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Abstract. Bayesian computations with Hidden Markov Models (HMMs) are often avoided in prac-
tice. Instead, due to reduced running time, point estimates – maximum likelihood (ML) or maximum
a posterior (MAP) – are obtained and observation sequences are segmented based on the Viterbi
path, even though the lack of accuracy and dependency on starting points of the local optimiza-
tion are well known. We propose a method to speed-up Bayesian computations which addresses
this problem for regular and time-dependent HMMs with discrete observations. In particular, we
show that by exploiting sequence repetitions, using the four Russians method, and the conditional
dependency structure, it is possible to achieve a Θ(log T ) speed-up, where T is the length of the
observation sequence. Our experimental results on identification of segments of homogeneous nu-
cleic acid composition, known as the DNA segmentation problem, show that the speed-up is also
observed in practice.

Availability: An implementation of our method will be available as part of the open source GHMM
library from http://ghmm.org.

Keywords: Hidden Markov Model, Bayesian, MCMC, Gibbs Sampling, Compression, Four Rus-
sians, Speed-up, DNA Segmentation.

1 Introduction

Hidden Markov Models have been used extensively for sequence classification tasks in many areas
including speech recognition [7], natural language processing [19], and bioinformatics [12]. For
analyzing biological sequences, HMMs are particularly useful for example in sequence alignment
problems [12], gene finding [8], CpG island detection [11], DNA segmentation [10, 11, 18, 24],
and promoter detection [25]. These application problems all lead to the computational task of
segmenting the input, an observation sequence, based on the most likely assignment of hidden
states.

For simplicity and efficiency reasons, point estimates such as maximum likelihood (ML) or
maximum a posterior (MAP), computed with Baum-Welch [2] and variants, have traditionally
been used for learning HMM parameters. Based on these estimates segmentations have been
computed with the Viterbi path. This ignores uncertainty in model parameters and consequently
predictions based on ML or MAP trained models often turn out to be inferior in practice. In
contrast, a full Bayesian approach integrates out model parameters and thus removes dependency
on one parameter estimate to improve HMM based prediction. As closed form solutions are
not available for HMMs, one frequently uses Markov Chain Monte Carlo (MCMC) sampling
techniques like Gibbs sampling or Metropolis-Hastings [3] instead of integration. One particular
form of Gibbs sampling for HMM, known as forward-backward Gibbs sampling [9, 29], is popular
in several communities [1, 15, 26, 28, 30, 31] for its improved convergence rate through use of
forward and backward recursions.

However, depending on the problem, forward-backward Gibbs sampling can still take many
iterations to converge. Careful choice of prior distributions and corresponding hyper-parameters
can sometimes increase the convergence rate but it remains computationally inefficient compared
to using point estimates. One possible source of improvement is to make use of the characteristics
of the observed sequence to speed-up computations.
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Using text compression techniques (LZ78, byte pair encoding, four Russians, etc.), Mozes et.
al. [17, 21] have exploited repetitions in long biological sequence to improve the running time
of the Viterbi algorithm which computes the most likely hidden state sequence given the obser-
vation sequence as well as forward, backward algorithms. Their main idea is to find contiguous
repetitive sub-sequences and pre-compute all quantities of interest for these sub-sequences so
that these quantities can be used multiple times without repeating the computation. Mozes et.
al. have shown that, despite being one of the simplest compression techniques, the four Russians
method yields a logarithmic improvement over the traditional Viterbi algorithm. That the four
Russians method improves dynamic programming algorithms for other applications has been
shown previously [13, 20, 22, 23]. Morever, Mozes et. al. have shown that for an HMM with few
states Baum-Welch training can be improved using partially computed forward and backward
variables.

While [17, 21] shows asymptotic speed up for the Viterbi algorithm and improved Baum-
Welch training, we focus on Bayesian analysis of HMM using MCMC simulations. Following
their idea we pre-compute quantities of interest for all possible log T -sized sub-sequences (Note:
in the following we assume sub-sequences to be contiguous) and use these quantities to compute
O
(

T
log T

)
forward variables. While forward-backward Gibbs sampling needs T forward variables,

we show that, because of the conditional dependency structure in an HMM, one can use the
partially computed forward variables to implement a modified, but exact, version of forward-
backward Gibbs sampling. As forward variable computations dominate the running time we
achieve a O(log T ) speed-up.

To demonstrate the effectiveness of our method on biological problems, we apply it to
Bayesian analysis of DNA segmentation [4–6, 18]. A segment is defined to be a contiguous region
of DNA sequence, where nucleic acid composition is assumed to follow the same distribution.
For example isochore classes can be identified by solving the DNA segmentation problem using
HMMs [11]; see [4, 5] for a fully Bayesian approach.

In summary, we

– utilize characteristics of the discrete-valued observation sequence to improve the running
time of MCMC sampling. To the best of our knowledge this is the first use of sequence
repetitions in improving Bayesian HMM computations,

– prove that sequence repetitions can be used to speed-up MCMC sampling by a factor of
Θ(log T ). Note that the speed-up we achieve is as large as the one in [17, 21] for forward
variable computations, and

– experimentally verify that the theoretical speed-up is also observed in practical problems
like detecting homogeneous segments in DNA, where we achieve a speed-up of up to 5 on
bacterial genomes.

2 Hidden Markov Model

We consider HMM with discrete emission distributions; see [27] for an introduction. We will use
the following notation: N denotes the number of states, S = {s1, s2, . . . , sN} ≡ {1, 2, . . . , N}
the set of states, Σ = {1, . . . , |Σ|} finite alphabet, O = (o1, o2, . . . , oT ) ∈ ΣT the observation
sequence, Q = (q1, q2, . . . , qT ) ∈ ST the hidden state sequence, A = {ai,j}1≤i,j≤N the transition
matrix, π = (π1, π2, . . . , πN ) the initial distribution over states, γ the order of observation

process, o
′
t = (omax(1,t−γ), . . . , ot−1), and B = {bβi,j}β∈[Σ∪Σ2∪...∪Σγ ],1≤i≤N,1≤j≤|Σ| the emission

matrix.
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The hidden state sequence Q follows a first-order markov chain, that is

P (q1) = πq1 , and (1)

P (qt|q1, . . . , qt−1) = P (qt|qt−1) = aqt−1,qt . (2)

In contrast to the usual literature, where emissions only depend on the state, we consider
the case of higher order emissions [16]. Then the probability of an observation sequence O can
be described using the following equation.

P (ot|q1, . . . , qt, o1, . . . , ot−1) = P (ot|qt, omax(1,t−γ), . . . , ot−1) = b
o
′
t
qt,ot . (3)

Fig. 1 shows the dependency structure in HMM using graphical models for regular (γ = 0)
and first-order (γ = 1) emission HMMs.

qt-2 qt-1 qt qt+1

ot-2 ot-1 ot ot+1

qt-2 qt-1 qt qt+1

ot-2 ot-1 ot ot+1

Fig. 1. Graphical model showing conditional dependency for HMM; γ = 0 (left) and γ = 1 (right). To simplify
notation we also use qt for the state and ot for the emission random variables. An arrow from X to Y means Y
is dependent on X.

3 Bayesian Analysis: Forward-Backward Gibbs Sampling

To use Bayesian analysis we need to choose prior distributions. In this work we use the Dirichlet
distribution as prior for Ai,∗, Bi,∗, and π. Our analysis will still be valid for any standard
conjugate prior distribution.

As we are interested in computing the distribution P (Q|O), and closed form solutions of
the Bayesian integral are not feasible, the use of MCMC techniques like Gibbs sampling or
Metropolis-Hastings becomes mandatory [3, 14]. MCMC algorithms create a Markov chain that
has the desired distribution, here P (Q|O), as its stationary distribution. After an appropriate
burn-in, performing a random walk on the state transition graph, the state of the chain can
be used as a sample from the stationary distribution [14]. Scott [29] compares various MCMC
approaches and strongly argues in favor of forward-backward Gibbs sampling (FBG-sampling)
for it’s excellent convergence characteristics. Here we will restrict our discussion to FBG-sampling
only. We define forward variables as αt(j) = P (qt = j, o1, . . . , ot|A,B, π) and briefly summarize
FBG-sampling for a HMM ≡ (A,B, π) = θ in Alg. 1; see [9, 29] for details.

FBG-sampling starts with an initial choice of parameters θ0 and alternatively keeps sampling
state sequence Qm and parameters θm+1. See [9] for a proof that Qm returned by Alg. 2 is indeed
sampled from the marginal distribution P (Qm|O, θm).

Algorithm StateSampler uses O(TN2) space and runs in O(TN2) time; step 1 (forward
variables) runs in O(TN2) time and step 2 (backward sampling) in O(T logN). It is obvious
from the above algorithm that all the pre-computed forward variables are not used for sampling
the state sequence Qm. In the next section we will see that even without computing all forward
variables Qm can be sampled accurately.
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Algorithm 1 FBG-Sampling(O)

1: Choose initial parameters θ0 = (A0, B0, π0).
2: Perform the following steps for 0 ≤ m < M .

(a) Qm = StateSampler(O, θm) [See Alg. 2]
(b) Sample HMM parameters,

θm+1 ∼ PriorDistribution(hyperparameters,O,Qm, θm)

3: return Q0, Q1, . . . , QM−1.

Algorithm 2 StateSampler(O, θ)
1: Forward Variables:

– Compute α1(j) = P (o1, q1 = j|θ) = πjb
o
′
1
j,o1

for all j.
– For 2 ≤ t ≤ T :

Compute αt(j) = P (o1o2 . . . ot, qt = j|θ) =
N∑
i=1

αt−1(i)ai,jb
o
′
t
j,ot

for all j.

2: Backward Sampling:

– Sample qT s.t. P (qT = i) ∝ αT (i).
– For T > t ≥ 1:

Sample qt s.t. P (qt = i) ∝ αt(i)ai,qt+1 .

3: return Q

4 Speeding up MCMC

We reformulate the forward variables α using matrix notation following [17, 21]. Let Mu(v),
where u ∈ [Σ ∪Σ2 ∪ . . . ∪Σγ ] and v ∈ Σ, be a N ×N matrix with elements Mu

i,j(v) = ai,jb
u
j,v.

Forward variables at time t, αt, can be rewritten as a row vector,

αt = π ·Mo
′
1(o1) ·Mo

′
2(o2) · · · · ·Mo

′
t−1(ot−1) ·Mo

′
t(ot) (4)

= αt−1 ·Mo
′
t(ot) . (5)

It is important to note that the matrix formulation does not change the running time of the
algorithm.

4.1 Compression and Forward Variables

Lets define Oi...j := oioi+1 . . . oj and Qi...j := qiqi+1 . . . qj . We define the matrix Mo
′
i
(
Oi...j

)
as

Mo
′
i
(
Oi...j

)
= Mo

′
i(oi) ·Mo

′
i+1(oi+1) · · · · ·Mo

′
j−1(oj−1) ·Mo

′
j (oj) . (6)

We assume that the length of the observation sequence, T , is a multiple of k such that d = T
k

and create groups of fixed size from the observation sequence O = O1...kOk+1...2k . . . O(d−1)k+1...T .
Pre-computing all possible matrices M(X), where |X| ≤ k, for future use is informally known
as the four Russians method. Now αlk can be expressed using (6) as

αlk = π ·Mo
′
1(O1...k) ·Mo

′
k+1(Ok+1...2k) · · · · ·M

o
′
(l−1)k+1(O(l−1)k+1...lk) (7)

= α(l−1)k ·M
o
′
(l−1)k+1(O(l−1)k+1...lk) . (8)

The compressed sequence allows us to skip computing forward variables inside a group, which
results in significant time savings. [17, 21] similarly defines forward variables using compressed
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sequence to improve Baum-Welch training. Note that we cannot directly use the backward
sampling in Alg. 2 in this setting. In the remaining part of this section we will explain how we
can overcome this problem.

4.2 Backward-forward State Sequence

Now we will modify the order of state sampling, turning backward sampling step of Alg. 2 into
backward-forward sampling, and express the distribution P (Q|O, θ) in a way that helps us to
sample Q accurately and efficiently. We write

P (Q|O, θ) = P (Q1...k−1|Qk...T , O, θ)︸ ︷︷ ︸
Part A

P (Qk...T |O, θ)︸ ︷︷ ︸
Part B

. (9)

By repeated application of Bayes theorem we can show that part B is proportional to

P (qT |O, θ)︸ ︷︷ ︸
Part B1

∏
d≥i≥2
s=(i−1)k
e=ik

(
P (qs|Qe...T , O, θ)︸ ︷︷ ︸

Part B2

e−1∏
j=s+1

P (qj |Qs...j−1, Qe...T , O, θ)︸ ︷︷ ︸
Part B3

)
. (10)

Part B1, B2, and B3 can be sampled using the following relations.

Sampling B1:

P (qT |O, θ) ∝ P (qT , O|θ)
∝ αT (qT ) (11)

Sampling B2:

P (qs|Qe...T , O, θ)
= P (qs|Qe...T , O1...s, Os+1...T , θ)

∝ P (qs|O1...s, θ)P (Os+1...T , Qe...T |qs, O1...s, θ) (12)

= P (qs|O1...s, θ)P (Os+1...T , Qe...T |qs, o
′
s+1, θ) (13)

∝ P (qs, O1...s|θ)P (Os+1...e, Oe+1...T , qe, Qe+1...T |qs, o
′
s+1, θ) (14)

= αs(qs)P (Os+1...e, qe|qs, o
′
s+1, θ)P (Oe+1...T , Qe+1...T |qs, Os+1...e, qe, o

′
s+1, θ) (15)

= αs(qs)P (Os+1...e, qe|qs, o
′
s+1, θ)P (Oe+1...T , Qe+1...T |Os+1...e, qe, o

′
s+1, θ) (16)

∝ αs(qs)P (Os+1...e, qe|qs, o
′
s+1, θ) (17)

= αs(qs)M
o
′
s+1
qs,qe (Os+1...e) (18)

Equation (12), (14), and (15) are derived from Bayes theorem. The conditional dependency
structure of the HMM given Qe...T (see Fig. 2) is used in (13) and (16). As the last term in (16)
is independent of qs it is dropped in (17).
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B2 : sampling qs in group i-1

oe

qe

oe-1

qe-1

os+1

qs+1

os

qs

os-1

qs-1

Fig. 2. Conditional dependency shown for sampling qs using B2 for γ = 0. Lightly shaded variables are either
observed or already sampled. Dashed rectangle represents a group of observations. Here qt, ot are used as the
random variable for state and emission to simplify notation.

Sampling B3:

P (qj |Qs...j−1, Qe...T , O, θ)
∝ P (qj , oj , Qe...T , Oj+1...T |Qs...j−1, O1...j−1, θ)

= P (qj , oj |Qs...j−1, O1...j−1, θ)P (Qe...T , Oj+1...T |Qs...j , O1...j , θ) (19)

= P (qj , oj |qj−1, o
′
j , θ)P (Qe...T , Oj+1...T |qj , o

′
j+1, θ) (20)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e, Qe+1...T , Oe+1...T |qj , o

′
j+1, θ)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ)P (Qe+1...T , Oe+1...T |qe, Oj+1...e, qj , o

′
j+1, θ) (21)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ)P (Qe+1...T , Oe+1...T |qe, o

′
j+1, θ) (22)

∝ P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ) (23)

= M
o
′
j
qj−1,qj (oj)M

o
′
j+1
qj ,qe (Oj+1...e) (24)

Equation (19) and (21) are derived from Bayes theorem. The conditional dependency structure
of the HMM given Qs...j−1 and Qe...T (see Fig. 3) is used in (20) and (22). As the last term
in (22) is independent of qj it is dropped in (23).

qj qj+1qj-1

oj-1 oj+1 oe

qe

oj

B3 : sampling qj in group i

group
(i-1)

group
(i+1)

Fig. 3. Conditional dependency shown for sampling qj using B3 for γ = 0. Lightly shaded variables are either
observed or already sampled. Dashed rectangle represents a group of observations. Here qt, ot are again used as
the random variable for state and emission to simplify notation.
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4.3 Fast Sampling Algorithm

Now we formally describe the algorithm FastStateSampler (see Alg. 3) and analyze it’s running
time. Instead of using Alg. 2 (StateSampler) in step 2.a of Alg. 1 (FBG-sampling) now we can
use Alg. 3 for fast MCMC simulations.

Algorithm 3 FastStateSampler(O, θ)
1: Precompute:

– Mβ(X) for all X ∈ ∪ki=1Σ
i and β ∈ ∪γi=1Σ

i.
– Rβ(x,X) for all β ∈ ∪γi=1Σ

i, x ∈ Σ, and X ∈ ∪k−1
i=1Σ

i such that

• Rβi,j,1(x,X) = Mβ
i,1(x)M

(β2...|β|,x)
1,j (X).

• Rβi,j,c(x,X) = Rβi,j,c−1(x,X) +Mβ
i,c(x)M

(β2...|β|,x)
c,j (X) for 1 < c ≤ N .

2: Forward Variables:

– Compute αk = πM0′1(O1...k).
– For 1 < i ≤ m and 1 ≤ j ≤ N , compute αik and δik,j,∗ in the following way.

• δik,j,1 = α(i−1)k(1)M
o
′
(i−1)k+1

1,j (O(i−1)k+1...e).

• δik,j,c = δik,j,c−1 + α(i−1)k(c)M
o
′
(i−1)k+1

c,j (O(i−1)k+1...e) for 1 < c ≤ N .
• Set αik(j) = δik,j,N .

3: Backward-forward Sampling:

– Sample qT from (11).
– For m ≥ i ≥ 2:

• Let s = (i− 1)k and e = ik.
• Sample qs from (18) by applying binary search on the monotonically increasing sequence
δs,qe,1, δs,qe,2, . . . , δs,qe,N .

• For s < j < e, sample qj from (24) by applying binary search on the monotonically increasing

sequence R
o
′
j

qj−1,qe,1
(oj , Oj+1...e), R

o
′
j

qj−1,qe,2
(oj , Oj+1...e), . . . , R

o
′
j

qj−1,qe,N
(oj , Oj+1...e).

– Given qk, sample q1, q2, . . . , qk−1 (part A) using a slightly modified version of Alg. 2.

4: return Q

In the Precompute step of Alg. 3, Mβ(X) matrices, which are required in (18) and (24), are
computed at first. To sample qj using (24) (in Backward-forward Sampling step) we need to

compute M
o
′
j
qj−1,qj (oj)M

o
′
j+1
qj ,qe (Oj+1...e) for all possible values of qj , which is an O(N) operation.

Considering these quantities as weights for possible states we can select qj using weighted random
sampling, which again takes O(N) time. Interestingly, these quantities are already precomputed
as intermediate parts of Mβ(Oj...e). Instead of simply storing these weights, if we store the sum

of these values from state 1 to c in Rβqj−1,qe,c(oj , Oj+1...e), we can use binary search to select qj
in O(logN) time. Similarly, we store the sum of intermediate parts of α∗ in δ∗,∗,∗ to sample qs
using binary search.

Running Time. As there are at most 2|Σ|k+γ matrices to be precomputed, the pre-computation
step takes O(2|Σ|k+γN3) time. Forward variables are computed in O(TkN

2) time. Using the
stored values in R and δ, the state sequence is sampled in O(T logN) time (the small por-
tion where Alg. 2 is used does not affect the order of the algorithm). The total running time
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is O(2|Σ|k+γN3 + T
kN

2 + T logN). If k is chosen to be 1
2 log|Σ| T − γ, the total running time

becomes O(2
√
TN3 + 2TN2

log|Σ| T−γ
+T logN). Assuming N <

√
T

log|Σ| T−γ
, FastStateSampler achieves

a speed-up of Θ(log|Σ| T − γ) and uses O( T
log|Σ| T−γ

N2) space.

5 Empirical Results

In this section we apply our fast sampling technique to a Bayesian analysis of DNA segmen-
tation. A segment is defined as a contiguous region of a DNA sequence with similar nucleic
acid composition. Many DNA sequences can be divided into homogeneous segments and inter-
esting structures such as isochores can be extracted from the segmentation. We compare the
performance of our method on the DNA segmentation problem with standard FBG-sampling.

We use Dirichlet priors and non-informative hyper-parameters as model parameter distribu-
tions. We measure the running time of forward-backward Gibbs sampling (Alg. 1) using both
Alg. 2 and Alg. 3 as the sampler in step 2.a. The running time of forward-backward Gibbs
sampling is proportional to the number of sampling iterations M (see step 2 of Alg. 1). We set
M = 10 and compare execution time of one run of the algorithms. In [4] Boys et. al. used 500, 000
iterations to segment Bacteriophage lambda DNA. They showed that 6 ≤ N ≤ 8 and 0 ≤ γ ≤ 2
produced the best segmentation for Bacteriophage lambda. Unlike their model we keep γ and
N fixed, but it can easily be modified to variable model dimensions. Four bacterial genomes
— Bacteriophage lambda (genome size 0.05 Mbp), Mycoplasma leachii (1 Mbp), Planctomyces
brasiliensis (6 Mbp), and Sorangium cellulosum (13 Mbp) — are segmented and the running
time for different choices of N and γ are shown in Fig. 4. As both algorithms converge to the
same stationary distribution we do not report any segmentation error.

As expected, we see logarithmic speed-up for our method over standard FBG-sampling (see
Table 1). As the size of the dataset increases, so does the speed-up we observe. For Sorangium
cellulosum we achieve a speed-up of 5. For small values of N , the state path sampling time is
comparable to the pre-computation and forward variable computation time. As a result there

is no significant speed-up for small N . For very large N >
√
T

log|Σ| T−γ
(often impractical) the

algorithm gradually loses it’s advantage. over standard FBG-sampling. However, this bound
and overall running time can be improved by computing Mβ(X) matrices using fast matrix
multiplication of order o(N3).

We implemented the algorithms in C++ and tested in a Linux machine with a 2.2 GHz AMD
Opteron processor. As there was very little variation between the running time of two different
runs of an algorithm, instead of averaging over multiple runs, we report the running time of one
single run in Fig. 4.

6 Conclusion

In this paper we have presented a modified version of the forward-backward Gibbs sampling
algorithm for Bayesian analysis with a logarithmic improvement in running time. We have used
the four Russians method to pre-compute all possible quantities of future interest and shown
that exact sampling can work with fewer forward variables by using the pre-computed quantities.
To the best of our knowledge, this is the first use of sequence repetition in discrete sequences
for faster MCMC simulations.

As biological sequences are often long and the alphabet size is small, our approach can be
adopted to make Bayesian computations faster in biological applications. We have demonstrated
the advantage of our method on the DNA segmentation problem where we have achieved speed-
ups similar to other applications of four Russians method.
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Fig. 4. Running time comparison on four datasets. Execution times for forward-backward Gibbs (red, +) and
four Russians method (γ = 0 with (green, ×), γ = 1 with (blue, ∗), and γ = 2 with (pink, �)) are shown.

Table 1. Speed-up using fast sampling method for HMM with γ = 0, 1, 2.

Dataset HMM Order (γ)
Number of States (N)

4 8 12 16 20 24 28 32 36 40 44

Bacteriophage lambda (0.05 Mbp)
0 2.2 2.8 2.6 2.6 2.4 2.3 2.1 2.2 1.8 1.7 1.8
1 2.0 2.2 2.3 2.2 2.1 2.0 1.9 1.9 1.7 1.6 1.5
2 1.8 1.8 1.8 1.8 1.6 1.6 1.6 1.5 1.4 1.3 1.3

Mycoplasma leachii (1 Mbp)
0 2.6 3.2 3.6 3.8 4.0 4.0 3.8 3.9 3.7 3.7 3.9
1 2.4 2.7 3.1 3.2 3.4 3.3 3.3 3.3 3.2 3.2 3.1
2 2.2 2.3 2.6 2.7 2.6 2.7 2.8 2.6 2.5 2.4 2.5

Planctomyces brasiliensis (6 Mbp)
0 2.6 3.4 3.8 4.2 4.4 4.5 4.5 4.5 4.1 4.5 4.8
1 2.4 2.9 3.3 3.6 3.9 4.0 4.0 3.9 4.0 4.0 3.8
2 2.3 2.5 2.8 3.1 3.1 3.3 3.4 3.0 3.2 3.2 3.3

Sorangium cellulosum (13 Mbp)
0 2.7 3.0 4.1 4.4 4.5 5.0 4.9 4.7 4.6 5.1 5.4
1 2.5 3.0 3.5 3.8 4.2 4.3 4.3 4.0 4.0 4.3 4.1
2 2.3 2.5 2.9 3.3 3.4 3.6 3.8 3.2 3.5 3.4 3.7
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A natural extension to our approach would be applying other compression schemes. In some
cases, when observations in a sequence are less uniform in nature, other schemes may outperform
the four Russians method. It will also be interesting to apply our method, by taking advantage
of faster computations, to the problems where Bayesian analysis was not favored previously.
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