoustics (NIPS4B) Bird Species
Classification Challenge the task description was similar to that of MLSP 2013.
Participants were asked to identify all actively singing birds in each of the test files.
However, the number of possible species was 87 instead of 19, and the recordings
could vary in length (from around 0.5s to 5.5s). This is also formulated as a single-
instance multi-label classification problem.

The winning solution [19] of this challenge used a similar approach to [18]. The
main difference is that additional features are extracted for each audio file. In
addition to the features extracted by evaluating the template matching at the max-
imum value of the normalized cross-correlation map, the feature vector is further
augmented with file and segment statistics (e.g. mean, standard deviation etc).

2.1.3 BirdCLEF 2016
The BirdCLEF challenge uses a very large data set with bird recordings. The data is
taken from the bird song database xeno-canto 1, which is a web-based service where
bird enthusiasts can upload and share recordings of bird songs. At the time of writing
(2016-12-21, 19:12:33) there are 335,268 recordings of 9,684 different foreground bird
species, and 10,256 background species, recorded by 3,390 recordists, which totals
to over 4,850 hours of recorded sound.

The BirdCLEF data set is a subset of the xeno-canto database and consists of
999 different species recorded in South America (Brazil, French Guiana, Surinam,
Guyana, Venezuela and Colombia) [20]. The data set totals to about 33,200 record-
ings, which have been normalized to 44.1 kHz 16-bit mono format (right channel)
audio files.

The task is to determine the bird species present in each recording. Participants
were asked to provide a ranked list with the most probable bird species for the
recordings of a hidden test set. The data set is divided into 1/3 test data and 2/3
training data, and the metric used to evaluate the classification performance of the

1http://www.xeno-canto.org

6

2. Previous Work

runs supplied by the participating teams is the mean average precision (MAP) over
all recordings in the test set.

The best performing method [1] used a convolutional neural network, where the
input to the network was segments of the spectrogram computed from the sound files.
The sound files are preprocessed by extracting two sound classes from each audio file:
noise and signal (bird vocals), which are divided into equally long sound segments of
around 3 seconds. The signal segments represent the actual bird vocals which each
have a bird species associated with it. The samples shown to the neural network are
then loaded and augmented at random. Each signal segment is additively combined
with another same class signal segment chosen at random [21], as well as three
randomly chosen noise segments. The samples are then further augmented by a
random shift in the time domain, and a small random shift (5%) in the frequency
domain.

2.1.4 Summary
In MLSP 2013 the winning solution were random forests trained on probabilities
derived from template matching of species-specific spectrograms [8]. The winning
solution of NIPS4B 2013 by Lasseck et al. [19] used these results as a starting point
but introduced an additional set of features statistically derived from the audio files.
Lasseck also used a similar method to win the BirdCLEF 2015 challenge [22]. How-
ever, during the BirdCLEF 2016 challenge, it was shown that convolutional neural
networks trained on spectral data computed from the sound recordings could out-
perform other state-of-the-art systems [1]. This thesis uses the work of Sprengel et
al. [1] as a starting point and a baseline, and explore the use of a new convolutional
neural network method called deep residual neural networks [2] as well as a new
data augmentation technique called multiple-width frequency delta data augmenta-
tion [16].

2.2 Signal Processing
In this section two commonly used signal processing techniques will be explained.
Raw audio data is not suited as input for a neural network, and therefore the audio
signal is usually transformed into a time-spectral representation.

2.2.1 Spectrogram
The spectrogram of a discrete audio signal x̄ = x1, . . . , xn is computed in two or
three steps. First, a Short-Time Fourier Transform (STFT) is applied to the audio
signal. The STFT is computed in a standard way by splitting the signal into different
overlapping frames, and then compute the Discrete Time Fourier Transform (DTFT)
for each frame, which results in a matrix with complex values (see Equation 2.1):

STFT{x̄}(m,ω) ≡ Xm(ω) =
∞∑

n=−∞
xnw(n−mR)e−jωn (2.1)

7

2. Previous Work

where xn is the input signal at time n, w(n) is a length M = 512 Hann window
centered around n, and R = 128 is the hop size between successive frames. That
is, we use a Hann window of size 512 with a 75% overlap. We use the librosa.stft
method of the library librosa [23] to compute the STFT.

Secondly, the squared amplitude of the magnitude of the STFT is computed,
which we call an ampspectrogram (see Equation 2.2), and thirdly the natural loga-
rithm of the amplitude spectrogram is computed (see Equation 2.3), which we refer
to as a logspectrogram.

ampspectrogram{x̄}(ω) ≡ |X̄(ω)|2 (2.2)

logspectrogram{x̄}(ω) ≡ loge(|X̄(ω)|2) (2.3)

2.2.2 Mel Frequency Cepstral Coefficients
Mel Frequency Cepstral Coefficients (MFCCs) have been a standard choice as the
audio features used in speech recognition, and their success owes much to the amount
of information they contain about the audio signal in such a compressed form [24].
The Mel Frequency Cepstrum approximates the way the human auditory system
deals with sound. The following steps are used to compute the MFCCs:

(i) compute the power magnitude spectrogram of the signal,
(ii) combine the FFT bins into Mel-frequency bins,
(iii) take the logs of these powers, and
(iv) perform a Discrete Cosine Transform.

The MFCCs are now the amplitudes of the resulting spectrum. In this thesis, the
MFCC are computed using the librosa.feature.mfcc method of the library librosa [23].

2.3 Bird Species Classification
In this section, the state-of-the-art method used to win the BirdCLEF 2016 chal-
lenge [1] is explained in more detail. This method will be used as a baseline.

2.3.1 Preprocessing
The audio files are first preprocessed into a format that can be used to train the
neural network. The audio files are normalized to mono-channel 16-bit wave data
re-sampled from 44,100 Hz to 22,050 Hz.

Bird Song Detection

The bird song recordings are separated into two different sound classes: signal (bird
vocals) and noise. The separation lets us train the neural network on the most
relevant data, and it gives us access to a noise class which can be used to augment
training samples. After the recording has been separated into a signal wave and

8

2. Previous Work

a noise wave these are each split into 3-second segments which are stored to disk.
The noise segments can later be used to augment the training samples shown to the
network which should improve generalization (see Section 2.3.2).

The signal part is extracted by first computing a signal mask v̄ for the given
sound wave x̄, and then use the mask to extract the relevant part of the sound
wave, where vi = 0 indicates that xi is not part of the signal, and vi = 1 indicates
that it is part of the signal.

The mask is derived from a binary image which is computed by analyzing the
normalized amplitude spectrogram of x̄. Let b̃ be the binary image, and let s̃ be the
normalized amplitude spectrogram of x̄, where b̃ and s̃ have the same dimensions.
The pixel at index (i, j) in the binary image is then set to one if s(i)

j is t times larger
than the row and column median of s̃ at row i and column j as seen in Equation 2.4.

b
(i)
j =

1, if s(i)
j > t×median(̄s(i)) ∧ s(i)

j > t×median(̄sj)
0, otherwise

(2.4)

The binary image is further processed by applying a binary erosion followed by a
binary dilation on the image, both using a kernel size of 4 by 4, which smooths out
the regions marked as bird vocals (see Figure 2.1), and the signal mask v̄ is derived
from the binary image by setting vj to one if the column b̄j contains one one. The
mask is also smoothed by performing two more binary dilutions (kernel size 4), and
is then re-scaled such that |v̄| = |x̄|. The images in Figure 2.1 have been manually
compared, for each step, with the corresponding image presented by Sprengel et.
al [1] for the same sound file, and the method produces similar results.

Algorithm 2.1 Noise/Signal Mask Computation
1: procedure ComputeMask(r̄, t)
2: Pxx← spectrogram(r̄)
3: Pxx← normalize(Pxx)
4: BinaryImage← medianClipping(Pxx, t)
5: BinaryImage← erosion(BinaryImage, (4, 4))
6: BinaryImage← dilation(BinaryImage, (4, 4))
7: mask ← computeMask(BinaryImage)

return mask

The signal mask is computed by setting the threshold t = 3, and the noise mask
is computed by setting t = 2.5 and then inverting the mask at the end (flipping
0s to 1s, and 1s to 0s). This may leave parts of the wave which are marked as
neither signal nor noise (2.5-3). These parts are considered to not contribute with
any relevant information for the network, and they are simply ignored.

2.3.2 Data Augmentation
Data augmentation is a way of increasing the number of training samples in a data
set by augmenting the training data. Even if the BirdCLEF dataset is one of the
largest bird song data sets available, the number of training samples per bird species
is rather small; on average around 30 samples per sound class. Data augmentation

9

2. Previous Work

Figure 2.1: The figure shows how the binary image changes after each step (from
top to bottom): (i) the spectrogram of the signal used as reference, (ii) the binary
image after median clipping of the amplitude spectrogram, (iii) the binary image
after performing a binary erosion, and (iv) the binary image after performing a
binary dilation. The mask is then derived from the final binary image by checking
which columns contain at least one non-zero value.

10

2. Previous Work

can also be used to make the training samples harder by introducing noise to the
signal, which is intended to prevent overfitting and make the model generalize better
due to a higher noise invariance. In this section, the data augmentation techniques
used in the baseline [1] will be explained.

Same Class and Noise Addition

In order to improve the convergence rate of the neural network, the training sam-
ples are augmented by additively combining each sample with another same class
sample, which lets the network see more relevant data at once. The samples are also
additively combined with three random noise segments, to make the network more
noise invariant, and therefore generalize better. Each sample shown to the neural
network is thus a combination of two randomly chosen same class signal segments
x̄1 and x̄2, and three randomly chosen noise segments n̄1, n̄2, and n̄3 of the same
length:

s̄aug = αx̄1 + (1− α)x̄2 + β(n̄1 + n̄2 + n̄3), (2.5)

where α ∈ [0, 1) is chosen uniformly at random, β = 0.4 is used as a dampening
factor of the noise segments. All segments are three seconds long and sampled at
22,050 Hz (see Section 2.3.1).

Time and Pitch Shift

The time shift augmentation is done by splitting a spectrogram sample into two
parts, along the time axis, and then place the second part before the first. That is,
a wrap-around shift in the time domain. The pitch shift augmentation is done in a
similar way, but in the frequency domain (vertically), and the shift is only around
5%. Larger shifts are said to not be beneficial [1]. The shifts are performed on the
logarithmic spectrogram of the same class and noise augmented training samples,
just before they are shown to the neural network.

2.3.3 Convolutional Neural Network
The classifier presented by Sprengel et. al [1] is a convolutional neural network
(CNN). A convolutional neural network is a neural network architecture pioneered
by LeCun et. al [25] and later popularized by Krizhevsky et. al [26] with the intro-
duction of the AlexNet. A typical CNN consists of convolutional layers and pooling
layers followed by a fully connected neural network. The convolutional layers and
the pooling layers are supposed to learn how to extract relevant, locally distortion
invariant, features from the input [25], and the fully connected neural network is
supposed to learn how to classify these features. The features learned by the con-
volutional layers could be, e.g., edges of objects in an image.

In the rest of this section, convolutional layers and pooling layers will be defined,
the input of the network will be summarized, the architecture used in the baseline
will be defined, and the initialization, optimization and loss function used will be
explained.

11

2. Previous Work

Convolutional Layer

A convolutional layer takes an image as input, and produces a set of feature maps as
output. The input image can contain multiple channels (e.g. RGB), which means
that the convolutional layer learns a mapping from a 3D volume to another 3D
volume. The layer consists of a number of convolution kernels each of which is
made up of adjustable weights. The weights are adjusted during optimization using
stochastic gradient decent. The feature maps are produced by performing a discrete
convolution between each kernel in the convolutional layer and the input volume
yielding one feature map for each kernel.

Performing a convolution can be thought of as sliding a window along the input
image and computing the dot product between the kernel and the values of the
neighborhood patch, or the so called receptive field, in the image as seen through
the window. The window has the same size as the kernel, and it is important to
understand that the kernel has a depth extending through all the channels of the
input image.

Formally, let wl
k and bl

k denote the weights and the bias term for the l-th layer
of the k-th convolution kernel, and let xl ∈ RW H be the l-th channel, or layer, of
an input image of shape (W,H,D). We can then define the feature value, ck

i,j, at
position (i, j) of the resulting k-th feature map as:

ck
i,j = f(

D∑
l=1

wl
k · xl

i,j + bl
k), (2.6)

where D is the depth of the input (the number of channels), xl
i,j is the receptive

field centered around (i, j) of the l-th layer, and f is a rectified linear unit (ReLU)
defined as:

f(x) = max(0, x). (2.7)

Note that the resulting number of feature maps is the same as the number of
kernels used, and that the weights and bias are reused in the computation of the
dot product for each receptive field, for each kernel and layer, called weight sharing.
The idea is that if the kernel is useful for finding local features at position (x1, y1)
in the image, then it should also be useful at a different position (x2, y2).

The configuration of the convolutional layer is thus specified by the number
of kernels used, the width and height of the kernels, and the stride size which
determines the spacing between the receptive fields. For example, a stride size of
1×2 would slide the window along the image with a step size of one pixel horizontally
and two pixels vertically making the width of the resulting feature map the same
as that of the input image, but the height of the feature map half the height of the
input image.

The output size of the convolutional layer is therefore determined by the number
of kernels used and the stride size. The number of kernels determines the depth of
the output volume and the stride size determines the width and height of the output
volume. For example, if the input volume of a convolutional layer is an image of
shape (32, 32, 3), the number of kernels used is 16, and the stride size is 1× 2, then
the output volume would be of shape (32, 16, 16).

Zero padding of the input image has been assumed in this section. Since the

12

2. Previous Work

window will extend outside the bounds of the input at the edges some values will
not be defined, and zero padding is basically assuming that all these values are zero.

Pooling Layer

The feature maps computed by a convolutional layer are then run through a pooling
layer, which is designed to merge semantically similar features and thus reduce the
size of the feature maps [27].

The pooling layer used is max pooling which simply computes the maximum
value of local receptive fields in each of the feature maps. The spacing of the fields
is determined by the stride size and the size of the fields is determined by the kernel
size of the pooling layer. Again, let xl

i,j be the receptive field of the l-th input layer
centered around (i, j), then the value of the l-th pooled layer, pl

i,j, can be defined
as:

pl
i,j = max(xl

i,j), (2.8)

where max takes the maximum value of the receptive field.
For example, if the stride size is 2×2 then the width and the height of the pooled

feature maps are halved because we step through the 2 × 2 neighborhoods of each
feature map with a step size of 2 pixels horizontally, and 2 pixels vertically. That
is, if the input of a max pooling layer with a kernel of size 2× 2 and a stride size of
2× 2 has shape (32, 32, 4), then the output will have shape (16, 16, 4). The input is
assumed to be zero padded to handle edge cases.

Input of the CNN

To summarize: the final input of the convolutional neural network is the logarith-
mic spectrogram of the augmented data points. The augmented data points are
computed from the original sound files by applying the following steps:

(i) normalize sound files,
(ii) separate noise and signal segments,
(iii) combine same class and noise segments to form a unique data point,
(iv) compute the logarithmic spectrogram of the audio segment,
(v) drop the 4 lowest and 24 highest frequency bands, and
(vi) time-shift and pitch-shift the spectrogram.

The resulting shifted logarithmic spectrogram is then re-sized to 256 × 512 pixels
to have even powers of two, yielding an input vector of shape (256, 512, 1), which is
used as input to the convolutional neural network.

Architecture

The architecture of the convolutional neural network model described by Sprengel
et. al [1] uses a normal input layer, then five similar building blocks with different
configurations, where each building block consists of a batch normalization [28]-,
convolution-, and max pooling layer. Finally, the network has a dense layer and a
softmax layer with a 40% dropout [29] on each. The dropout is used to introduce

13

2. Previous Work

Table 2.1: The network architecture used in the baseline. The first column contains
the type of the layer, the second column contains the configuration of the layer, and
the third column contains the output shape of the layer (rows, columns, channels).

Layer (type) Configuration Output Shape
InputLayer (256, 512, 1)
BatchNormalization (256, 512, 1)
Convolution2D 64 5x5 kernels, 1x2 stride (256, 256, 64)
MaxPooling2D 2x2 kernel, 2x2 stride (128, 128, 64)
BatchNormalization (128, 128, 64)
Convolution2D 64 5x5 kernels, 1x1 stride (128, 128, 64)
MaxPooling2D 2x2 kernel, 2x2 stride (64, 64, 64)
BatchNormalization (64, 64, 64)
Convolution2D 128 5x5 kernels, 1x1 stride (64, 64, 128)
MaxPooling2D 2x2 kernel, 2x2 stride (32, 32, 128)
BatchNormalization (32, 32, 128)
Convolution2D 256 5x5 kernels, 1x1 stride (32, 32, 256)
MaxPooling2D 2x2 kernel, 2x2 stride (16, 16, 256)
BatchNormalization (16, 16, 256)
Convolution2D 256 3x3 kernels, 1x1 stride (16, 16, 256)
MaxPooling2D 2x2 kernel, 2x2 stride (8, 8, 256)
BatchNormalization (8, 8, 256)
Flatten (16384)
Dropout dropout 0.4 (16384)
Dense (1024)
Dropout dropout 0.4 (1024)
Dense (999)
Total Params 19,523,883

noise to the model and prevent overfitting. A dropout of 40% means that for each
epoch there is a 40% chance of a neuron being deactivated. The whole network
architecture is summarized in Table 2.1. All the convolutional layers use rectified
linear units (ReLUs) as activation functions. The two dense layers at the end use
ReLU and softmax activation respectively.

Initialization

The weights of deep neural networks can be initialized by pooling from a standard
distribution with zero mean and a small fixed standard deviation. However, if the
weights in the network start too small, then the signal which is propagated through
the layers of the network may shrink too fast to be useful, or, conversely, if the
weights start too large, the signal may grow too quickly as it passes through the
network making it to large to be useful. Therefore it can be difficult to get very
deep networks to converge. Another reason for convergence issues can be that the
gradients become unstable with bad initialization, resulting in vanishing or exploding
gradients [30]. If the gradients become small the convergence rate towards the

14

2. Previous Work

optimum also becomes small, and the training time for the network increases. That
is, the initial weights of the network affect how the signal is propagated forward in
the network, and how the gradients are propagated backward in the network, and,
ideally, both of these should be stable.

Glorot and Bengio [30] suggests what they call a normalized initialization:

W
(i)
j ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, (2.9)

where U [−a, a] is the uniform distribution in the interval (−a, a), and ni is the size
of the layer i.

However, this initialization method assumes that the activation functions are
linear, which is not true for ReLUs. In this thesis, the initialization method used is
the one proposed by He et. al [31], which takes ReLUs into account.

Optimization

The optimization method used is stochastic gradient descent with a learning rate, η,
of 0.001, a Nesterov momentum, µ, of 0.9, and a decay rate of 1e-6. In Section 1.1.1
we explained that the optimization problem can be defined as:

w = arg min
w

∑
x̄∈X

loss(f(x̄), fw(x̄)), (2.10)

where w is the parameters that minimize the loss over the training set X for the
parameterized function fw. Gradient descent is used to update the parameters in
the direction which decrease the loss the most:

wt+1 = wt − η∆Q(wt) = wt − η
N∑

i=1
∆Qi(wt), (2.11)

where Qi(w) = loss(f(x̄i), fw(x̄i)) is the loss of the model for training sample x̄i ∈
X. Computing the full gradient at each update, however, is costly. Therefore
stochastic gradient descent is used which is performed "on-line" and approximates
the real gradient using only one sample, or a subset of samples. For simplicity,
only one sample is used in this explanation. The update rule for stochastic gradient
decent can then be defined as:

wt+1 = wt − η∆Qi(wt), (2.12)

where we compute the gradient of the loss function at training sample i, and update
the parameters in the negative direction of this gradient scaled by the learning rate
η.

The update rule using Nesterov momentum can be defined as:

vt+1 = µvt − η∆Qi(wt + µvt) (2.13)
wt+1 = wt + vt+1, (2.14)

where vt represents the momentum which accumulates if the direction of the gradient
stay the same through multiple updates, and µ ∈ [0, 1] is the Nesterov momentum
coefficient [32]. The update rule is applied once for each training sample during an
epoch of training, and the training samples are shuffled.

15

2. Previous Work

Loss Function

The loss function is a measure of how well the network model performs on a set of
labeled data points. The most commonly used loss functions are mean squared error
and cross entropy both of which are continuous, differentiable, and can be computed
efficiently, which is needed during the optimizaion to compute the gradient.

In this thesis we use the cross entropy loss function as it has three other nice
properties: (i) it is always positive, (ii) the loss tends to zero when the estimate
of the network tends to the desired output, and (iii) the amount of loss, which is
determined by the partial derivatives of the loss function, is in proportion to how
wrong the estimate of the network is. Especially (ii) and (iii) are properties which
one intuitively would expect from a learning framework. We expect the loss to
become smaller the more correct we are, and we expect to learn more from greater
mistakes.

The single-label categorical cross entropy function can be defined as:

C = − 1
N

N∑
n=1

[
yn log ŷn + (1− yn) log(1− ŷn)

]
, (2.15)

where N is the total number of training samples, yn = f(x̄n) is the desired output
for data point x̄n, and ŷn = fw(x̄n) is the estimated output.

16

3
Methods

This chapter explains the methods used to implement and evaluate the bird species
classifiers in this thesis. The following steps stay the same as in the baseline pre-
sented in Section 2.3: preprocessing (see Section 2.3.1), same class and noise augmen-
tation (see Section 2.3.2), time shift and pitch shift augmentation (see Section 2.3.2),
optimization (see Section 2.3.3), and loss function (see Section 2.3.3).

The methods explained in this chapter have to the best of the author’s knowledge
not been used for acoustical bird species classification before. Data augmentation
techniques, as well as convolutional neural network, have previously proven to be
useful in this problem domain [1,8], therefore it is of interest to further explore such
methods.

3.1 Multiple-Width Frequency-Delta Data Aug-
mentation

Mel-frequency cepstral coefficients (MFCCs) are commonly used features when train-
ing audio classifiers (see Section 2.2.2). Han et. al [16] presents a novel data aug-
mentation technique which is used to improve the usefulness of such features. The
idea is to compute the delta features of the MFCCs, which contain additional in-
formation about the trajectories of the MFCCs. This gives the network not only
local static information about the signal, but also dynamic information about how
the signal will proceed in the (near) future [16]. The multiple-width frequency-delta
(MWFD) data augmentation is computed as such:

dt =
∑K

k=1 k(xt+k − xt−k)
2∑K

k=1 k
2 , (3.1)

where dt is the delta feature computed from frame t in terms of the static Mel-
frequency cepstrum coefficients xt−K to xt+K . The delta width refers to 2K+1, and
Han et. al [16] propose widths ∆3,∆11 and ∆19 (i.e., K = 1, K = 5, K = 9). The
input to the CNN is then the vector, or four channel image, (static,∆3,∆11,∆19),
where static refers to the MFCCs. Consequently, if |static| = 12 then |∆3| =
|∆11| = |∆19| = 12, meaning that we would augment a 12 feature input vector to a
48 feature input vector. Edge cases are solved by reusing the first or last coefficient
in static respectively.

We use the first 32 MFCCs following the results of [33], which show that 32
MFCCs are a sweet spot for identifying frog calls, and insects. These are extracted
using the library librosa [23], which computes a Mel-spectrogram using a 2048 length

17

3. Methods

FFT window and a hop size of 512. The audio segments processed are three sec-
onds each with a sample rate of 22,050 Hz which yields an MFCC vector of shape
(32, 129, 1), which in turn is resized to (32, 128, 1) in order to have even powers of two.
The deltas are then computed from the resized MFCCs, using librosa.feature.delta,
and used to augment the MFCCs as described in this section. The final shape of
the feature vector is thus (32, 128, 4) which is used as input to the classifier.

3.2 Deep Residual Neural Network
Deep residual neural networks were poineered by He et. al [2], and use "shortcut
connections" in order to improve the convergence rate and classification accuracy of
very deep CNNs. Deep networks are usually harder to train [30] because of vanishing
or exploding gradients, which has mostly been mitigated by using normalized weight
initialization [30], ReLU activation [34] and intermediate normalization layers [28].
The reason behind the shortcuts is that by letting the signal flow more easily through
the network the problem of exploding or vanishing gradients can be reduced, which
in turn makes the deep network easier to train.

A residual network is made of smaller building blocks called residual units, which
are basically stacked convolutional and normalizing layers where the input of the
unit is additively merged with the output of the last stacked layer to simulate a
shortcut.

3.2.1 Residual Unit
Consider two stacked convolutional layers in a CNN, and assume that they learn
the mapping H(x), where x is the input to the first layer, and H(x) is the output
of the second layer. The hypothesis is that it is easier to learn the residual function
F(x) = H(x)−x than the mappingH(x) itself [2]. The mappingH(x) then becomes
F(x) + x.

The reason for this is based on the assumption that the mapping H(x), to be
learned by the stacked layers, is usually closer to an identity mapping than a zero
mapping [2], meaning that it is easier to learn the part of the mapping which is the
difference between the identity mapping and the optimal mapping than the optimal
mapping itself. In the extreme case, if the optimal mapping is the identity mapping,
then it is easier to push F(x) towards zero than to learn the actual mapping.

This is implemented in the network by a shortcut, where the input, x, of a stacked
layer is connected to the output of the stacked layer, using a simple additive unit.
This building block is what we call the residual unit (see Figure 3.1 for a simplified
overview of a residual unit).

In the simplest case, where the dimensions of the output of the residual function
and the input are the same, the residual unit can be defined as:

yl = xl + F(xl,Wl) (3.2)
xl+1 = σ(yl), (3.3)

where xl and xl+1 is the input and output of the l-th residual unit, F is the param-
eterized, or learned, residual function, Wl are the parameters of the stacked layers,

18

3. Methods

Figure 3.1: A simplified residual unit which consists of two stacked convolutional
layers activated using ReLUs. The input of the first convolutional layer is additively
merged with the output of the last convolutional layer, which is what we refer to as
a shortcut.

and σ is the ReLU [34] activation function.
More generally, the residual units can be defined as:

yl = h(xl) + F(xl,Wl), (3.4)
xl+1 = f(yl), (3.5)

where xl and xl+1 are the input and output of the l-th residual unit, f is the
activation function, F is the learned residual function, h is the mapping applied
on the data flowing through the shortcut, in Equation 3.2 above it would be an
identity mapping, and Wl is the parameters associated with the l-th residual unit.
If the dimensions of F(xl,Wl) and xl are not the same then h would need to adjust
the dimension of xl by, e.g., subsampling.

The original residual unit is improved by what is called "full pre-activation" [3],
which is a change in the order of the stacked layers of the unit. The realization was
that if f is the identity function then Equation 3.5 can be inserted into Equation 3.4
which gives the network three nice properties: (i) the same residual property as seen
in each unit also becomes present between any two units in the network, (ii) the
computations become more efficient, and (iii) the backward propagating gradients
are very unlikely to vanish even with arbitrarily small weights.

The change in the order of the original residual unit [2] compared to the im-
proved [3] can be seen in Figure 3.2, where the left image shows the original residual
unit and the right image shows the improved residual unit. Here BN stands for
batch normalization, ReLU stands for rectified linear unit [34], which is a type of
activation function, and weights are those of the convolutional layers.

19

3. Methods

Figure 3.2: This figure shows the architecture of the original residual [2] (left),
and the improved residual, unit using "full pre-activation" [3] (right). Note that the
activation is no longer done after the residual unit, but rather inside it, hence "pre-
activation". This means that the function f in Equation 3.4, which is applied to the
data flowing through the shortcut, becomes an identity function.

3.2.2 Architecture
The architecture of an 18-layer deep residual neural network consists of an initial
convolving and max pooling layer followed by eight basic blocks (with different
configurations), and at the end the result is pooled, flattened and used as input
to the final dense layer which has one neuron for each class label, activated by a
softmax function. The layers are applied to the input in the same order as given
above (see Table 3.1).

A basic block consists of two convolving layers, each preceded by batch normal-
ization and ReLU activation, and the input of the block is allowed to flow directly
to the output of the stacked layers via a shortcut realized using an additive merge
layer (see Table 3.2).

3.3 Meta-Data Fusion

Most of the recordings in the data set have meta-data associated with them (see
Section 3.4 for example), some of which could possibly be used to improve the
classification accuracy of the learned model fw.

Not all of the recordings in the data set have complete meta-data, which means
that it would be hard to train a classifier using this data. However, it should be
possible to take a Bayesian approach and combine, or fuse, this information with a

20

3. Methods

Table 3.1: The architecture of the 18-layer deep residual neural. The configuration
of a basic block, e.g., "64 3x3 kernels, 2x2 stride" should be read as: the number of
filters of the convolutional layers in the basic block is 64, their kernel sizes are 3x3,
the stride size of the first convolutional layer is 2x2, whereas the stride size of the
second convolutional layer is 1x1.

Layer (type) Configuration Output Shape
InputLayer (256, 512, 1)
Convolution2D 64 7x7 kernels, 2x2 stride (128, 256, 64)
MaxPooling2D 3x3 kernel, 2x2 stride (64, 128, 64)
BasicBlock 64 3x3 kernel, 1x1 stride (64, 128, 64)
BasicBlock 64 3x3 kernel, 1x1 stride (64, 128, 64)
BasicBlock 128 3x3 kernel, 2x2 stride (32, 64, 128)
BasicBlock 128 3x3 kernel, 1x1 stride (32, 64, 128)
BasicBlock 256 3x3 kernel, 2x2 stride (16, 32, 256)
BasicBlock 256 3x3 kernel, 1x1 stride (16, 32, 256)
BasicBlock 512 3x3 kernel, 2x2 stride (8, 16, 512)
BasicBlock 512 3x3 kernel, 1x1 stride (8, 16, 512)
AveragePooling2D 8x16 pool size, 1x1 stride (1, 1, 512)
Flatten (512)
Dense He normal, softmax (999)
Total Params 11,691,751

Table 3.2: The architecture of a basic block. The input layer is simply the output
of the layer to which the basic block has been connected. Meaning that if the previous
layer has an output of shape (n, m, d) then the input layer gets that output shape.
Both convolutional layers use the number of filters which is specified when constructed
(see Table 3.1), but only the first convolutional layer uses the specified stride size,
the second always has a stride size of 1x1.

Layer (type) Configuration Output Shape
InputLayer (n, m, d)
BatchNormalization (n, m, d)
Activation ReLU (n, m, d)
Convolution2D c kernels, sxs stride (n/s, m/s, c)
BatchNormalization (n/s, m/s, c)
Activation ReLU (n/s, m/s, c)
Convolution2D c kernels, 1x1 stride (n/s, m/s, c)
Merge [InputLayer, Convolution2D] (n/s, m/s, c)

21

3. Methods

model which has been trained on only the audio data, hence meta-data fusion. As a
proof of concept the elevation of a recording and the probability that the recording
belongs to a specific bird species is combined using Bayes theorem to compute the
posterior probability of a bird species given a recording and an elevation. Around
90% of the recordings have elevation data associated with them.

3.3.1 Elevation
We define the event of observing bird j as Bj, the event of observing a certain
elevation e as E, and the event of observing a certain bird song s as S. Using Bayes
theorem we can then express the posterior probability of observing bird j given the
evidence e and s as:

Pr(Bj|E, S) = Pr(ESBj)
Pr(ES) = Pr(Bj)Pr(S|Bj)Pr(E|SBj)∑n

i=1 Pr(Bi)Pr(S|Bi)Pr(E|SBi)
, (3.6)

and the posterior probability of observing Bj given the evidence S as:

Pr(Bj|S) = Pr(Bj)Pr(S|Bj)∑n
i=1 Pr(Bi)Pr(S|Bi)

. (3.7)

The normalizing factor in Equation 3.7 is constant and by denoting it as C we
get:

Pr(Bj|S)× C = Pr(Bj)Pr(S|Bj). (3.8)
We now observe that the right-hand side of Equation 3.8 appears both in the

numerator and the denominator of Equation 3.6 (although with different indices),
and by inserting Equation 3.8 into Equation 3.6 we get:

Pr(Bj|E, S) = Pr(Bj|S)Pr(E|SBj)∑n
i=1 Pr(Bi|S)Pr(E|SBi)

. (3.9)

The posterior probability Pr(Bj|S) can be estimated by the classifier, but the
likelihood, Pr(E|SBj), of the evidence E given SBj must be computed. In order to
do this we assume that the events E and S are independent given Bj meaning that
Pr(E|SBj) = Pr(E|Bj). Which allows us to rewrite Equation 3.9 as:

Pr(Bj|E, S) = Pr(Bj|S)Pr(E|Bj)∑n
i=1 Pr(Bi|S)Pr(E|Bi)

. (3.10)

Since the number of observed elevations for each bird species is rather small we
need to approximate their distribution. The distribution is modeled by mixture
density of a Gaussian and the uniform; tending towards the uniform if the number
of observations is small, and towards the Gaussian if the number of observations is
large. The reason for this is that we do not want zero probabilities for any observable
elevation. The hypothesis is that this allows the model to generalize better.

Formally, let Oj be the set of observed elevations for bird j. The likelihood of
observing e given the bird j is defined as:

h(e|j) ≡ (1− α(kj))f(e|µj, σj) + α(kj)(
1

eMAX

), (3.11)

22

3. Methods

where
f(e|µ, σ) = 1√

2σ2π
e−

(x−µ)2

2σ2 (3.12)

is the probability density of a normal distribution, kj is the cardinality of Oj, µj is
the mean of Oj, σj is the standard deviation of Oj, eMAX is the maximum observable
altitude, and α(k) is a weight function defined as:

α(k) =

1, if k < 10
1/k, otherwise,

(3.13)

which means that if the number of elevation observations, k, is less than 10 then
the mixture density is the uniform, and if k > 10 the mixture density tends towards
the Gaussian.

We have assumed that birds can not be observed at elevations below sea level,
or above eMAX which have been set to 5000 meters above sea level.

The final meta-classifier using both the bird song and elevation as evidence to
estimate the probability of it belonging to a bird j can now be defined as:

F (j)
w (s, e) = f (j)

w (s)h(e|j)∑N
i=1 f

(i)
w (s)h(e|i)

, (3.14)

where f (j)
w (s) is the probability of bird j given the song s as predicted by the learned

classifier, and h(e|j) is the likelihood of observing e given the bird j.

3.4 Data set
The data used is the same as in the LifeCLEF 2016 bird identification task (Bird-
CLEF 2016) [20], which consists of about 33,200 recordings and is split into a pub-
licly available training set of around 24,600 recordings and a private, or hidden, test
set of around 8,600 recordings. There are 999 different bird species in this data
set. The recordings are taken by bird song enthusiasts out in the field and can,
therefore, contain other background bird species, be of varying lengths (seconds to
half-hours), and contain varying amounts of noise. In some recordings there are
humans speaking.

Each recording in the data set has an associated XML file with meta-data, for
example:
<Audio>

<MediaId>10000</MediaId>
<FileName>LIFECLEF2014_RN10000.wav</FileName>
<ClassId>kunsua</ClassId>
<Date>2010-01-19</Date>
<Time>14:00</Time>
<Locality>RPPN Prima Luna, Nova Trento</Locality>
<Latitude>-27.258</Latitude>
<Longitude>-49.02</Longitude>
<Elevation>500</Elevation>

23

3. Methods

Table 3.3: The names of the data sets used in this thesis, how many sound classes
each data set contains, and a short description of each data set. BCWhole is the
entire BirdCLEF 2016 data set, BCSubset consists of 20 randomly chosen sound
classes from BCWhole, BCCubeRunBot100 consists of the 100 sound classes for
which the baseline had the worst accuracy, and BCResnetBot100 consists of the 100
sound classes for which the residual neural network had the worst accuracy; when
trained on BCWhole.

Dataset Number of Classes Description
BCWhole 999 The whole BirdCLEF data set
BCSubset 20 Subset of 20 classes from BCWhole
BCCubeRunBot100 100 100 hardest classes for the baseline
BCResnetBot100 100 100 hardest classes for the resnet

<Author>Evair Legal</Author>
<AuthorID>SMJXFKLATM</AuthorID>
<Content>call, song</Content>
<Comments />
<Quality>1</Quality>
<Year>BirdCLEF2014</Year>
<BackgroundSpecies />
<Order>Passeriformes</Order>
<Family>Furnariidae</Family>
<Genus>Sclerurus</Genus>
<Species>scansor</Species>
<Sub-species />

</Audio>,
which can be used, in addition to the sound data, when performing the classification.

The different data sets used during the development of the methods in this
thesis are listed in Table 3.3. Each data sets is split into 90% training data and 10%
validation data, as done by Sprengel et. al [1], to make the results comparable. The
whole data set is called BCWhole (BirdCLEF Whole), but since the whole data set
is quite large, and it takes a considerable amount of time to train a model on it,
a subset of it was created with only 20 randomly selected bird species to be used
during development called BCSubset.

We have also created two other subsets called BCCubeRunBot100 and BCRes-
netBot100, which consists of the data for the 100 sound classes for which the baseline,
and the residual neural network performed worst - after having trained and evalu-
ated them on BCWhole (see Table 3.3). These two data sets are used to get some
insight on if some classes are harder than others, and why this may be the case.

3.5 Evaluation

The classifier is evaluated with respect to mean average precision (MAP) as used
in the BirdClef2016 Challenge [20], area under the ROC curve (AUROC) as used

24

3. Methods

in the MLSP 2013 Challenge [8], top-1 accuracy, top-5 accuracy, and coverage error
(CE).

We will distinguish between the accuracy scores during training of a classifier,
and the final evaluation score for the classifier. During training the score will refer to
the top-1 accuracy averaged over each individual training sample, however, the final
evaluation scores for a model will be based on the averaged prediction probabilities of
the segments which a recording has been split into. That is, we perform a prediction
on each individual segment for a recording, and then average these predictions to
get the final prediction for said recording. The same is done by Sprengel et. al [1]
making results comparable.

3.5.1 Mean Average Precision
The mean average precision (MAP) is a measure of how relevant the predictions
of a classifier are with respect to the ground truth labels. There is no penalty for
predicting many classes, the important thing is that the ground truth labels are
ranked high.

Formally, let fw : X → Y be the learned model which predicts the probability
of a data point x̄ ∈ X belonging to each of the possible sound classes, and let
f : X → Y be a true classifier, and the let the set of ground truth labels G = f(x̄).
Further, let K = (k1, . . . , kn) be the list of predicted labels ranked by the predicted
probabilities fw(x̄), where ki is the predicted species label at rank i.

The mean average precision can then be defined as:

MAP =
∑

x̄∈X AP (x̄)
|X|

, (3.15)

where |X| is the number of test audio files, and AP (x̄) is the average precision for
data point x̄ computed as:

AP (x̄) =
n∑

i=1
P (i)× CiR(i), (3.16)

where n is the number of predictions, i.e., the total number of sound classes, P (i)
is the precision at cut-off i in the ranked list of predictions for x̄, and CiR(i) is the
change-in-recall at cut-off i defined as:

CiR(i) =

1/n, if ki ∈ G
0, otherwise.

(3.17)

This metric reflects that good predictions should come first. As an example, lets
say that there are only two different sound classes, and that ground truth labels are
G = f(x̄) = {2}, the learned classifier predicts the probabilities fw(x̄) = (0.7, 0.3),
which means that K = (1, 2). Then P (1) = 0 since the sound class at cut-off 1 does
not exist in G, P (2) = 1/2 since we now have one correct prediction out of two in
the ranked list at cut-off 2. The change-in-recall is CiR(1) = 0, and CiR(2) = 1/2.
The average precision is thus P (1)CiR(1) +P (2)CiR(2) = 0.25. The mean average
precision is then the averaged average precisions over all the data points in the test
set.

25

3. Methods

3.5.2 Area Under the ROC Curve
The area under the receiver operating characteristic curve (AUROC) is a metric
which measures the expectation that a positive data point drawn uniformly at ran-
dom is ranked higher than a negative data point drawn uniformly at random. This
metric is usually used in binary classification problems, but can be extended to
single-label problems using a one versus all approach, where each class is considered
separately.

Following the convention in this thesis, we let X denote a set of data points, and
let f denote a true classifier. Considering a certain class y we let x̄+ be a positive
drawn uniformly at random from the set X+, where X+ = {x̄|x̄ ∈ X, f(x̄) = y},
and let x̄− be a negative drawn uniformly at random from the set X−, where X− =
{x̄|x̄ ∈ X, f(x̄) 6= y}. The AUROC metric can then be defined as:

AUROC = Pr(score(x̄+) > score(x̄−)), (3.18)

where score(x̄) represents the probability that x̄ belongs to class y. The score
function is a result of the learned classifier fw which predicts the probabilities that
a data point x̄ belongs to each respective class.

A random classifier is expected to get an AUROC score of 0.5, and a true classifier
(f in the example above) is expected to get an AUROC score of 1.0.

3.5.3 Top-n Accuracy
The top-n accuracy looks at the n highest ranked classes predicted by the model,
and if one of these predictions are the ground truth class the prediction is considered
accurate, otherwise not.

Let X = {x̄1, . . . , x̄k} be the set of training samples, let f be a true classifier,
and let fw be the learned model of that classifier. The top-n accuracy score is then
computed by checking if the true class label f(x̄i) is in the top-n predictions from
fw(x̄i) for each x̄i ∈ X, scoring one if it is and zero otherwise, and then averaging
these scores.

Formally, let top@n(x̄, fw) be a function which creates a set of the n most prob-
able class label predictions for the training segment x̄, given the learned classifier
fw. We then define the top-n accuracy score as:

top-n accuracy(fw) = 1
|X|

∑
x̄i∈X

score(x̄i, fw), (3.19)

where

score(x̄, fw) =

1, if f(x̄) ∈ top@n(x̄, fw)
0, otherwise.

(3.20)

3.5.4 Coverage Error
The coverage error is the average number of top-scored predictions which are needed
to cover all of the ground truth labels. Since we consider a single-label problem in
this thesis, we only need to cover the main species.

26

3. Methods

Formally, let X = {x̄1, . . . , x̄n} be the set of training samples, let f : X → Y be
a true classifier, and let fw : X → Y be the learned model of that classifier, then
the coverage error can be defined as:

coverage error = 1
n

n∑
i=1

rankf(x̄i)(fw(x̄i)) (3.21)

where rankf(x̄)(fw(x̄i)) is the rank of the ground truth class f(x̄) in the probabilities
predicted by fw(x̄i).

27

3. Methods

28

4
Results

In this chapter, we present the results produced when training and evaluating the
baseline and the methods proposed in this thesis. All results except those in Table 4.3
come from evaluation on the local validation set. The results in Table 4.3 come
from evaluation on a hidden test set performed by the organizers of BirdCLEF.
The chapter also contains results from a data analysis done on the data set, which
is intended to give a better understanding of what is hard about the data set and
what problems could arise from the data. The only method which actually improves
upon the state-of-the-art baseline is meta-data fusion, and the reader is referred to
Section 4.3 if only interested in the positive results.

4.1 Multiple-Width Frequency-Delta Data Aug-
mentation

The MWFD data augmentation technique does improve upon plain MFCCs, mean-
ing that the classification accuracy is better for a model trained on the augmented
data than the MFCCs. However, it does not improve upon the raw spectrogram
representation (see Table 4.1). The MWFD data representation is more compact
than the raw spectral data, and it does perform nearly as well, meaning that it
has an advantage when the computational resources are limited. The MWFD data
augmentation was only tested while training on the smaller BCSubset data set. The
reason being that training on the whole data set (BCWhole) takes a considerable
amount of time, and since the method does not seem to improve upon the use raw
spectral data for the smaller data set, it was not deemed necessary to test this
method further.

Table 4.1: The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of the
baseline when trained with the raw spectrogram, MFCCs, and MWFD features. Each
of these models was trained on BCSubset.

Method MAP AUROC Top-1 Top-5 CE
CubeRun (Spectrogram) 74.3% 92.2% 69.5% 91.5% 2.15
CubeRun (MFCCs) 69.2% 92.2% 64.4% 89.8% 2.7
CubeRun (MWFD) 72.6% 93.5% 67.8% 89.8% 2.2

29

4. Results

Figure 4.1: The training history for the baseline method. The figure shows the
change in training and validation loss (top image), and the change in training and
validation accuracy (bottom image) with respect to the training epoch.

4.2 Deep Residual Neural Networks

In this section, we present the results for the deep residual neural network. The
residual network does converge and learns to classify bird species based on bird
song. The classification accuracy is comparable to that of the baseline, but slightly
worse, and the generalization of the model varies a lot between epochs.

The training history for the baseline and the deep residual network can be seen
in Figure 4.1 and Figure 4.2 respectively. The figures show the loss for the models
when evaluated on the training data (blue) and the validation data (orange) with
respect to the training epoch. They also show the top-1 accuracy for the models
when evaluated on the training data (blue) and the validation data (orange) with
respect to the training epoch. The top-1 accuracy shown in the figures is computed
with respect to each individual segment in the training and validation data, i.e., it is
not the average of the segments in each recording. Each network was trained for 120
epochs, which resulted in 51 hours on the GPU for the baseline, and 70 hours on the
GPU for the residual neural network (see Appendix A.6 for hardware specification).

In Table 4.2 we present the MAP, AUROC, top-1, top-5, and CE scores for
the baseline model and the residual network model when trained on the BCWhole
data set (containing all classes and recordings). The scores of the residual network
are comparable with the scores of the baseline, however, it is not an improvement.
The scores in Table 4.2 are based on the averaged prediction over all segments
in a recording, while the scores in the plots are the accuracy of each individual
segment. Therefore the top-1 score in the table may be higher than that shown

30

4. Results

Figure 4.2: The training history for the 18-layer residual neural network. The
figure shows the change in training and validation loss (top image), and the change
in training and validation accuracy (bottom image) with respect to the training epoch.

in the plots. As an example, let us say we have a recording r̄1 of sound class l1.
The recording has been preprocessed and split into three segments {x̄1, x̄2, x̄3} and
we get {fw(x̄i)|i ∈ {1, 2, 3}} = {l1, l1, l2} for the learned classifier fw. Then the
top-1 accuracy over each individual segment would be 66.6̄% while the mean top-1
accuracy would be 100%. Note that this example is an oversimplification since the
predictions are not binary, but rather pseudo probabilities.

In order to see how well the methods generalize to a larger test set, consisting of
previously unseen data, two submissions were created for the BirdCLEF 2016 chal-
lenge and sent to the organizers for evaluation. The competition evaluates each run
using the MAP metric. The scores for the baseline and the residual neural network
can be seen in Table 4.3 as well as the previous state-of-the-art score for this data
set. The table shows the MAP score for each run with and without consideration
of the background species, and what is interesting is that the MAP scores for both
methods are actually higher than when evaluated on the local validation set.

Table 4.2: The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of
the baseline, and the residual neural network. Each method has been trained on the
BCWhole data set three times, and then the average of the evaluation scores and
their standard deviation has been computed.

Method MAP AUROC Top-1 Top-5 CE
CubeRun 67.3± 0.4% 96.9± 0.0% 63.5± 0.3% 80.0± 0.4% 25.3± 0.3
Resnet 18 64.4± 1.1% 96.5± 0.0% 60.3± 1.1% 78.1± 1.1% 28.7± 1.5

31

4. Results

Table 4.3: The MAP score for the baseline, the residual neural network, and the
previous state-of-the-art when evaluated on the hidden BirdCLEF test set with and
without consideration of the background species.

Method MAP (with) MAP (without)
Baseline 55.8% 69.7%
Resnet 18 53.8% 67.9%
Previous 55.5% 68.6%

To summarize: these results indicate that, residual networks can learn to classify
bird species, residual networks learns training data well, but the variance in gener-
alization is high, and residual networks do not improve upon the baseline, but the
results are comparable.

4.3 Meta-Data Fusion
Meta-data fusion of elevation data improves the performance of both the baseline
and the residual neural network. In particular, the coverage error is reduced, which
means that we can predict a lower number of bird species and still cover the ground
truth bird species on average.

Reducing the coverage error could be of interest in, e.g., a smartphone application
which aids the user with bird species identification. Let us say that the user walks
in the woods and records a bird song, the application then returns the five most
probable bird species for that recording. If the coverage error, on a data set which
represents the population of birds in those particular woods, is five, then we have a
good reason for why the top-5 predictions are enough.

All of the evaluation scores for the baseline and the residual neural network
can be seen in Table 4.4. Considering the baseline the AUROC is increased by 0.6
percentage points, the top-5 accuracy by 1.3 percentage points, and the coverage
error (CE) is decreased by 4.2 when compared to not using the data fusion (compared
to Table 4.2). For the residual neural network, the AUROC is increased by 0.5
percentage points, the top-5 accuracy by 1.5 percentage points, and the coverage
error is decreased by 4. The MAP and top-1 scores stay roughly the same.

The improved scores all reflect how high the rank of the ground truth class is in
the prediction, meaning that fusion of elevation data makes the model predict the
true class higher, however, it does not seem to be enough to push the prediction to

Table 4.4: The MAP, AUROC, top-1 accuracy, top-5 accuracy, and CE of the
baseline, and the residual neural network when meta-data fusion of the elevation is
used. Each method has been trained on the BCWhole data set three times, and then
the average evaluation and the standard deviation of these have been taken.

Method MAP AUROC Top-1 Top-5 CE
CubeRun 67.5± 0.1% 97.5± 0.0% 63.4± 0.7% 81.3± 0.2% 21.1± 0.3
Resnet 18 65.1± 1.1% 97.0± 0.0% 60.1± 1.2% 79.6± 1.0% 24.7± 1.2

32

4. Results

Figure 4.3: The accuracy of the model for the sound classes ranked by accuracy.
The plot shows that the accuracy of the model varies a lot between different sound
classes. It is 100% for the highest ranked and 0% for the lowest ranked classes.

the highest rank, since the MAP and top-1 accuracy seem unaffected.

4.4 Data Analysis
The accuracy of the model varies a lot for the different sound classes as can be seen
in Figure 4.3, which shows a plot of the accuracy for each sound class ranked by
accuracy. The model has a perfect accuracy for the (around) 350 sound classes on
which it performs best, then the accuracy decreases (somewhat linearly) until it hits
a zero accuracy for the (around) 180 classes on which it performs worst.

Both the residual neural network and the baseline were trained on the 100 sound
classes on which they respectively had the worst performance (BCResnetBot100
and BCResnetBot100). The accuracy when trained and evaluated on BCCubeRun-
Bot100 and BCResnetBot100 is significantly lower than when trained and evaluated
on BCWhole (except for the CE score, which is not really comparable since the
number of sound classes is decreased tenfold) (see Table 4.5).

Since BCCubeRunBot100 and BCResnetBot100 each consists of only 100 sound
classes in contrast to BCWhole which consists of 999 sound classes one would expect
the accuracy to increase rather than decrease when trained and evaluated on these
data sets. However, this is not the case, which indicates that there is something
fundamentally hard about these sound classes, which warrants further investigation.

The confusion matrices, which are shown in Figure 4.4, for the methods when

33

4. Results

trained and evaluated on the BCResnetBot100, and BCCubeRunBot100 data sets
reveal that there is a small tendency to confuse sound classes for one or two specific
classes. That is, the networks favor the prediction of these classes over others. In
particular, the residual network favors prediction of sound classes 47, 61, and 74
(each getting more than 10 predictions), and the baseline favors sound class 93
in one of the training sessions. The baseline has a lower tendency to favor sound
classes.

A possible explanation for this favoritism is that the data set is quite uneven.
The number of training segments for each sound class vary a lot, and in Figure 4.5 we
can see that the number of predictions that some sound classes receive (red line) are
higher than the expected number of predictions for these sound classes (green line)
when the number of training segments is large, and that the number of predictions
that sound classes receive are lower than expected when the number of training
segments is small. Meaning that sound classes with many training segments are
favored over those with few training segments in the predictions.

4.5 Optimization Methods
Seven different optimization methods were tested to see how the choice of optimizer
affects the convergence rate during training (see Figure 4.6). The stochastic gra-
dient descent and adadelta optimizers both achieved good convergence rates, while
the rmsprop, adamax, nadam, adam and adagrad optimizers barely achieved any
convergence at all. The adamax optimizer seems to start converging after around 60
epochs, however very slowly. These results should only be considered as indicative,
but are included to get a picture of how the choice of optimizer can affect training.

Table 4.5: The MAP, AUROC, top-1 accuracy, top-5 accuracy, and the CE of
the baseline, and the residual neural network when trained on dataset BCCubeRun-
Bot100 and BCResnetBot100 respectively.

Method MAP AUROC Top-1 Top-5 CE
CubeRun 54.3 % 92.8 % 49.3 % 71.8 % 6.5
Resnet 18 47.7 % 90.5 % 42.3 % 69.2 % 10.6

34

4. Results

(a) The confusion matrix for the resid-
ual network when trained on BCRes-
netBot100. The network seems to fa-
vor sound classes: 61, and 47.

(b) The confusion matrix for the resid-
ual network when trained on BCRes-
netBot100. The network seems to fa-
vor sound class 74.

(c) The confusion matrix for the base-
line when trained on BCCubeRun-
Bot100. The network does not seem
to favor any sound classes.

(d) The confusion matrix for the base-
line when trained on BCCubeRun-
Bot100. The network seems to favor
sound class 93.

Figure 4.4: Confusion matrices for the residual neural network (a) and (b), and
the baseline (c) and (d) when each has been trained and evaluated twice on the
BCResnetBot100, and BCCubeRunBot100 respectively. A perfect accuracy would
result in a clean diagonal line. The rows are the ground truth labels, and the columns
are the classes predicted by the model. Some sound classes seem to pick up more
predictions than others, meaning that the network seems to favor prediction of some
sound classes over others.

35

4. Results

Figure 4.5: The figure shows the number of training segments (blue) plotted on the
right y-axis with respect to 5% chunks of the sound classes ranked by the number of
training segments in each 5% chunk. It also shows the average number of predictions
that the chunks of sound classes receive (red) and the expected average number of
predictions for each chunk (green) plotted on the left y-axis.

36

4. Results

Figure 4.6: Validation loss (top) and accuracy (bot) for seven different optimizers
when training the baseline model on the BCSubset data set.

37

4. Results

38

5
Discussion

The goal of this project was to improve upon the state-of-the-art bird species classi-
fier presented by Sprengel et. al [1]. A small literature survey of recent results pub-
lished from different bird species classification challenges was conducted which indi-
cated that convolutional neural networks and data augmentation techniques could
be key for pushing this technology even further.

Convolutional neural networks are originally designed for image recognition, but
have proven to be useful also in the audio domain [1, 8, 16]. During the last years
of ILSVRC, there has been a correlation between increased network depth and in-
creased accuracy, which led us to believe that this could also be true for convolu-
tional neural networks when applied in the audio domain. Therefore the use of deep
residual neural networks was proposed.

We implemented and evaluated the preprocessing, data augmentation and the
convolutional neural network techniques proposed by Sprengel et. al [1] as a baseline,
and used the same preprocessing and data augmentation techniques but for training
a deep residual neural network.

The deep residual neural network did achieve a classification accuracy compara-
ble to the state-of-the-art, but not quite matching it. However, the residual neural
network has not been tuned or customized for this problem domain, but rather used
as presented in the original papers. Tuning the hyper-parameters could possibly
improve performance further. It is also a quite new network architecture and an
area of active research. For example, Zagoruyko et. al [35] consider increasing the
width of the network rather than the depth and argue that width is more important
than depth, which could be the case also for this task.

A common problem when training neural networks is often the lack of available
training data. This has led to the development of different kinds of data augmenta-
tion techniques. In addition to the data augmentation techniques used by Sprengel
et. al [1], we therefore implemented and evaluated a technique called multiple-width
frequency-delta data augmentation [16], which augments MFCCs instead of raw
spectral data.

The MWFD data augmentation technique does seem to improve the accuracy
when compared to pure MFCCs, which is in accordance to [16], meaning that the
technique works as intended. However, it does not seem to improve upon the raw
spectrogram representation, which is in line with some recent findings by Stowell et.
al [36] who found that the use of raw Mel spectra often outperform MFCCs. One of
the main reasons for using MFCCs is that it is a compact feature representation [36].
That is, the dimensionality is lower if compared to, e.g., raw spectrograms. In
this thesis, the MWFD feature vector is eight times smaller than the raw spectral

39

5. Discussion

representation, but the accuracy is comparable to that of the raw spectral feature
vector, which means that if computational resources are limited the MWFD data
representation has an advantage over raw spectral data.

One aspect which has been largely unaddressed in the bird challenge community
is the use of additional meta-data such as elevation, geographical location and the
time of recording. This is also pointed out by Sprengel et. al who writes: "the
dataset provides us with a lot of meta-data: Date, time and location to name a
few. We are currently only relying on the sound files but incorporating these values
could greatly increase our score because we could narrow down the total number of
species which we need to consider" [1]. Therefore a proof of concept was developed
for a simple data fusion method.

The fusion of elevation information into the model does seem to increase the rank
the ground truth classes for the model, but not enough to affect the top-1 accuracy.
It may be possible to use a similar method for time and location as well which may
increase the rank even further.

However, the use of meta-data does come with some assumptions about the
available data set. One is that we have enough observations of birds at different
elevations to get a good understanding of how each bird species is distributed at
different elevations. In the worst case all recordings of a bird species are taken at
the same place by one recordist, which would restrict the elevation data that is useful
for identifying that bird to a very narrow distribution. This is the main reason for
why we have chosen to model the elevation data distributions for each bird species as
a mixture density of the normal distribution and the uniform distribution, tending
towards the uniform if the number of elevation observations is low.

After evaluation of the baseline and the residual neural network, it became ev-
ident that the accuracy for the different sound classes varies a lot, which led to an
analysis of the data. A problem with the data set is that the number of training
samples for each bird species is quite uneven; it can vary from around 10 recordings
to 200 recordings. This means that the classifier trained on the data set can start
to favor, or overfit to, the well represented bird species. This tendency is indicated
in Figure 4.5 where we see that the network favors the prediction of classes which
have lots of training samples. A possible way to mitigate this would be to weigh
the sound classes by their relative amount of training samples when shown to the
neural network during training.

However, it may not only be the number of training samples which affect this
favoritism; it can also be the variability of the recordings themselves. As shown in
Figure 4.4 the networks tend to favor one or two classes over the others. These sound
classes have been manually inspected and can only be described as a cacophony of
different bird songs and noises, while some of the classes for which the network
performed well had a much clearer foreground species and less noise. To address
this problem it may be necessary to modify the loss function and consider both main
species, and the background species, during training. That is, a way forward could
be to move from the single-instance single-label problem formulation into the single-
instance multi-label problem formulation, which is a harder problem, but possibly
with a greater potential if done right.

40

5. Discussion

Future Work

As mentioned in the discussion a way forward could be to tackle the harder single-
instance multi-label problem and modify the loss function such that it considers the
background species. This may, however, necessitate larger volumes of training data,
which may not be available.

Another way forward could be to use the results from the recent bird audio
detection challenge [37] hosted by the Queen Mary University of London where the
objective is to detect presence or absence of bird song in audio recordings. This could
be useful either in the preprocessing step, or to move towards the more realistic open
set scenario of continuous bird species monitoring rather than the N-class problem
which is studied in this thesis. In the preprocessing step it could be used to actually
classify which parts of the recordings are noise and which are bird song. This
could result in a more accurate representation of the training data. In a continuous
classification system, where birds are detected continuously as they sing, we could
use it to classify which data should be stored for further analysis.

Recent work on the continuous problem has shown that a classification system
which uses random forests and unsupervised feature learning can be used to detect
trends in, e.g., nocturnal bird migration [38]. Therefore an interesting way forward
for this technique would be to see if it can be used in a similar setting, where region
specific classifiers are trained and used to detect trends in bird species behavior.

41

5. Discussion

42

6
Conclusions

In this thesis, we set out to improve the classification accuracy of the state-of-the-
art bird species classifier presented by Sprengel et. al [1]. The examined methods
are deep residual neural networks [2, 3], multiple-width frequency-delta data aug-
mentation [16], and fusion of elevation meta-data into the model. We wanted to
answer the following research questions: (i) Can deep residual neural networks be
used to classify bird species based on acoustical data recordings, and how well do
they perform? (ii) Can multiple-width frequency-delta data augmentation be used
to improve classification accuracy of the classifier in this problem domain? and
(iii) can the additional meta-data of the recordings be used to improve classification
accuracy?

The main findings are: Firstly, deep residual neural networks can be used to clas-
sify bird species based on acoustical data recordings, and the performance is close to
the state-of-the-art, but not quite matching it. Secondly, multiple-width frequency-
delta data augmentation can not be used to increase classification accuracy when
compared to raw spectral data, but the accuracy is close to the state-of-the-art and
has an advantage over raw spectral data when computational resources are lim-
ited. Finally, the use of additional meta-data increases the rank of the ground truth
species in the predictions of the models, but it does not seem to be enough to push
it to the highest rank, which means that the model has to predict fewer species, on
average, to cover the ground truth, but the actual top-1 accuracy does not seem to
be affected.

Through an analysis of the data set used we also found that the relative num-
ber of training samples for each bird species is quite uneven, which seems to lead
to a favoritism, or over prediction, from the model of bird species with the most
recordings, and that some bird species are harder to classify than others.

43

6. Conclusions

44

Bibliography

[1] Elias Sprengel, Martin Jaggi, Yannic Kilcher, and Thomas Hofmann. Audio
Based Bird Species Identification using Deep Learning Techniques. 2016.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Arxiv.Org, 7(3):171–180, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings
in Deep Residual Networks. arXiv preprint, pages 1–15, 2016.

[4] Cağan H Sekercioğlu, Richard B. Primack, and Janice Wormworth. The effects
of climate change on tropical birds. Biological Conservation, 148(1):1–18, 2012.

[5] Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal, Xiaoli Z Fern, Raviv
Raich, Sarah J K Hadley, Adam S Hadley, and Matthew G Betts. Acoustic
classification of multiple simultaneous bird species: a multi-instance multi-label
approach. The Journal of the Acoustical Society of America, 131(6):4640–4650,
2012.

[6] T Mitchell Aide, Carlos Corrada-Bravo, Marconi Campos-Cerqueira, Carlos
Milan, Giovany Vega, and Rafael Alvarez. Real-time bioacoustics monitoring
and automated species identification. PeerJ, 1:e103, 2013.

[7] Jaderick P. Pabico, Anne Muriel V. Gonzales, Mariann Jocel S. Villanueva, and
Arlene a. Mendoza. Automatic identification of animal breeds and species using
bioacoustics and artificial neural networks. arXiv preprint, pages 1–17, 2015.

[8] Forrest Briggs, Yonghong Huang, Raviv Raich, Konstantinos Eftaxias, Zhong
Lei, William Cukierski, Sarah Frey Hadley, Adam Hadley, Matthew Betts, Xi-
aoli Z. Fern, Jed Irvine, Lawrence Neal, Anil Thomas, Gabor Fodor, Grig-
orios Tsoumakas, Hong Wei Ng, Thi Ngoc Tho Nguyen, Heikki Huttunen,
Pekka Ruusuvuori, Tapio Manninen, Aleksandr Diment, Tuomas Virtanen,
Julien Marzat, Joseph Defretin, Dave Callender, Chris Hurlburt, Ken Larrey,
and Maxim Milakov. The 9th annual MLSP competition: New methods for
acoustic classification of multiple simultaneous bird species in a noisy environ-
ment. IEEE International Workshop on Machine Learning for Signal Process-
ing, MLSP, 2013.

[9] Peter Jancovic and Munevver Kokuer. Acoustic recognition of multiple bird
species based on penalised maximum likelihood. IEEE Signal Processing Let-
ters, 22(10):1–1, 2015.

[10] Alexander N G Kirschel, Dent A Earl, Yuan Yao, Ivan A Escobar, Erika Vilches,
Edgar E Vallejo, and Charles E Taylor. Using Songs To Identify Individual Mex-
ican Antthrush Formicarius Moniliger: Comparison of Four Classification Meth-
ods. Bioacoustics-the International Journal of Animal Sound and Its Recording,
19(1-2):1–20, 2009.

45

Bibliography

[11] R. Bardeli, D. Wolff, F. Kurth, M. Koch, K. H. Tauchert, and K. H. Frommolt.
Detecting bird sounds in a complex acoustic environment and application to
bioacoustic monitoring. Pattern Recognition Letters, 31(12):1524–1534, 2010.

[12] Daniel T. Blumstein, Daniel J. Mennill, Patrick Clemins, Lewis Girod, Kung
Yao, Gail Patricelli, Jill L. Deppe, Alan H. Krakauer, Christopher Clark,
Kathryn A. Cortopassi, Sean F. Hanser, Brenda Mccowan, Andreas M. Ali, and
Alexander N G Kirschel. Acoustic monitoring in terrestrial environments using
microphone arrays: Applications, technological considerations and prospectus.
Journal of Applied Ecology, 48(3):758–767, 2011.

[13] Jason Wimmer, Michael Towsey, Paul Roe, and Ian Williamson. Sampling
environmental acoustic recordings to determine bird species richness. Ecological
Applications, 23(6):1419–1428, 9 2013.

[14] Brett J. Furnas and Richard L. Callas. Using automated recorders and occu-
pancy models to monitor common forest birds across a large geographic region.
The Journal of Wildlife Management, 79(2):325–337, 2 2015.

[15] Alexis Joly, Herve Goeau, Herve Glotin, Concetto Spampinato, Pierre Bon-
net, Willem-Pier Vellinga, Robert Planque, Andreas Rauber, Robert Fisher,
and Henning Müller. LifeCLEF 2014: Multimedia Life Species Identification
Challenges. (ii):229–249, 2014.

[16] Yoonchang Han and Kyogu Lee. Acoustic scene classification using convolu-
tional neural network and multiple-width frequency-delta data augmentation.
14(8):1–11, 2016.

[17] Stéphane Mallat. Understanding Deep Convolutional Networks. Philosophical
Transactions of the Royal Society A, pages 1–17, 2016.

[18] Yonghong Huang, Forrest Briggs, Raviv Raich, Konstantinos Eftaxias, and
Zhong Lei. The Ninth Annual MLSP Data Competition. IEEE International
Workshop on Machine Learning for Signal Processing, MLSP, 2013.

[19] Mario Lasseck. Bird song classification in field recordings: Winning solution
for NIPS4B 2013 competition. Proc. of int. symp. Neural Information Scaled
. . . , pages 1–6, 2013.

[20] Alexis Joly. LifeCLEF Bird Identification Task 2016. 2016.
[21] Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. Deep Convo-

lutional Neural Networks and Data Augmentation for Acoustic Event Detection.
arXiv preprint arXiv: . . . , (August):1–5, 2016.

[22] Herve Goeau, Herve Glotin, Willem Pier Vellinga, Robert Planque, Andreas
Rauber, and Alexis Joly. LifeCLEF bird identification task 2015. CEUR Work-
shop Proceedings, 1391, 2015.

[23] librosa 0.5.0.
[24] Beth Logan. Mel Frequency Cepstral Coefficients for Music Modeling. Inter-

national Symposium on Music Information Retrieval, 28:11p., 2000.
[25] Yann LeCun, Leeon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2323, 1998.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Advances In Neural Informa-
tion Processing Systems, pages 1–9, 2012.

46

Bibliography

[27] Yann LeCun, Yoshua Bengio, and Hinton Geoffrey. Deep learning. Nature
Methods, 13(1):35–35, 2015.

[28] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167,
pages 1–11, 2015.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: prevent NN from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS), 9:249–256, 2010.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
CoRR, abs/1502.0, 2015.

[32] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On
the importance of initialization and momentum in deep learning. Jmlr W&Cp,
28(2010):1139–1147, 2013.

[33] Ruben Gonzalez. Better than MFCC audio classification features. The Era of
Interactive Media, pages 291–301, 2013.

[34] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. Proceedings of the 27th International Conference on Ma-
chine Learning, (3):807–814, 2010.

[35] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. Arxiv, 2016.
[36] Dan Stowell and Mark D. Plumbley. Automatic large-scale classification of bird

sounds is strongly improved by unsupervised feature learning. PeerJ, 2:e488,
2014.

[37] Dan Stowell, Mike Wood, Yannis Stylianou, and Hervé Glotin. Bird detection
in audio: a survey and a challenge. 2016.

[38] Justin Salamon, Juan Pablo Bello, Andrew Farnsworth, Matt Robbins, Sara
Keen, Holger Klinck, and Steve Kelling. Towards the automatic classification
of avian flight calls for bioacoustic monitoring. PLoS ONE, 11(11):1–26, 2016.

[39] Francois Chollet. Keras, 2015.
[40] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific

tools for Python, 2001.
[41] Stéfan van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François

Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.
scikit-image: image processing in Python. PeerJ, 2:e453, 1 2014.

[42] Stéfan Van Der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy
array: A structure for efficient numerical computation. Computing in Science
and Engineering, 13(2):22–30, 2011.

47

Bibliography

48

A
Implementation Details and Usage

In this appendix implementation details for the project are listed, and we explain
how the project files can be used to reproduce the results in this thesis. The full
source code for the project can be found at:

https://github.com/johnmartinsson/bird-species-classification
and since usage instructions are susceptible to change due to updates, or bugs in
the code, the reader is referred to the github page if the instructions in this section
is not working.

The main library used to build the network models in this thesis is the Keras
deep learning library [39], which is aimed at academic researchers in the field of
deep learning. Both of the neural network architectures are implemented in this
library. Other libraries used include: librosa [23], scipy [40], scikit-image [41] and
numpy [42], please see Table A.1 for a summary of the versions and their most useful
methods for this project.

A.1 Data set

The data set can be downloaded from the BirdCLEF home page after registration
to their system. The raw data set consists of a wav directory which contains all of
the recordings and a xml directory with one XML file for each recording containing
the class id and all other meta-data information. The test set is private and it is
necessary to contact the organizers in order to get a method evaluated.

Table A.1: The main software libraries used during development, their respective
version numbers, and their most useful methods for this project.

Library Version Main Methods
Keras 1.2.1
librosa 0.4.3 stft, feature.{mfcc, delta}
scipy 0.18.1 misc.imresize
skimage 0.12.3 morphology.{binary_erosion, binary_dilation}
numpy 1.12.0

I

https://github.com/johnmartinsson/bird-species-classification

A. Implementation Details and Usage

A.2 Preprocessing

In order to, as close as possible, reproduce the results in this thesis we must first
preprocess the raw data set. The recordings are first down sampled to 22,050 Hz
using the linux command-line tool sox :

for i in *; do sox $i -r 22050 tmp.wav; mv tmp.wav $i; done
which down samples the audio files in the current working directory. The next step
is to split the down sampled audio files into signals and noise. Simply run:

python preprocess_birdclef.py --xml_dir=<path/to/xml/dir> \
--wav_dir=<path/to/wav/dir> \
--output_dir=<path-to-output-dir>

and it should load the XML data files in xml_dir, and each wave file in wav_dir
and split these wave files into signal and noise segments which are saved in their
respective sound class directory (all noise segments in one directory, and the signal
segments in their respective class id directory). The resulting output_dir should
contain a signal directory with all the signal segments for each of the 999 sound
classes, and a noise directory with all the noise segments.

When this is done the next step is to split the data into a validation set, and a
training set:

python create_dataset.py --src_dir=<path/to/signal/dir> \
--dst_dir=<path/to/destination/dir> \
--subset_size=<subset-size> \
--valid_percentage=<validation-percentage>

where the source directory should be the signal directory produced before, the des-
tination directory is the destination of the final data set, the subset size can be used
to only chose a random subset of the whole data set, and the validation percentage
is how many percent of the split that should be validation data (in this thesis 10%).

A.3 Training

The models are trained using a modified version of Keras ImageDataGenerator which
is a part of the image preprocessing module. The data generator has been modified to
load sound files instead of image files, and is therefore called a SoundDataGenerator.
The generator lets the input data flow from a specified data directory where the
signal files for each sound class must be contained in a different folder. The sound
data generator can be configured to load the sound files as spectrograms, MFCCs,
and MWFD data augmented MFCCs. It can also be configured to apply time-shift,
pitch-shift, same class and noise augmentation using the respective boolean flags.

The main training script is run by calling:
python3 train.py --config_file=conf.ini

where "conf.ini" is an ini file containing the configuration information for the training
instance (see Appendix A.3.1 for more derails).

The resulting weights, and data from the training will be put in a directory such
as: 2017_02_09_000112_resnet_18, which is named after the date, time and name
of the model used during this training session. The directory will contain weights.h5

II

A. Implementation Details and Usage

which are the final weights of the model from the training session, stdout.log which
is a log file of training session, history.pkl which is a pickle file with a dump of the
training history from the training session, containing training- and validation- loss
and accuracy.

A.3.1 Configuration File
The configuration file is divided into three sections: model, paths and training. The
model sections contains the following variables:

[MODEL]
BatchSize = 16
NumberOfClasses = 999
NumberOfEpochs = 6
NumberOfIterations = 20
NumberOfValidationSamplesPerEpoch = 17196
NumberOfTrainingSamplesPerEpoch = 124994
InputShape = (256, 512, 1)
InputDataMode = spectrogram
ModelName = resnet_18
The code is written in such a way that it divides a training session into chunks

which are supplied to a job queue in Sun Grid Engine. In the above example the
training session would be split into 20 iterations, or jobs (NumberOfIterations), each
job would run for 6 epochs, and the number of training samples shown during each
epoch would be 124994 using a batch size of 16. The input shape of the model would
be (256, 512, 1), which corresponds to rows, columns and channels respectively.
InputDataMode ∈ {spectrogram,mfcc,mfcc_delta} is the representation of the
input data so the model would take the logarithmic spectrogram of the augmented
training samples as input, andModelName ∈ {cuberun, resnet_{18, 34, 50, 101, 152}}
is the name of the neural network model, so the model used would be resnet_18
which is a residual neural network with 18 layers.

The paths section is used to specify where the noise-, training-, and validation
data is:

[PATHS]
BaseName = None
NoiseDataDir = /path/to/noise
TrainingDataDir = /path/to/train
ValidationDataDir = /path/to/valid

where NoiseDataDir is the path to the directory containing all noise segments,
TrainingDataDir is the path to the directory containing the training data, Valida-
tionDataDir is the path to the directory containing the validation data. The pa-
rameter BaseName can be supplied if training should be continued for a previously
(un)finished training job.

The optimizer, loss function, and data augmentation used during training can
be configured in the training section:

[TRAINING]
Optimizer = adadelta

III

A. Implementation Details and Usage

LearningRate = 0.001
Decay = 1e-6
Momentum = 0.9
Nesterov = True
LossFunction = categorical_crossentropy
TimeShiftAugmentation = True
PitchShiftAugmentation = True
SameClassAugmentation = True
NoiseAugmentation = True

where Optimizer ∈ {sgd,msprop, adamax, nadam, adam, adadelta, adagrad} is the
optimizer that should be used, if sgd (stochastic gradient decent) is used, then the
learning rate, decay, momentum and nesterov parameters can be set, otherwise these
can be ignored. It is also possible to set the loss function, and which of the different
data augmentation techniques should be used.

A.4 Run Predictions
Once the data has been preprocessed, and the model has been trained, it is necessary
to test the model on some previously unseen data. This can be done by calling the
script:

python run_predictions.py --experiment_path=<path/to/experiment>
where the experiment_path is the directory created during training, which contains
the weights and the configuration file of the model. The predictions will auto-
matically be run for the validation data pointed to in the configuration file. The
predictions will be saved to a pickle file in the directory pointed to.

A.5 Evaluation
A model can be evaluated after the predictions have been made by running:

python evaluate.py --experiment_path=<path/to/results>
where the path to the results of the training session is specified, for example:
2017_02_09_000112_resnet_18. This will print the top-{1-5} accuracy, MAP,
AUROC, and CE scores in the console, and return a dict with the results. This can
be used in the ipython interpreter in order to collect results from multiple evalua-
tions, and then compute mean and standard deviations, or in a separate script.

A.6 Hardware
The hardware used when training the neural networks in this thesis are an Intel(R)
Core(TM) i7-5930K CPU running at 3.50GHz and a GeForce GTX Titan X GPU
with 12 GB RAM. All training sessions have been run on the GPU in this system.

IV

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Formulation
	Signal Classification
	Feature Extraction

	Goals and Questions
	Outline

	Previous Work
	Bird Classification Challenges
	MLSP 2013
	NIPS4B 2013
	BirdCLEF 2016
	Summary

	Signal Processing
	Spectrogram
	Mel Frequency Cepstral Coefficients

	Bird Species Classification
	Preprocessing
	Data Augmentation
	Convolutional Neural Network

	Methods
	Multiple-Width Frequency-Delta Data Augmentation
	Deep Residual Neural Network
	Residual Unit
	Architecture

	Meta-Data Fusion
	Elevation

	Data set
	Evaluation
	Mean Average Precision
	Area Under the ROC Curve
	Top-n Accuracy
	Coverage Error

	Results
	Multiple-Width Frequency-Delta Data Augmentation
	Deep Residual Neural Networks
	Meta-Data Fusion
	Data Analysis
	Optimization Methods

	Discussion
	Conclusions
	Implementation Details and Usage
	Data set
	Preprocessing
	Training
	Configuration File

	Run Predictions
	Evaluation
	Hardware

