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Machine Learning for Predicting Progression of Alzheimer’s Disease

Hildur Egilsdóttir
Hákon Valur Dansson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In Alzheimer’s disease (AD), amyloid-β (Aβ) peptides aggregate in the brain form-
ing plaques. Strangely, these plaques are persistent in both severely cognitively
impaired and cognitively normal individuals. Therefore, it is of big value to in-
vestigate whether other factors cause some patients with Aβ plaques to have AD
dementia and others not. We used data from The Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) to study the differences in individuals with evidence of Aβ
plaques and those without. Furthermore, we tried to predict how the cognitive abil-
ity of individuals with plaques would progress in the next four years using machine
learning techniques. Random forest and elastic net estimators were created, predict-
ing the decline in cognitive test scores as well as diagnosis change of patients only
using data from their first visit. The best regression models, predicting the change
in cognitive test scores achieved R2 scores of 0.428 to 0.580 while the classification
models, predicting whether a patient will get a worse diagnosis achieved a weighted
F1 score of 0.817. Moreover, patients with Aβ plaques seem to decline faster than
those without. The most important features for predicting future cognitive decline
were cognitive tests indicating that already cognitive impaired individuals would
deteriorate more. Other important factors were fluorodeoxyglucose (FDG) obtained
from positron emission tomography and τ proteins measured in cerebrospinal fluid.
These models could possibly, with further development, be used in clinical settings
as an aid for evaluating how the cognitive function of an individual with Aβ plaques
will develop in the near future.

Keywords: computer science, machine learning, Alzheimer’s disease, random forest,
elastic net, engineering, project, thesis.
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1
Introduction

1.1 Background

Alzheimer’s disease (AD) is a serious irreversible disease which can drastically reduce
cognitive ability of patients. Memory problems, e.g., forgetting conversations or
recent events, are often the first signs of cognitive impairment related to AD. As the
disease progresses, such cognitive problems get more severe and eventually, people
cannot carry out everyday tasks and become completely dependent on others for
their care [27]. According to World Alzheimer’s Report 2019 [10], it is estimated
that worldwide, over 50 million people have dementia with a new case occurring
somewhere in the world every 3 seconds. Furthermore, according to the World
Health Organization [28], Alzheimer’s may account for 60-70% of dementia cases and
is the fourth leading cause of death in developed nations [24]. Because of Alzheimer’s
lethality and its severe impact on patients’ quality of life, a lot of research has been
focused on both possible cures and early detection as these are the keys to hindering
the progress of the disease.

Even though the disease has been investigated substantially, its high complexity on
the pathology level, the genetic and environmental factors involved along with its
molecular mechanism leave many questions unanswered. For a long time, it has
been believed that the production and deposition of the β-amyloid (Aβ) peptide as
plaques in the brain is both a disease marker and a partial cause for the cognitive
decline of Alzheimer’s disease [32]. The levels of Aβ and τ -proteins have been
associated with the progression of the disease and their abnormal deposits in the
brain are what define AD as a unique neurodegenerative disease [11]. However,
several studies have shown that there is only a weak link between these Aβ plaques
and the degree of dementia in patients. Furthermore, individuals with plaques don’t
necessarily exhibit any cognitive impairments [4, 6]. Thus, further studies are needed
on the molecular pathogenesis of the disease. One possible explanation could be the
existence of patient groups with Alzheimer’s disease-like phenotypes but with non-
Aβ pathologies contributing to neuronal dysfunction and degeneration. Another
could be the existence of factors that shield individuals from developing dementia.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [26] is a project focused
on the investigation of Alzheimer’s. It is a multicenter study and the data from its
database is used in this project. Over 2200 people between the age of 55 and 90 are
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1. Introduction

divided into groups of cognitively normal elders (CN), elders with mild cognitive
impairments (MCI), and elders with dementia. From these participants, ADNI
collects clinical data, neuroimaging data, genetic data and biospecimens. The overall
goal of ADNI is to validate biomarkers for use in AD clinical treatment trials.

1.2 Aim and purpose
In this project, we use data from ADNI to investigate whether any notable dif-
ferences in biomarkers, cognitive abilities or other factors can be observed between
subjects with Aβ plaques and those without. We further investigate if some features
or patterns in subjects with these plaques can explain the differences in severity or
absence of dementia observed. To do this, we analyse biomarker data to discover
links between them and cognitive decline in subjects and uncover what separates
healthy people with AD-like phenotypes from those who suffer from AD. Further-
more, we aim to create a method of progression prediction, i.e., given measurements
of a set of key features of a patient, how much, if at all, will his or her cognitive skills
decline in the following years. Regression models are built using machine learning
methods described in section 2. They predict how much, if at all, a cognitive test
score will have declined after either two or four years, using only data from baseline
(the first visit of each patient), i.e., the regressors have no knowledge of available fu-
ture data. Similarly, classification models are built that predict whether people get
a worse diagnosis after either two or four years. If the performance of these predic-
tion models will be good, they could be useful for clinicians and could in the future
be further developed to assist in diagnosis. Doctors could use them to evaluate a
person’s risk score for developing AD or how likely, and then how much, patients’
cognitive skills would deteriorate in the next few years. If any features are found
to be significantly predictive of the progression, they could be targeted for further
research, e.g., on the molecular or genetic level.

1.3 Related work
Many researchers have used the ADNI database for analysis of AD patients. For
example, Liu et al. [20] used multitask learning to predict the cognitive performance
of subjects from MRI data. In their paper, they used two nonlinear multikernel-
based multiple learning methods to exploit and investigate a nonlinear relationship
between MRI measures and cognitive scores. Another example of a research using
ADNI data is from Moradi et al. [24]. They developed a novel technique based
on magnetic resonance imaging (MRI) to detect from baseline data whether people
with MCI will develop AD within 3 years. First, they presented a new biomarker,
utilizing only MRI data, that was based on a semi-supervised learning approach
called low-density separation (LDS). Second, they combined this MRI-biomarker
with age and cognitive measurements from the baseline to use as features for the
learning algorithm. The resulting classifier then predicts whether people with MCI
will develop AD within 3 years or not. The results were good and as an example
of that, the cross-validated area under the receiver operating characteristic curve

2



1. Introduction

(AUC) score for the classifier was 0.9020. Their main goal was to distinguish between
individuals with stable MCI (people who don’t develop AD within 3 years) and
progressive MCI (people who get AD within 3 years) and thus, cognitively normal
people were not taken into account. Additionally, they did not try to find biomarkers
which help explain why some people with Aβ plaques get AD-dementia and others
not.

We performed explorative analysis, hoping to identify those biomarkers. Therefore,
we only looked at amyloid positive people (those who have strong indicators of
having Aβ plaques) at baseline, both CN and MCI elders, and tried to predict
their cognitive decline in two or four years. By doing this, we hoped to find the
aforementioned distinguishing factors. While Moradi et al. [24] used MRI images,
cognitive measurements and age, and Liu et al. only used MRI data, we included
almost all available data including data extracted from cerebrospinal fluid (CSF),
positron emission tomography (PET) scans, plasma and serum. On the other hand,
we did not look at any raw images, neither MRI nor PET scans.

1.4 Limitations
The data in this project are limited to the available data from ADNI during the time
the project is conducted and no other data are considered. More measurements and
features are continuously being added to the data which might fill in some of the
missing observations but we only use data that were available on 27 February 2020.
The progression predictions are limited to Aβ-positive subjects at baseline. First,
this limits the data to the 1210 subjects with both Aβ40 and Aβ42 measurements
and then further limits the data to the Aβ-positive cohort resulting in 681 subjects.
Only numerical and categorical features are used though more data are available.
Therefore, a lot of available and unprocessed data are not used such as raw images,
genome sequences and physical fluid samples.

1.5 Ethics
Ethical challenges include the risks of compromising the privacy of subjects. The
data used in this project have been anonymised. The names or other identifying
factors for patients have been removed and instead, they are identified by roster
identifiers in the data. However, it might be possible to trace the data back to specific
subjects since, for example, their genomes are stored in the database. Considering
that many of the subjects are in a difficult situation needing expensive medical care
and are likely to have mental and/or cognitive impairments, they might be more
easily manipulated than healthy individuals. A data breach might, therefore, result
in malicious people taking advantage of them. Thus, we only store data and code on
locked devices and in private repositories. Raw data were not shared with anyone.
As this is a very difficult disease that rapidly degrades the patients’ quality of life,
one has to be careful not to push potential findings too hastily for personal gain,
potentially giving false hope or deceiving those in need.
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2
Background

2.1 Alzheimer’s disease diagnosis
Alzheimer’s disease was initially defined as a clinical-pathological entity. The only
possible way to diagnose a person as definitely having the disease was if a patient
had the clinical criteria for probable Alzheimer’s disease as well as histopathologic
evidence obtained from biopsy or autopsy. In living patients, the diagnoses were
only probable or possible AD [22]. A research framework proposed in 2018 by the
National Institute on Aging and Alzheimer’s Association (NIA-AA) [11] instead
defines AD in vivo by biomarkers and by postmortem examination, not by clinical
symptoms. In the research framework, a classification system is proposed called
AT(N) where the biomarkers are split into 3 classes, Aβ deposition (A), pathologic τ
(T), and neurodegeneration (N). Aβ deposition biomarkers are based on PET or CSF
where either Aβ42 or the Aβ42/40 ratio are considered valid indicators [3]. Pathologic
τ may be measured in CSF and through PET scans while neurodegeneration can be
estimated by biomarkers from FDG PET, MRI or total-τ in CSF [11].

The abnormal Aβ deposition is what determines if individuals have the Alzheimer’s
pathological change and they are said to have AD if it is combined with abnor-
mal pathologic tau. Table 2.1 shows how the subject is classified with regards to
Alzheimer’s using binary classes in the AT(N) model [11]. It may be that Aβ and τ
levels are not the cause of disease development but their abnormal deposits in the
brain uniquely define AD.

2.2 Pre-processing

2.2.1 Data standardisation
The ADNI data include features of different units and scales. This can be problem-
atic in many machine learning algorithms as some techniques assume, for example,
that the data are distributed around 0 with uniform variance. When one feature
has a much higher variance, it may dominate the objective function of a machine
learning model, such as the ones described in subsection 2.3.2, and as a result, the
learning ability of the model can be hindered significantly. To avoid this problem,
it can be beneficial to normalise the data [31]. Furthermore, it is a requirement for
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2. Background

Table 2.1: The table shows how the Alzheimer’s profiles are defined in [11] by
binarising the three AT(N) biomarker types as either positive(+) or negative(-).

AT(N) profiles Biomarker category
A−T−(N)− Normal AD biomarkers
A+T−(N)− Alzheimer’s pathologic change
A+T+(N)− Alzheimer’s disease
A+T+(N)+ Alzheimer’s disease
A+T−(N)+ Alzheimer’s and concomitant sus-

pected non Alzheimer’s patho-
logic change

Alzheimer’s continuum

A−T+(N)− Non-AD pathologic change
A−T−(N)+ Non-AD pathologic change
A−T+(N)+ Non-AD pathologic change

some machine learning methods. Normalising does not affect tree-based algorithms,
however. This is because, at each point in the tree, only a single feature is being
used for splitting. Therefore, the scale of one feature does not affect the evaluation
of another feature. Standardisation (also known as Z-score normalisation) is the
method used in this project:

x′i = xi − µi

σi

(2.1)

In this formula, the mean µi and standard deviation σi are found for each feature i
individually. Then, each value xi is updated to the standardised value x′i. After this
transformation, each feature has a mean of 0 and a standard deviation of 1. Thus,
features on large scales are less likely to dominate the objective function.

2.2.2 One-hot encoding
The data contain a mixture of continuous and categorical features. For most machine
learning models a numerical representation of features is needed for them to work.
This can be solved by coding categorical classes as different numbers. However,
for linear models and tree-based models, this implies a relationship between the
different categories that may not be present, e.g., if the classes cat, dog and horse
are coded as 1, 2 and 3 respectively, a linear model considers dogs and horses more
similar than cats and horses. Instead, one-hot encoding is often used. With this
approach, categorical values can be represented with multiple binary features with
value 1 if the data point is a member of a specific class, and 0 otherwise. One-hot
encoded features should not be standardised like continuous variables as they are
already on a similar scale (0/1). If prevalence is far from 50%, standardising will
introduce a large factor into their relative transformed scales.

6



2. Background

2.2.3 Dealing with missing data
The data set used has a lot of missing values, i.e., each data point does not necessarily
include values for every feature. Since most machine learning models, including the
ones used in this thesis, cannot deal with missing data, this problem needs to be
addressed.

One solution is to exclude all incomplete observations by removing the rows with
any missing values. By using this method, only a subset of the available data
would be considered and the size of the patient cohort would, consequently, be
reduced substantially. Therefore, this method causes loss of information, efficiency
and predictive power. Furthermore, it can potentially lead to serious biases if the
missing observations are not completely at random due to differences between the
observed and the missing data [2, 13]

Another way of dealing with this problem is by using imputation, i.e., replacing the
missing values with other plausible values, estimated using available information.
The model can then use the resulting values as the observed ones and ignoring of
missing data can thus be avoided. For this method to be useful, the distributional
relationship between the available and missing data needs to be captured, which can
be a difficult task. Furthermore, it is necessary to keep in mind that the imputed
values are not the real values and the resulting predictions all come with uncertainty.

Additionally, it can be the case that the gaps in the data are not completely at
random and the knowledge that a particular observation is missing may contribute
to the output of the models. To preserve and capture the correlation between
missing data and the output, binary features can be added, indicating whether an
observation was originally absent or not. Such correlations are common in medical
data and when the absence does predict the outcome, the use of a missing indicator
can be a good approach [35]. The inclusion of an indicator must be combined with
an imputation method for the missing observations. This allows each participant to
be included in the analysis to maintain statistical power.

2.3 Machine learning algorithms used

2.3.1 Random forest
Random forest [5] is a popular machine learning algorithm which is flexible with a
wide range of applications and can model complex patterns and relationships. Ran-
dom forests are classifiers built on decision trees and can be expanded to regression
tasks. A decision tree is a tree-like data structure as shown in figure 2.1 where its
internal nodes represent decisions about the data, splitting the data set into two or
more subsets. The branches from these nodes represent outcomes of the decision,
and each leaf in the tree represents a class label. Such a tree represents a recursive
algorithm that uses input variables to predict the target class of each data point.
Training of decision trees is typically done by finding a feature that splits the data
into two (or more) subsets that are more homogeneous than the original data set.

7



2. Background

Then, for each of the resulting data sets, new decision trees are trained recursively
until one or several leaves are reached. A few different methods can be used to split
the data at each node in the tree.

Figure 2.1: An example of a tree structure.

In this project, we used the gini impurity method. It can be described as follows [36]:
A training set T is given and pi = p(i|T ) is the proportion of examples in T belonging
to class i where i ∈ {1, 2, . . . , k} is the class label. Then the gini impurity is defined
as follows:

I(T ) =
k∑

i=1
pi(1− pi) (2.2)

The gini impurity measures the probability of misclassifying a randomly picked
element by randomly classifying it according to the class distribution in the data
set, i.e., the lower the value, the better. The splitting operation splits the data set
into two subsets T1 and T2. So to find the best position of a split we maximise the
following function called a gini gain:

Itotal(T ) = I(T )− I(T1)p(T1)− I(T2)p(T2) (2.3)
where p(T1) and p(T2) denote the proportion of data points going to the left and
right subtrees, respectively.

A single decision tree tends to overfit to the training data. To avoid that, random
forest classifiers consist of several decision trees. Each tree predicts an output class
for the input and the most frequent class becomes the forest’s output. This results
in less overfitting and it has been proved that the generalisation error converges as
the number of trees in a random forest increases [5].

For random forests to work as well as possible, the decision trees, and their pre-
dictions, should be uncorrelated. This can be achieved by using a method called
bagging. When using this method, having a training set T of size N , we create m
new training sets T1, T2, . . . , Tm, each of size N by randomly sampling with replace-
ment from T . A decision tree is then trained separately on each of the training sets,
Ti. The output of the random forest classifier is the mode of all the trees. Moreover,
when splitting each node in the tree, the best split is either found using all of the
features or a random subset of the features available.

Random forest regression models work in the same way as the classifiers. However,
instead of each leaf in the decision trees representing a class label, it represents an

8



2. Background

output value prediction. The random forest then outputs the mean prediction value
of the trees in the forest.

2.3.2 Linear models
Linear regression models a linear relationship between one or more dependent vari-
ables y and one or more explanatory variables x. The model prediction function for
a single dependent variable y and explanatory variables xi, i ∈ {1, 2, . . . , p} can be
written as ŷ = f(x,β) = β0 + x1β1 + ...+ xpβp where β are unknown parameters or
coefficients of the linear model. The relationships are modelled by estimating the
unknown parameters from the data. This estimation is done by minimising a cost
function based on how well the data fit to the proposed linear relationship. The cost
functions used to build our linear regression models are:

• Least squares finds the optimal function by minimising the sum, S, of
squared residuals:

S =
N∑

j=1
(yj − f (xj,β))2 (2.4)

Here, N is the number of observations in the data. With standardised data
the minimisation can be written compactly in matrix form as:

min
β

{
‖y −Xβ‖2

2

}
(2.5)

• Ridge regression introduces, on top of the least squares, a so called L2 norm
regularisation term that puts the constraint ∑

β2
i = c on the β coefficients.

When introducing such a constraint, it is necessary to have standardised the
explanatory variables x or the shrinking of the coefficients caused by the reg-
ularisation will mostly depend on the magnitude scale of the inputs, not their
actual contribution to the model. When the predictor variables are highly cor-
related, ridge regression produces coefficients which predict and extrapolate
better than least squares [21]. By using the optimisation method of Lagrange
multipliers the minimisation subject to the constraint can be written as:

min
β

{
‖y −Xβ‖2

2 + λ‖β‖2
2

}
(2.6)

The λ is a selected parameter that controls the amount of regression and the
exact relationship between c and λ is data-dependent.

• Lasso regression uses an L1 norm regularisation term with the least squares.
The L1 norm introduces the constraint ∑ |βi| = t. Comparing to the ridge re-
gression, which only shrinks the coefficients, the lasso also reduces coefficients,
that do not substantially contribute, to zero [33]. As with the ridge regression,
the input needs to be standardised. The minimisation is formulated as:

min
β

{
‖y −Xβ‖2

2 + λ‖β‖1
}

(2.7)
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2. Background

• Elastic net combines both the L1 and L2 regularisation terms. It has sim-
ilar sparsity of representation as the lasso while also encouraging the ridge
grouping effect of correlated predictors. The elastic net has been shown to be
particularly useful when the number of predictors p is large and the observa-
tions n are relatively few as it is in our case [38]. The minimisation problem
of elastic net can be written as:

min
β

{
‖y −Xβ‖2

2 + λ1‖β‖1 + λ2‖β‖2
2

}
(2.8)

2.3.3 Logistic regression
logistic regression uses the logistic function which is a sigmoid function, that takes
any real input t and outputs a value between zero and one. In binary classification,
the output of the logistic function can thus be interpreted as the probability of
being assigned the class 1. The input t can then be set as an underlying linear
model dependent on explanatory variables x and linear coefficients β.

t = f(x,β) = β0 + x1β1 + · · ·+ xpβp (2.9)

This gives the probability of being assigned to class 1 as:

P (1|x) = ef(x,β)

ef(x,β) + 1 (2.10)

When estimating the linear coefficients β of the model they can, as in linear regres-
sion, be subject to the same regularisation constraints such as the L1 and L2 norms
in elastic net. However, unlike linear regression, it is not possible to find a closed-
form expression for the coefficient values that maximise the likelihood function, so
an iterative method such as gradient descent must be used instead.

2.4 Feature selection
The final data set used in this project has 864 features and 2253 subjects. Since high-
dimensional data can have a high degree of irrelevant and redundant information
which can greatly degrade the performance of learning algorithms [37], a method
for feature selection is needed. The problem of feature selection is defined as fol-
lows: given a set of d features, select a subset of size m that leads to the smallest
classification error [12]. In some cases, prior knowledge of the relationships between
features and outputs is enough and the features can thus be handpicked. In other
cases, the use of algorithms is necessary for the task. An exhaustive search for the
optimal set of features would be infeasible for so many features since it is known to
be NP-hard [1]. On the other hand, greedy search strategies are considerably faster
even though they may not find the optimal set of features.
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2. Background

2.4.1 Forward selection
An example of a greedy search strategy is the sequential forward selection strategy.
When using this strategy, we start with an empty set of features and select the single
best feature, i.e., the feature that gives the best performance for the model. When
a feature has been selected, the next feature added is the one that gives the best
model performance along with the already chosen feature. Thus, once a feature has
been chosen, it will not be discarded from the model. This step of selecting and
adding a feature is done until a stopping criterion is reached. This criterion can,
for example, be that no feature improves the model performance for a predefined
number of rounds or that a maximum number of features has been added to the
model.

2.5 Cross-validation
Cross-validation is a method to evaluate how well a machine learning model gen-
eralises, i.e., how it will perform on unseen data. In k-fold cross-validation, a data
set D is split into k mutually exclusive random samples D1, D2, . . . , Dk of approxi-
mately the same size. Then, for each of these subsets Di where i ∈ {1, 2, . . . k}, the
model is trained on D \Di and then validated on Di. This is repeated so that each
subset is used exactly once as a validation set. The overall performance can then be
estimated by averaging over the k performances. In stratified cross-validation, the
splits are done so that each sample contains approximately the same distribution of
classes as the original data set [14].

Other generalisation performance estimators include leave-one-out and hold-out. In
the former, a data set of size n is trained on (n-1) samples and evaluated on the
single remaining sample. This is done for each sample in the training set. In the
latter, the data are split into two parts, one for training and the other for testing.
The k-fold cross-validation estimate has a lower bias than the hold-out method and
is cheaper to implement than the leave-one-out method [12].

2.6 Model performance evaluation

2.6.1 Classification models
For the classification models, we used the F1 weighted score to evaluate their per-
formance. The formula for F1 score is

F1 = 2 · precision · recall
precision+ recall

(2.11)

where
recall = true positive

true positive+ false negative
(2.12)
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2. Background

and
precision = true positive

true positive+ false positive
(2.13)

are calculated using the confusion matrix of the classifier as shown in figure 2.2.
Using a weighted F1 score means that the F1 score is calculated for each variable
and averaged using weights dependent on the number of true labels for each class.
The possible range of the F1 score is from 0 to 1, the higher the value, the better
the model is considered.
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Figure 2.2: Confusion matrix of a binary classification model where p and n stand
for positive and negative predictions respectively and p′ and n′ stand for actual values
being positive and negative respectively.

2.6.2 Regression models
For regression models, we use the coefficient of determination, denoted by R2. This
method represents the proportion of variance in the output variable that is explained
by the input variables. If ŷi is the model prediction for the real value yi of variable
i ∈ {1, 2, . . . , N}, the estimated R2 is defined as

R2(y, ŷ) = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2 (2.14)

where ȳ = 1
N

∑N
i=1 yi.

If the modelled values are exactly the same as the real values in every case, the R2

score of the model would be 1. A model always predicting the expected value of y
regardless of the input variables would have an R2 score of 0. Furthermore, models
can have a negative R2 score if they perform worse than a mean-predicting model.
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3
Data

All of the data used in this project come from ADNI, a multicenter study which
collects data and stores samples for research. The data contain 2253 unique subjects
and statistics for features frequently mentioned in literature on Alzheimer’s can be
seen in table 3.1. A considerable amount of the data is measured by different labs
with samples collected by ADNI, such as blood or CSF fluid. These labs often
conduct specific research and usually, measurements are done for only a subset of
the subjects. This means that not all data are available for every subject and that
some measurements may have been calibrated differently. Moreover, the data and
specimen are collected from three consecutive studies made by ADNI, each after
receiving additional funding [34]. These different origins of data result in some
features having little to no overlap with other features, i.e, no or few subjects have
both feature A and feature B. This problem of lacking overlap and difference in
feature availability can be seen in figure 3.1 in the features AV45 and PLASMATAU,
which, even though respectively, 1050 and 575 subjects have these measurements,
no subject has both.

Table 3.1: Baseline cohort statistics.

Missing Overall CN MCI Dementia
n 2253 815 1020 391
Age, mean (std) 3 73.2 (7.2) 72.9 (6.2) 72.9 (7.6) 74.8 (7.9)
Gender, n (%) M 0 1195 (53.0) 360 (44.2) 603 (59.1) 220 (56.3)

F 1058 (47.0) 455 (55.8) 417 (40.9) 171 (43.7)
MMSE, mean (std) 0 27.4 (2.7) 29.1 (1.1) 27.6 (1.8) 23.2 (2.2)
ADAS13, mean (std) 24 16.9 (9.3) 10.4 (4.6) 17.0 (6.7) 30.2 (8.0)
TAU, mean (std) 1038 287.0 (132.8) 237.5 (90.6) 287.1 (134.8) 366.6 (145.8)
Aβ42, mean (std) 1043 1094.7 (610.3) 1373.2 (644.7) 1056.4 (576.0) 745.6 (404.8)
FDG, mean (std) 799 1.2 (0.2) 1.3 (0.1) 1.2 (0.1) 1.1 (0.1)
APOE4, n (%) 0 202 1116 (54.4) 529 (69.7) 466 (50.0) 119 (33.3)

1 741 (36.1) 209 (27.5) 364 (39.1) 167 (46.8)
2 194 (9.5) 21 (2.8) 102 (10.9) 71 (19.9)

Hippocampus, mean (std) 761 6790.1 (1185.3) 7396.2 (909.4) 6778.3 (1132.9) 5761.9 (1023.2)
AV45, mean (std) 1203 1.2 (0.2) 1.1 (0.2) 1.2 (0.2) 1.4 (0.2)
Aβ-ratio, mean (std) 1043 0.133 (0.056) 0.160 (0.054) 0.130 (0.056) 0.098 (0.035)
Aβ-positive, n (%) 0 1043 529 (43.7) 248 (67.6) 248 (40.1) 33 (14.7)

1 681 (56.3) 119 (32.4) 370 (59.9) 192 (85.3)

13



3. Data

It can be seen in table 3.2 that the data are far from complete since for every patient
only a subset of the discussed data types is available. Thus, to fully utilise the
data, an imputation strategy is needed for dealing with missing data. Furthermore,
patients can continue in the study and come for follow up checks at fixed intervals
generating a sequence of data-points for each patient. However, the number of
follow-ups for patients varies as well as which measurements are done. Moreover,
the number of observations generally decrease with time. Comparing figures 3.1
and 3.2 shows the decrease or total lack of observations for features two years after
baseline.

Table 3.2: Information about the number of patients where specific data are available
for each visit. The columns are the number of months since baseline (3m = 3 months
after baseline inspection).

Baseline 3m 6m 12m 24m 36m 48m 60m 72m

Unique subjects 2253 793 1618 1793 1370 853 716 478 508

Diagnosis 2226 0 1616 1618 1337 821 687 427 449

Age 2250 793 1618 1792 1370 853 716 478 508

Aβ42 1210 0 1 67 247 40 174 38 21

TAU 1215 0 2 320 443 81 183 43 28

MMSE 2253 0 1614 1620 1336 816 688 424 449

ADAS13 2229 0 1596 1604 1308 799 681 420 446

All of the above 1193 0 1 66 245 40 161 37 21

3.1 Target values for machine learning models

A lot of clinical data are available such as cognitive tests and disease state diagnoses.
We include the cognitive tests The Alzheimer’s Disease Assessment Scale Cognitive
Subscale - 13 items (ADAS13) and Mini Mental State Examination (MMSE) as
regression targets. ADAS13 is a scale from 0 to 85 where a higher score means
worse cognitive function. It includes 13 different tasks: word recall, naming objects
and fingers, commands, constructional praxis, ideational praxis, orientation, word
recognition, language, comprehension of spoken language, word-finding difficulty,
remembering test instructions, delayed word recall and number cancellation or maze
task [15]. MMSE, on the other hand, is a scale from 0 to 30 where lower score
means worse cognitive function. It includes tests of the following: orientation to
time, orientation to place, registration, attention and calculation, recall, language,
repetition and complex commands [7]. We use the clinical dementia diagnosis as
part of the classification class for the machine learning algorithms. The diagnoses
are split into the three categories mentioned in section 1.2: dementia, MCI and CN.
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3. Data

3.2 Features used
The data contain analysed biofluid samples from CSF, plasma and serum for which
we included measurements of different biochemicals such as proteins, hormones and
lipids. Medical imaging data, such as PET scan and MRI data are available for many
patients. We only use numbers extracted from analysed images, i.e., the images are
only used indirectly and not the raw images. Furthermore, patient data such as age,
education and gender are included. Genetic data are available but we only include
the APOE4 gene which is the main genetic risk factor for AD [19]. A person can
have zero, one or two copies of the gene.

The CSF data include both τ and Aβ which can be used to assess if their levels are
abnormal in the brain since that is what defines the disease as mentioned earlier.
The CSF Aβ data include measurements of both Aβ42 and Aβ40, which are Aβ pep-
tides ending at positions 42 and 40 respectively. Their ratio in CSF measurements
has been proposed to better reflect brain amyloid production than their individual
measures [17, 18]. Therefore, the ratio Aβ42/Aβ40 (Aβ-ratio) in CSF is calculated
and added as a new feature for all subjects with both measurements available.
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Figure 3.1: Matrix showing how many subjects have measurements for certain pairs
of features at baseline. As can be seen from, for example, the AV45 and PLASMATAU,
some features do not have any subjects with both measurements. It also shows there
is a large difference in the number of subjects each feature was measured for.
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Figure 3.2: Matrix showing how many subjects have measurements for certain pairs
of features two years from baseline. As can be seen by comparing to figure 3.1, the
number of measurements has decreased and PLASMATAU is not observed for any
subjects.
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Methods

4.1 Data construction
The data from ADNI are split between many folders and files. We started by using
one file (described as key variables merged into one file) as a base file and then,
we added the other files including biospecimen data. This was done by joining the
files on the participant roster id (RID), which is used to identify each participant
in the study and the visit code, which indicates from which point in time of the
study the information originates. The visit code at the first visit of each subject is
called baseline and each subsequent visit of that subject is denoted by the number
of months since baseline. Eventually, we had 14570 lines and 1052 features in the
data frame created from 2253 unique participants. Each line represents data for one
patient at a single visit. Some features were irrelevant to the project or contained
very few measurements and were therefore removed from the data set. 188 such fea-
tures were removed, e.g., comments and sample identifications. The total imported
features were thus 864 before adding one-hot encoding and missing indicators.

When the data were assembled, we started by visualising availability. We then went
on to explore the differences between subjects based on their diagnosis. Furthermore,
we visualised the diagnoses by creating scatter plots of key features such as Aβ-ratio
vs. p-τ with colours denoting different diagnoses. The resulting graph can be seen
in figure 5.1.

4.2 Differences based on Aβ-ratio
Based on the measure of the Aβ-ratio in CSF at baseline, subjects were defined to
have Aβ pathology or not. They were divided into two groups, those who had a
lower ratio than 0.13 (Aβ-positive) and those who had a higher ratio (Aβ-negative).
This particular split value was based on the observation that the data resemble two
normal distributions which could be fairly well separated at a slightly higher ratio.
Furthermore, by visual inspection of figure 4.1, the value 0.13 was chosen. The split
can also be seen in the histograms in figure 4.2. The chosen split has a higher ratio
than the 0.0975 proposed in [17] for diagnosis of AD. This is reasonable since we were
also interested in subjects who have not developed AD dementia but may have Aβ
plaques. The data for each of the different subject diagnosis groups, CN, MCI and
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dementia were then investigated further based on the two Aβ groups. This was done
by performing statistical analysis and visualising the different cognitive decline from
plots of the MMSE test scores over time shown in figure 5.3. Furthermore, violin
plots (figure 5.2) and other graphs were made to evaluate the differences between
the groups. This exploration was done before imputation to avoid viewing possible
non-existing patterns generated by the imputation.

Next, we wanted to predict how patients with Aβ pathology would progress and
explain why there is such a large variation in cognitive abilities of subjects with the
pathology. Using only the Aβ-positive group, classification and regression models
were built for this prediction. All models were built using scikit-learn [29], a machine
learning library that implements the algorithms described in chapter 2.
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Figure 4.1: Scatter plot showing the Aβ ratio versus the age of the subjects at
baseline. The different colors represent how the diagnoses change after two or four
years. The black dotted line indicates the split value for the ratio, 0.13.

4.3 Classification
Target values for the progression of dementia were created from measurements of
existing features at different times. For classification, a binary variable was created,
indicating whether or not a subject’s diagnosis had worsened in two or four years.
Some subjects only had data for four years after baseline while others only had data
from two years. To maximise the amount of available data for the classifiers, the
diagnosis-change feature combined both and indicated whether a person had a worse
diagnosis after either two or four years.

Using only the Aβ-positive subjects, classification models were built to classify
whether or not subjects would deteriorate. These models predicted if a subject
would go from being in the CN group at baseline and convert to either MCI or de-
mentia, or go from MCI at baseline to dementia after either two or four years. Two
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types of classification models were built, a random forest classifier and an elastic
net logistic regression classifier. The target values of the models were not imputed
nor the Aβ-ratio. This was done so that we would not try to model some non-
existing patterns or include people who were not really Aβ-positive. The number of
Aβ-positive subjects including a diagnosis after either two or four years was 681.
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Figure 4.2: Histogram showing the Aβ ratio of the subjects at baseline. The different
color-groups represent the different diagnoses: dementia, MCI and CN. The upper left
histogram shows all diagnoses together and overlaps have combined colors like green
and dark red.

4.4 Regression
We added the values for change in ADAS13 score after two and four years and the
change in MMSE score after two and four years to use them as regression target
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values. As for the classification task, only the Aβ-positive subjects were included in
the regression task.

Four different estimators were built (ADAS13-score change after two years, ADAS13-
score change after four years, MMSE-score change after two years and MMSE-score
change after four years) and for each of them, both a random forest and an elastic
net model were created. The number of Aβ-positive subjects with cognitive scores
after two years was 483 and 227 after four years.

4.5 Preprocessing

After combining all the data into a single data set, a missingness indicator was added
for each feature, i.e., 1 if the feature was originally missing and 0 if the feature was
available. Next, the features were defined as either continuous or categorical and
the two groups were processed in different ways. Categorical values were one-hot
encoded and the imputed values were set to 0. For continuous features, missing
values were imputed using the mean value of the feature before standardising. This
way, the amount of usable data was maximised and all features were on a similar
magnitude scale.

4.6 Feature selection

All features could be used in both elastic net and random forest as they both favour
features that substantially contribute as predictors. Thus, estimators of both types
were trained using all features. However, they might perform better if only a selec-
tion of useful features were used. Therefore, several feature selection methods were
evaluated.

First, for each feature in the data, both types of estimators were trained to determine
the estimators’ performance using a single feature. Second, the forward selection
was done by adding to the selection, at each iteration, the feature that improves the
average weighted F1 score (classification) or R2 score (regression) the most. Due to
computation time, hyperparameter selection was not included during the forward
selection. New features were added to the selection until the last two features added
had not improved the score of the model or if it reached a maximum of 25 additions.
When adding features, a continuous feature and its indicator were considered a pair
and evaluated and added together. Similarly, all the one-hot encoded classes of a
categorical value were considered a group and evaluated and added together to the
selection. This means that if the maximum of 25 additions was done at least 50
features were included. Forward selection was performed for both estimator types.
Finally, some hand-picked selections were done based on the features that performed
well in the previously mentioned selection methods. This selection included all
features selected by at least two models using forward feature selection.
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4.7 Evaluation
The classification models were scored using the weighted F1 score while the regression
models used the R2 score as a criterion. To get a generalised evaluation, 5-fold cross-
validation was used: during each validation run the estimator was trained on 80% of
the data and tested on the other 20%. The average test score was then given as the
final score for the model. Further evaluation was done by inspecting the confusion
matrices of the binary prediction. The regression models were further evaluated by
visualising the true values versus the predicted values, in so-called calibration plots.
The feature importance was also visualised by plotting the 15 features that had the
highest importance values. Feature importance was used as a term for random forest
feature importance and the absolute values of the coefficients for elastic net.

4.8 Hyperparameter selection
To select the best hyperparameters, a search was performed during the training of
a model. The previously split training data (80%) was further split into 5-folds
(stratified for classification). Then, for each fold, a grid search was performed by
training the model on the other four folds, resulting in a 5-fold cross-validated hy-
perparameter search. The hyperparameter values included in the grid search can be
found in tables A.1 and A.2 in appendix A. These models were then retrained with
the selected hyperparameters using the full training split (80%) and tested on the
test set, i.e., each model was trained on the same part of the data that was used
to select its hyperparameters and tested on the rest. This gave five models for each
estimator, each of them possibly with different hyperparameters and the final model
performance was then the average performance over these five resulting models.
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5
Results

5.1 Comparing Aβ-positive and negative groups
A scatter plot of the Aβ ratio versus PTAU created from baseline data and colored
by diagnosis is shown in figure 5.1. When looking at the scatter plot, it is evident
that Aβ-negative patients, i.e., those with a higher Aβ ratio than 0.13, are not
likely to have dementia at baseline. That side of the scatter is predominantly blue
and yellow, indicating CN and MCI subjects respectively. On the other hand, the
subjects in the upper left corner of the image, being Aβ-positive and having high
PTAU values seem to have worse diagnoses. Furthermore, MCI patients seem to be
spread over the whole spectrum.
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Figure 5.1: Scatter plot showing the Aβ-ratio versus PTAU of subjects at baseline.
The different colors represent the different diagnoses. 0.13 is the ratio where patients
are split into Aβ-positive and negative groups.

After splitting the cohort into groups of different diagnoses and Aβ levels, violin
plots were created for some of the most noticeable variables from literature. By
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inspecting the violin plots in figure 5.2, one can see that for almost all of the plotted
features, there is a noticeable difference between the Aβ-positive and negative groups
when looking at all diagnoses together (right column of the figure). Looking at the
different diagnoses groups (left column of the figure), several things can be observed.
For example, in the age violin graphs, there are only small differences between the
groups. Preferably, controls should have around the same distribution in age and
sex and overall this seems fairly balanced. In the graphs with MMSE and ADAS13,
it is evident that there is a difference between diagnoses as is expected, but also
that in total the Aβ-positive group gets worse scores than the negative one (low
MMSE scores and high ADAS13 scores are bad). In the Aβ42 graph, a considerable
separation is seen as would be expected but there is still some overlap between the
two groups. The FDG is actually quite similar between the Aβ groups although,
in total, the positive group’s scores are slightly lower. Furthermore, the average
FDG is lower for those with dementia than CN and MCI. The APOE4 violins
show that individuals with the gene are more likely to have a low Aβ ratio and
that the gene is more frequent in those with dementia than other diagnoses. An
interesting observation is that almost no Aβ-negative subjects have two APOE4
genes. Comparing the AV45 and Aβ42 graphs, the AV45 shows a slightly better
separation between the positive and negative groups

For the CN and MCI groups, the cognitive progression over time was investigated.
For each visit code, the groups’ average MMSE cognitive test scores were calculated
and plotted. The resulting graphs can be seen in figure 5.3. By looking at the
graphs, a clear difference can be seen between the Aβ-groups for the CN subjects
but especially the MCI subjects. The average score for the Aβ-positive MCI group
four years after baseline was 23.79 while it started at 27.35 resulting in a drop in the
average score of 3.56. On the other hand, the average score of the MCI Aβ-negative
group started at 28.27 while after four years the average was 28.20 resulting in a
drop in the average score of 0.07. The CN Aβ-positive and negative groups’ changes
in the average score were a drop of 0.8 and an increase of 0.08 respectively. Even
though there are considerable differences in the average MMSE score deterioration
between the Aβ groups, it must be mentioned that subjects drop out of the study
for various reasons. Therefore, the number of subjects is not the same at all points
in the graph for each of the groups, i.e., there are fewer people still involved in the
study after four years than at baseline. As an example of that, the number of people
in the CN Aβ-positive and negative groups dropped from 119 and 248 at baseline to
69 and 142 after four years respectively and for the MCI Aβ-positive and negative
groups they started at 370 and 248 people and after four years they were 167 and
149 respectively. Furthermore, no one was moved between groups over time in the
figure even though they may have changed from Aβ-negative to positive or changed
diagnosis during that time. This was because we were interested in the expected
changes, only having information from the baseline. All in all, the amyloid negative
groups seem to be more stable than the positive groups.
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Figure 5.2: Violin plots of some of the variables frequently mentioned in literature on
Alzheimer’s. The left figure in each line shows the feature split by the three diagnoses
but the right one shows all diagnoses together. Each plot is also split into Aβ-positive
(orange) and negative (blue) parts. MMSE and ADAS13 are cognitive tests, FDG is
a measure of the cerebral metabolic rate of glucose in the brain, Aβ42 is a measure of
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cerebellum.
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5.2 Model results
In this part, the results from the feature selection and model performances are
displayed. The results for each model type trained with different feature selections
can be seen in table 5.1. For all predictions, an elastic net model with forward feature
selection gives the best score. Generally, the elastic net models perform better than
their random forest counterparts with the same feature selection method. Using
all available features to train models without doing any prior selection results in a
worse performance than if a good subset of features is selected. Using only a single
feature also provides a much lower prediction score than if a good combination of
features is used.

Table 5.1: Results from the models created using different feature selection methods.
The regression models use the R2 score while the classification models use the weighted
F1 score for evaluation. The values are average scores of the models trained using five
different train/test splits mentioned in chapter 4. EN, RF and FFS stand for elastic
net, random forest and forward feature selection respectively. The feature selection
methods were FFS; using all features; using features selected by at least two different
models when using FFS, which can be seen in figure 5.5; and single feature predictors.
Out of the single predictors, only two are shown in the table, ADAS13 and FDG.
Highlighted cells have a further visualisation of the model performance and feature
importance later in the chapter.

ADAS13
2 years, R2

ADAS13
4 years, R2

MMSE
2 years, R2

MMSE
4 years, R2

Classification
weighted F1

EN FFS (std) 0.514 (0.051) 0.428 (0.053) 0.580 (0.073) 0.577 (0.063) 0.817 (0.039)

RF FFS (std) 0.292 (0.050) 0.187 (0.230) 0.390 (0.056) 0.236 (0.126) 0.814 (0.037)

EN all features (std) 0.267 (0.104) 0.187 (0.090) 0.346 (0.082) -0.523 (1.461) 0.721 (0.077)

RF all features (std) 0.249 (0.063) 0.148 (0.175) 0.324 (0.090) 0.168 (0.066) 0.702 (0.053)

EN chosen
features (std)

0.378 (0.070) 0.252 (0.089) 0.361 (0.086) 0.292 (0.104) 0.754 (0.059)

RF chosen
features (std)

0.315 (0.048) 0.224 (0.149) 0.353 (0.043) 0.253 (0.074) 0.757 (0.050)

EN ADAS13 (std) 0.121 (0.026) 0.035 (0.055) 0.274 (0.084) 0.211 (0.072) 0.695 (0.031)

RF ADAS13 (std) 0.083 (0.037) -0.151 (0.188) 0.266 (0.056) 0.109 (0.145) 0.722 (0.017)

EN FDG (std) 0.110 (0.072) 0.127 (0.098) 0.110 (0.029) 0.107 (0.146) 0.627 (0.048)

RF FDG (std) 0.103 (0.085) -0.090 (0.343) 0.117 (0.027) 0.067 (0.201) 0.572 (0.044)
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Figure 5.4 shows how the score progresses during forward selection for the classifi-
cation models. We can see that only a few features are needed to reach the best
classification score. However, during forward selection for the elastic net regression
models, they all reached the maximum of 25 additions without meeting the early
stopping criterion but the last iterations added only a small increase. The features
selected by forward selection vary between the different models. All features selected
in two or more forward selections are shown in a heat map in figure 5.5 where the
normalised importance of features is displayed. The first 7 features are cognitive
tests and it can be seen that they are considered important predictors by the mod-
els. TAU and FDG also show up in many models and are given high importance.
Other biomarkers also show up in a few models but are given lower importance in
general. Indicators were not included in figure 5.5 even though they were used in
training since they were generally assigned low importance by the models. The fea-
tures selected by two or more models, displayed in figure 5.5, were used as a specific
selection and all models were trained using these chosen features. Table 5.1 shows
that this selection performs worse than the best models using forward selection but,
in general, better than using all features.
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Figure 5.4: The F1 scores obtained during forward selections after each addition
for the classification models. The figure shows both the random forest and elastic
net scores with the highest obtained at 12 and 10 additions respectively. Parameter
search was performed after this selection.
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Figure 5.5: A heat map showing normalised feature importance of features which
were forward selected by at least two models. For linear based models the importance
is the absolute value of the linear coefficients. The y-axis has abbreviated feature
names and the x-axis contains different model types. RF, EN and Y in the column
names stand for random forest, elastic net and years respectively. The first seven
features are cognitive tests, next seven are proteins or amino acids, next five are
measures from brain scans and the rest do not fit in any of these groups. Feature
explanations can be found in table B.1 in appendix B.
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5.2.1 Regression: Change in ADAS13 score
The best cross-validated R2 score for predicting change in ADAS13 score after two
years was 0.514 with a standard deviation of 0.051. It was achieved using an elastic
net regressor and 50 features selected. The features were chosen by forward selection
reaching the maximum of 25 additions. The predicted values vs. true values can
be seen in figure 5.6 as well as the linear coefficients. The figure shows one of the
five models created and averaged over the 5-fold cross-validation. This is also the
case in all figures displayed for other estimators. The highest contributing feature
is mPACCtrailsB which is a cognitive test. The second-largest contribution is from
TAU in CSF and the indicator for the availability of the TAU measurements is
ranked third. The best random forest model received an average R2 score of 0.315
with a standard deviation of 0.048. This was achieved using the 22 features and their
missing indicators that were selected by two or more estimator types when using
forward feature selection. Those features can be seen in figure 5.5 as mentioned
earlier. The best single feature to predict the ADAS13 score after two years was
mPACCtrailsB with a score of 0.236 and a standard deviation of 0.064 using elastic
net. The elastic net using forward feature selection performed considerably better
than all other model types using different feature selections.
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Figure 5.6: An elastic net model for predicting the change in ADAS13 score two
years from baseline. The model uses forward selected features. The left side shows the
predicted values versus the true values while on the right the linear coefficients of the
model are displayed. The mPACCtrailsB is a cognitive test score, TAU is a protein
measured in CSF and TAU IC is its missingness indicator. ADASQ4 is a cognitive
test and KAIN is kallistatin protein measured in CSF. Explanations for other features
can be found in table B.1 in appendix B.

The best cross-validated R2 score for predicting change in ADAS13 after four years
was 0.428 with a standard deviation of 0.053. As for the two years model, this
was achieved by using elastic net using forward feature selection. 25 features were
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selected along with missing indicators and one-hot encoded categories for a total
of 53 features. The best random forest model achieved an average R2 score of
0.224 with a standard deviation of 0.149. It used the features included by at least
two models when using forward feature selection, outperforming its own forward
selection. The most important feature for both model types was FDG which was
also the best as a single predictor with a score of 0.127 and standard deviation of
0.098 using elastic net. An elastic net model trained using all features is shown in
figure 5.7 as well as its linear coefficients. It shows one of the five models that give
an average R2 score of 0.187. It can be seen that it has trouble predicting the few
individuals whose ADAS13 score has increased by over 20 points.
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Figure 5.7: An elastic net model predicting the change in ADAS13 score after four
years. The model is trained using all features. On the left: predicted values versus
the true values. To the right: the linear coefficients of the model. FDG is a measure
of the cerebral metabolic rate of glucose in the brain. CDRSB and TRABSCOR are
cognitive tests. Entorhinal is a measurement of the size of a part of the brain. PTAU
is a protein measured in CSF. Explanations of other variables can be found in table
B.1 in appendix B.

5.2.2 Regression: Change in MMSE score
The best cross-validated R2 score for predicting change in MMSE two years after
baseline was 0.580 with a standard deviation of 0.073. It was achieved using an
elastic net regressor and 53 features. The features were selected by forward selec-
tion. The best random forest model achieved an R2 score of 0.390 with a standard
deviation of 0.056 also using forward selection but only selecting 20 features. The
random forest model using all 22 features picked by at least two models with forward
feature selection resulted in a slightly lower score of 0.353 with a standard deviation
of 0.043. The predicted values versus true values as well as feature importance of
one such model can be seen in figure 5.8. Comparing the difference between the
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true and predicted values of the train and test set, it is evident that the model has
been overfitted slightly as the yellow points are closer to the diagonal. As for the
prediction of ADAS13 change after four years, there seem to be a few outliers whose
values are harder to predict. The best single predictor for the MMSE score after
two years was ADAS13. When using only ADAS13 for prediction, the scores were
similar for both elastic net and random forest averaging in 0.274 and 0.266 with
standard deviations of 0.084 and 0.056 respectively. Cognitive tests gave the high-
est importance in all models predicting MMSE score change after two years where
ADAS13 was the most dominant one.
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Figure 5.8: A random forest model for predicting the change in MMSE score two
years from baseline. The model is trained using the features chosen by at least two
models in forward selection. The left side shows the predicted values versus the
true values while the right one shows the estimated feature importance of the model.
ADAS13, ADAS11 and CDRSB are cognitive test scores. FDG is a measure of the
cerebral metabolic rate of glucose in the brain. XL HDL CE is cholesterol esters in
very large high-density lipoproteins. Explanations of other variables can be found in
table B.1 in appendix B.

The best cross-validated R2 score for predicting change in MMSE after four years
was 0.577 with a standard deviation of 0.063. It was achieved using elastic net with
forward feature selection using 50 features in total. In figure 5.9, one of the models
contributing to the best average is shown. The predicted versus true values are
shown as well as the linear coefficients of the top 15 features. The few individuals
having an MMSE score decrease of over 10 are all predicted to have decreased less.
The most important features, i.e., that have the largest absolute linear coefficients
are ADAS13 and FDG. The best random forest received an R2 score of 0.253 with a
standard deviation of 0.074. It was achieved using the 22 features chosen by at least
two models with forward feature selection along with their missingness indicators.
One of the averaged models using elastic net with all features performs so poorly
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that the average score becomes negative with a standard deviation of 1.461. The
best single predictor for predicting the MMSE score after four years was ADAS13
with a score of 0.211 and standard deviation of 0.072 using elastic net. The elastic
net models using forward feature selection performed considerably better than all
others in predicting the progression of the MMSE score as can be seen in table 5.1.
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Figure 5.9: An elastic net model for the change in MMSE score after four years. The
model is trained using forward selected features. On the left: predicted values versus
true values. To the right: the feature importance of the model. ADAS13 is a cognitive
test score. FDG is a measure of the cerebral metabolic rate of glucose in the brain.
GOLM1 is the golgi membrane protein 1 measured in CSF. PPN is a measurement of
papilin protein in CSF. Age is the age of a subject at baseline. Explanations of other
variables can be found in table B.1 in appendix B.

5.2.3 Classification: Worse diagnosis in two or four years?
The best model created for the binary classification of whether or not a person’s
diagnosis changes after two or four years was made with logistic regression with
elastic net penalty, resulting in a cross-validated weighted F1 score of 0.817 with
a standard deviation of 0.039. It used 20 features, 10 of which were indicators.
The features were selected using forward feature selection. Results from one of the
five models made using different test/train splits is shown in figure 5.10. The figure
shows the confusion matrices for both the test and the train sets as well as the linear
coefficients of the model. The model performs similarly on the training and test set
and the features it considers most important are ADAS13, CDRSB and FDG. The
accuracy of the model was 0.816 with a standard deviation of 0.040.

The best random forest model performed almost equally good with a cross-validated
F1 weighted score of 0.814 with a standard deviation of 0.037. It uses 23 features
chosen by forward feature selection where 12 of them are indicators or one-hot

33



5. Results

encoded values. The models using forward feature selection were both better than
other models created.

When using all features, the resulting F1 weighted scores were 0.721 and 0.702 with
standard deviations of 0.077 and 0.053 for logistic regression and random forest
respectively. Results from one of the five random forest classifiers using all features
are shown in figure 5.11. By inspecting the confusion matrices for the test and train
set, the model seems to be overfitted to the training set. The best single predictor
was ADAS13 using random forest. The average F1 weighted score for it was 0.722
with a standard deviation of 0.017. When using all features selected by two or more
models using forward feature selection, the scores were 0.754 for logistic regression
and 0.757 for random forest with standard deviations of 0.059 and 0.050 respectively
which is lower than the forward selection but higher than using all of them or only
a single feature.
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Figure 5.10: Confusion matrices and linear coefficients for the best classification
model using logistic regression. The figure shows the results of a model using one of
the five train/test splits. ADAS13 and CDRSB are cognitive tests. FDG is a measure
of the cerebral metabolic rate of glucose in the brain. APOC-III is a protein encoded
by the APOC3 gene and proinsulin intact predicts progression of insulin resistance.
Information on other features shown in the figure can be found in table B.1 in appendix
B.
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Figure 5.11: Confusion matrices and feature importance for a random forest using
all features. The figure shows the results of a model using one of the five train/test
splits. The confusion matrices show that the model is overfitted to the training data
and does not generalise well. FAQ, mPACCtrailsB, ADAS13 and mPACCdigit are
cognitive test scores. FDG is a measure of the cerebral metabolic rate of glucose in
the brain. Information on other features in the lower plot can be found in table B.1
in appendix B.
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Discussion

6.1 Data exploration

Initial analyses which include figures 4.1, 4.2 and 5.1 show that there seem to be
two groups of subjects based on differences in the Aβ-ratio. The exact split between
the groups is, nonetheless, not obvious and in figure 4.2 they seem to overlap but
have a fairly good split at 0.14 - 0.15. However, figures 4.1 and 5.1 show that based
on diagnosis and cognitive decline perhaps it should be slightly lower resulting in
the choice of 0.13. Possibly, the ratio split should be set slightly higher but this
is difficult to decide precisely and is done using visual inspection of the figures
mentioned before. Dementia at baseline is very rare in the Aβ-negative group and
may be caused by other diseases than AD.

The violin plots in figure 5.2 show that there are differences between the two Aβ
groups and also between subjects with different diagnoses. The visible separation
between Aβ-positive and negative groups in the Aβ42 graph is expected. However,
the Aβ-negative group has a much larger spread which indicates that some subjects
have low Aβ42 but also low Aβ40. This might mean that they do not have AD
pathology but are just low producers of Aβ in general. As mentioned in the results,
the AV45 shows a slightly better separation between the positive and negative groups
than the Aβ42 graph, indicating that perhaps the ratio agrees better with the PET
imaging of Aβ deposits in the brain than using just Aβ42 in CSF.

It is worth mentioning that even though Aβ-positivity by PET is usually highly cor-
related with low CSF-Aβ42 levels in people with AD, some people, usually CN, with
similarly low CSF-Aβ levels are Aβ-negative by PET [9]. Even though the AV45,
which measures Aβ in PET, is included in the data, it had fewer measurements
compared to CSF-Aβ. Therefore, Aβ-positivity is only derived from CSF measures
in this project. Furthermore, these individuals are often considered as outliers by
researchers in the field, so it should be reasonable to use the CSF measure in this
project.

When looking at figure 5.3, a visible difference in the drop of the average MMSE
score between the Aβ-positive and negative groups can be observed. However, as
mentioned in section 5.1, the fact that subjects drop out over time must not be
overlooked. The reasons for subjects dropping out of the study are unknown. This
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might produce some bias as the people dropping out are possibly doing considerably
worse and some of the graphs could, therefore, end at a slightly higher average
than if the data were complete but the opposite might also apply. However, the
dropout rate of people is around 40% in all groups except the MCI Aβ-positive
group where it is 55%. It is therefore likely that the differences between the groups
in the figure are existent. Since the drop in MMSE score is the highest for the Aβ-
positive MCI group, it also seems a likely assumption that those who deteriorate
more have a higher risk of dropping out of the study. Possibly, some have developed
AD dementia and the reduced life expectancy of people with AD [16] could be the
reason for some of them dropping out.

6.2 Model performance
In all models, at least one cognitive test showed up as one of the most important
features for prediction. In many cases, more cognitive tests were included as im-
portant features. However, adding more and more cognitive tests does not seem
to improve the results much. This is probably because the test scores are highly
correlated and do not add much value when other cognitive tests are already in use.
The correlation between cognitive tests selected by two or more models in forward
feature selection is shown in a heat map in figure 6.1. Because of this, it might be of
some value to create a combined cognitive score to use as a single feature. It seems
apparent that cognitive test results indicate how the individual will progress and
that those who already score worse are more likely to be worse off in the future.

No feature shows up in all 10 forward feature selections as can be seen in figure
5.5. FDG shows up most frequently, being part of six selections, TAU is second
most frequent and is selected five times while ADAS13, MMSE and CDRSB are all
selected four times. This indicates that there is not a single feature that accurately
predicts progression on its own although it looks like FDG is the biggest indicator of
decline after four years. FDG on its own however performs significantly worse than
a good combination of features. TAU also shows up in all forward feature selections
within elastic net regression models but no random forest ones, implying that it has
a small linear relationship which does not provide clear enough separations based
on gini impurity. Both FDG and TAU proteins have been researched extensively in
the context of AD and are both considered indicators of neurodegeneration in the
AT(N) model [11]. We did not find new features that seemed to shield individuals
from deteriorating.

After viewing the data, including subjects of any Aβ-ratio, it would be expected that
features based on the magnitude of Aβ might have higher importance within the
models. However, after choosing only those who are Aβ-positive, Aβ based features
are given rather low importance. Thus, a binary categorisation of the Aβ-ratio
seems like a reasonable approach.

Many proteins, lipids, brain scans and other biomarkers only show up in two or fewer
selections and are given normalised importance of under 0.5. Such features some-
times have a rather low proportion of subjects with measurements. For example,
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Figure 6.1: A heat map showing the correlation between the cognitive tests that
were selected by two or more models in forward selection. Darker red colours indicate
more correlation, either negative or positive

BMP-6, CH3L1, PLDX1, SNAP and Proinsulin Intact all have under 570 measure-
ments at baseline out of the possible 2253. To get a better estimate of their roles
and predictive capabilities it would be beneficial to fill in more of the gaps in mea-
surements. They might also benefit from using a different imputation strategy for
missing values such as multiple imputation but such a strategy could also hurt the
performance or create false patterns.

6.2.1 Regression
The elastic net model using forward feature selection performed best for all regression
tasks. Thus, a linear relationship between the features and the outcome appears to
be a reasonable assumption and a more flexible model which can learn more complex
relationships like the random forest regressor may be prone to overfitting to patterns
that are not there. When viewing figure 5.8 of a random forest model, we can see
that the training data are fitted quite well but the test data perform significantly
worse indicating that the model is indeed overfitted. It is interesting to see that,
in general, the random forest regression models perform worse when using their
own forward feature selection than when choosing the features that are selected
by at least two models. This shows that the forward selection does not find the
best feature set and the selection could perhaps be improved, such as by allowing
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more additions without improvement before early stopping or allowing deletions of
previously selected features if it would improve the score. The elastic net regressors
all achieve their best results after doing the maximum of 25 additions which means
that perhaps a higher score could be reached. It would, therefore, be better to allow
the forward selection to be carried out until the score starts to decline but it was
computationally heavy to carry out so many selections and as the increase was small
after 20 additions the maximum was not increased further.

Our models seem to be slightly better at predicting MMSE score progression than
that of ADAS13. For all regression targets, there are a few outliers whose change
in score is much larger than others. These outliers can be difficult to predict and
we can see in figures 5.7, 5.8 and 5.9 that the models struggle to properly predict
their scores and these outliers may potentially decrease the quality of predictions
of other data points. It may, therefore, be possible to increase the quality of other
predictions if the effects of these outliers are mitigated. It also seems easier to
predict ADAS13 score after two years than after four years but the best score for
MMSE change is similar when predicting two or four years. It is quite interesting
that the performance is similar when predicting further into the future even though
there should be more uncertainty. This might indicate that if the subjects are set on
a certain path of progression they are likely to follow it quite closely. The number of
subjects also decreases substantially after four years compared to two years which
is also expected to negatively impact the generalisation capabilities of the models.

6.2.2 Classification
The best classification model created was the logistic regression model with elastic
net penalty using forward feature selection and hyperparameter search. However, the
random forest model performed almost equally good with a difference of only 0.003 in
the weighted F1 score and with 0.002 less standard deviation. When all classification
models are considered, the forward feature selection models perform considerably
better than models using other feature selection methods. This is true for both
random forest and logistic regression for classification while for regression, only the
elastic net performs best with forward feature selection. No single feature has as
good predictive power as the set of features chosen by forward feature selection.
This suggests that several features play a part in how a person’s diagnosis develops
and no single feature is the only cause, at least of the ones included in the data set.
Furthermore, models using all available features performed considerably worse than
the best models. This can be because using all features may lead to overfitting of
the models to the training set like evidently happened for the random forest model
whose results are shown in figure 5.11. In this case, the model has been fit perfectly
to the training set but contrarily does not perform well on the test set. That shows
that it has not generalised well.

Unlike for the regression models, neither of the model types, elastic net nor random
forest, seems to be better at classifying using all feature selection methods. Random
forest performs better with the chosen features and when only using ADAS13 but in
the other three cases shown in table 5.1, elastic net shows better results. In no case
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does one of the models significantly outperform the other type. All in all the forward
feature selection models perform best when deciding whether or not a person will
deteriorate so that they get a worse diagnosis within four years.

6.3 Future work
The possible directions to take in this project are abundant. A few feasible next steps
are discussed below that would be interesting to investigate further with extended
time and resources.

6.3.1 Genetic data
The data from ADNI include the full genome of the patients. It would be interesting
to include these in the models and see if some unknown patterns in the genome
can be associated with AD progression. However, these data are huge, e.g., SNPs
data are around 52 GB and the whole genome for all patients is around 150 TB.
Furthermore, expert knowledge within the field of genetics would be required to
extract the relevant information from the data.

6.3.2 Temporal spatial information for FDG
FDG is a radiopharmaceutical used in PET scans. The uptake of FDG in the brain
provides estimates of the cerebral metabolic rate of glucose (CMRglc), which is a
direct indicator of synaptic functioning and density [30] and can be measured in
different parts of the brain. The FDG feature in the ADNI data set is the aver-
age measurement of FDG-PET in the angular gyrus, temporal lobe, and posterior
cingulate cortex. However, it might be of value to include single region FDG-PET
measures since different types of dementia seem to show hypometabolism in different
regions of the brain [25].

6.3.3 Multi-class classification
It would be interesting to create a multi-class classifier instead of a regressor where
the classes would be some interval of change in cognitive score, for example, no
change or positive change; 1-5 points decline; 6-10 points decline; and 10 points or
more decline for the MMSE and something comparable for ADAS13. This could be
an easier task for a prediction model since the regression is predicting an accurate
score while the classifier would have more space for small errors. Furthermore, this
method would help with the problem introduced by outliers in the data where the
score of a few subjects changes drastically. It would still give the user much value
since he or she would be interested in whether or not the change will be big. It is
probably more important to know whether a big decline is predicted rather than to
know the exact score change. One or two point difference might not matter. The
cognitive ability, in general, is what is of interest but not the exact score value.
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6.3.4 Inexpensive or easily obtained features only
Some methods for obtaining biomarkers are more expensive or invasive than others.
For example, PET scans are more expensive than blood samples and CSF fluid
extraction is more invasive since it requires a lumbar puncture. Creating a model
only using features that are inexpensive to measure or are non-invasive for patients
could be something to consider. It would be interesting to see whether it is possible
to achieve similarly good estimators when excluding the more expensive measures
like PET scan data and the more invasive ones like CSF data. If that was the case,
a risk score for the cognitive decline could perhaps even be conducted in a routine
doctor checkup or screening for the elderly.

6.3.5 Different imputation method
While the imputation method used here is computationally simple and makes it
possible to use the non-complete data, it does not take information from other
features into account that may be relevant. Imputing the values as the feature’s
mean may result in underestimation of the variability of the unseen data [8]. Instead,
multiple imputation could be used. Using this method means generatingm complete
sets of the data, each with different but plausible imputed values for the missing
observations, and analysing each data set separately. For this method to work well,
features with missing observations should be predictable from available information
which might not be the case for all features. Additionally, it is more computationally
heavy than the simple imputation we use. However, it might be of some value since
we then have a variance for these missing features. Possibly, this imputation method
would improve our models’ performances.

6.4 Limitations
The data are not complete as has been mentioned before. This is a limiting factor
in this project. For many features, we have imputed the missing values to avoid the
limitations and possible biases the missingness could create. Furthermore, by doing
this we can include more lines of data even though they do not all include original
values for all features. However, we do not impute the output variables for the
model. The amount of data is limited by this since for each model, we only include
individuals who have the output variables available. If these data were complete,
the models might be more powerful and perform better since they would have more
data to learn from.

Another limitation present in the data is the fact that the diagnoses are CN, MCI and
dementia, i.e., dementia as a general term and AD dementia is not specified as one
specific diagnosis. Many types of dementia exist that are not related to AD. However,
one file in ADNI includes an indicator of whether or not the diagnosed dementia
is caused by AD or not. When comparing the Aβ-positive patients diagnosed with
dementia, the ones whose AD indicator is available (which is around half) are all
marked as having AD. However, for the rest, we do not know for certain whether

42



6. Discussion

they are diagnosed with AD dementia or some other kind of dementia. Because
of this, our classifiers cannot be said to predict whether or not a person gets AD
dementia. On the other hand, only Aβ-positive patients are considered, eliminating
the Aβ-negative ones who most likely do not have AD dementia.

Furthermore, the project is limited by the data gathered. The data do not include
much information on the subjects’ lifestyles, drugs they use or accidents of some
kind they may have been in. These factors might be the cause of some cognitive
decline or even prevent the decline from happening. We do not know the effect of
these factors and cannot capture any correlation between them and the cognitive
abilities of patients since these data are not available in the data set. Some of these
things may also be factors for why patients drop out of the study. Reasons for the
dropouts are not known and if everyone would continue the study, the results might
differ. Furthermore, the data in ADNI is from America only. Therefore, it is possible
that this data set cannot be generalised as patient data for the whole world.
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The Aβ-positive and negative patients are quite clearly distinguishable. The Aβ-
positive patients seem more likely to get a worse diagnosis within four years than
the Aβ-negative ones as is shown in figure 4.1. Furthermore, figure 5.3 supports this
claim, since the average MMSE score for the Aβ-positive groups seems to decline
more within four years from the baseline. The difference between the two groups is
also clear when looking at some of the features at baseline as the violins in figure
5.2 show when plotting all diagnoses groups together.

The five different estimators show promising results. The best performance is
achieved using elastic net with forward feature selection for all estimators. The
best regressors have average R2 scores between 0.428 and 0.580 while the best clas-
sifier has an F1 weighted score of 0.817. We, therefore, conclude that it is possible,
to some extent, to estimate the rate of progression of people with indicators of Aβ
plaques. With further development, we see the potential for these kinds of predic-
tions to assist in clinical settings.

Different features are important for the estimators. The most common ones, chosen
by at least two of the ten models are shown in figure 5.5. The ones that seem of most
importance in general are FDG, TAU and a few cognitive tests including ADAS13
and MMSE. No single predictor performs as good as when using a good selection
of several features. Thus, no feature in the data seems to be the single reason for
some Aβ-positive patients deteriorating faster than others. The features that are
found to be of high importance by the models have been researched extensively in
the context of AD, i.e., they have previously been associated with Alzheimer’s.
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Parameter Regression Classification
No. of estimators 50, 100, 200 10, 100, 150, 200, 250
Min. no. of samples per leaf 2 None, 2, 3, 4, 5, 8, 10
Max. no. of leaf nodes Not applied None, 20, 40, 60, 80
Max. depth None, 5, 10, 15, 20 None, 2, 5, 7, 8, 10, 12, 15, 25
Min. samples needed to split a node 2, 4, 6, 8 Not applied

Table A.1: Model parameters used in grid search for the random forest models in
this project. Other values were set as the default values.

Parameter Regression Classification
l1-ratios 0.001, 0.1, 0.5, 0.9, 0.99 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.7, 0.9, 0.95, 0.99, 1

Table A.2: Model parameters used in grid search for the elastic net models in this
project. Other values were set as the default values.
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Table B.1: List of features mentioned in the report with explanations, abbreviations
used and the number of subjects with a measure of the feature at baseline. If a variable
name ends with IC, it mean missing indicator.

Abbreviation Name in
database

Explanation n

ABETA40 ABETA40 Amyloid β 1-40 from CSF. 1210
ABETA42 ABETA42 Amyloid β 1-42 from CSF. 1210
ABETARatio ABETARatio Aβ-ratio. The ratio between Aβ42

and Aβ40 measured in CSF.
1210

ADAS11 ADAS11 The Alzheimer’s Disease Assessment
Scale–Cognitive Subscale, 11 item
version. A cognitive test score.

2241

ADAS13 ADAS13 The Alzheimer’s Disease Assessment
Scale–Cognitive Subscale, 13 item
version. A cognitive test score.

2229

ADASQ4 ADASQ4 ADAS Delayed Word Recall. A cog-
nitive test score.

2246

Age Age Age of a subject. 2250
AMD AMD_IPVDE-

EAFVIDFKPR
Peptidyl-glycine alpha-amidating
monooxygenase in CSF.

287

APGEN2
2/3/4

APGEN2_2.0,
3.0, 4.0 and
nan

APOE genotype - Allele 2. 2047

Apo H Apolipoprotein
H (Apo H)
(ug/mL)

Apolipoprotein H in plasma. 566

APOB APOB_-
SVSLPSLD-
PASAK

Apolipoprotein B-100 from CSF. 287
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APOC-III Apolipoprotein
C-III (Apo C-
III) (ug/mL)

A protein encoded by the APOC3
gene. Beleived to inhibit uptake of
triglyceride-rich particles in the liver
[23].

566

APOE4 APOE4 Apolipoprotein E gene with allele ep-
silon 4. A risk factor for AD which
people can have zero, one or two
copies of.

2051

AV45 AV45 Reference region - florbetapir mean
of whole cerebellum. Regions defined
by Freesurfer.

1050

BMP-6 Bone Mor-
phogenetic
Protein 6
(BMP-6)
(ng/mL)

Bone morphogenetic protein 6. A
protein that in humans is encoded by
the BMP6 gene.

566

BTC Betacellulin
(BTC)
(pg/mL)

A protein encoded by the BTC gene. 566

CA2D1 CA2D1_TASG-
VNQLVDIYEK

Voltage-dependent calcium channel
subunit alpha-2/delta-1 in CSF.

287

CDRSB CDRSB Clinical Dementia Rating Scale–Sum
of Boxes. A cognitive test score.

2253

CFAB CFAB_YGLV-
TYATYPK

Complement factor B in CSF. 287

CH3L1 CH3L1_VTID-
SSYDIAK

Chitinase-3-like protein 1. A protein
encoded by the CHI3L1 gene.

287

CMGA CMGA_SEA-
LAVDGAGK-
PGAEEAQDP-
EGK

Chromogranin-A in CSF. 287

CNTP2 CNTP2_VDN-
APDQQNSHP-
DLAQEEIR

Contactin-associated protein-like 2
in CSF.

287

DIGITSCOR DIGITSCOR Digit Symbol Substitution. A cogni-
tive test score.

814

EcogSPLang EcogSPLang Measurement of Everyday Cognition
(Ecog) Study partner report, Lan-
guage factor. A cognitive test score.

1406
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EcogSPMem EcogSPMem Measurement of Everyday Cognition
(Ecog) Study partner report, Mem-
ory factor. A cognitive test score.

1404

EcogSPOrgan EcogSPOrgan Measurement of Everyday Cognition
(Ecog) Study partner report, Orga-
nization domain score. A cognitive
test score.

1348

EcogSPTotal EcogSPTotal Measurement of Everyday Cognition
(Ecog) Study partner report. Total
of scores. A cognitive test score.

1404

Entorhinal Entorhinal University of Claifornia, San Fran-
sisco (UCSF) Entorhinal size in
mm3.

1468

FAQ FAQ Functional Activities Questionnaire.
A cognitive test score.

2227

FDG FDG Fluorodeoxyglucose. A radiophar-
maceutical used in PET scans. The
uptake of FDG in the brain provides
estimates of the cerebral metabolic
rate of glucose (CMRglc).

1454

FP AB40 FREE_-
PLASMA_-
ABETA40

Free ABeta40 in plasma. 290

FP AB42 FREE_-
PLASMA_-
ABETA42

Free ABeta42 in plasma. 285

Fibrinogen Fibrinogen
(mg/mL)

Fibrinogen in plasma. 566

Final ASYN FINAL_ASYN Final reported concentration of
alpha-synuclein.

368

Fusiform Fusiform University of Claifornia, San Fran-
sisco (UCSF) Fusiform size in mm3.

1468

Gender GENDER Gender of a patient. 2253
GLN GLN Glutamine, an α-amino acid that is

used in the biosynthesis of proteins.
1638

GOLM1 GOLM1_QQL-
QALSEPQPR

Golgi membrane protein 1 measured
in CSF.

287

Hippocampus Hippocampus University of Claifornia, San Fran-
sisco (UCSF) Hippocampus size in
mm3.

1492
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ICV ICV Intracranial volume. 1725
KAIN KAIN_LGFT-

DLFSK
Kallistatin protein measured in CSF.
It is encoded by the SERPINA4 gene.

287

L LDL FC L_LDL_FC__ Free cholesterol to total lipids ratio in
large LDL, i.e., low density lipopro-
teins.

1640

L HDL FC L_HDL_FC__ Free cholesterol to total lipids ratio in
large HDL, i.e., High density lipopro-
teins.

1641

LDELTOTAL LDELTOTAL Logical Memory - Delayed Recall. A
cognitive test score.

2248

LRC4B LRC4B_LTT-
VPTQAFEY-
LSK

Leucine-rich repeat-containing pro-
tein 4B in CSF.

287

M LDL P M_LDL_P Concentration of medium LDL par-
ticles, i.e., low density lipoproteins.

1641

M VLDL PL M_VLDL_PL Phospholipids in medium VLDL, i.e.,
very low density lipoproteins.

1641

MCP3 Monocyte
Chemotac-
tic Protein
3 (MCP-3)
(pg/mL)

Monocyte Chemotactic Protein 3 in
plasma (pg/mL).

566

MidTemp MidTemp University of Claifornia, San Fran-
sisco (UCSF) Midtemp size in mm3.

1468

MMP2 Matrix
Metallo-
proteinase-2
(MMP-2)
(ng/mL)

Matrix Metalloproteinase-2 in
Plasma (ng/mL).

566

MMSE MMSE Mini Mental State Examination. A
cognitive test score.

2253

MOCA MOCA Montreal Cognitive Assessment
(MoCA) Test for Dementia. A
cognitive test score.

1399

mPACCdigit mPACCdigit ADNI modified Preclinical
Alzheimer’s Cognitive Compos-
ite (PACC) with Digit Symbol
Substitution. A cognitive test score.

2249
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mPACCtrailsB mPACCtrailsB ADNI modified Preclinical
Alzheimer’s Cognitive Composite
(PACC) with Trails B. A cognitive
test score.

2249

MUC18 MUC18_-
GATLALTQ-
VTPQDER

Cell surface glycoprotein MUC18. 287

NGRN CV NGRN_CV Neurogranin coefficient of variation
(%). Neurogranin is a calmodulin-
binding protein expressed primarily
in the brain.

144

PLASMA_NFL PLASMA_NFL Plasma neurofilament light (NFL). 1452
Plasma sample
tag 0/1/nan

TAG_-
PLASMA_-
SAMPLE_0.0,
1.0 and nan

Plasma sample. Sample taken from
plasma.

1641

PLDX1 PLDX1_LYG-
PSEPHSR

Plexin domain-containing protein 1.
A protein encoded by the PLXDC1
gene.

287

PPN PPN_VHQSP-
DGTLLIYNLR

Papilin protein in CSF. 287

Proinsulin In-
tact

Proinsulin- In-
tact (pM)

Proinsulin is the precursor of insulin
during physiological insulin produc-
tion. Intact proinsulin predicts pro-
gression of insulin resistance.

566

PTAU PTAU CSF PTAU. Phosphorylated tau pro-
tein.

1215

RAVLT I RAVLT_-
immediate

Rey’s Auditory Verbal Learning Test
(RAVLT) Immediate (sum of 5 tri-
als). A cognitive test score.

2242

RAVLT F RAVLT_-
forgetting

Rey’s Auditory Verbal Learning Test
(RAVLT) Forgetting (trial 5 - de-
layed). A cognitive test score.

2241

RAVLT P F RAVLT_-
perc_forgetting

Rey’s Auditory Verbal Learning Test
(RAVLT) Percent Forgetting. A cog-
nitive test score.

2235

S VLDL C S_VLDL_C Total cholesterol in small VLDL, i.e.,
very low density lipoproteins.

1641

SCG3 SCG3_ELSA-
ERPLNEQIA-
EAEEDK

Secretogranin-3 in CSF. A protein
encoded by the SCG3 gene.

287
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SNAP SNAP SNAP-25, Synaptosomal-Associated
Protein, 25kDa is a t-SNARE protein
encoded by the SNAP25.

146

SPRL1 SPRL1_HSAS-
DDYFIPSQA-
FLEAER

SPARC-like protein 1. A protein en-
coded by the SPARCL1 gene.

287

TAU TAU Total-τ protein in CSF. 1215
TG PG TG_PG Ratio between triglycerides and

phosphoglycerides.
1637

TLCA/CDCA TLCA_CDCA A ratio between taurolithocholic acid
and chenodeoxycholic acid which are
bile acids.

1669

TRABSCOR TRABSCOR Trail-making test B. A cognitive test
score.

2193

UBB UBB_TLSDY-
NIQK

Polyubiquitin-B in CSF. A protein
encoded by the UBB gene.

287

VAL VAL Valine, an amino acid. 1640
XL HDL CE XL_HDL_CE Cholesterol esters in very large HDL,

i.e., high density lipoproteins.
1641
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