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ABSTRACT

Motivation: The reliable identification of presence or absence of bio-

logical agents (‘‘targets’’), suchasvirusesorbacteria, is crucial formany

applications from health care to biodiversity. If genomic sequences of

targets are known, hybridization reactions between oligonucleotide

probes and targets performed on suitable DNA microarrays will allow

to infer presenceor absence from theobservedpattern of hybridization.

Targets, for example all known strains of HIV, are often closely related

and finding unique probes becomes impossible. The use of non-unique

oligonucleotides with more advanced decoding techniques from

statistical group testing allows to detect known targets with great suc-

cess. Of great relevance, however, is the problem of identifying the

presenceof previouslyunknown targetsor of targets that evolve rapidly.

Results: We present the first approach to decode hybridization

experiments using non-unique probes when targets are related by a

phylogenetic tree. Using a Bayesian framework and a Markov chain

MonteCarlo approachweareable to identify over 94%of known targets

andassignup to 70%of unknown targets to their correct clade in hybrid-

ization simulations on biological and simulated data.

Availability:Software implementing themethoddescribed in thispaper

and datasets are available from http://algorithmics.molgen.mpg.de/

probetrees.

Contact: alexander.schliep@molgen.mpg.de, Sven.Rahmann@

cebitec.uni-bielefeld.de

1 INTRODUCTION

Identifying biological targets. Identifying viruses infecting a

patient, detecting bacteria spoiling food, or deciding whether a

water sample is safe for humans to drink are tasks which share

the same underlying problem: to identify certain targets in bio-

logical (DNA) samples. Targets refer to the biological agents,

the viruses, bacteria or other organisms that we want to detect.

Recent developments in the Avian influenza pandemic brought

virus identification into the front-news spotlight. In addition to

accurately determining the lethal virus strain [Putonti et al.,
2006], it is crucial to screen humans and animals, which might

host several viruses and thus allow cross-species recombination.

More optimistic applications of target detection are the study of

biodiversity, say on the microbial level, and environmental micro-

biology. The target identification problem is also central in the area

of biothreat reduction.

In clinical applications, target identification has classically been

achieved for individual targets with unique markers such as staining

techniques for specific antibodies. While one test per potential target

is acceptable for many medical applications, it is not a cost-effective

strategy if the number of potential targets is large, if several targets

might be present simultaneously, or if many samples must be

investigated. In South Africa for example, HIV super-infections,

i.e., simultaneous infections with multiple HIV strains, are much

more prevalent than in the Western world. In these cases, clinical

marker kits for strain identification are more prone to failure.

Approaches based on unique probes. One experimental assay

widely used in molecular biology is the hybridization reaction of

fluorescently labeled DNA or RNA molecules to complementary

DNA or RNA. Such hybridization reactions can be used for target

detection if (partial) genomic sequences of targets are available.

Often, short oligonucleotide DNA microarrays are used as techno-

logy platform (the approach in principle generalizes to other

hybridization-based technologies). Assuming ideal conditions, we

would select one specific oligonucleotide probe that hybridizes to its

intended target only and does not cross-hybridize to any other target.

Subsequently, we detect presence and absence of targets in a sample

from the observed hybridization pattern. This unique probe
approach has been originally developed for the design of gene

expression DNA microarrays using oligonucleotide probes (e.g.,

[Kaderali and Schliep, 2002; Rahman, 2003a]). However, in the

applications described above, targets are often closely related and

thus unique probes cannot be found.

Non-unique probes. The use of non-unique probes, hybridizing
to several targets simultaneously, poses problems in the analysis of

experiments. If one assumes that at most one target can be present

simultaneously, the problem can be handled effectively [Wang

et al., 2003, Rash and Gusfield, 2002]. This assumption is unreal-

istic, however, and [Schliep et al., 2003] introduced a statistical
group-testing approach to address the case when multiple targets are

present simultaneously. Subsequent work [Klau et al., 2004] has
attempted to minimize the number of probes required to reliably

identify small-cardinality target sets by an integer linear program-

ming approach. In all of the above work, only the ability to detect

known targets has been evaluated.
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Novel contributions. We extend the group-testing approach

using non-unique probes to targets related by a phylogenetic

tree. This allows us to consider an intriguing and highly relevant

question: Can we even detect the presence of yet unknown targets,

e.g., can we detect the presence of a new strain, or can we detect the

presence of a known target if it (and its hybridization pattern) has

changed because of fast evolution? Even if we restrict ourselves to a

specific virus, the targets used as input will only represent a sample

of all existing strains and new strains are likely to arise between the

time of microarray design and its large-scale use. To our knowledge,

this article is the first work to address these issues.

Outline. We describe the probe selection strategy and group

testing methods in Section 2, particularly focusing on the novel

aspect how they can be integrated with phylogenetic tree informa-

tion. Section 3 presents artificial and real datasets for evaluating

these methods, describes our evaluation criteria, and shows the

evaluation results. A concluding discussion is given in Section 4.

2 METHODS AND MODELS

Notational Remarks. If S is a finite set, jSj is its cardinality. We identify

binary vectors T 2 f0‚1gm with the index set fi : Ti ¼ 1g � f1‚ . . . ‚mg, for
which we also write T, so jTj ¼

Pm
i¼1 Ti.

2.1 Overview: Problem setting

Initially, we are given a set T of DNA target sequences (the known targets)

and a phylogenetic tree B relating them. Depending on the application, the

targets might be whole genomes (e.g., all known HIV strain genomes), or

single gene sequences (e.g., the cytochrome C sequences of several related

species). We assume that the target set contains many closely related and

hence similar sequences.

Our objective is to be able to decide which of these targets are present and

which ones are absent in unclassified DNA samples when we observe an

oligonucleotide probe hybridization fingerprint for the sample. To be more

precise, we assume that we observe which probes react to some target(s) in

the sample, but that this observation is noisy. In most applications, we may

assume that the target set contained in the sample is small compared to the

whole set T (e.g., the set of HIV strains infecting a single patient).

Additionally, we expect that the sample may contain unknown targets,
that is, sequences similar to those in T that were not available when T was

prepared. This would be the case for new virus strains or fast evolving

genomes, for example. Although we cannot expect to perfectly classify

these unknown targets, we would at least like to place them at the correct

location in the tree B.
Our first tasks are thus

(1) to select suitable probe candidates for the given target set T . Note that
the usual probe design methodologies that look for target-specific

probes do not have a good chance of success on the typical datasets

we consider: Because of the high sequence similarity between targets,

only very few specific probes will be found. Our proposed solution

is to use a group testing approach that allows non-unique probes. We

deal with the ensuing complications in a subsequent decoding step.

The candidate selection step also ensures that no probes are selected

that could hybridize to genomes of contaminating organisms or host

organisms (e.g., the human genome for HIV viruses);

(2) to reduce the candidate set to a final probe set P;
(3) to compute the jT j · jPj basic hybridization matrix Hbasic, a

binary matrix defined by Hbasic
ij ¼ 1 if target i hybridizes to probe j,

and Hbasic
ij ¼ 0 otherwise;

(4) to extend the hybridization patterns (rows) of Hbasic from targets

to whole subtrees (monophyletic groups) of B by deciding which

hybridization pattern would be ‘‘typical’’ for unknown targets in a

monophyletic group. We obtain an (extended) hybridization matrix H

of size ðjT j þ jIjÞ · jPj, whereI denotes the set of internal (non-leaf)
nodes of B.

The above steps are described formally in Sections 2.2 (probe selection)

and 2.3 (computing H), followed by a small example.

Given H and a target set T � f1‚ . . . ‚ jT j þ jIjg, it is straightforward

to compute the theoretical (i.e., error-free) hybridization result

r ¼ rðTÞ 2 f0‚1gjPj: We will observe rj ¼ 1 if there exists a target i 2 T

to which probe j hybridizes (Hij ¼ 1). In other words, rj ¼ _i2T Hij, so r is

the logical or of the rows indicated by T. In reality, however, we need to take

noisy results into account: Probes not showing a hybridization signal

although they should are called false negatives, and probes showing a signal

although they should not are called false positives. The error model is

described in Section 2.4.

For an unidentified DNA sample, we need to solve the inverse problem

of the above one: We observe a certain result r, and our task is to find T,

which may consist of both known targets t 2 T and unknown targets t 2 I
modeled by internal nodes of B, such that T best explains r. We adopt a

Bayesian framework and introduce a target set prior in Section 2.5. Then our

goal becomes to find the target set that maximizes the posterior probability

given r, which turns out to be a difficult problem to solve exactly. We thus

switch to a Gibbs sampling strategy, which we describe in Section 2.6.

2.2 Probe selection

We start with a set T ¼ ft1‚ . . . ‚ tmg of m distinct but similar DNA

sequences, the targets. The first step is to find characteristic substrings

(the probes) either for single targets or for whole target sets T � T . The
idea is that an unidentified DNA sample can be tested quickly and

(relatively) cheaply for the occurrence of all probe sequences, e.g., by a

microarray hybridization experiment, whereas determining the precise

sequences of all sample members would be a more complicated procedure.

A good (specific or unique) probe p is characterized by the fact that it

hybridizes well to a single target and not at all to the remaining targets.

Because of the high sequence similarity in T , however, unique probes will be
difficult to find in sufficient number. Instead of attempting a bad compro-

mise, we turn this problem into a feature and allow that p hybridizes to

a small group T p of targets; this need not be a monophyletic group in B.
We require, however, that the probe makes a clear distinction between T p

and T \ T p in the sense that there is a strong observable signal for all t 2 T p

and no signal for all t 2 T \T p.

The dynamics of DNA-DNA hybridization are quite complicated and not

fully understood. However, it is reasonable to assume that a probe will give a

clear positive signal if it is an exact substring of the target, and that no signal

will be observed if the longest common substring between probe and target is

very short. This so-called longest common factor approach was first pro-

posed in [Rahmann, 2003a, 2002] and provides a practical and efficient

surrogate measure for the true probe-target affinity. What must be avoided

are probes that have long but not full-length common substrings with some

targets in T .
We thus proceed as follows. Every substring p in a given length range (our

method is mainly applicable to short oligonucleotides between 20 and 30 nt)

of any target in T is tested against the other targets for long (but not full-

length) common substrings and discarded as a probe candidate if any are

found. For the remainder, the hybridization stability (Gibbs free energy) is

estimated using the nearest-neighbor model described in [SanataLucia,

1998]. The probes are accepted only if their estimated Gibbs free energy

falls into a small homogeneous range to ensure similar hybridization behav-

ior. All of these steps are implemented in the existing PROMIDE software

described in [Rahmann, 2003a]. The main reason to choose PROMIDE is that it

is one of the few programs that allows non-uniqe probe selection.

The nature of the selection process allows to model hybridization as a

yes/no event that can be described by a binary matrix Hbasic: Consider the
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relation of target i and probe candidate j: Either the probe is a substring of the
i (in which case we assume a stable hybridization and setHbasic

ij :¼ 1), or they

share only a short common substring (in which case stable hybridization

does not occur and we set Hbasic
ij :¼ 0). The intermediate case where

‘‘almost’’ the whole probe occurs in some target is ruled out by the longest-

common-factor-based selection process.

In the resulting set of probe candidates, maybe no probe identifies any

target uniquely, but certain combinations of probes still identify certain

combinations of targets (target sets). This places our approach in the

field of group testing: Each probe tests whether some member of a certain

target group is present, but cannot tell which one. The resulting decoding

problem is described in Section 2.6.

Reducing the set of probe candidates. In previous work [Klau et al.,

2004], we have shown that the resulting probe candidate set can often be

reduced considerably (up to 50%) without sacrificing decoding resolution

if the probes are picked carefully. However, in this study, we face a different

task: One of our goals is to detect unknown or fast-evolving targets. There-

fore, any optimization of the probe set, even if it does not adversely affect

our ability to identify known targets, would certainly decrease our chances of

identifying unknown targets. Therefore, we have not reduced the probe set.

2.3 Extending the hybridization matrix to

monophyletic groups

After probe selection, we have n probes P ¼ fp1‚ . . . ‚png for the m targets

T ¼ ft1‚ . . . ‚ tmg, we know the basic hybridization matrix Hbasic
ij , as

described above, and are given a phylogenetic tree B with the targets at

the leaves and a set I of internal nodes defining monophyletic target groups.

Since we want to detect unknown targets t =2 T to a degree that we can

place them at an approximately correct location in the phylogenetic tree B,
we need to model a ‘‘typical’’ hybridization pattern of an unknown target

that belongs to each particular monophyletic group.

Let v denote an internal node in B and let LðvÞ :¼fi : ti is a leaf below vg
denote the set of target indices that form the monophyletic group below v.

Our approach is to postulate that probe pi is ‘‘typical’’ for v if it hybridizes to
more than half of the targets in LðvÞ. We thus define the hybridization vector

hðvÞ by the strict majority function,

hðvÞ � ðhv‚ 1‚ . . . ‚hv‚nÞ 2 f0‚1gn with

hv‚ j :¼ 1()
X
i2LðvÞ

Hbasic
i‚ j > jLðvÞj/2:

One alternative would be to use the logical and function (i.e., set

hv‚ j :¼ ^i2LðvÞ Hbasic
ij ), but intuitively this does not capture the ‘‘typicality’’

of probes as well as the majority function. Nevertheless, other alternatives

are certainly possible; the aim being to guess as precisely as possible the

hybridization behavior of unknown targets in a monophyletic group, which is

per se an impossible task.

To build the extended hybridization matrix H of size ðmþ jIjÞ · n, we
define the firstm rows as those inHbasic. To define the remaining jIj rows, we
assign numbers iðvÞ ranging frommþ 1 tomþ jIj bijectively to the internal
nodes v 2 I and define the iðvÞ-th row of H as the majority vector hðvÞ.

An example of an extended hybridization matrix H with 5 targets and

10 probes, along with the phylogenetic target tree B with 4 internal nodes, is

shown in Figure 1 (left).

2.4 Probabilistic hybridization model

As stated in Section 2.1, the expected hybridization result r ¼ rðTÞ of a
target set T � f1‚ . . . ‚mþ jIjg is obtained by computing the logical or of

the indicated rows of the hybridization matrix H. It is understood that if

I contains representations of unknown targets u (indices ranging from mþ 1

to mþ jIj), r is not the actual hybridization pattern of T, since the actual

behavior of u is unknown and only hypothesized to look similar to the

corresponding row in H.
As an example, consider Figure 1 (right). The expected result for singleton

target sets can be read directly fromH (examples a, c). If jTj � 2, the result is

the logical or of the corresponding rows (examples b, d–f). The set fv1‚ 2g
represents a single typical unknown target somewhere below v1‚ 2 (and no

further targets) and must be distinguished from f1‚2g that consists of two
particular known targets (and no further targets). Target sets may mix known

and unknown targets (example d). Sometimes, the same result may occur for

several distinct target sets (examples e, f; there are many more target sets

giving rise to this ‘‘all ones’’ result). Other results may not be explainable by

any target set at all without allowing errors (example g).

In order to model false positive and false negative hybridizations, we

switch to a probabilistic model, where r becomes a random vector whose

distribution depends on T and the assumed error rates. We use a model with

two error parameters: f� denotes the (per probe and target) probability that a

hybridization fails, and fþ denotes the (per probe) probability that a probe

shows a signal although no hybridization should take place. In practice, we

must assume error rates of up to 0.1.

We define Pi :¼fj 2 f1‚ . . . ‚ng : Hij ¼ 1g as the set of probes hybrid-

izing to target i, and T j :¼fi 2 f1‚ . . . ‚mþ jIjg : Hij ¼ 1g as the set of

targets hybridizing to probe j.

For given T, in order to observe no signal at probe j, all of the jT \ T jj
expected hybridizations must fail. Assuming independence between these

failures, this event occurs with probability f jT \T j j
� . Additionally, the probe

must not show a false positive reaction; this event has probability 1 � fþ and

Fig. 1. Left: A small hybridization matrixH. Rows 1–5 define a hypothetical basic hybridization matrix Hbasic, as it would result from a probe selection process.

Rows 6–9 are associated to the internal nodes of the phylogenetic tree B shown to the left ofHbasic. They are computed as strict majority functions and represent

any so far unknown target that could exist in the monophyletic group below the respective node. Right: Seven examples (a–g) of sets of known and unknown

targets and their expected hybridization results (the or of the rows indicated by the target set); see Section 2.4 for details.
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is also assumed to be independent of potential failure events. It follows that

hjðTÞ : � Pðrj ¼ 0 j TÞ ¼ f jT\T j j
� · ð1 � fþÞ‚ ð1Þ

and that Pðrj ¼ 1 jTÞ ¼ 1 � hjðTÞ.
We further assume that all probes react independently, such that the joint

probability that the observed result is a particular vector r ¼ ðrjÞ is given by
the product

Pðr j TÞ ¼
Yn
j¼1
ð1�hjðTÞÞ

rj · ðhjðTÞÞ
1�rj : ð2Þ

For example, assuming fþ ¼ f� ¼ 0:05, the result r ¼
ð1‚0‚1‚0‚1‚0‚1‚1‚0‚1Þ in Figure 1 (Example g) has probability

2:1 · 10�7 if T ¼ f4g and 1:3 · 10�8 if T ¼ fg.
As an example on a larger scale, consider error rates of 10% in an

experiment with 1000 probes and a target set T with a single target covered

by 10 probes. We expect one false negative, nine true positive and 100 false

positive probes. Even though the number of false positives is much larger

than the number of true positives, correct target identification will be pos-

sible in most cases because the false positive probes do not paint a consistent

picture, while the true positive probes do.

2.5 Target set prior

To identify a DNA sample, we are given a realization of r and are asked for

the target set T that best explains the observation. In principle, we could

proceed by a maximum likelihood approach, i.e., attempt to find T* that

maximizes Pðr j TÞ over all T . However, from the example in Figure 1, we

see that this would cause problems for results such as r ¼ ð1‚1‚ . . . ‚1Þ that
have many good explanations. In accordance with our sparseness assump-

tions and Occam’s razor, we prefer a parsimonious explanation (small jTj),
but the likelihood model specified by Eqs. (1), (2) actually prefers larger

target sets.

We thus move to a Bayesian framework and introduce a prior probability

distribution on the potential target sets, defined by a ‘‘prevalence’’ vector

f ¼ ðf 1‚ . . . ‚ f mþjIjÞ 2 ½0‚1/2�
mþjIj

, where fi denotes the a-priori probability

that target i is contained in T, and all target occurrences are assumed

independent:

PðTÞ ¼
YmþjIj
i¼1

f Ti
i · ð1 � f iÞ

1�Ti : ð3Þ

The relative magnitude f i=f k determines how much more likely it is

a-priori to see target i in an unclassified sample than target k. Such ratios

are available for many applications, e.g., the relative prevalences of HIV

subtypes in patients. If nothing is known, a flat prevalence prior may be used

where all fi are equal. The absolute magnitude F ¼
P

i f i should be chosen

such that f i�1/2 for all i, and depending on how many probes are available

to decide reliably on inclusion or exclusion of target i. In practice, we

recommend f i � 0:01 to favor non-inclusion of each target 99-fold over

its inclusion a-priori.

2.6 Decoding hybridization results

Maximum a-posteriori. By Bayes Theorem, the posterior probability of a

target set T given a hybridization result r is

PðT j rÞ ¼ PðTÞ ·Pðr jTÞ
PðrÞ / PðTÞ ·Pðr j TÞ‚ ð4Þ

where PðrÞ is a constant. We are interested in finding sets T � f1‚ . . .,
mþ jIjg that explain r well in the sense that PðT j rÞ is high. For very

small examples, such as the one in Figure 1, we can compute the posterior

for all T directly and find the maximizing set T* by brute force. For example,

assuming error rates fþ ¼ f� ¼ 0:05 and prior prevalences f i ¼ 0:33 for

all i, the two best explanations for the observation r in Figure 1 (Example g)

are T1 ¼ f4g with PðT1 j rÞ ¼ 0:775 and T2 ¼ fg with PðT2 j rÞ ¼ 0:094.

However, since PðT j rÞ is a complicated function of T, direct maxim-

ization seems out of reach for realistically large datasets. Additionally, there

may be several good distinct solutions.

Posterior marginals. For the above reasons, instead of maximizing the

posterior, we estimate the posterior marginals mi :¼PðTi ¼ 1 j rÞ and the

posterior target set cardinality M :¼E½jTj j r� ¼
P

i mi to decide howmany

and which targets are the best candidates for explaining r. In the toy example,

we find that m4 ¼ 0:81 and m2 ¼ 0:06 are the highest posteriors and M ¼
0:95 indicates that we expect slightly less than one target to be present.

In larger problems, we estimate these quantities by Gibbs sampling from

the posterior. The next paragraphs show that this can be done efficiently in

our model.

Gibbs sampling. In our setting, Gibbs sampling consists of a pre-defined

number of rounds, during each of which we update the target set T, which is

initially random. Each round consists of mþ jIj steps, and in step i of each

round we decide whether target ti should be included in or removed from

T by considering the posterior ratio r � riðTÞ defined as follows: If i =2 T,

let Tþ :¼ T [ fig, otherwise, if i 2 T, let T� :¼ T\fig, and let

r :¼
�
PðTþ j rÞ/PðT j rÞ if i =2 T‚
PðT j rÞ/PðT� j rÞ if i 2 T:

In other words, r is the conditional posterior probability ratio of including

and not including ti in the target set, given the observation result r and the

remaining components of the target set.

The update rule is then: If i =2 T, add i to T with probability

PðTþ j rÞ/ðPðTþ j rÞ þ PðT j rÞÞ ¼ r/ðr þ 1Þ (and leave T unchanged with

the remaining probability 1/ðr þ 1Þ). If i 2 T, remove it with probability

1/ðr þ 1Þ(and leave T unchanged with the remaining probability r/ðr þ 1Þ).
In this way, we cycle through all targets in either a fixed or random order

in each round. This defines an ergodic Markov chain on T with the posterior

as stationary distribution, from which we sample the quantities of interest

during S sampling rounds after W warmup rounds to allow for the Markov

chain to converge towards its stationary distribution.

We estimate the posterior marginals as follows. In round t when updating

target i, remember the value p
ðtÞ
i :¼ r/ðr þ 1Þ, where r is computed as

described above. Then our estimate m̂m i for mi is m̂m i :¼ 1
S

PWþS
t¼Wþ1 p

ðtÞ
i ,

and our estimate for the target set size is M̂M :¼
Pm

i¼1 m̂m i.

Efficient computation of r-ratios. A key feature of this procedure is that

the above ratios r can be efficiently computed in each step by taking advan-

tage of the following observations.

Consider an update attempt T Tþ ¼ T [ fig with i =2 T, where, using

Eqs. (1)–(3),

r ¼ PðTþÞ
PðTÞ ·

Pðr jTþÞ
Pðr j TÞ

¼ f i
1 � f i

·
Y
j2Pi

�
1�hjðTþÞ
1�hjðTÞ

�rj

·

�
hjðTþÞ
hjðTÞ

�1�rj

¼ f i
1 � f i

·
Y
j2Pi

f� if rj ¼ 0‚

1 � hjðTÞ · f�
1 � hjðTÞ

if rj ¼ 1

(

¼ ji ·
Y
j2Pi

rj¼1

1 � hjðTÞ · f�
1 � hjðTÞ

‚

where ji :¼ f i
1 � f i

:f jfj2Pi :rj¼0gj
� : Note that in the prior ratio, everything except

the i-th term cancels out, and in the likelihood ratio, all terms related to

probes that do not hybridize to the i-th target also cancel out. The prior ratio

and probability of necessarily false negative probes to include ti in the target

set is summarized in the factor ji. Similarly, for an update attempt T T\fig‚
we have

r ¼ ji ·
Y
j2Pi

rj¼1

1 � hjðTÞ
1 � hjðTÞ/f�

:

The ji can be pre-computed and never change during the sampling phase,

and the remaining product generally has few terms: the relevant probe
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set Pi \ fj : rj ¼ 1g can also be precomputed for every target i and will

generally be sparse.

To evaluate the ratios within the products quickly, we maintain and update

the vector h ¼ ðhjðTÞÞj¼1‚...‚n ¼ Pðrj ¼ 0 jTÞ as defined in Eq. (1); in fact,

we only require the elements hj for which rj ¼ 1. Initially, T is empty, and

hjðTÞ ¼ 1 � fþ for all probes j. When T is enlarged to T [ fig (resp. reduced
to T \fig), we update hj hj · f�(resp. hj hj/f�) for all j 2 Pi with rj ¼ 1.

3 EVALUATION

3.1 Datasets

We evaluate the proposed method on one biological dataset of

organisms from the Meiobenthos and on two simulated datasets.

Summary statistics of the datasets are shown in Table 1. The

simulated datasets were generated with the REFORM (Random

Evolutionary FORest Model) software [Rahmann, 2003b], freely

available at http://gi.cebitec.uni-bielefeld.de/people/rahmann, that

applies an evolutionary Markov process along a phylogenetic tree

(specified in a small modeling language) to a random root sequence.

Simulated dataset bal. We generate 256 targets (leaf

sequences) from a balanced tree as shown in Figure 1 (left). The

tree has four levels below the root, and each internal node has out-

degree four. For the internal branches, the evolutionary time is

1 percent of expected mutations (PEM), for the branches to the

leaves, it is 0.1 PEM. Additionally, there are small insertion and

deletion probabilities (details not shown). This leads to target

sequence lengths between 970 and 1030, generated from a root

sequence of length 1000. In order to have both known and unknown

targets available, we traverse the tree top-down and prune the

second and third child of each (internal or leaf) node we encounter

with 20% probability. We generate 8 instances of this dataset with

different random root sequences and random prunings. This leads

to 146–210 known targets.

Simulated dataset cher. The tree consists of 80 nodes arranged
in a linear chain with an inter-node distance of 3 PEM; see Figure 1

(right). Each chained node has three children in addition to the next

node in the chain at distance 0.2 PEM, and each of these has in turn

three children at the same distance. From the visual impression of

this tree topology, we call this the cherry tree model. The 720 targets

are generated from a root sequence of length 600, and their length

ranges between 580 and 620. To generate unknown targets, the

second child of each node is pruned away from the tree with

40% probability, leading to 527–555 known targets in the 8 gener-

ated instances of the dataset.

Real dataset meio. We use a set of 358 28S rDNA sequences

from different organisms present in the Meiobenthos related by a

phylogenetic tree [Markmann, 2000]. The set contains redundancies

and many close homologs and finding unique probes is difficult

[Schliep et al., 2003, Kaderali and Schliep, 2002]. To generate

unknown targets, we remove the the last leaf child of an internal

node (if more than one exists) with 50% probability. We generated

5 instances of this dataset; in each distance, a different random

target set is removed from the tree (cf. Table 1).

Probe selection. After randomly separating the sequences into

known and unknown targets as described above, we use PROMIDE

to select short oligonucleotide probes for the known targets. We

pick all group-specific (groups were restricted to be of size 50

or below) 19–21-mers with Gibbs free energy between �20 and

�19.5 kcal/mol at 40�C and a salt correction parameter of �2.6,
according to the model parameters from [SantaLucia, 1998]. We

create the extended hybridization matrix of all known targets

against all probes, as described in Section 2.3.

We emphasize that the unknown targets have no influence on the

probe selection process, but after the probes have been determined,

we can of course compute their hybridization patterns. Although

here we might face the problem of unclear signals (long common

substrings), we take the approach that only exact full-length

probe-target matches lead to a signal. The possibility of weaker

cross-hybridization signals is handled by a correspondingly high

false-positive error rate in our error model (up to fþ ¼ 0:10), see
below.

3.2 Hybridization simulations and decoding

Simulations. We performed simulations of hybridization experi-

ments to estimate the efficiency of our approach in detecting both

known and unknown targets. We randomly sample target sets which

are taken as the true result of the experiment. The sampling strategy

is different for sets of known targets, for unknown targets, and

mixed sets.

(1) known: We attempt to correctly detect the empty target set

T ¼ fg and each of the jT j singleton sets T ¼ ftig,
i ¼ 1‚ . . . ‚m, where m varies for each dataset instance. For

target sets cardinalities 2, . . . , 6, we sample 500 random sets

each.

(2) unknown: For each unknown target (each removed leaf from

the original phylogenetic tree), we determine its lowest exist-

ing ancestor in the remaining tree; this is an internal node. As

discussed above, we take this node as a representative of any

1
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1

1

#80
0.2

0.2

3

Fig. 2. Left: Balanced treemodel with 256 leaves. Right: Cherry tree model

with 720 leaves.

Table 1. Summary statistics of the datasets. #Known refers to the number of

known targets in the dataset, #Probes is the number of probe candidates

selected by PROMIDE. #Hybs is the number of 1s in the hybridization matrix

Hbasic. The average number of hybridizations per probe and per target is

shown in the next two columns. Finally, #Unknown denotes the number of

unknown targets. Numbers are averages over the dataset instances

Name Known Probes Hybs H/probe H/target Unknown

bal 181 4038 10557 2.61 58.2 75

cher 539 8536 24485 2.87 45.4 181

meio 302 8837 16439 1.89 54.5 56
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unknown target in the subtree below it. Therefore, ideally, this

node is the target that we would like to detect, although

the hybridization pattern of the unknown target will generally

differ from the ‘‘majority vote’’ pattern of the internal node.

Also, different unknown targets may map to the same node.

Becauseof these inherent difficulties,weonlyattempt todetect

a single unknown target.

(3) mixed: Finally, we attempt mixed sets with exactly one

unknown target and between 1 and 3 known targets. For

each cardinality, 500 random sets are sampled.

For each target set T � f1‚ . . . ‚mþ jIjg, we simulate 10 inde-

pendent hybridization results according to the error model described

in Section 2.4, i.e., for each probe pj, we determine the number of

targets in T to which pj would hybridize and let each hybridization

fail independently with probability f�; finally, there is a probability
of fþ that pj shows an unspecific positive signal. This simulation

was performed once with error rates fþ ¼ f� ¼ 0:05 and again with
fþ ¼ f� ¼ 0:1.
Decoding. We ran our own TPDC decoding software with a

uniform prior f ¼ ðf iÞ, i ¼ 1‚ . . . ‚mþ jIj on all targets such thatP
i f i ¼ 3. The error parameters f� ¼ fþ 2 f0:05‚0:1g were the

same as used in the simulations. In practice, the error rates are not

known and must be estimated. After 200 warmup rounds, the mar-

ginal target posteriors were estimated from the subsequent 2000

rounds; these values were found to be sufficiently accurate when

compared to substantially longer runs. The output consists of a list

of targets sorted by marginal posterior and additional diagnostics.

Only targets with a posterior exceeding 0.001 were included in

further analysis.

3.3 Results

Ideally, we observe exactly the true targets as the top entries of the

list returned by the decoder. Depending on the similarity of hybrid-

ization patterns and on the noise level, we must expect a number of

high-posterior targets that do not belong to the target set. In some

of those cases, the ‘‘offender’’ is likely to be a close relative of the

true target. We take this fact into account in our evaluation.

The success rates of our approach for a total of about 2,292,380

simulated experiments are summarized in Table 2. Simulation

results for the datasets bal, cher are averaged over the 8 instances,

for meio over the 5 instances, over all target set cardinalities, and

over the 10 repetitions of simulated hybridizations.

Our method is able to correctly identify over 94% of known

targets in simulated experiments with realistic error rates. If

there are neither known nor unknown targets present, the maximal

target posterior observed in all repetitions and data sets was 0.15 and

posteriors exceeding the 0.001 posterior threshold were pre-

dominantly (over 95%) below 0.01, implying a negligible false

positive rate. The results for unknown targets suggest that our

simple approach for defining the hybridization pattern of its parent

is not sufficient. There is a jump in performance when also direct

children are counted as a hit. Then, up to 70% of the unknowns were

correctly assigned to their clade in the complete tree. Detailed

summaries for the 2,292,380 simulated experiments are found in

the supplementary material.

4 DISCUSSION

We present an approach for decoding hybridizations experiments

when targets are related by a phylogenetic tree and non-unique

oligonucleotide probes are used in a statistical group testing setting.

Hybridization patterns of internal nodes of the tree are obtained

from leaves based on a majority rule as typical patterns for unknown

targets in the respective subtree. A Bayesian framework combined

with a Markov chain Monte Carlo approach allows efficient and

robust estimation of target posterior marginals.

Our method correctly identifies over 94% of known targets, and

about 45% to 70% of unknown targets were correctly assigned to

their clades in the phylogenetic tree. The lower figures for unknown

targets are explained by the fact that the majority-vote hybridization

patterns of the internal nodes do not (and cannot) match exactly the

hybridization patterns of unknown targets.

We found that our estimate of the target set size jTj matches the

true value in virtually all of the cases when rounded to the nearest

integer. It follows that the rate of falsely identified targets is between

2% and 6% for known targets.

More detailed analysis of the high-ranking targets may improve

the resolution of the method in the presence of unknowns, as we

correctly identify clades but do not provide a statistical test for the

hypothesis that unknowns belonging to this clade are present.

In a practical application of the method, the true target set size jTj
and the error rates fþ, f� for the decoding procedure will be

unknown. However, we can estimate jTj by the sum of the posterior

marginals, and our results show that the method is robust, even for

relatively high error rates, which makes it reasonable to use with

slight overestimates of error-rates, possibly at the expense of less

pronounced posterior magnitudes. For the robustness of the method,

a high probe coverage per target is necessary, and future work may

show to which degree the probe set may be reduced without affect-

ing our ability to detect unknown targets too severely.

Our results on biological and simulated data demonstrate that we

can cope effectively with the incomplete phylogenies available in

practical applications and that the method is robust with respect to

evolution of targets between time of design and time of experiment.

We are not aware of previous studies that consider the problem of

recognizing unknown or fast evolving targets in such a manner.

Table 2. Average fraction of correctly identified true j T j targets (hits)

among the j T j top randed targets given by the decoder for different datasets
(rows) and different types of datasets (columns). For unknown and mixed

datasets, a target is counted as a hit if either either the internal node repre-

senting the unknown target (colums ‘‘Exact’’), or taking a broader view, the

node or its direct children (columns titled ‘‘Fam.’’ for family) are detected

known unknown mixed

Name f+ ¼ f� Extract Fam. Exact Fam.

bal 0.05 0.98 0.38 0.69 0.80 0.89

0.1 0.94 0.36 0.68 0.77 0.86

cher 0.05 0.97 0.11 0.51 0.77 0.84

0.1 0.94 0.11 0.54 0.71 0.83

meio 0.05 0.97 0.08 0.45 0.71 0.83

0.1 0.96 0.06 0.44 0.70 0.82
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