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Abstract
In this thesis, walk forward testing is used to evaluate the performance of two long
short-term memory (LSTM) models for predicting blood glucose values for patients
with type 1 diabetes. The models are compared with a support vector regression
(SVR) model as well as with an auto regressive integrated moving average (ARIMA)
model, both of which have been used in related research within the area.

The best performing long short-term model produces results equal to those of the
SVR model and it outperforms the ARIMA model for all prediction horizons. In
contrast to models in related research, this LSTM model also has the ability to
assign a level of confidence to each prediction, adding an edge in practical usability.

Keywords: computer science, long short-term memory, LSTM, recurrent neural net-
work, RNN, type 1 diabetes, blood glucose prediction.

v





Acknowledgements
First and foremost we would like to thank our supervisor Olof Mogren for his in-
terest and dedication throughout the project. Furthermore, we want to express our
gratitude towards Björn Eliasson for sharing his domain expertise. Finally, we would
like to acknowledge Sofia and Josefin whose thorough peer-review helped us write a
better thesis.

Christian Meijner, Simon Persson, Gothenburg, May 2017

vii





Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Type 1 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Blood glucose prediction using machine learning . . . . . . . . . . . . 4

3 Theory 7
3.1 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Machine Learning - general concepts . . . . . . . . . . . . . . . . . . 7
3.3 Auto-Regressive Integrated Moving Average . . . . . . . . . . . . . . 8
3.4 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Single Neuron Network . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Feed-Forward Neural Networks . . . . . . . . . . . . . . . . . 15
3.5.3 Recurrent Neural Networks and LSTM . . . . . . . . . . . . . 15

4 Data 19
4.1 Blood Glucose Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Insulin Dosage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Methods 21
5.1 Time series prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Error metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Data features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5.1 Current blood glucose value . . . . . . . . . . . . . . . . . . . 23
5.5.2 Blood glucose slope . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5.3 ARIMA prediction . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5.4 Bolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



Contents

5.5.5 Basal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5.6 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5.7 Exponential Moving Average . . . . . . . . . . . . . . . . . . . 24
5.5.8 Rate of Change . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.6 Feature sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.7.1 ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7.2 SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.8 LSTM models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.8.1 LSTM-1: Single layer LSTM with next-step prediction output 30
5.8.2 LSTM-2: Single layer LSTM with next-step distribution pa-

rameter output . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Results 33
6.1 30 minute predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 60 minute predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Statistical significance . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Discussion 39
7.1 Comparison with related research . . . . . . . . . . . . . . . . . . . . 39
7.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Other models and evaluation methods . . . . . . . . . . . . . . . . . 42
7.4 Real time prediction system . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Ethical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 47

Bibliography 49

Bibliography 49

A Appendix 1 I
A.1 LSTM-1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 LSTM-2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . II
A.3 90 and 120 minute predictions . . . . . . . . . . . . . . . . . . . . . . III
A.4 RMSE comparisons for SVR and LSTM . . . . . . . . . . . . . . . . IV

A.4.1 30 minute prediction horizon . . . . . . . . . . . . . . . . . . . IV
A.4.2 60 minute prediction horizon . . . . . . . . . . . . . . . . . . . VI
A.4.3 90 minute prediction horizon . . . . . . . . . . . . . . . . . . . VII
A.4.4 120 minute prediction horizon . . . . . . . . . . . . . . . . . . VIII

x



List of Figures

3.1 A hyperplane separating two classes. . . . . . . . . . . . . . . . . . . 10
3.2 Support Vector Regression with an ε-insensitive tube. . . . . . . . . 11
3.3 The left plot shows an example of data that is not linearly separa-

ble. In the right plot, a radial basis function-kernel has been used to
project that data into a higher dimension, making it linearly separable. 12

3.4 A single neuron demonstrating the core concepts of ANNs. The neu-
ron calculates a weighted sum of the p-dimensional input and pro-
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1
Introduction

The number of patients with diabetes mellitus has increased significantly during
the last 30 years. In 1980 it was estimated that about 108 million adults had the
disease. Today that number is estimated to be around 422 million (WHO, 2016).
Type 1 diabetes (T1D) is the more severe variant of the disease where the pancreas
has stopped producing insulin, an important protein used to regulate blood glucose
levels. Patients with T1D therefore have to manually inject insulin using either sy-
ringes or insulin pumps.

Daily treatment of T1D can be cumbersome and involves a lot of decision making
regarding how much and how often to inject insulin throughout the day. As a result,
it can be hard for diabetics to keep their blood glucose levels stable and within a safe
range. To remedy this problem, attempts have been made to use machine learning
as a way of optimising insulin dosage and, in extension, blood glucose levels. Many
machine learning techniques and algorithms have the capability of predicting future
outcomes of a certain data set. Knowing what the blood glucose levels might be in
the very near future can be of great importance for a T1D patient when deciding
on the amount of insulin to inject in a given situation.

In related research, machine learning methods such as feed-forward neural networks
(Zecchin et al., 2012),(Mougiakakou et al., 2006), recurrent neural networks (RNN)
(Pappada et al., 2011) and support vector regression (SVR) (Wiley, 2011),(Bunescu
et al., 2013) have been used for predicting blood glucose values. However, there
seems to be no research made using long-short term memory (LSTM) based models
for this task. Blood glucose data can be interpreted as a time series (3.1) and
multiple applications of LSTM suggest that it is useful on other kinds of temporal
data, (Ma et al., 2015),(Eck and Schmidhuber, 2002), (Malhotra et al., 2015), which
is why the overall aim of this work is to investigate the use of LSTM in the blood
glucose prediction context.

1.1 Goal

The main goal in this thesis is to expand on current research on predicting blood
glucose values for T1D patients using machine learning methods. In particular, the
intention is to evaluate models based on LSTM networks and compare the perfor-
mance of such models with SVR and ARIMA models, both of which have been
explored in earlier work (Wiley, 2011),(Bunescu et al., 2013).
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1. Introduction

1.2 Delimitations
There is no underlying, exact model for how the body behaves and responds to dif-
ferent life events, but there are several variables known to affect the blood glucose
levels in a patient with type 1 diabetes (Cryer et al., 2003). Due to limitations in the
data available, the models used in this work only utilise blood glucose values, insulin
dosages and carbohydrate intake only. These features are important and good pre-
dictions have been made using only past blood glucose values as input (Wiley, 2011).

Another limitation is the number of patients of which data the models will be eval-
uated on. Ideally the models created needs to be verified on a large set of patients.
However, in this work, data from only four patients is used.
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2
Background

What follows are two sections that give the knowledge required to understand the
problem this work tries to solve. The first section gives a brief introduction to type
1 diabetes, what the treatment looks like and risks related to improper treatment.
The second section connects diabetes treatment to machine learning and summarise
previous research on the topic of blood glucose prediction using machine learning
techniques.

2.1 Type 1 Diabetes

When consuming food with carbohydrates, the blood glucose level in the human
body increases (Jenkins et al., 1981). To regulate the blood glucose, a hormone
called insulin is used (Atkinson et al., 2014). Normally, the hormone is produced
by beta cells in the pancreas, but for individuals with type 1 diabetes these beta
cells are destroyed by the body’s own immune system, eventually resulting in a com-
plete lack of insulin. This deficiency can, if untreated, cause serious implications
such as hyperglycemia (abnormally high blood glucose levels) and, by extension, a
potentially life threatening state called diabetic ketoacidosis (Daneman, 2006). To
compensate for the lack of insulin in the body it has to be manually injected, often
using either syringes or an insulin pump.

When using syringes, one typically injects a direct-acting insulin before meals or
for smaller adjustments of the blood glucose levels. A more longer-lasting insulin is
injected once or a few times per day to sustain a base level of insulin in the body.
In contrast with a syringe, an insulin pump is directly connected to the body at all
times and is thus able to better simulate the behaviour of a real pancreas. It uses
direct-acting insulin not only for meal and adjustment injections (bolus), but also
for sustaining the insulin base level in the body. This is done by making evenly
spread out injections (basal) through out the day according to a 24 hour program
defined by the patient.

Whether using syringes or an insulin pump to treat T1D, the patient still has to
decide on how much insulin should be injected throughout the day. When making
such decisions, one has to take a number of metrics into account, including but not
exclusively, the current and past blood glucose values in the body, insulin dosage,
carbohydrate intake (Jenkins et al., 1981), as well as exercise (Association et al.,
2004).
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2. Background

Too little insulin in the body might cause hyperglycemia and, in turn, diabetic
ketoacidosis which can be a direct life threatening complication (Foster and Mc-
Garry, 1983). One can also get more long-term complications such as retinopathy,
nephropathy, neuropathy, and cardiovascular disease (Haller et al., 2005). The op-
posite condition of hyperglycemia is called hypoglycemia and occurs if a patient
injects too much insulin, causing a glucose deficiency in the blood stream . If un-
treated, it can lead to serious and rather direct complications such as cognitive
dysfunction, seizures, coma and even death (Cryer et al., 2003). Hypoglycemia and
hyperglycemia are both prevented in the same manner, by constantly monitoring
blood glucose levels and adjusting the insulin dosage accordingly. Hypoglycemia can
often be treated by consuming sugar, while hyperglycemia is treated by injecting
more insulin (and possibly also treating the ketoacidosis that might have occurred).

The treatment of T1D can be summarised as a process of constantly balancing
food intake with insulin dosage, taking into account other factors such as exercise,
sleep cycles and other aspects in life that might affect the blood glucose levels and
reception of insulin in the body. In this constant balancing, it is a clear advantage
to be able to accurately predict future outcomes based on current actions, such as
different levels of insulin dosages.

2.2 Blood glucose prediction using machine learn-
ing

In the 1970s and 1980s, the treatment of type 1 diabetes saw great improvements.
New strategies were developed with both multiple daily injections and self-monitoring
of blood glucose (SMBG) (Boland et al., 2001). Although SMBG is helpful for keep-
ing a good long-term metabolic control (Haller et al., 2004), it usually generates very
few blood glucose value data points; the recommended frequency of SMBG for a pa-
tient with type 1 diabetes is at least four times a day in conjunction with meals,
when fasting and before bedtime (Benjamin, 2002). Making accurate blood glucose
predictions with so few data points per day can be challenging. However, with the
introduction of continuous glucose monitoring systems (CGMs), the prospects of
using machine learning methods as a tool for predicting future blood glucose val-
ues are improved. Such systems measure blood glucose continuously and typically
record the results every 5-15 minutes instead of around only four times a day.

There is plenty of research on the use of machine learning algorithms for predicting
glucose values. For example, an artificial neural network has recently been used in
combination with a first-order polynomial extrapolation algorithm to successfully
make good 30 minute predictions (Zecchin et al., 2012). A feed-forward neural net-
work has also been evaluated for 75 minute prediction in (Pappada et al., 2011), and
the network performed well enough to provide therapeutic guidance. Furthermore,
recurrent neural networks and feed forward neural networks together with compart-
mental models for blood glucose prediction for children with type 1 diabetes has
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2. Background

been explored in (Mougiakakou et al., 2006), and the recurrent network was shown
to be superior.

Yet another recent example of how data collected by CGM systems can be used to
make good blood glucose predictions with machine learning methods is the thesis
“Machine Learning for Diabetes Decision Support” (Wiley, 2011). In it, two differ-
ent data models are evaluated using SVR. One model consists of attributes solely
based on previous blood glucose values, while the other contains information such
as insulin dosage, carbohydrate intake, exercise, work and sleep patterns. The pre-
diction performance of the SVR is reported for both 30 and 60 minute blood glucose
predictions, and although the more advanced model with more data attributes per-
formed better for some patients participating in the experiment, the simpler model
performed better overall. A surprising result, suggesting that the SVR might not
be able to fully take advantage of the extra life data attributes in the more complex
model.

A related study, “Blood Glucose Level Prediction using Physiological Models and
Support Vector Regression”, further explores the use of extra life data such as in-
sulin dosage and carbohydrate intake when predicting blood glucose values with
SVR (Bunescu et al., 2013). In this study, a physiological model aimed at better
capturing the dynamic between blood glucose and daily events is introduced. Using
SVR, a new data model with features from the physiological model is compared to a
data model similar to the one in Wiley’s work. The data model using physiological
features turns out to perform slightly better, with an improvement in prediction
accuracy over the older model.

There seems to be no previous work on the use of LSTM networks for blood glucose
prediction. However, there are multiple examples that demonstrates the useful-
ness of LSTM networks for learning other temporal data. For example, LSTM was
found to outperform multiple algorithms such as SVM, ARIMA and Kalman filtering
when predicting traffic speed using data from remote traffic microwave sensors (Ma
et al., 2015). LSTM has also been successfully used to compose blues music (Eck
and Schmidhuber, 2002), as well as for detecting anomalies in time series data by
comparing the error of predicted values with observed values (Malhotra et al., 2015).

The previous approaches mentioned above all do work for predicting future blood
glucose values. And while the data sets they are evaluated on vary, many report
accuracy numbers comparable to those by (Bunescu et al., 2013). Furthermore,
Bunescu used raw CGM data similar to ours with minimal pre-processing. Therefore,
the SVR first introduced by (Wiley, 2011) and then further evaluated in (Bunescu
et al., 2013) has been the method to which the models presented in this work are
compared to.
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3
Theory

The intention of this section is to work as a “mini encyclopedia”, to which the reader
can return whenever a concept or term might need further clarification. It discusses
time series, machine learning concepts and the theory for ARIMA, SVR and LSTM.

3.1 Time series
A time series is a chronologically ordered sequence where each element constitutes
an observation at that specific moment in time. An important aspect is that each
observation might be dependent on the previous observation. Also, observations
further back in time might have less impact on future observations. For example, in
the context of this work, the blood glucose level from 15 minutes ago tells us more
about the immediate future than levels from 5 days ago do.

3.2 Machine Learning - general concepts
Machine learning is a sub area within the field of computer science that studies how
to construct and use algorithms that can learn from and analyse data (Ayodele,
2010). Common applications for such algorithms are data categorisation as well as
prediction of future data points. For example, machine learning algorithms can be
used to tell whether a digital image contains a certain certain subject or not (Shan,
2012), or what the rainfall will be like the next day (Hong, 2008).

There are two main categories of learning: supervised and unsupervised. In super-
vised learning, the data from which an algorithm should learn is labeled, meaning
that each input to an algorithm has a known value that the algorithm ideally should
output, given the corresponding input (Kotsiantis et al., 2007). A data set could,
for example, consist of multiple pictures, each labeled with a 1 if the image contains
a certain subject, and with a 0 otherwise. The goal then is to have an algorithm
learn and recognise subjects in the images by outputting the value 1 if an image
contains the subject, and 0 if it does not. This is an example of binary classifica-
tion. However, there are other learning tasks as well. For example, some data might
have more than two classes, or be labeled with real values instead of discrete ones.

In contrast to supervised learning, the data in unsupervised learning is unlabeled.
Thus, there is no desired or correct value for each input known beforehand. A com-
mon use case for unsupervised learning is clustering, where an algorithm is used

7



3. Theory

to learn what different clusters (or labels) the input data can be split into (Kot-
siantis et al., 2007). For example, the input data might be a list of different wine
flavors, each described with a set of characteristics such as sweetness, acidity, tannin
etcetera. The goal could then be to learn if there is a natural grouping of the dif-
ferent wines, how many such groups there are and what the common characteristics
are for each wine group found.

In this work, only supervised learning algorithms have been used, and thus any
other learning techniques have been left out of the remaining discussion. For an
algorithm to learn what target value an input should be associated with, it must
be trained. First, the data set is usually split into three subsets: a training set, a
test set and a validation set. During training, the algorithm is applied to all data
points in the training set, and its output used to determine how big the error in its
classifications or predictions is. The error is usually defined as a loss function E,
and the overall goal of the training is to tweak the parameters of the algorithm so
that E is minimised.

The learning process can be repeated for multiple iterations, or epochs, on the
same training data set to improve performance. However, too many iterations can
cause overfitting, a phenomena in which the algorithm becomes overly adjusted to
the training data and, as a result, gives poor performance when run on new data
points (Caruana et al., 2000). To avoid this, the algorithm’s performance is usually
evaluated over the validation data set after each iteration. If the performance over
the training set is increasing (or staying the same), but the performance over the
validation set starts decreasing, the training is stopped.

3.3 Auto-Regressive Integrated Moving Average
When working with time series data an auto-regressive integrated moving average
(ARIMA)-model can be used to gain further insights of the data or to predict future
values in the time series (Box et al., 2015). More specifically, ARIMA-models are
useful on data that is non-stationary; i.e. data whose mean and variance is not
constant over time.

Given a time series x = {x1, x2, . . . , xt} where xi denotes the data value at point i
in time, an ARIMA-model of order (p,q,d) is defined as

xt = θ1xt−1 + ... + θd+pxt−d−p − β1εt−1 − ...− βqεt−q + εt . (3.1)

Parameter p is the number of auto-regressive terms, q the order of the moving average
and d is the number of differences needed to make the data stationary. Furthermore,
(β1,...,βq) are the parameters of the moving average, (θ1,...,θd+p) the parameters of
the auto-regressive part and ε is an error term sampled from a Normal distribution
with zero mean.

The goal of an ARIMA is to find parameters that make Eq. 3.1 fit the data as well
as possible. Once fitted, the ARIMA model can be used to predict values at time
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t + i. It has been shown (Box et al., 2015) that this is equivalent to finding the
expected value

x̂t+i = E[xt+i|x] . (3.2)

The following rules are used when calculating the expected values,

Et[xt−j] = xt−j ,

Et[xt+j] = x̂t+j ,

Et[εt−j] = εt−j ,

Et[εt+j] = 0 ,

(3.3)

where j is a non-negative integer. With these rules, Eq 3.2 can be rewritten as

x̂t+i = Et[xt+i] = θ1Et[xt+i−1] + ... + θd+pEt[xt+i−d−p]−
β1Et[εt+i−1]− ...− βqEt[εt+i−q] + Et[εt+i] .

(3.4)

Using this, an ARIMA-model can predict values for any future time step. Once a
prediction for time step t + 1 is made this value is added to the time series and a
prediction for time step t+ 2 can be made and so forth. In other words, prediction
further into the future is based on previous predictions.

3.4 Support Vector Regression
Support Vector Regression (SVR) is a machine learning algorithm that has been
used extensively for time series prediction in various applications such as financial
market forecasting, weather and environmental parameter estimation and electrical
utility load prediction and more (Sapankevych and Sankar, 2009).

SVR is an extension on Support Vector Machines (SVM), a binary classifier that
tries to classify data by finding a hyperplane separating two different classes of input
data. Such a hyperplane can be defined as

w · x + b = 0 . (3.5)

In this equation x is an input vector, w is a normal to the plane and b
||w|| is the

perpendicular distance to the origin. A key feature of an SVM is that it tries to fit
the plane so the margin between the classes is maximised, as seen in Fig. 3.1. The
vectors with circles around them in Fig. 3.1, i.e. the vectors on the lines H1 and
H2, are called support vectors. These are of extra importance since they determine
the margin.

If some linearly separable input xi belonging to either class yi = 1 or class yi = −1 is
used as training data, an SVM finds values for w and b so the data can be described
according to the inequalities in Eq. 3.6 and Eq. 3.7.

w · xi + b ≥ 1, yi = 1 (3.6)
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Figure 3.1: A hyperplane separating two classes.

w · xi + b ≤ −1, yi = −1 (3.7)
These inequalities can be combined into one as

∀i yi(w · xi + b)− 1 ≥ 0 . (3.8)

The distance from the hyperplane to the lines H1 and H2 in Fig. 3.1 needs to be the
same which implies d1 = d2. This distance is the margin and the goal is to maximize
it. The margin is equal to 1

||w|| and maximising it is equivalent to minimising ||w||
subject to condition (3.8).

min ||w|| subject to ∀i yi(w · xi + b)− 1 ≥ 0 (3.9)

This minimisation is the core of an SVM and solving it yields the values for w
and b required to classify new data. Any new data point x̂ is then classified by
ŷ = sgn(w · x̂ + b).

An SVM works well for data that is linearly separable and by introducing slack
variables ξi for the constraints and assigning penalties to points on the wrong side
of the hyperplane the SVM can converge even if the data is not fully separable. This
is called a soft margin SVM. With the slack variables, Eq. (3.8) is rewritten as

∀i yi(w · xi + b)− 1 + ξi ≥ 0 where ξi ≥ 0 . (3.10)
The minimisation then becomes

min ||w||+ C
∑
i

ξi s.t. ∀i yi(w · xi + b)− 1 + ξi ≥ 0 where ξi ≥ 0 . (3.11)

Here C is a cost parameter that controls the relation between the penalties of the
slack variables ξi and the size of the margin.
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While an SVM works well for binary classification (ŷ = ±1) of not yet seen data
points it lacks the property to classify the input with a real value ŷ.
SVM works well for binary classification (ŷ = ±1) of not yet seen data points. This
is, however, not enough to assign a real value to the input. For this purpose the
SVR is more appropriate. Now, the data is of the form {xi, ti} (xi ∈ RD, ti ∈ R),
where xi is the input and ti its corresponding target value.
The input is no longer classified by yi = ±1. Instead it is assigned a real value by:

f(x) = w · x + b . (3.12)

Expanding on the idea of the soft margin SVM, an SVR uses a slightly more ad-
vanced method to calculate the penalties. No penalty is given if the predicted value
f(x) is less than some distance ε from the actual value ti, i.e. if |ti − f(xi)| < ε. In
Fig. 3.2 the grey region bounded by f(x)± ε is called an ε-insensitive tube. Target
values ti (the blue dots in 3.2) that lies outside of this tube are given different slack
variable penalties depending on the distance to the tube and whether they lie above
or below it.

Figure 3.2: Support Vector Regression with an ε-insensitive tube.

This yields the following inequalities

ti ≤ f(xi) + ε+ ξ+
i ,

ti ≥ f(xi)− ε− ξ−i ,
ξ+
i ≥ 0, ξ−i ≥ 0 ∀i .

(3.13)

Thus the minimisation becomes

min ||w||+ C
∑
i

(ξ+
i + ξ−i ) , (3.14)

subject to the constraints given by the inequalities in Eq. 3.13. Solving this min-
imisation yields the following expression to predict real values ŷ for unseen data x̂.

ŷ =
∑
i

(α+
i − α−i )xi · x̂ + b (3.15)
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In classification and regression problems the data is not always linearly separable
in the space of the inputs. However, it might be if the input data is mapped to
some higher dimension space. This mapping is done by using kernels (Scholkopf
and Smola, 2001) that projects the data into a higher dimension as seen in Fig.
(3.3). Common choices of kernels for SVR are the linear kernel, the polynomial-
kernel, the sigmoid-kernel and the radial basis function-kernel (Hsu et al., 2003).
The SVR-implementation used in this work utilizes the radial basis function-kernel
which is defined as

k(xi,xj) = e
−
(
||xi−xj ||

2

2σ2

)
, (3.16)

where ||xi−xj||2 is the euclidean distance between the input vectors and σ is a free
parameter.

Figure 3.3: The left plot shows an example of data that is not linearly separable.
In the right plot, a radial basis function-kernel has been used to project that data
into a higher dimension, making it linearly separable.

3.5 Artificial Neural Networks
This section describes some of the important concepts related to artificial neural
networks that are needed to fully understand the models evaluated in this work.
It details what feed-forward neural networks are, how networks can learn and be
trained as well as what a long-short term memory network (LSTM) is.

3.5.1 Single Neuron Network
The human brain is a neural network that consists of billions of interconnected neu-
rons, each of which is capable of receiving, transmitting and processing information.
In an ANN, these neurons are represented as a mathematical model that calculates
a weighted sum of the signals from other neurons in the network (Abraham, 2005).
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More formally, let x = [x1, x2, . . . , xp] be a vector of p input signals. A neuron then
outputs the scalar value ŷ as

ŷ = f

( p∑
i=1

wixi

)
= f

(
wTx

)
, (3.17)

where w = {w1, w2, . . . , wp} is a vector of weights. Although omitted here to simplify
calculations, a bias term b is usually also added to the sum in Eq. 3.17 above. The
function f , sometimes referred to as an activation function, can be any non-linear
function, and the choice of f depends on the application. If, for example, the neuron
is to be used for performing logistic regression, f can be defined as the standard
logistic function. This function squashes its input to a real value between [0, 1]:

f(x) = 1
1 + e−x

. (3.18)

By combining Eq. 3.17 with Eq. 3.18 above, the output of a neuron for a single
data point x becomes

ŷ = f(wTx) = 1
1 + e−wTx . (3.19)

To demonstrate the dynamics of an ANN, consider a simple network consisting of a
single neuron (see Fig. 3.4) with an output ŷ as in Eq. 3.19. Furthermore, define

Figure 3.4: A single neuron demonstrating the core concepts of ANNs. The
neuron calculates a weighted sum of the p-dimensional input and produces a scalar
output ŷ.

X = {(x1,y1), (x2,y2), . . . , (xN ,yN)} as a set of N data points xi, each with a
corresponding label yi. Then the goal of the ANN is to learn the weight vector w
such that

ŷ = 1
1 + e−wTx = y , (3.20)
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for all pairs (x,y) ∈ X. This can be formulated as a minimisation problem, for
example using the mean squared error (MSE) as objective function over all N data
points:

E = 1
2N

N∑
i=1

(yi − ŷi)2 = 1
2N

N∑
i=1

(
yi − f(wTxi)

)2
. (3.21)

The objective function can also be referred to as the loss function, or simply the loss,
and the goal is to find a weight vector w that minimises it. A common method for
doing this is gradient decent (GD). In GD, the weight vector is adjusted iteratively
using a learning rule based on the gradient of the loss function with respect to w

w = w− η ∂E
∂w

, (3.22)

where η denotes the learning rate, i.e how much the weight vector should be adjusted
in each iteration.

An alternative method to GD is stochastic gradient descent (SGD). It works in
the same way as GD, except that the loss is defined as the the error over a single,
randomly chosen data point instead of as the average error over all points:

E = 1
2(y − ŷ)2 = 1

2
(
y − f(wTx)

)2
. (3.23)

Yet another form of gradient descent, and the one used for all ANN related opti-
misations in this work, is mini-batch GD. In mini-batch GD the loss is defined as
the average error over a small set of randomly selected data points, i.e a mini-batch.
Denote the size of the mini-batch as k. The loss then becomes

E = 1
2k

k∑
i=1

(yi − ŷi)2 = 1
2k

k∑
i=1

(
yi − f(wTxi)

)2
. (3.24)

Note that k = 1 would be the same as running SGD, and k = N would be equivalent
to traditional GD.

The gradient of the loss function for mini-batch GD in Eq. 3.24 with respect to an
arbitrary element wj in w can be calculated using the chain rule:

∂E

∂wj
= 1
k

k∑
i=1

∂

∂wj

1
2 (yi − ŷi)2

= 1
k

k∑
i=1

∂

∂ŷi

(1
2 (yi − ŷi)2

)
· ∂ŷi
∂wTxi

· ∂wTxi
∂wj

= 1
k

k∑
i=1

(ŷi − yi)ŷi(1− ŷi)xi,j .

(3.25)

Here, xi,j denotes the j’th element of the i’th input vector.

Using the gradient in Eq. 3.25, the learning rule in Eq. 3.22 for mini-batch GD can
be written (in vector notation) as

w = w− η 1
k

∑
i=1

(ŷi − yi)ŷi(1− ŷ)xi . (3.26)
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3.5.2 Feed-Forward Neural Networks
An ANN can vary in both size, shape and arrangement of its neurons. The simplest
and one of the earliest forms of ANNs explored is feed-forward neural networks
(FFNNs). They consist of one or more neurons connected to each other in a way
that does not form any cycles. The single neuron ANN described in 3.5.1 is a trivial
example of an FFNN; it only has one neuron and therefore cannot contain any cyclic
connections. However, more advanced models can consist of multiple neurons, and
the neurons can be arranged in one or more layers as in Fig. 3.5.

Figure 3.5: A feed-forward neural network with multiple layers. The information
flows from left to right in the network, with no cyclic connections in-between the
nodes.

The first layer can be referred to as the input layer, and the last as the output layer.
All layers in between are called hidden layers. Note that the output layer can have
more than one neuron. Every neuron has its own weight vector w and bias term b,
but works according to the same principles as described in 3.5.1. In other words, a
neuron in the i’th layer calculates a weighted sum of the output from all neurons in
the i − 1’th layer and so on. The calculation of the network output is made “from
left to right”, starting with the neurons in the first layer and ending with the ones
in the output layer.

The appropriate weight vectors for fitting a multilayer network to its input data
can be found by using the different forms of gradient descent described in 3.5.1.
First, the gradient descent optimisation is performed on the weights in the output
layer. The errors calculated are propagated backwards in the network and used in
the gradient descent for the previous layer, and so on for all weights in the network.
This method of propagating the errors backwards is called backpropagation.

3.5.3 Recurrent Neural Networks and LSTM
A recurrent neural network (RNN) can be seen as multiple, chained together mod-
ules, each containing a simple feed-forward neural networks as in Fig. 3.6. Each
module has its own output hi, and its input xi is concatenated with the output hi−1
of the previous module in the chain. This makes the network capable of handling a
sequence of inputs of any length and to pass information between states in an input
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sequence. In other words, the network can express relations between data points in
a sequence of inputs, a characteristic well suited for working with temporal, dynamic
data such as a blood glucose value time series. In theory, RNNs are well suited for

Figure 3.6: An unrolled recurrent neural network, each module with its own input
and output pair. The output of the i’th module is the input of the i+ 1’th module
in the chain, making RNNs useful for data with a sequential structure.

sequential and temporal data because of the connections in between the modules.
However, as pointed out in (Bengio et al., 1994), in practicality traditional RNNs ex-
press difficulty to learn dependencies as the duration of those dependencies increases.

Hochreiter and Schmidhuber introduced a new kind of RNN called LSTM in 1997
(Hochreiter and Schmidhuber, 1997) that remedies some of the problems of the
more classical RNN models. An LSTM network can remember long-term dependen-
cies, and has proven to work efficiently in numerous applications (Weninger et al.,
2015),(Graves et al., 2004), (Breuel et al., 2013).

Just as a classical RNN, an LSTM consist of chained together modules, or cells,
where information can pass in-between. The difference lies in the internals of the
cells themselves. Each cell sends its cell state and a hidden state to the next cell
in the LSTM, and every cell contains four interacting neural network layers instead
of a single, simpler feed-forward neural network as in a classical RNN. These four
layers together form three “gates” that decide what information from the previous
cell should be forgotten, updated and outputted to the next one (see Fig. 3.7).
The first gate in an LSTM cell is the “forget gate”. It consists of a simple sigmoid
layer that takes the hidden state ht−1 from the previous cell and the input xt to
create a concatenated vector used in a sigmoid layer. Note that all bold upper-case
letters in all equations below denote matrices, as opposed to vectors that are bold
and lower-case.

ft = σ (Wf · [ht−1,xt] + bf ) (3.27)
The output ft of the forget gate will be between zero or one. A one can be thought
of as “do not forget anything” while a zero means “forget all”, since ft is multiplied
with ct−1, the cell state from the previous cell.

The second gate is the last step in creating the new state ct from the old state ct−1.
In this gate c̃t is calculated as in Eq. 3.29 below.

it = σ (Wi · [ht−1,xt] + bi) (3.28)
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Figure 3.7: The internals of an LSTM cell, with the four interacting neural network
layers marked in purple. These four layers together form three “gates” used to decide
what information should be forgotten, added and outputted to the next cell.

c̃t = tanh (Wc · [ht−1,xt] + bc) (3.29)

The new state ci is finally defined as in Eq. 3.30 below.

ct = ft ∗ ct−1 + it ∗ c̃t (3.30)

The third and final gate is used to decide the output ht of the LSTM cell. This
output ht is defined as in Eq. 3.32, where tanh squashes the values of the cell state
ct to values between -1 and 1, and the sigmoid layer decides what parts of the cell
state that should be in the output.

ot = σ (Wo[ht−1,xt] + bo) (3.31)

ht = ot ∗ tanh(ct) (3.32)
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4
Data

A future glucose value depends not only on past observations of glucose values, but
also on insulin dosage, carbohydrate intake and other life data. In fact, the blood
glucose value depends on more factors than one can realistically include in a model,
less collecting the actual data for. Blood glucose values together with insulin dosage
and carbohydrate intake, however, is enough for the models in this work to perform
well.

4.1 Blood Glucose Values

Blood glucose values are typically measured in mmol/L or mg/dl, the former being
the unit used in this report. A person with type 1 diabetes must manage the glucose
levels manually with insulin injections, the goal being to keep blood glucose values
within a safe range. Both too high and too low blood glucose values may cause
serious short and long term complications.

There are two predominant ways to monitor blood glucose levels. Either by fin-
gersticks or with an automated, electronic continuous glucose monitoring (CGM)
system. Blood glucose monitoring by fingerstick means using a lancing device, typ-
ically on a finger, to get a drop of blood that can then be put on a test strip and be
analysed by a traditional blood glucose meter. A CGM system, on the other hand,
is constantly attached to the body and measures the blood glucose value continu-
ously, in small and equally spaced time increments. Such systems typically have less
accuracy than a traditional blood glucose meter with fingersticks, but collects larger
volumes of data. A person using a traditional blood glucose meter might have 4-10
data points per day, while a CGM system might collect several hundreds.

All data used in this work comes from some kind of CGM system, although the
actual hardware used differs from patient to patient. Most data sets contain data
collected by a meter called FreeStyle Libre. The meter works together with an
on-body patch sensor that samples the blood glucose value every 15 minutes. The
Libre differs a bit from other CGM systems since it does not need any fingerstick
calibration. This simplifies the processing of the gathered data, as one does not
need to take any fingerstick data used for calibration into account.
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4.2 Insulin Dosage
All patients included in the experiment used an insulin pump to administer their in-
jections of insulin. An insulin pump is typically connected via a tube to the patient
at all times and offers two different kinds of injections. Injections made manually by
the user to compensate for food eaten or to make direct adjustments to the blood
glucose levels are called bolus injections. A bolus injection is usually given instantly,
all at once, but some insulin pumps also has functionality for prolonged bolus where
the bolus insulin is injected in small bursts over a time interval specified by the user.

The other kind of insulin injection, basal, are smaller evenly distributed injections
made automatically throughout the day according to a prespecified program in the
insulin pump. The basal program in an insulin pump usually comes in the form of
a 24 hour schedule where the user gets to specify exactly how much insulin should
be injected each hour. Some insulin pumps also allow for the basal rate to be tem-
porarily adjusted to a higher or lower rate for a certain amount of time.

Insulin injections are measured in units (U), and both basal and bolus injections
are stored together with the corresponding timestamp in the device memory. All
patients used either an Accu-Chek Spirit Combo or Animas Vibe insulin pump.

While they are both insulin injections, it can be beneficial to treat bolus and basal
separately, as pointed out in (Wiley, 2011). For example, when tuning the feature
sets for the SVR-models, the number of instances of the bolus and basal attributes
might differ (5.6).

4.3 Carbohydrates
One of the most important factors that greatly affects the blood glucose value, apart
from insulin dosage, is food consumption. Especially, the amount of carbohydrates
consumed. Just as insulin lowers the blood glucose value, carbohydrates raises it.
The patients included in the experiments recorded their carbohydrate intake by
entering the estimated amount of carbohydrates eaten into a blood glucose meter
whenever food was consumed. The carbohydrate entries consist of the amount of
carbohydrates in grams, together with a time stamp indicating when the carbohy-
drates were consumed. And while these entries are estimations, they could serve as
an indicator for how much insulin is needed and what future blood glucose values
might be.
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This section describes the process used when predicting blood glucose values. It
explains the error metric used to determine performance, the input vectors utilised
by the machine learning models and as well as the evaluation methods. Furthermore
it details how the data was pre-processed and why. It also explains how the baseline
models and the LSTM models are constructed.

5.1 Time series prediction
The data utilised by the machine learning models is a time series (3.1) consisting
of data points evenly spaced by 15 minutes arranged in chronological order. Each
xi in the series contains a vector of data features at point i in time. With this
interpretation in mind, predicting future blood glucose values can be seen as the
process of using a time series of size n with values up to point t in time (Eq. 5.1)
to predict a value xt+i, i steps into the future.

{xt−(n−1),xt−(n−2),xt−(n−3), ...,xt} (5.1)

5.2 Error metric
The performance of all models has been measured using the Root Mean Square
Error (RMSE), because it its the main error metric used in several previous studies
of blood glucose prediction (Zecchin et al., 2012), (Bunescu et al., 2013). The RMSE
is defined as:

RMSE =
√∑n

i=1(ŷi − yi)2

n
, (5.2)

where ŷ is the predicted value and y is the target value.

5.3 Evaluation method
Walk forward testing is an evaluation method used to the determine how well a
time series prediction model performs over a period of time. The idea is to take a
segment of a given data set and partition it into three different parts. The first part
of the segment is used as training data for the model, the second part for validation
and tuning of the model parameters and the third is used as test data for measuring
performance. The segment is then evaluated by calculating the performance and
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error measurements for the test partition.

In order to evaluate performance over time for the entire data set, the segment is
moved across the data set by some time step, changing what parts of the data is
used for training, validation and testing. Depending on the size of the partitions.
Fig. 5.1 illustrates how the segment moves across the data set. For each time step

Figure 5.1: An illustration of how a data segment moves across a data set in walk
forward testing.

the model is reset and reevaluated with the content of the new segment. Overall
performance of the model is then measured by evaluating the performance for each
segment.

This method has previously been used for evaluation of time series models for fi-
nancial forecasting (Żbikowski, 2015) as well as evaluating performance for blood
glucose prediction (Wiley, 2011)

5.4 Data pre-processing
External conditions such as temperature as well as limitations in hardware can
sometimes cause gaps in CGM data readings. For example, the FreeStyle Libre
system mentioned in 4.1 utilises a sensor that can store only the last eight hours
of data. If more than eight hours pass between two scans of the sensor, a gap is
introduced in the data, as seen in Fig. 5.2. Simple linear interpolation was used to
deal with these gaps and to keep the data pre-processing minimal. In other words,
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Figure 5.2: A data gap in a CGM plot that occurred during night time between
00:00 and 02:00.

a gap between any two points (x0, y0) and (x1, y1) in the data was replaced with the
straight line

f(x) = y0 + (x− x0) y1 − y0

x1 − x0
. (5.3)

All CGM system used in this study records the blood glucose value in intervals,
meaning that there is a small “intentional” gap of about 5-15 minutes between every
data point as well. To be able to sample a blood glucose value from a patient’s data
set at any given time t between the start and end time of the patient’s entire data
set, linear interpolation was used between all data points. Also, when evaluating
the SVR, ARIMA and LSTM, the test days for each patient were chosen in a way
that minimised the occurrences of such gaps.

5.5 Data features
This section describes the individual data features used in the feature sets detailed
in 5.6.

5.5.1 Current blood glucose value
This is simply the current blood glucose value and it is represented as

fglucose(t) = xt , (5.4)
where t is an index in the time series and x is the blood glucose value at t.

5.5.2 Blood glucose slope
The slope for glucose values at time t is simply defined as

f ′glucose(t) = xt − xt−1 . (5.5)

5.5.3 ARIMA prediction
Predictions from the ARIMA-model, also used as a baseline, are incorporated as a
data feature in some input vectors. This feature is defined as

fARIMA(t) = yt+i , (5.6)
where yt+i is the value predicted by the ARIMA-model at time t+ i.
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5.5.4 Bolus
The bolus feature is defined as

fbolus(t,∆) =
∑

x∈Ibolus,t,∆

x , (5.7)

where Ibolus,t,∆ is the set of bolus insulin injections made between time t and t−∆.

5.5.5 Basal
The basal feature is defined as

fbasal(t,∆) =
∑

x∈Ibasal,t,∆

x , (5.8)

where Ibasal,t,∆ is the set of basal insulin injections made between time t and t−∆.

5.5.6 Carbohydrates
The carbohydrate feature is represented as

fcarbs(t,∆) =
∑

x∈Ct,∆

x , (5.9)

where Ct,∆ is the set of carbohydrate intakes done between time t−∆ and t.

5.5.7 Exponential Moving Average
A moving average is an average that moves across a time series. Such an average
can, in combination with the most recent value, give an indication of a trend in the
data. This feature is defined as

fMVA(t, k, λmva) =
∑k
i=0 λ

i
mvaxt−1∑k

i=0 λ
i
mva

, (5.10)

where t is an index in the time series, x is the value at the given index and k is
the number of previous values in the series to include in the average. λmva is a
decay parameter valued between zero and one which is used to make older values
contributes less to the average thus enabling the more recent values to have a greater
impact.

5.5.8 Rate of Change
The rate of change is used to measure the speed at which values in a time series
changes. This gives an indication of momentum in the data and in what direction
it is heading. The rate of change feature is defined as

fRoC(t, k, λroc) =
∑k−1
i=0 λ

i
roc(xt−i − xt−i−1)∑k−1

i=0 λ
i
roc

, (5.11)

where λroc is a decay parameter valued between zero and one, t is an index in the
time series, x is the value at the given index and k is the number of values in the
time series to describe the rate of change metric with.
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5.6 Feature sets
This section details the different features sets used. They are all constructed from
the data features detailed in section 5.5. Each set utilizes the features as described in
its respective table. However, features sets 5.3 and 5.4 can have multiple instances of
their bolus, basal and carbohydrate features. For example, set 5.3 may have several
different bolus features covering different ranges of past injections. e.g. features for
fbolus(t,∆) , fbolus(t−∆,∆) , fbolus(t− 2∆,∆) .

Feature Description
fglucose(t) Blood glucose value at time t

Table 5.1: Feature set 1, used for evaluating the performance of the ARIMA, SVR
and LSTM models.

Feature Description
fglucose(t) Blood glucose value at time t
fARIMA(t) ARIMA prediction for time t+ ∆
fMVA(t, k, λ) Moving average for last k time steps with decay λ
fRoC(t, k, λ) Rate of Change for last k time steps with decay λ

Table 5.2: Feature set 2, used for evaluating the SVR model.

Feature Description
fglucose(t) Blood glucose value at time t
fARIMA(t) ARIMA prediction for time t+ ∆
fMVA(t, k, λ) Moving average for last k time steps with decay λ
fRoC(t, k, λ) Rate of Change for last k time steps with decay λ
fbolus(t,∆) Sum of all bolus injections between time step t

and t−∆
fbasal(t,∆) Sum of all basal injections between time step t

and t−∆
fcarbs(t,∆) Sum of all carbohydrates eaten between time step

t and t−∆

Table 5.3: Feature set 3, used for evaluating the SVR model.

Feature Description
fglucose(t) Blood glucose value at time t
f ′glucose(t) Blood glucose value slope at time t

Table 5.4: Feature set 4, used for evaluating the SVR model.
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Feature Description
fglucose(t) Blood glucose value at time t
fbolus(t,∆) Sum of all bolus injections between time step t and

t−∆
fbasal(t,∆) Sum of all basal injections between time step t and

t−∆
fcarbs(t,∆) Sum of all carbohydrates eaten between time step t

and t−∆

Table 5.5: Feature set 5, used for evaluating the LSTM model.

5.7 Baselines
To measure the performance of the LSTM-models, two baselines were implemented:
an ARIMA model and an SVR model. This section details how each model was
used.

5.7.1 ARIMA
For each prediction, 4 days of prior blood glucose data was used to create an ARIMA-
model (3.3). For example, in the case of a 30 minute prediction (time step t + 2),
a model was created using data up to time step t. Both the SVR-model and the
LSTM-models were trained with 14 days of data, but empirical evaluation showed
that the ARIMA-model performed best when trained with only 4 days of data.

The ARIMA-model was implemented in python and the model specific parameters
were found using auto.arima, a function in the statistical programming language
R. It uses the Philips-Perron (Phillips and Perron, 1988) unit root test for finding
parameter d, and Bayes information criterion (Bhat and Kumar, 2010) to determine
p and q.

5.7.2 SVR
The approached used in (Wiley, 2011) has been the main source of inspiration in the
creation of the SVR-model. The model was created and evaluated using the first
four feature sets detailed in (5.6). The radial basis function-kernel (RBF-kernel)
(3.16) was the kernel of choice, since it only has one parameter and converges fast.
Also, experimentation showed that it gave the best results.

The SVR-model was trained and evaluated using walk forward testing as described
in section 5.3. A start date, or pivot date, was chosen in a way that minimised the
number of gaps (5.4) in the data set for each patient. Data corresponding to 14 days
prior to the pivot date was used as training data. Seven days of data prior to the
initial pivot date was used as a development set for tuning. This tuning was only
done once for each patient, i.e. it is not part of the walk forward procedure. The
three days following the pivot date were used for validation, and the day after that
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was used for testing and evaluation.

The development data set was used to find optimal parameters for the data features
(5.5) and, due to the dependency between them, also for finding the hyper param-
eters of the SVR-model. As stated above, this tuning was only done once for each
patient. However, the hyper parameters were re-tuned on the validation data ahead
of each test day.

The parameters tuned for the data features are described in table 5.6 while table
5.7 describes the hyper parameters tuned for the SVR-model.

Name Description
MVA decay The decay parameter for the moving average fea-

ture.
ROC decay The decay parameter for the rate of change fea-

ture.
Bolus delta How far back in time bolus values will be in-

cluded.
Bolus max k The number of bolus features included in the vec-

tor.
Basal delta How far back in time basal values will be in-

cluded.
Basal max k The number of basal features included in the vec-

tor.
Carbs delta How far back in time carbohydrate values will be

included.
Carbs max k The number of carbohydrate features included in

the vector.

Table 5.6: A list of feature parameters for the SVR model.
Name Description
C The cost parameter that controls the relation between

the penalties of the slack variables and the size of the
margin.

ε Sets the margin for how wrong predictions can be be-
fore being penalised.

Gamma Used internally by the RBF-kernel.

Table 5.7: A list of hyper parameters for the SVR model.

A good selection of the parameters is very important since they have a significant
impact on overall performance (Bao and Liu, 2006). Tuning of hyper and feature
parameters can not be done separately, thus creating a very large search space for
the tuning. This makes a standard grid search too time consuming. Instead, tuning
has been done with random search over the parameter space. This approach has
proved to achieve as good, sometimes even better, results in a fraction of the time
it would take a grid search (Bergstra and Bengio, 2012).

27



5. Methods

The parameters found in tuning, both for the feature and hyper parameters, were
used to train the SVR-model with all 14 days of training data. The validation days
are then used to once again tune the hyper parameters using random search.
Performance was measured by calculating the RMSE for the test day. After each
test day the segment for training, validation and testing data was reset and moved
forward 24 hours. This process was repeated for 7 days and the RMSE was cal-
culated for each test day during this period. The overall performance was then
calculated by taking the average RMSE over the 7 test days.

The SVR-model was implemented in python using LIBSVM (Chang and Lin, 2011),
a library for SVM and SVR.

5.8 LSTM models
As opposed to the input for the SVR model consisting of single vectors, the input to
the LSTM network is a sequence {xt−l+1,xt−l+2, . . . ,xt} of l chronologically ordered
vectors. Each such sequence has, in turn, a scalar valued target. These vectors are
evenly spaced with 15 minutes between each time stamp. The LSTM network has
as many cells as there are vectors in the input sequence, and each vector in the
sequence is fed to exactly one cell, in chronological order. That is, the i’th vector in
the sequence is the input of the i’th cell (Fig. 5.3). Knowledge about the different
data attributes can be passed from an earlier point in time to subsequent ones, thus
utilising the temporal properties of the LSTM network.

Just as the SVR model, the LSTM networks were evaluated using walk-forward
testing with 14 training days, 3 validation days and 7 test days. An LSTM net-
work is trained by feeding training data to the network and adjusting the weights
associated with each gate in the cell (3.5) so that a loss function E on the out-
put ŷ is minimised. All such minimisations were done using backpropagation with
the Adam algorithm (Kingma and Ba, 2014), a variation of SGD mentioned in 3.5.1.

Yet another important difference in the training of the LSTM to that of the SVR
is that the training data is split up into multiple mini-batches that are then fed to
the model. In other words, the backpropagation is not run after every single input
sequence, but rather after a set of multiple ones. This way, the network generalises
better and the training is faster to perform.

The hypersurface on which an LSTM network tries to find an optimum value gen-
erally can not be assumed to be convex. In other words, there can be many local
optimas scattered across the surface, some of which might have values worse than
the global one. The initial weights of an LSTM decide where on the hypersurface
the optimisation starts. Since an LSTM can get stuck in a local optimum, it is im-
portant to start in the right place. In this work, the weight of all LSTM networks as
well as their fully connected output layers have been randomly initialised. Although
this yields good results most of the time, unfortunate initial values might leave the
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optimisation stuck in bad local optimas. To accommodate for this, the training is
repeated multiple times.

In contrast to an SVR, an LSTM can benefit from repeatedly being trained on the
same data. Each repetition of training over the full training data set (all mini-
batches in the case of mini-batch GD) is called an epoch, and the LSTM models
evaluated here have been trained using multiple epochs. To determine when to stop
the training, and thus avoid overfitting (3.2), a method called early stopping has
been used. After each epoch, the performance of the LSTM is evaluated by measur-
ing its prediction accuracy over the validation data set. When the performance has
been decreasing for a predetermined amount of consecutive epochs, the training is
stopped and the weights for the best performing epoch is used when evaluating the
model over the test data.

The LSTM networks have a larger number of hyperparameters than the SVR and
takes a longer time to train. Thus, performing a grid search to find the optimal
ones would not be feasible. Training and evaluating an LSTM is significantly slower
than an SVR, and the amount of hyperparameters makes the search space too vast.
Instead, the hyperparameters used for the LSTM networks have been found by
manually experimenting with values that seemed reasonable in this context. The
most important hyperparameters related to the LSTM models are listed in table
5.8. The hyperparameters used for producing the final results reported in chapter 6
are presented in A.1.

Name Description
Learning Rate A parameter for the Adam optimiser that de-

termines at what rate it should change the
weights.

Batch size The size of each mini-batch.
Sequence length The length of the input sequence as well as

the length of the unrolled LSTM network.
State size The number of neurons in the interacting

neural network layers within an LSTM cell.
This number also decide the size of the cell
state and the hidden state vectors.

Forget bias A ratio determining how much information
should be forgotten in the forget gate of an
LSTM cell. This parameter has been set to 1
in all experiments based since research sug-
gests this to usually be the optimal value for
such LSTM here (Jozefowicz et al., 2015)

Resolution The distance in time between each step (vec-
tor) in the input sequence.

Table 5.8: A summary of the most important hyperparameters of the LSTM mod-
els.
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5.8.1 LSTM-1: Single layer LSTM with next-step predic-
tion output

Figure 5.3: An illustration of the LSTM-1 model. The output of the last cell is
used as input in the fully connected output layer which in turn produces a scalar
output prediction.

In this model, from here on referred to as LSTM-1, only the output ht from the last
cell is used, and put through a fully connected output layer of size 1 to produce the
final scalar output prediction ŷ (Fig. 5.3).

During the training process, both the weights inside the LSTM network and in the
fully connected output layer are tuned to minimise the output error. The loss is
defined as the mean square error (MSE) over all predictions in a mini-batch of size
k:

E =
∑k
i=1 (ŷi − yi)2

k
, (5.12)

where yi is the target value for the i’th sequence in the batch and ŷ the output from
the fully connected output layer:

ŷ = wTht + b . (5.13)

The cell output ht is defined in Eq. 3.32.

5.8.2 LSTM-2: Single layer LSTM with next-step distribu-
tion parameter output

This model is exactly as LSTM-1, with the exception of the output form and the
use of a different loss function. Instead of outputting the predicted blood glucose
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Figure 5.4: An illustration of the LSTM-2 model. The output of the last cell is
used as input in the fully connected output layer which in turn produces a the mean
µ and variance σ2 of a Normal distribution.

value straight away, LSTM-2 outputs the mean µ and variance σ2 of a univariate,
Normal distribution (Fig. 5.4). Here, there are two weight vectors w1 and w2 in
the output layer, and the mean and variance are calculated as follows:

µi = w1
Txi + b1 ,

σ2
i = w2

Txi + b2 .
(5.14)

The loss over a mini-batch of size k is defined as

E =
∑k
i=1− log (N(yi|µi, σ2

i ))
k

, (5.15)

where yi is the target value for the i’th sequence in the batch and the probability
density function N(yi|µi, σ2

i ) is defined as

N(yi|µi, σ2
i ) = 1√

2σ2
i π
e
− (yi−µi)

2

2σ2
i . (5.16)

Minimising loss with the above defined loss function corresponds to maximising the
probability density of the distribution around the target blood glucose value. The
mean µ in the output vector is also used as the prediction itself.

The main benefit with this model compared to LSTM-1 is that it outputs a measure
of “confidence” in its predictions. A lower variance can be interpreted as the net-
work being confident in its prediction, while a higher variance signals the opposite.

31



5. Methods

Note that although LSTM-2 uses a different loss function than LSTM-1, the perfor-
mance is evaluated in the same manner using RMSE as error metric over the test
data.

32



6
Results

This chapter presents the performance of the SVR model in 5.7.2, the ARIMA-model
in 5.7.1 and the two different LSTM based models in 5.8. The results presented are
for 30 and 60 minute prediction horizons. Refer to appendix [A.3] for prediction
horizons beyond 60 minutes.

The SVR was evaluated on feature sets 1-4. Sets 2 and 3 are based on the work
of (Wiley, 2011). Set 4 was included because of its minimal way of representing
change in blood glucose compared to set 2 and 3. Finally, set 1 was included as a
reference for how the SVR performs with as little feature engineering as possible.
The ARIMA-model used only feature set 1.

Due to the inherent sequential structure of an LSTM network, both LSTM-1 and
LSTM-2 were evaluated on feature sets without any manually engineered interpre-
tation of change in blood glucose (such as rate of change, moving average or slope).
Intuitively, an LSTM should be able to learn such properties without manually in-
corporating them into the feature sets themselves.

The ARIMA-model was trained and evaluated using 4 days of training data and 7
days as test data while the SVR and LSTM-models were trained using walk forward
testing with 14 days of training data, 3 days of validation data and 7 days of test
data.

Note that all RMSEs are given in mmol/L. Also, see A.4 for a visual comparison.

6.1 30 minute predictions
As expected, the worst SVR performance was with feature set 1. It does not include
any information about in which direction the blood glucose is heading, and thus the
SVR has a harder time making accurate predictions.

Surprisingly, the SVR performs equally well using feature set 2 and 4, even though
the former contains the ARIMA prediction as well as a more expressive representa-
tion of the blood glucose change.

Embedding information about insulin dosage and carbohydrate intake in the data
does not induce any significant performance boost. In fact, on average, it causes
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Patient SVR set 1 SVR set 2 SVR set 3 SVR set 4
#1 1.32 0.98 1.12 1.00
#2 1.09 0.94 0.90 0.90
#3 1.48 1.19 1.16 1.19
#4 1.14 0.91 0.92 0.93
Avg. 1.26 1.00 1.02 1.00

Table 6.1: 30 minute prediction RMSEs for the SVR model.

slightly worse performance. Both LSTM-1 and LSTM-2 perform similarly, with a

Patient LSTM-1 set 1 LSTM-1 set 5 LSTM-2 set 1 LSTM-2 set 5
#1 1.09 1.03 1.02 1.05
#2 0.91 0.90 0.91 0.91
#3 1.15 1.16 1.15 1.13
#4 0.92 0.96 0.91 0.98
Avg. 1.02 1.01 1.00 1.02

Table 6.2: 30 minute prediction RMSEs for the LSTM models.

slight edge in prediction performance to LSTM-2. The difference is in the order of
magnitude that could be discarded as variations due to the stochasticity involved
in the training. Note, however, that the difference in performance for larger predic-
tion horizons is greater, thus suggesting that LSTM-2 is indeed the better of the two.

Another observation is that, just as for the SVR model, there seems to be no signif-
icant benefit from embedding information about insulin and carbohydrates in the
input. LSTM-1 performed slightly better with feature set 5, but the difference is
too small to establish feature set 5 as superior to feature set 1.

Patient LSTM-1 set 5 LSTM-2 set 1 SVR set 2 ARIMA
#1 1.03 1.02 0.98 1.03
#2 0.90 0.91 0.94 0.93
#3 1.16 1.15 1.19 1.19
#4 0.96 0.91 0.91 0.92
Avg. 1.01 1.00 1.00 1.02

Table 6.3: Side by side comparison of 30 minute prediction RMSEs for all models.

The side by side comparison of the different models show that the best LSTM model,
LSTM-2, has performance equal to the best-performing SVR model. In fact, it per-
forms better than the SVR on patient #2 and #3 and shows equal performance on
patient #4. The RMSE for patient #1 is slightly worse than for the SVR, balancing
out the gain in performance on the other patients.
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Fig. 6.1 shows an example output for the LSTM-2 model on a day with hard to
predict excursions in the blood glucose values. Still, the LSTM-2 expresses high con-
fidence in its predictions. The target values are often inside the range [µi−σi, µi+σi],
and the standard deviation generally does not fluctuate by much. The model shows
the lowest level of confidence around 17:00 where the blood glucose is unusually high
for this particular patient.

On average, over all test days for all patients, the target value lies inside [µi−σi, µi+
σi] about 80% of the time.

Figure 6.1: A plot of the 30 minute predictions of LSTM-2 (in red) versus the target
values (in blue) for one of SP92’s test days. The grey area around the prediction
line shows the standard deviation of the output distribution.

6.2 60 minute predictions

Patient SVR Set 1 SVR Set 2 SVR Set 3 SVR Set 4
#1 2.24 1.86 2.03 1.86
#2 1.74 1.62 1.55 1.65
#3 2.39 2.14 2.11 2.17
#4 1.97 1.65 1.77 1.67
Avg. 2.09 1.82 1.87 1.84

Table 6.4: 60 minute prediction RMSEs for the SVR model.
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Patient LSTM-1 set 1 LSTM-1 set 5 LSTM-2 set 1 LSTM-2 set 5
#1 1.98 2.04 1.90 1.96
#2 1.63 1.65 1.58 1.58
#3 2.13 2.08 2.08 2.11
#4 1.83 1.83 1.67 1.77
Avg. 1.89 1.90 1.81 1.86

Table 6.5: 60 minute prediction RMSEs for the LSTM models.

Patient LSTM-1 set 1 LSTM-2 set 1 SVR set 2 ARIMA
#1 1.98 1.90 1.86 1.99
#2 1.63 1.58 1.62 1.65
#3 2.13 2.08 2.14 2.22
#4 1.83 1.67 1.65 1.76
Avg. 1.89 1.81 1.82 1.91

Table 6.6: Side by side comparison of 60 minute prediction RMSEs for all models.

As expected, a longer prediction horizon produces worse performance for all mod-
els. LSTM-2 performs similar to the SVR. In fact, it performs slightly better, even
though the difference is very small.

As mentioned in the previous section, there is a greater difference in performance
between the LSTM models that can no longer be attributed to the stochasticity in
the training process.

Fig. 6.2 shows that the LSTM-2 model outputs a standard deviation that generally
is higher than during the same day for a 30 minute prediction horizon 6.1. Also, the
target value is outside of the range [µi − σi, µi + σi] more often.

Figure 6.2: A plot of the 60 minute predictions of LSTM-2 (in red) versus the target
values (in blue) for one of SP92’s test days. The grey area around the prediction
line shows the standard deviation of the output distribution.
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For prediction horizons larger than 60 minutes, please refer to A.3.

6.3 Statistical significance
To establish the statistical significance of this work, a two-tailed T-test was per-
formed. The hypotheses were defined as

H0 : LSTM has performance equal to SVR on average. (µLSTM = µSVR)
H1 : LSTM performs better or worse than SVR on average (µLSTM 6= µSVR)

where H0 is the null hypothesis, H1 the alternative, µLSTM is the mean LSTM RMSE
and µSVR the mean SVR RMSE. The best performing combination of model and/or
feature set was used for both SVR and LSTM.

The mean RMSE for SVR and LSTM (LSTM-2) was both µSVR = µLSTM = 1.00.
The sample standard deviation for the LSTM was σLSTM = 0.16. Denote N = 28 as
the total number of days from which the errors were calculated. The t-statistic was
then calculated as

T = µSVR − µLSTM
σLSTM√

N

= 0 . (6.1)

This yields a p-value of 0.95, suggesting that the alternative hypothesis H1 can
be rejected, and the null hypothesis H0 accepted. In other words, on average, the
LSTM model has performance equal to the baseline SVR model.
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7
Discussion

This section details how the results presented in this work compares to related
research. It also discusses possible reasons for why the LSTM models did not show
an increase in performance compared to the baseline. Furthermore, some ethical
issues are explored and suggestions are made for how this work can be improved
upon in the future.

7.1 Comparison with related research

Since related research have been made using data from other patients than ours, a
direct side by side comparison with our models’ prediction errors could not be made.
Instead, an SVR-model based on the one created by (Wiley, 2011) was implemented
and evaluated on the same data sets as our LSTM models. An ARIMA model iden-
tical to the one used as a baseline by Wiley was used to verify the performance of
the SVR. In the work by Wiley, the SVR-model performed nearly identical to, or
marginally better then the ARIMA-model in all cases. Our SVR-model beats the
ARIMA-model in all cases, thus suggesting it performs at least as good as Wiley’s
implementation.

For 30 minute predictions, our models had performance equal to that of the SVR,
and LSTM-2 seems to be the better of the two models presented. Our hope was that
LSTM would better capture the dynamics between blood glucose, insulin and car-
bohydrate intake with its ability to model long-term dependencies. Unfortunately,
this does not seem to be the case. The LSTM models do not show any boost in
performance when incorporating such data in the input, and the reasons could be
many. Bunescu implemented a physiological model utilised by the SVR in (Bunescu
et al., 2013). This model gave 12.2% decrease in RMSE, compared to when repre-
senting the model in the same way as Wiley. Such a physiological model could not
be implemented here, due to the lack of specific patient data such as body mass
etcetera, but might have been beneficial for the LSTM models as well.

Another reason for why incorporating extra data about insulin and carbohydrate in
the data did not increase prediction accuracy might be that the data is sparse. Most
hours during the day, no bolus is injected and no food ingested. This means the re-
lated attributes in the input vectors will have a value of zero most of the time. This,
in turn, means the number of examples in the training data when carbohydrates
intake and/or insulin dosage has played an important role are few in comparison to
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the number of input vectors that only contain information about past blood glucose
values.

Even though the LSTM models were not able to utilise information related to in-
sulin and carbohydrates, an overall performance improvement independently of the
feature set used could have been expected since an LSTM network has a structure
suitable for temporal data. It has an internal state in which dependencies between
the different values in a given input sequence can be captured, something that, for
example, the SVR does not have. Despite this, the LSTM models does not perform
better, and the reason could be that there are not that many complex dependencies
between time steps in a sequence.

Fig. 7.1 compares the predictions made by the SVR model and the LSTM-1 model
during a given day. There is a striking similarity between the two, and one can see
that both models seem to struggle in the same areas. For example, just after 06:00,
there is a zigzag pattern in the predictions for both models. Also, both models
seem to express a slight delay in their predictions in some areas of the plots. These
similarities between the two models could indicate that it is hard to make better
predictions given this particular data. The sampling rate (every 15 minutes) as well
as the accuracy of the underlying CGM system might not be enough. And there
might be more factors that affect the blood glucose level not contained in this data.
Also, the way we have chosen to represent the data might be a limiting factor.

Finally, one reason for the lack of any significant performance increase with the new
models might be that the problem itself is indeed hard to solve, and that more novel
approaches are required to further improve prediction accuracy. The raw RMSE
numbers we get for both the baseline models and the new LSTM models are com-
parable to the ones presented in related research. For example, (Bunescu et al.,
2013) is able to make 30 minute predictions with an average RMSE of 1.08 mmol/L
(19.5 mg/dl) with the physiological model to represent the data mentioned earlier.
Another example is (Mougiakakou et al., 2006), in which the average RMSE using
a feed-forward neural network on data from four patients is 1.23 mmol/L (22.17
mg/dl). To our knowledge, the best performing prediction model is presented in
(Zecchin et al., 2012). It uses a neural network in combination with a first-order
polynomial extrapolation algorithm, and an average RMSE of 0.78 mmol (14 mg/dl)
is achieved. The model in that research was able to better capture the effects of
carbohydrates, hence the lower RMSE.

It is important to note that although number by number comparisons such as the
ones made above are interesting, they can also be misleading since overall blood glu-
cose control differs between patients. I.e. the data sets evaluated could significantly
affect the results.

Although the LSTM models presented here do not show an increase in prediction
accuracy compared to the SVR model, LSTM-2 outputs a measure of confidence
together with its predictions. Having a confidence measure at hand can be an
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Figure 7.1: A plot comparing the predictions of the SVR model (top) and LSTM-
1 model (bottom) during a particular day. Predicted values are shown in red, and
target values in blue.

advantage, since a possible end-user could use this information to determine the
reliability of the predictions.

7.2 Usability

If the average error over the four patients in this work is a good indication of how the
models perform in general, it means that a prediction on average differs by ±1.00
mmol/L. Combining such predictions with other therapeutic knowledge could help
in the treatment of type 1 diabetes. Especially the LSTM-2 model, that provides
a form of uncertainty together with its prediction; information that could further
assist the patient in its treatment.

It is important to note that the results reported are averages. Some predictions
might be far worse than the average. In such situations, the LSTM-2 model could
prove especially useful since it outputs the standard deviation together with the
prediction. Looking at Fig. 7.2, it is evident that the real values mostly are within
the standard deviation of the predicted value. There are some instances when the
LSTM model is certain of its predictions and still misses the target. However, it
accurately captures the trend in how the blood glucose level changes, suggesting the
predictions are still useful.
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Figure 7.2: A plot of predicted versus target values over a relatively challenging
day.

The day in 7.2 is particularly difficult to predict since there are drastic changes in
blood glucose throughout the day. Such days are still of relevance though, since
the occasions when the blood glucose value changes drastically are the most impor-
tant to catch. A further exploration on how to best handle these situations could
therefore be relevant to conduct in possible future works on blood glucose prediction.

From a purely academical perspective, it is disappointing that the LSTM models
failed to utilise insulin and carbohydrates to further increase the accuracy of the
predictions. From a practical viewpoint, however, it is easier to implement and
maintain a model that uses only blood glucose values for its predictions. Keeping
note of and feeding a model with additional data such as carbohydrates can be cum-
bersome and impracticable for the patient. The process of feeding a model with the
current blood glucose (and potentially insulin dosages) could, on the other hand, be
automated and consequently more easier to use.

Predictions made further than 30 minutes into the future show drastic decrease
in performance. It is possible that the models could prove useful for 60 minute
predictions, although mainly as an indicator of where the blood glucose level is
headed.

7.3 Other models and evaluation methods
The big difference between walk forward testing and other more common evaluation
methods, is that the model is retrained for every new test day. I.e. older data is
dropped and are no longer used as the segment walks forward. Since training the
SVR-model with more than 14 days of data does not improve performance, this
evaluation method is appropriate.

Our initial thought was that the LSTM, on the other hand, would benefit from more
data, suggesting that another evaluation method than walk forward testing would be
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more suitable. We therefore tried increasing the amount of training data beyond 14
days all the way up to over 60 days, the maximum number of training days available
in the biggest data set. Adding more days of data to the training set did not give
better performance. Instead, the performance saw a decrease, suggesting that recent
blood glucose values have a greater impact on future values. For example, a patient
can have a bad month with a lot of variations in the glucose levels. A month later
when the patient has stabilized his/her levels, the old data would probably not help
when making new predictions. This could obviously differ from patient to patient,
and it is possible that a patient with similar trends in blood glucose levels over long
periods could benefit from more training data. Of course, both the SVR and the
LSTM were also evaluated using fewer days of data, but that gave a decrease in
performance.

In an attempt to improve performance we tried splitting the data in order to run
it on different LSTM-models and concatenating their results into a fully connected
layer. This enabled us to use different time intervals for the different parts of the
input data. For example, we tried to look more on specific periods of the day as well
as which day of the week it is. I.e., when trying to predict blood glucose values for
12:30 on a Monday, we tried using the data for the same time of day from the days
prior. For the patients with enough data we also tried looking at that specific day
and time of the week for previous weeks. Running different “time lines”, on different
LSTM-models and concatenating the results. In an attempt to better utilise the life
data, we used a similar approach and tried having only blood glucose in one LSTM
and life data in another and again concatenating their results into a fully connected
output layer. This, however, did not improve performance.

Adding stochasticity to the training process was also tested by splitting and shuffling
the data used for training and validation. This, however, always resulted in worse
performance. Having the validation data chronologically just before the test data
gives better performance, again suggesting that more recent blood glucose values
are more relevant when predicting.

For all methods mentioned above we also tried adding more layers to the LSTM
models, i.e. using multiple stacked layer of LSTM networks, in attempts to boost
performance. This, unfortunately, did not achieve better results. Instead, it only
we only saw an increase in running time.

7.4 Real time prediction system
From a technical point of view, there are some hurdles to overcome in order to create
a real time prediction system for blood glucose values. Ideally such a system should
warn a patient when to take action in order to avoid possibly harmful future blood
glucose levels. To accomplish this, the system need to be continuously updated with
the latest blood glucose levels.

This can be done in several ways. The ideal solution would be to run the entire
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prediction system on the same hardware that performs the CGM, but training an
LSTM-model can be computationally hard on such hardware. However, making
predictions is not computationally hard once the prediction model is trained. Thus
one possibility is to train the LSTM-model on external hardware and then let the
CGM-system do only the actual predictions. Another solution would be if CGM-
systems send data to external hardware such as a smartphones. Then training
and predictions can then be made by an app on the phone hardware. However,
even though these technical challenges are interesting solving them goes beyond the
scope of this thesis.

7.5 Ethical considerations

While a system that recommends therapeutic changes to a patient could prove use-
ful, it also introduces some moral dilemmas. Instructing a person on treatment of a
disease that in some cases can be deadly, is dangerous. No matter the disclaimers
such a system would be advertised with to potential users, there is always a chance
that someone would blindly follow the recommendations given by the system. In a
worst-case scenario, doing so might result in serious complications for the patient.
For example, an inappropriate insulin dosage can lead to hypoglycaemia, a defi-
ciency of glucose in the bloodstream that can cause illness, seizures and even death
if not treated properly.

If a recommendation by a decision support system result in a serious complications
for the patient, it is not clear who should be held responsible. It could be argued
that if the system is advertised with a disclaimer explicitly saying not to trust all
its recommendations blindly, the user is the only one to blame if she goes ahead and
does so anyway. But what if the patient did not read the disclaimer too carefully,
or worse, if there was a misunderstanding leading to the patient fully trusting the
system even though one should not?

From an ethical viewpoint there is no simple answer to who should be held respon-
sible in case of an accident caused by such a product. There is, however, a way
to minimise the number of such accidents: clear, non-ambiguous warnings and dis-
claimers that the user is more or less forced to read and understand before using
the product. Maybe a decision support system for diabetes should be handed over
to patients by their personal diabetes team in order to guarantee that he/she knows
the risks.

7.6 Future work

There are multiple ways in which this work could be continued. One very straight-
forward improvement would be to evaluate the LSTM models over data from a larger
set of patients. Doing so would not only further establish (or disestablish) the sig-
nificance of the LSTM models, but possibly also generate new ideas and insights as
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to how they can be improved.

The data used in this work was not only limited in size, but also the amount of
data features. It might very well be the case that information other than past blood
glucose values, insulin dosage and carbohydrate intake is relevant when predicting
blood glucose values. Having a data set with a richer set of features could also help in
constructing new data models that render even better performance. Taking metrics
such as exercise and sleep patterns, weight or even pulse into account might improve
the prediction performance. Furthermore, having more data features available would
also make it possible to combine LSTM with the physiological data models explored
in (Bunescu et al., 2013), something that could further improve performance further.

An interesting aspect of our results is that the LSTM models do not seem to benefit
from having carbohydrate intake or insulin dosage as attributes in the input data.
Food ingestion generally raise the blood glucose level, while insulin lowers it. The
fact that the LSTM cannot benefit from such information suggests that further
research might be needed on how to better utilise the data.
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Conclusion

The goal of this thesis was to extend current research on predicting blood glucose val-
ues for patients with type 1 diabetes. Two LSTM models (5.8.1) were implemented
and evaluated on data from four different patients using walk forward testing (5.3)
with 14 training days, 3 validation days and 7 test days.

In order to quantify the level of uncertainty in the predictions, one of the LSTM
model (5.8.2) was implemented with a Gaussian output. More specifically, an LSTM
that outputs the mean and standard deviation of a normal distribution of future val-
ues. The mean can be seen as the prediction itself, while the standard deviation can
be interpreted as the level of confidence in the prediction. Such information could
be useful when determining how much a prediction can be trusted.

The LSTM-models achieves these results using only previous blood glucose values,
i.e. not considering any additional data such as insulin and carbohydrates. This can
be beneficial for the potential user of a blood glucose prediction system since blood
glucose values are easy to record, while carbohydrate intake is not.

It was established with high statistical significance that the LSTM model with Gaus-
sian output had a prediction error similar to the SVR baseline. This, in combina-
tion with the added ability to output prediction confidence suggests LSTM networks
could be used to provide valuable insights in the treatment of type 1 diabetes.
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Appendix 1

A.1 LSTM-1 Hyperparameters

What follows is a list of the hyperparameters used for each prediction horizon when
evaluating LSTM-1.

30 minutes
• Learning rate: 0.01
• Batch size: 288
• Sequence length: 16
• State size: 4
• Forget bias: 1.0
• Resolution: 15 minutes

60 minutes
• Learning rate: 0.01
• Batch size: 288
• Sequence length: 16
• State size: 4
• Forget bias: 1.0
• Resolution: 15 minutes

90 minutes
• Learning rate: 0.01
• Batch size: 288
• Sequence length: 4
• State size: 4
• Forget bias: 1.0
• Resolution: 15 minutes

120 minutes
• Learning rate: 0.01
• Batch size: 288
• Sequence length: 8
• State size: 4
• Forget bias: 1.0
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• Resolution: 15 minutes

A.2 LSTM-2 Hyperparameters

What follows is a list of the hyperparameters used for each prediction horizon when
evaluating LSTM-2.

30 minutes
• Learning rate: 0.002
• Batch size: 96
• Sequence length: 16
• State size: 8
• Forget bias: 1.0
• Resolution: 15 minutes

60 minutes
• Learning rate: 0.002
• Batch size: 288
• Sequence length: 4
• State size: 8
• Forget bias: 1.0
• Resolution: 15 minutes

90 minutes
• Learning rate: 0.002
• Batch size: 288
• Sequence length: 4
• State size: 8
• Forget bias: 1.0
• Resolution: 15 minutes

120 minutes
• Learning rate: 0.002
• Batch size: 288
• Sequence length: 4
• State size: 8
• Forget bias: 1.0
• Resolution: 15 minutes
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A.3 90 and 120 minute predictions

Patient LSTM-1 set 1 LSTM-2 set 5 SVR set 2 ARIMA
#1 2.68 2.64 2.51 2.80
#2 2.45 2.07 2.15 2.16
#3 2.90 2.88 2.79 2.84
#4 2.38 2.37 2.23 2.45
Avg. 2.60 2.49 2.42 2.56

Table A.1: Side by side comparison of 90 minute prediction RMSEs for all models.

Figure A.1: A plot of the 90 minute predictions of LSTM-2 (in red) versus the tar-
get values (in blue) for one of SP92’s test days. The grey area around the prediction
line shows the standard deviation of the output distribution.

Patient LSTM-1 set 1 LSTM-2 set 1 SVR set 4 ARIMA
#1 3.25 3.17 3.06 3.45
#2 2.67 2.57 2.51 2.47
#3 3.32 3.13 3.14 3.21
#4 2.94 2.86 2.69 2.82
Avg. 3.04 2.93 2.85 2.99

Table A.2: Side by side comparison of 120 minute prediction RMSEs for all models.
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Figure A.2: A plot of the 120 minute predictions of LSTM-2 (in red) versus
the target values (in blue) for one of SP92’s test days. The grey area around the
prediction line shows the standard deviation of the output distribution.

A.4 RMSE comparisons for SVR and LSTM

A.4.1 30 minute prediction horizon

Figure A.3: The average 30 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #1.
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Figure A.4: The average 30 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #2.

Figure A.5: The average 30 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #3.

Figure A.6: The average 30 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #4.
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A.4.2 60 minute prediction horizon

Figure A.7: The average 60 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #1.

Figure A.8: The average 60 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #2.

Figure A.9: The average 60 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #3.
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Figure A.10: The average 40 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #4.

A.4.3 90 minute prediction horizon

Figure A.11: The average 90 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #1.

Figure A.12: The average 90 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #2.
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Figure A.13: The average 90 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #3.

Figure A.14: The average 90 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #4.

A.4.4 120 minute prediction horizon

Figure A.15: The average 120 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #1.
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Figure A.16: The average 120 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #2.

Figure A.17: The average 120 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #3.

Figure A.18: The average 120 minute daily prediction error for SVR (red) versus
LSTM-2 (blue) over all test days for patient patient #4.
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