
Fast parallel construction of variable‑length
Markov chains
Joel Gustafsson1* , Peter Norberg1, Jan R. Qvick‑Wester2 and Alexander Schliep2

Background
Comparing biological sequences to identify phylogenetic or functional relations
between species, or assigning DNA to a known species, is still one of the fundamen-
tal problems in biological sequence analysis. An optimal sequence alignment, or
a best approximate match between two sequences, can be computed with dynamic
programming in time proportional to the product of the sequence lengths [1]. As a
response to the enormous growth in the number of DNA-sequences created by High-
Throughput-Sequencing (HTS), advanced algorithms and data structures have been

Abstract

Background: Alignment‑free methods are a popular approach for comparing
biological sequences, including complete genomes. The methods range from prob‑
ability distributions of sequence composition to first and higher‑order Markov chains,
where a k‑th order Markov chain over DNA has 4k formal parameters. To circumvent
this exponential growth in parameters, variable‑length Markov chains (VLMCs) have
gained popularity for applications in molecular biology and other areas. VLMCs adapt
the depth depending on sequence context and thus curtail excesses in the number
of parameters. The scarcity of available fast, or even parallel software tools, prompted
the development of a parallel implementation using lazy suffix trees and a hash‑based
alternative.

Results: An extensive evaluation was performed on genomes ranging from 12Mbp
to 22Gbp. Relevant learning parameters were chosen guided by the Bayesian Informa‑
tion Criterion (BIC) to avoid over‑fitting. Our implementation greatly improves upon
the state‑of‑the‑art even in serial execution. It exhibits very good parallel scaling with
speed‑ups for long sequences close to the optimum indicated by Amdahl’s law of 3 for
4 threads and about 6 for 16 threads, respectively.

Conclusions: Our parallel implementation released as open‑source under the GPLv3
license provides a practically useful alternative to the state‑of‑the‑art which allows the
construction of VLMCs even for very large genomes significantly faster than previously
possible. Additionally, our parameter selection based on BIC gives guidance to end‑
users comparing genomes.

Keywords: Variable‑length Markov chain, Sequence analysis, Parallel algorithms,
Alignment‑free

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Gustafsson et al. BMC Bioinformatics (2021) 22:487
https://doi.org/10.1186/s12859‑021‑04387‑y

*Correspondence:
joel.gustafsson@gu.se
1 Institute of Biomedicine,
Department of Infectious
Diseases, University
of Gothenburg, Gothenburg,
Sweden
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-8147-2074
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04387-y&domain=pdf

Page 2 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

developed. These advancements greatly improve upon the complexity of the basic
dynamic programming algorithm for specific tasks, such as DNA sequencing read
alignment. For example, alignment heuristics employing the Burrows-Wheeler trans-
form [2] allow mapping of gigabases of DNA against large genomes even on modest
computing devices such as laptops. It is a testament to the growth of HTS data that
even faster alignment-free approaches became a necessity for tasks such as analysis of
RNAseq data [3].

Alignment-free approaches consider global aspects of sequences and have been a
standard technique in bioinformatics from the beginnings, for a review see [4, 5]. For
example, it was an early discovery that the GC-content is a discriminating variable when
comparing genomes. Similarly, codon-usage was found to be species-specific [6].

Generalising these observations led to the modelling of global aspects of sequences,
with simple statistics of sequence composition, from i.i.d. models to first and higher-
order Markov chains. These models are generative and their parameters are estimated
by counting words of length k, or k-mers [7]. Normalising probabilities over all k-mers
with the same (k − 1)-mer prefix, gives the probabilities P(xt |xt−k+1xt−k+2...xt−1) of a
k-th order Markov chain; the variables conditioned on are referred to as the context in
the following. Statistics such as the D2-statistic allow comparisons of different k-th order
Markov chains [8] for applications such as clustering [9]. Clearly, k can not be chosen
arbitrarily large as many k-mer counts will be zero, even for large genomes, as the num-
ber of k-mers grows exponentially in k.

Variable-length Markov chains (VLMCs), first introduced by Bühlman et al. [10], are a
data-driven model class that include higher-order Markov chains, but do not prescribe
one fixed context length. Instead, the context length varies depending on the amount of
information the context provides, and how reliably probabilities can be estimated; see
section “Support pruning” for details. Note, that this is in contrast to approaches where
sets of k-mers without an underlying probability model are considered. These often
focus on rare k-mers e.g. for species identification [11]—significantly similar in spirit to
oligonucleotide probes in DNA-microarrays [12, 13]—or compute differences using L1
[14] or Jaccard-distances [15].

The VLMC has been used in a wide variety of applications. Examples include identi-
fication of horizontal gene transfer [16], tracing plasmid origin [17], prediction of indel
flanking regions in proteins [18], and as background for alignment-free sequence com-
parisons [19]. They form an alternative to k-mer set and Markov chain approaches. Note
that they are also widely used outside bioinformatics [20, 21]. Prior work, no longer
available [22], provided an efficient implementation based on lazy suffix trees [23], and a
recent approach based on succinct data structures particularly focused on limited mem-
ory usage [24].

Our contribution consists of a practically fast, multi-threaded implementation of the
lazy suffix tree approach and a hash-based, memory-efficient alternative. To the best of
our knowledge, this is the first parallel implementation for learning VLMCs. We demon-
strate scaling close to the theoretical maximum according to Amdahl’s law on the most
relevant hardware, modern multi-core laptops and personal computers. This extends the
scope of genomes which can be analysed in an alignment-free manner using VLMCs.
To make the manuscript self-contained, we first present the lazy suffix tree idea. This is

Page 3 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

followed by a detailed discussion of our parallel implementation and an extensive valida-
tion demonstrating the computational efficiency.

Implementation
The variable-length Markov chain of a sequence S, is composed of a set of k-mers w,
with counts N(w). Those k-mers are connected through a probabilistic suffix tree. Here,
the sequence S consists of the usual DNA alphabet � := {A,C ,G,T } , but other choices
are possible. Each node in the probabilistic suffix tree corresponds to a k-mer w ∈ �k ,
|w| = k , and contains N(w), the conditional probabilities p(σ |w) for every σ ∈ � , and
references to children of the node. The children of w are the (k + 1)-mers with w as a
suffix. We will use p, i, c to refer to nodes in the tree, where p refers to a parent node of i,
and c refers to a child node of i.

Our construction is based on an algorithm proposed by Schulz et al. [23], which uses
a construction algorithm for lazy suffix trees [23, 25, 26]. Note, the original implementa-
tion of this idea is no longer available [22]. In the suffix tree, in contrast to the probabil-
istic suffix tree, child nodes have the parent as a prefix. However, it is possible to convert
between the two trees via suffix links (see Fig. 1 for a comparison of the two tree types).
For the reader’s benefit, we give a brief explanation of the suffix and lazy suffix tree,
see the original articles [23, 25, 26] for full details. We then describe our parallelisation
scheme and an alternative implementation with better performance.

Suffix tree

A suffix tree is a data structure that sorts and stores a text’s suffixes in a tree, designed to,
e.g., allow linear-time substring queries in a text. Each leaf node in the tree corresponds
to a suffix, and every internal node corresponds to a shared prefix among suffixes. In
addition, every internal node in the tree is branching, so that no node has a single child.

Fig. 1 Illustration of the structure of a suffix and probabilistic suffix tree for the string CACAC. The ’‑’ character
is used to denote the end of the string. We illustrate implicit nodes (nodes with a single child, can be
collapsed with a longer edge) as dashed circles. The dotted edges in the suffix tree illustrate the suffix links,
which in the reverse direction are the edges of the probabilistic suffix tree. The full node label is included for
clarity, and is not stored in each node in the tree

Page 4 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

Each edge in the tree is associated with a label, which when concatenated from the root
to a leaf corresponds to the suffix of that leaf. This tree structure enables fast search que-
ries since searches can be restrained to the relevant branches. A brief description of the
suffix tree data structure from [25, 26] is provided below.

For every internal node i with parent p, the tree contains the edge label from p to i
which enables reconstruction of i’s k-mer w, as well as a pointer to i’s child nodes. The
k-mer is represented by its smallest start and end indices in the text, start (i) and end (i) .
This representation can be further optimised to store a single integer per node by utilis-
ing the longest common prefix lcp (i) , the prefix shared by all nodes in i’s subtree, and,
equivalently w. The length of the lcp (i) is denoted as | lcp (i)| = |w| . The | lcp (i)| is used
here as in [26] to maintain consistency with the construction algorithm given in the sec-
tion “Lazy suffix tree”; in the modern literature this is typically called string depth. For
each node, the tree contains the value node (i) := start (i)+ | lcp (p)| , where p is the par-
ent node of i. To find end (i) , we locate the child c with smallest node (c) , which gives the
edge length between p and i as | edge (p, i)| := node (c)− node (i) = | lcp (i)| − | lcp (p)| .
This holds since the child c with smallest node (c) has the same start index as i,
start (c) = start (i) . This gives the end index of i as end (i) = node (i)+ | edge (p, i)| and
the longest common prefix length of i as | lcp (i)| = | lcp (p)| + | edge (p, i)| . The label of
each edge can then be found with the indices node (i) and end (i) into the text. To recover
start (i) , it is sufficient to know the value of node (i) , and the | lcp (p)| , which needs to be
kept in memory or reconstructed during iteration by finding | edge (p, i)| as described
above. For leaf nodes l, storing only start (l) is sufficient, as the end index is always the
end of the text. The root r of the tree corresponds to the empty string and has the values
node (r) = 0 and | lcp (r)| = 0.

To efficiently find child nodes, all nodes are stored in a one-dimensional vector called
table with children of the same node adjacent to each other. This allows each internal
node i to store only the index of its first child, first_child (i) , in the table. One extra
byte of memory is used to keep track of the last child, stored in a vector called flags. In
the same byte, by using byte flags, nodes are also labeled as leaves. In conclusion, the
data structure uses two integers and one byte for each node i, the values node (i) and
first_child (i) which are stored in the table vector, and the byte flag in the flags vector.

Lazy suffix tree

Constructing the entire suffix tree is not needed for the variable-length Markov chain,
as only a subset of k-mers is of interest. Therefore, we can avoid unnecessary work by
lazily computing a subtree of the suffix tree. The lazy suffix tree [25, 26] thus delays node
construction until explicitly needed. For instance, if an application only needs suffixes
starting with ’A’, it can avoid computing suffixes starting with ’C’, ’G’ or ’T’.

The lazy suffix tree data structure is similar to the suffix tree described previously but
also supports nodes that have not been evaluated. Specifically, each unevaluated node
has to keep track of the suffixes in the node’s subtree. To this end, an additional array
called suffixes is created that contains the start index of each suffix. Each unevaluated
node i is assigned a contiguous range [left (i), right (i)] in the suffixes array, contain-
ing all suffixes with node i’s k-mer as common prefix. The boundary indices left (i) and

Page 5 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

right (i) of an unevaluated node i of this range in suffixes is stored in table, in the place of
node (i) and first_child (i) , and the unevaluated state is stored in the flags vector.

Evaluating a node i requires four steps. First, the algorithm calculates the long-
est common prefix of the suffixes in [left (i), right (i)] . Second, the suffixes are lexi-
cographically sorted with a counting sort (e.g. [27]) by their first character after the
common prefix, and by suffix length. This puts the longest suffix starting with ’A’ (assum-
ing it exists) first in the range and gives a subrange per character. Third, new children
are created. For new unevaluated nodes c, the left (c) and right (c) of their subrange
in suffixes for the corresponding character is appended to the table. For leaf nodes c,
the start of the suffix start (c) is appended. Fourth, we set node i’s values in table to
node (i) = start (i)+ | lcp (p)| , with p as the parent of i, and first_child (i) , the index of
i’s first child.

Initially, the root node r is assigned left (r) = 0 and right (r) = |S| − 1 . The evaluation
of the root node is almost equivalent to every other node, except for node (r) getting a
value of 0.

Note that the algorithm only creates branching nodes. Specifically, only branching
nodes are created since step one above will skip all non-branching (implicit) nodes as a
non-branching node will not correspond to a longest common prefix among the suffixes
in [left (i), right (i)].

The expected time complexity of the algorithm is O(n log n) with n as the length of the
sequence [25]. In the worst case it can reach O(n2) [25]. However, due to the lazy evalua-
tion, it is still fast in practice.

Suffix links

To convert the suffix tree into a probabilistic suffix tree, we use suffix links. These corre-
spond to edges going from uv to v, where u ∈ � and v ∈ �∗ . This is the reverse direction
compared to the parent edges in the suffix tree. We use the suffix link reconstruction
algorithm proposed by Maaß [28].

The intuition behind the algorithm is that for a suffix i, with starting index suf (i) , the
suffix link of i points to the suffix j with suf (j) = suf (i)+ 1 . This next suffix j will be
one shorter and lack the first character. Therefore, if we can find the suffix with that next
index, we can find the suffix links. Note that for leaf nodes/suffixes i, suf (i) = start (i) ,
the extra definition is included to highlight that suf (i) is only defined for suffixes.

The algorithm iterates the tree twice. First, in the prepare step, for a node n with
potential children c the algorithm performs the following recursive steps. If n is a suf-
fix, the value of suf (n) is returned. Instead, if n is a branching node, the algorithm
makes a recursive call to each c, which returns the smallest suf (j) among the suffixes j
of c. From these smallest suf (j) from each c’s subtree, the second smallest is selected,
cause (n) = min2c∈ children (n)minj∈ suffixes (c) suf (j) . Here, min2 refers to the function
that returns the second smallest value. The second smallest value of each child is selected
to ensure that each cause (n) is unique. The uniqueness follows from each suf (j) being
unique, and that only the smallest suf (j) value from each child is used, while the second
smallest is never propagated upwards in the tree. The value cause (n)+ 1 is used as index
to store the node n, and the node’s string depth d, which is equivalent to the | lcp (n)| , in
an array. Finally, the very smallest of all suf (j) among the suffixes j of every c is returned.

Page 6 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

During the second iteration, which is the compute step, the algorithm assigns the suf-
fix links. The tree is traversed depth-first, the latest branching node at each string depth
is recorded in a vector, and when the algorithm encounters a suffix i with a suf (i) value
that was set during the first iteration, a suffix link can be established. The node n, with
depth d, stored at suf (i) is assigned a suffix link pointing to the parent of i at depth d − 1 ,
which is guaranteed to exist since this is a suffix link. The correctness of this follows the
intuition given before. Since the suffix link of a suffix j with suf (j) = cause (n) will point
to i as suf (i) = cause (n)+ 1 , the suffix link from n at string depth d, which is a parent
of j, must point to the parent of i at string depth d − 1 . Note also that every cause (n)+ 1
value from the first iteration will be encountered during the second iteration as every
such value will correspond to a unique suffix in the subtree of the destination of n’s suffix
link. We devise a similar approach to determine the suffix links for the leaves.

Since the lazy suffix tree includes unevaluated nodes, but the suffix link reconstruction
by Maaß [28] is designed only for the standard suffix tree, a slight modification to the
algorithm has been introduced. During the prepare step, when an unevaluated node i is
encountered, the smallest suffix in the subtree of i is determined and propagated up the
tree in the recursion. During the compute step, all suffixes c in the subtree of the uneval-
uated node i are iterated to search for previously stored suf (c) values. However, due to
the symmetric nature of how the probabilistic suffix tree will be built, this last step is not
necessary as all required suffixes will be reached regardless.

The time complexity of the suffix link reconstruction is O(N) with N as the number
of nodes in the tree, which is at most O(n) with n as the sequence length [28]. With the
same argument, the memory complexity is O(n) [28].

Probabilistic suffix tree

With the lazy suffix tree and the suffix links, we can build the probabilistic suffix tree,
which represents the variable-length Markov chain. The tree uses the reverse of the suf-
fix links (the Weiner links) as edges, and the suffix tree’s edges for next-symbol prob-
abilities. We follow Schulz et al. [23] for constructing the probabilistic suffix tree, thus
building the tree in two stages: support pruning and similarity pruning. Between these
two stages, the suffix links are constructed. Figure 2 provides an overview of the data
structures needed for the tree.

Support pruning

The support pruning phase builds the lazy suffix tree by including every k-mer w with
|w| = k and count N(w) that fulfils Eq. (1), namely those that occur at least t times and
are at most L long,

Similarity pruning

The similarity pruning phase removes nodes with similar probability estimates to their
parents (Eq. (3)). This removes redundant nodes from the tree and is a crucial distinc-
tion between a Markov chain and a variable-length Markov chain. The next-symbol
probabilities p̂(σ |w), σ ∈ � of each node are estimated as

(1)N (w) ≥ t and |w| ≤ L.

Page 7 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

Furthermore, we use pseudo-counts, meaning that every N(w) is increased by one to
avoid estimated probabilities of 0. With c ∈ � , and w ∈ �k−1 , nodes with k-mer cw are
pruned by their level of similarity to their parent w in the probabilistic suffix tree, based
on the Kullback-Liebler divergence [29],

Where K is specified by the user. Other options for similarity-pruning than the Kullback-
Leibler divergence are possible (e.g. [30–34]), but is not the focus of this work. However,
they should be easy to implement in our parallel framework.

Implicit nodes

Edges can have arbitrary lengths in the suffix tree, as they can be labelled with multi-
ple characters, and the nodes that are thus excluded are referred to as implicit nodes.
However, the variable-length Markov chain requires edges of length one to explicitly
represent each node. Explicitly representing each node is necessary to include nodes
that would otherwise be cut off by the max depth L, but also allows for pruning parts of
implicit nodes. Therefore, we modify the lazy suffix tree to expand these implicit nodes.
This requires a slight modification to how leaves are stored. Since leaves otherwise only

(2)p̂(σ |w) =
N (wσ)∑
c∈� N (wc)

.

(3)�cw = N (cw)
∑

σ∈�

p̂(σ |cw) log
p̂(σ |cw)

p̂(σ |w)
< K .

Fig. 2 Illustration of the data structures in the variable‑length Markov chain for the sequence CACAC. The ’‑’
character is used to denote the end of the sequence. Above each node in table, we illustrate the node label.
The Right-most and Leaf vectors are in practice stored in a single vector with byte‑flags, which also marks
nodes as unevaluated. The reverse suffix links defines the edges of the probabilistic suffix tree. We do not
include implicit nodes here to make the example less verbose

Page 8 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

require a single integer, but can implicitly contain other nodes, we modify the leaf repre-
sentation to two integers.

We add implicit nodes as any other node in the suffix tree. Specifically, the first child
index is adjusted to a newly added node, and the last such added node contains the index
to the previous child. The node (i) value for each node i is adjusted so that the | edge (p, i)|
is one for every node.

The implicit nodes also require suffix links. After computing these for all explicit
nodes, these suffix links can be found by checking the suffix link of an implicit node’s
parent. For every implicit node i with parent p, p’s suffix link destination j is computed.
One of the children of j has to be the suffix link of i, and to determine which one we
check their corresponding k-mer’s last character. Every other character will be correct
due to the relationship between the two nodes.

Parallelisation of variable‑length Markov chain construction

Our main contribution is the parallelisation of the algorithm, described in further detail
in a thesis report [35]. We focus our parallelisation efforts on the support pruning and
suffix link construction. By profiling the sequential algorithm, we find that these stages
take approximately 92% of the algorithm’s runtime. The other parts include input, out-
put, and similarity pruning, and are excluded from parallelisation. We provide pseudo-
code of the parallel support pruning in Fig. 3.

The design of the lazy suffix tree lends itself nicely to parallelisation. Specifically, each
unevaluated node i is assigned an exclusive subrange [left (i), right (i)] in the suffixes
array, and each node evaluation consists mainly of iterating the suffixes in the subrange.
Almost every part of the evaluation of nodes is independent, except for adding new chil-
dren. When new nodes are added, they are appended to the table vector, where it is cru-
cial that the children immediately follow each other, which thus requires exclusive access
to the table. Afterwards, the resulting k-mer is checked to see if it satisfies Eq. (1), which
can also be done in parallel. If a node does not satisfy Eq. (1), it does not need to be
added to the table.

The lazy suffix tree algorithm does not support removing nodes. Therefore, the var-
iable-length Markov chain requires an additional vector to mark nodes as included or
excluded. Furthermore, the count N(w) of each k-mer w is stored upon node evaluation.
The counts can be computed later, by iterating and counting the suffixes in the subtree of
a node, but we have found that storing the counts saves a significant amount of compu-
tation time, but at the cost of some memory.

To resolve the exclusive access to the vectors, our approach requires two synchro-
nisation locks for the support pruning phase. The first lock is acquired for every node
evaluation, when nodes are added to the table vector. When each node contains a lot
of suffixes, this allows for parallel execution of a large part of the work. However, as the
depth of the tree increases and the number of suffixes for each node decreases, this syn-
chronisation lock significantly impacts the parallelisation potential. The other lock is
acquired when the vector containing node counts is resized, which does not occur on
every node evaluation, and has less of an impact on the parallel performance.

As we build the tree top-down, the granularity of the parallel tasks is controlled by
creating new threads for the first few branching nodes. Each thread becomes responsible

Page 9 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

for evaluating all nodes in its subtree. To maximally use the available cores, we create
new threads for every node at every depth below a user-specified value. The first few
nodes in the tree typically have the largest workloads. Thus, this recursive spawning of
new threads is crucial for the speedup of the algorithm. The root node expansion, which
is the most expensive node evaluation, can be parallelised using other techniques. How-
ever, since it takes a relatively small amount of runtime, this has not been implemented
here.

The number of threads is specified with the user-controlled parameter parallel_depth,
which specifies for how many levels of the tree we spawn new threads (see Fig. 4). For

Fig. 3 Pseudo‑code for the parallel construction of the suffix tree. Nodes are evaluated as described in the
“Lazy suffix tree” section. The add_children function adds children to the table vector. We use the lock keyword
to illustrate where synchronisation locks are needed in the algorithm. We have excluded implicit nodes and
leaf nodes to reduce verbosity

Page 10 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

example, setting the parallel_depth to 1 with the DNA alphabet creates 4 threads, while
a value of 2 creates 4+16 threads, one each for the initial 4 nodes which in turn spawn 4
threads each.

This granularity scheme works best when the average occurrence of every character
in the alphabet is roughly equal. However, it is common for genomic sequences to be
biased, with differing amounts of GC-content, which gives some threads more work
than others. Therefore, to increase CPU utilisation, it might be useful to specify a paral-
lel_depth for more threads than are available on the system.

An alternative to this granularity scheme is to use a worker pool, where each tread
would be assigned arbitrary nodes to evaluate. This could have mitigated the effect from
the imbalance of nucleotide content and allowed the parallelisation to scale to an exact
user-specified amount of threads. However, our approach, in theory, makes it easy to
execute parts of the algorithm on a different machine, as a limited amount of data has
to be copied, specifically, while the full text has to be copied, the suffixes and table vec-
tors could be local to each machine. This requires some more work, and the results from
the different machines would need to be merged. Furthermore, our granularity approach
allows for a slightly better cache-locality as each thread works on a subset of the suf-
fixes. The main source of cache-misses in the algorithm, however, comes from the ran-
dom distribution of pointers in the suffixes array, thus, the better cache-locality of this
approach will have a minor impact overall.

Instead of all threads sharing the table vector, an alternative approach could have had
each thread working on a local table vector. This approach was explored, and while it
decreases the need for locks, the subsequent merge step to join the table vectors and
update the indexes and next-child pointers makes the approach slower in practice.

Parallelisation of suffix link construction

Most of the work per node in the suffix link construction is independent of other nodes.
Specifically, there are no simultaneous accesses to the same memory, and all of the data
structures can be pre-allocated, so there is no need for synchronisation primitives.

Fig. 4 Parallel execution of the construction or iteration of the tree. At every node depth, new threads are
spawned up until a parallel_depth threshold

Page 11 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

However, in contrast to the suffix tree construction, the iteration order is important for
the assignment of suffix links. During the prepare step, we propagate results from chil-
dren to parents with shared memory between the parents and their child evaluations.
During the compute step, the algorithm needs to keep track of the current node’s par-
ents, up to the root node. These parents are stored in an array with an entry per depth
in the tree. Each thread copies the array of parents to every new thread it spawns. This
is the only part of the parallel implementation that requires extra memory. The depth of
the tree is constant as the user provides it as the maximum k-mer length, so the copied
memory is small.

We apply the same granularity approach to the suffix link construction as in the suffix
tree construction. Each subtree rooted at the first nodes is assigned a separate thread,
which computes the corresponding subtree’s suffix links.

Hash map implementation

The parallelisation we have discussed so far requires two synchronisation locks. This is
not an issue at the start of the construction when sorting and counting suffixes takes
some time, but the locks drastically decrease the parallelisation potential for deeper lev-
els of the tree. Therefore, we consider an alternative algorithm where the shared vector is
removed, and k-mers are stored in a hash map instead of a tree. This approach will also
allow us to skip the suffix link construction, which requires a significant amount of time
and memory. We illustrate the algorithm with pseudo-code in Fig. 5.

This alternative algorithm uses a modified version of the lazy suffix tree, to only count
k-mers. Since everything but adding new children to the tree is independent, the goal
is to remove the vector that represents the tree structure. Therefore, this algorithm will
only be useful if the tree is iterated once, and the result stored elsewhere.

We remove the dependence on the tree structure by modifying the iteration process
surrounding the tree construction. Any breadth-first iteration of the lazy suffix tree
requires a queue Q to keep track of the nodes that will be iterated. In the original algo-
rithm, Q contains each node’s index i and the | lcp (p)| , where p is the parent of i. Here,
i is replaced with the indices left (i) and right (i) into the suffixes array. These two indi-
ces are the only requirement to evaluate a node i in the lazy suffix tree, and thus, the
table vector can safely be removed. Having evaluated a node, its corresponding k-mer w,
occurrence count N(w), and next-symbol counts are known, which are stored in a hash
map, although other options are possible. Depending on whether w and N(w) satisfies
eq. (1), the node’s children c are added to the queue Q with their corresponding indices
left (c), right (c) into suffixes, or if they are leaves, the index start (i) into the sequence.
Implicit nodes from the suffix tree are expanded as expected.

For the parallelisation of this alternative algorithm, we do not store the k-mers in a
shared hash map. Instead, they are temporarily stored in a vector per thread. This allows
each thread to fully evaluate its respective subtree without any synchronisation primi-
tives. After the iteration of the tree has finished, all k-mers w with N(w) and probabili-
ties p(σ |w) are added to a hash map. When all threads finish simultaneously, this causes
some threads to have to wait to access the hash map before they can store their results.

Page 12 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

This parallelisation approach requires some extra memory for the thread-local vec-
tors. These vectors store the k-mer w, count N(w), and next-symbol counts. Thus, in
contrast to the original algorithm, there is some memory overhead. However, since
the data is later moved to a shared hash map, it does not have a large impact on the
algorithm’s maximum memory usage.

We use the same granularity scheme as for the lazy suffix tree, where each subtree
up to a given depth is assigned a thread. The temporary arrays where the threads store
k-mers during the iteration are local to each thread and do not require synchronisa-
tion until after the thread has finished iteration of its subtree. Furthermore, since all
children of the suffix tree and probabilistic suffix tree can be found by hash-lookup

Fig. 5 Pseudo‑code for the parallel hash‑map construction of the suffix tree. We use the lock keyword to
illustrate synchronisation locks. The get_children function calculates the bounds of each child in the array
suffixes. We have excluded the details regarding leaves and implicit nodes. Leaves do not need evaluation, so
can be added to kmers as they are found. For implicit nodes, we add one node per edge_lcp

Page 13 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

of the suffix or prefix of w respectively, we don’t need to compute suffix links. This
results in a significant improvement in both computation time and memory usage.

Model selection

The present algorithm has three parameters, the min count (t in eq. (1)), the max depth
(L in eq. (1)) and the Kullback-Leibler threshold (K in eq. (3)). To select appropriate value
of these parameters, while avoiding over-fitting the data, we find optimal parameter set-
tings for each sequence with the Bayesian information criterion (BIC) [36].

Model selection using BIC is well established for variable-length Markov chains [37–
39]. Mächler and Bühlmann [37] assert that model selection with BIC is the best choice
for long sequences based on the theoretical guarantees provided by the BIC. In subse-
quent work, BIC was found to be a consistent estimator for the variable-length Markov
chain [38, 39].

The BIC is based on the likelihood PM(S) of the training sequence S with length |S|
under the model M and penalises the number of free parameters card(M) in the model:
BIC := card(M) log |S| − 2 log PM(S) . The free parameters of the model are based on the
leaves of the probabilistic suffix tree L(M) , which are the k-mers without at least one
child in the tree. Specifically, card(M) := (|�| − 1)L(M) , as the free parameters corre-
spond to the probabilities of the model. The free parameters include only the leaves of
the tree since all internal nodes can be extended to a more specific context and thus are
redundant. This is the same definition as has been used for model selection of variable-
length Markov chains previously [37]. The parameter settings with the lowest BIC score
are referred to as the optimal parameters.

Dataset

We analyzed the performance of the parallelised algorithms on genomes from 12 Mbp
to 22Gbp size, see Table 1, selected from a range of taxonomic classes. This range of
sequence sizes includes almost all sequenced genomes to date, but due to the memory
constraints of our test machine excludes the 6 largest currently sequenced genomes
available at NCBI in 2021-06. We retrieved the genomes from GenBank’s FTP server
and trained one variable-length Markov chain per genome.

Table 1 The genomes used to benchmark the performance of the algorithms

The sequences are selected to represent various domains, with viruses, bacteria, insects, plants and animals represented,
and with an emphasis on sequence length

Organism GenBank identifier Sequence length (bp) GC %

Pandoravirus salinus NC_022098.1 2,473,870 61.72

Sorangium cellulosum GCF_004135735.1 11,261,481 72.58

Drosophila melanogaster (Fruit fly) GCA_004798055.1 133,403,897 42.12

Oryza sativa (Rice) GCA_001623365.2 387,424,359 43.61

Symbiodinium kawagutii (Dinoflagellate) GCA_009767595.1 935,067,369 45.54

Homo sapiens (Human) GCA_000001405.28 3,099,706,404 41.04

Palaemon carinicauda (Crustacean) GCA_004011675.1 6,699,723,695 37.37

Pinus taeda (Loblolly Pine) GCA_000404065.3 22,103,635,615 37.45

Page 14 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

Availability and implementation

Our algorithm is implemented in C++ and uses the SeqAn3 library [40], and the hash-
map implementation from [41]. An open-source implementation of the method is made
available at https://github.com/Schlieplab/PstClassifierSeqan. The data structures are
provided as a header-only library for easy inclusion in other projects. We also provide
command-line applications to train single or multiple variable-length Markov chains
and score other sequences with the negative log-likelihood, and a small Python interface
for training and scoring sequences.

Results
We compare the variable-length Markov chain implementations based on the lazy suf-
fix tree to implementations by Cunial et al. [24], Lin et al. [42], Dalevi et al. [16], and
Bejerano [43]. We refer to the algorithms by the name of their first author, and our
implementations as Tree and HashMap respectively. The Cunial algorithm uses the
Burrows-Wheeler transform to create a memory-efficient index, while the Lin algo-
rithm is based on the suffix-array, and the Bejerano algorithm is based on the suffix
tree. Unfortunately, since the paper introducing the Dalevi implementation focuses on
the statistics, they don’t explain their realisation. Ours is the only parallel implementa-
tion, although parallelisation of the underlying data structures of the other implementa-
tions is possible. The lazy suffix tree construction has previously been demonstrated to
be faster than both the Bejerano and a suffix array version [23], although the imple-
mentation is no longer available [22]. Furthermore, the Lin algorithm, based on the
suffix array, has previously been shown to be three times faster in constructing the varia-
ble-length Markov chain than the Cunial algorithm [24].

The benchmarking was performed in a singularity container on a Debian 10.7 Linux
cluster with Intel® Xeon® Gold 6130 CPUs (16 cores, 2.1GHz, with two CPUs per com-
pute node) and 384 GiB memory. All codes are compiled with GCC 8.3.0 and the ’-03’
and ’-march=native’ compiler options, which are the default in Cunial. We measure
peak memory usage of the construction and scoring steps with the heaptrack pro-
gram, and the running time as the wall clock CPU time, including input and output.

Due to the excessive memory requirements, up to 1000 times more memory than the
others, we exclude Dalevi from further analysis. Similarly, perhaps due to indexing
with 32-bit integers, the Lin implementation only computes results for the two smallest
test genomes. On the smallest genome, it matches, respectively is 4 times slower, than
sequential HashMap for a min count of 10 and 100. The Bejerano is at least 100 times
slower than both the HashMap and Tree even on the smallest genomes, while being
less memory efficient than the Cunial algorithm. Due to these issues, we exclude the
Dalevi, Lin and Bejerano algorithms from further benchmarks.

Model selection using BIC was run on an extended set of genomes of varying sizes
with a grid search of min count (from 2 to 1000) and max depth (from 3 to 18, experi-
mentally determined range, no decrease in the BIC score was observed above 15).
To save computation time, we limit the grid search for longer sequences using the
observed patterns for shorter sequences. The optimal max depth as determined by
BIC for each sequence ranges from 4 to 15, and correlates with sequence size (Fig. 6).

Page 15 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

However, for the min count parameter, there is no clear correlation with sequence
size. To highlight this, we measure the frequency of the 5% least common k-mers
for the optimal parameters, which ranges from 400 to 5000. For shorter sequences,
this frequency exceeds all tested min count values, thus limiting the effect of the min
count parameter. In contrast, for sequences with larger optimal max depths, the min
count setting is important, but is almost always larger than 200, with a single excep-
tion where it is 30.

For the benchmarks, the min count and max depth are set per sequence as determined
by BIC (Table 2). The literature [16, 23, 32] suggest restraining the included contexts
based on their frequency, either through a min count or the relative frequency, as stand-
ard procedure to construct models capable of generalization. Our experiments with
BIC further support that a comparatively large choice for min count guard against over-
fitting. While Cunial does not support min count, it is possible to achieve a similar
effect using the four-threshold estimator [32] implemented in Cunial, but not in com-
bination with Kullback-Leibler. Nevertheless, changing this parameter does not seem
to impact the running time. Following [16, 37], we use a Kullback-Leibler threshold of

Fig. 6 Speedup for the Tree and HashMap algorithms compared to Cunial. With parallellisation, the
Tree and HashMap are up to 91 and 107 times faster than Cunial, respectively. Results for Pinus taeda are
missing in some cases due to insufficient memory on the benchmarking machine, see text for details

Table 2 Optimal parameter settings as evaluated by BIC

 The * denotes where the min count parameter setting does not impact the optimum, as all k‑mers are more frequent than
1000

Organism Min count Max depth

Pandoravirus salinus *5 4

Sorangium cellulosum 300 6

Drosophila melanogaster *2 7

Oryza sativa 400 12

Symbiodinium kawagutii 1000 13

Homo sapiens 800 15

Palaemon carinicauda 1000 15

Pinus taeda 1000 15

Page 16 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

3.9075, which is half of the value of the χ2-distribution at 3 = |�| − 1 degrees of free-
dom and p = 0.05 . This value has been found to be close to optimal using the AIC (a
method similar to BIC) by Mächler and Bühlmann [37], and the setting was also experi-
mentally verified here. We observed large deviations from this threshold value in combi-
nation with min count and max depth gives worse BIC scores.

During construction, both Tree and HashMap are faster than Cunial (Table 3),
but are not as memory efficient (Fig. 8). Moreover, HashMap is faster than Tree and
requires less memory. Compared to Cunial, the sequential Tree is between 3 and 25
times faster, and with 64 threads between 36 and 97 times faster (Fig. 7). The sequential
HashMap is between 4 and 34 times faster than Cunial, and with 64 threads, between
50 and 107 times faster. We observe the smallest speedups for the longest sequences.

Fig. 7 Memory per input character for the construction of each algorithm. Results for the Pinus taeda are
missing for Tree due to insufficient memory on the benchmark server. Overall, Cunial is superior to the
other approaches

Fig. 8 The parallel speedup of the Tree and HashMap algorithms. The speedup is compared with
the theoretically optimal speedup for p = 0.92 given by Amdahl’s law. By profiling, we measured that
approximately 8% of the code is serial and cannot be accelerated, although this number differs somewhat
depending on sequence size and parameters. For short sequences the speedup is small, but longer
sequences have close to optimal speedup. The benchmarking machine has 32 cores, and thus the result for
64 threads illustrates that there are some benefits to scheduling more threads than cores. The HashMap
exhibits better parallelisation speedup overall

Page 17 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

For Pinus taeda, the memory usage surpasses the available memory on the benchmark-
ing machine for Tree (Fig. 8). Furthermore, due to a small memory-overhead for more
threads for HashMap, it exceeds the available memory for 16 and 64 threads. However,
it likely follows the same speedup patterns as the other sequences.

During scoring of sequences, the memory usage of the HashMap version is vastly
superior to the Tree algorithm. The Tree requires the same data structures in mem-
ory as during construction, in addition to the sequence that will be scored. Thus, it
takes ≥ 28 bytes per character during scoring, slightly more than during construction.
However, the HashMap only needs a hash-map in memory, which uses ≤ 1 bytes per
character, much smaller than the other data structures used during construction, but
dependent on the parameters. In total, scoring a sequence with the HashMap algo-
rithm uses about bytes per character. This is comparable to the Cunial algorithm,
which also uses ≤ 3 bytes per character [24]. The runtime of scoring sequences is
the only case where the Tree outperforms the HashMap. For example, scoring of
a sequence with 50 000 characters takes 10ms for the HashMap, but only 4ms with
the Tree. This is between 20 and 100 times faster than the Cunial algorithm on a
sequential run. Similar speeds per character are observed on long genomes (results
not shown). Furthermore, we implement basic parallelisation by either splitting a
sequence and running each piece in parallel, or by running many sequences in parallel
for a linear speedup in scoring time.

The parallelisation speedup during construction of the HashMap is slightly better
than the Tree (Fig. 9). For short sequences, the speedup is small. However, for longer
sequences and 64 threads, the Tree and HashMap achieve a speedup factor of 7.6 and
9.6, respectively. Note that the benchmarking computer only has 32 available cores, so
a larger speedup factor might be possible. These results are compared to a theoretical
optimum, calculated based on Amdahl’s law [44]. This law accounts for the fact that not
every part of an algorithm is parallelisable. Therefore, adding more threads won’t result
in a linear speedup. We experimentally determined the parallelised parts of the algo-
rithms to constitute about 92% of the sequential runtime, although this varies depending
on sequence length and parameter settings. Our algorithms do not reach the theoretical
maximum, but for the longer sequences, the speedup grows roughly at the same speed as

Table 3 Running time in seconds for Cunial, Tree and Hashmap. We denote the number of
threads used for every algorithm in the header

The * denotes cases where the algorithms take more memory than available on the benchmark machine

Cunial Tree HashMap

Organism/#Threads 1 1 4 16 64 1 4 16 64

Pandoravirus salinus 6 0.4 0.1 0.2 0.2 0.2 0.1 0.1 0.1

Sorangium cellulosum 28 1.1 0.6 0.5 0.5 0.9 0.5 0.4 0.4

Drosophila melanogaster 452 24.8 9.8 5.2 4.7 20.8 8.8 5.1 4.2

Oryza sativa 1396 159 45 31 33 96 36 22 18

Symbiodinium kawagutii 3472 451 98 53 46 253 93 44 37

Homo sapiens 13431 1280 574 278 246 1125 438 200 156

Palaemon carinicauda 24624 4188 1893 746 551 4807 1880 709 437

Pinus taeda 82756 * * * * 20804 8895 * *

Page 18 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

the theoretical maximum, up to 16 threads. For 64 threads, the speedup is further from
optimal for all sequences but the Palaemon carinicauda. Notably, the difference between
the theoretical optimum and the observed speedup is smaller for 4 and 16 threads com-
pared to 64 threads (e.g. from 74% of optimum to 66%). The imbalance in workloads for
the different threads due to the GC-content further impacts the speedup, as described
for the Tree algorithm in a thesis report [35].

The values of min count and max depth have a large impact on the runtime of the
algorithms (Fig. 10), related to the number of k-mers in the trees. Specifically, the num-
ber of k-mers grows exponentially with a decrease in min count, for sufficiently large
max depths (Fig. 11, run on the Drosophila melanogaster genome). However, since most
15-mers in this sequence occur more than once, the parameter growth declines as the
min count approaches 1. Also related to the number of parameters, the runtime for
the Tree and HashMap grows exponentially for max depth values between 8 and 15.

Fig. 9 The optimal parameter settings estimated using Bayesian information criterion. The max depth
correlates with sequence size (spearman correlation of 0.94). In contrast, the min count parameter does not
correlate with sequence size (spearman correlation of 0.25), and every k‑mer in the tree at the optimal depth
occurs more frequently than any parameter we test. Therefore, we also include the frequency of the 5% least
frequent k‑mer in the tree. The x axis is log‑scaled. The function fit is a logarithmic function of the sequence
size y = c + log(ax) , with a standard error of 1.67 for the max depth

Fig. 10 Illustration of how the parameters min count and max depth influences the runtime of the
algorithms. For the min count tests, both x and y‑axes are log scaled, and the max depth is set to 31. For the
max depth tests, the min count is set to 10. The parameters are set to include more k‑mers than the other
benchmarks to emphasise the impact of the individual parameters. All results are run with 16 threads on
Drosophila melanogaster. For both parameters, there are portions of exponential growth in run time, and
slower growth, related to the number of included k‑mers. The results are missing for very small min counts
due to insufficient memory

Page 19 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

Similarly, as the min count decreases, the run time initially grows slowly, but past a min
count threshold, the run time grows exponentially. The HashMap behaves better than
the Tree for both parameters but experiences the same general behaviour.

Furthermore, we compare the fraction of cache misses of the algorithms and find the
Cunial algorithm to be vastly superior in this regard (Table 4). For a min count of 10
and above, the HashMap algorithm has fewer cache misses than the Tree, which partly
explains its superior performance.

However, the largest cause of speedup and memory savings for the HashMap com-
pared to Tree is that the HashMap does not need to compute the suffix links. The suffix
links computation takes roughly half of the memory and a significant part of the runtime
of the Tree algorithm. In the HashMap, the suffix links can instead be found with a hash
lookup. Thus, traversing the tree in the HashMap is slightly slower, as evident in the
runtime of scoring sequences, as it requires hashing instead of following a pointer, but it
is much faster to compute than the Tree.

Discussion
We find that constructing the full variable-length Markov chain with the lazy suf-
fix tree is slower than computing k-mers with the lazy suffix tree and storing them in a
hash-map.

Fig. 11 The growth of the number of included parameters at various max depths for Drosophila
melanogaster. The x‑axis is log‑scaled. The number of terminal 15 and 12‑mers in the model grows
exponentially with min count. For smaller max depths, the min count parameter does not influence
the number of parameters beyond a certain threshold, or at all. The growth decreases as the min count
approaches 1 since many 15‑mers (and shorter) are more common than the min‑count, so the parameter
does not influence the inclusion criteria as much

Table 4 Percent of cache misses of the algorithms run on Pandoravirus salinus

Data collected using perf version 5.10.g2c85ebc57b3e counting cache misses and cache references. Cunial is superior to
our algorithms, and HashMap is worse than Tree for a min count of 1, but better in the other cases

Min count Cunial Tree HashMap

1 3.6 50.7 62.9

10 – 32.0 19.5

100 – 15.7 5.5

Page 20 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

Our BIC results give optimal max depths that are larger than those found to be opti-
mal with BIC for higher-order Markov models [45]. These differences probably stem
from a combination of the similarity pruning and the min count parameter, which are
not available for higher-order Markov models. However, it is clear that these parameters
have to be selected on a sequence basis, as the optimal parameter settings sometimes
differ drastically between sequences.

Our parallel iteration strategy creates a thread for every shallow node, responsible for
iterating its corresponding subtree. This strategy comes with the drawback that the opti-
mal number of threads is �d threads, with d as the parallel_depth parameter, for optimal
CPU utilisation. However, it is common for computers not to have 4, 16 or 64 cores,
leading to either over-subscription or under-utilisation of the available cores. Nonethe-
less, we have illustrated that some over-subscription can be beneficial. Moreover due to
the GC-content bias of genomic sequences, it can be beneficial to create more threads
than cores, to make up for the imbalance in workloads.

For short sequences, we don’t observe a large parallel speedup. In these cases, it is
likely more efficient to construct variable-length Markov chains in parallel, instead of
parallelising each construction.

As more unique k-mers are added to the lazy suffix tree, either due to the sequence
length increase or inclusion criteria, the lazy suffix tree’s performance degrades. The lazy
suffix tree has a worst-case running time of O(n2) [26], which is attained on highly repet-
itive strings.

We could reduce our memory footprint by storing the genomic sequence in a bit-com-
pressed vector. This is possible since the DNA alphabet only consists of 4 unique values,
which can be stored in 2 bits, but by default, every character is stored in a full byte.
However, this has a significant runtime impact, roughly slowing down the implementa-
tion by a factor of two. Furthermore, most of the memory usage is due to vectors of inte-
gers used to index the sequence, which can’t be further compressed for long sequences.

However, it is possible to reduce the memory needed for short sequences by changing
the data types of the table and suffixes vectors. These vectors index the entire sequence,
which for large sequences requires 64-bit integers. However, for shorter sequences,
32-bit or 16-bit integers can suffice. We have not analysed the memory savings with
these approaches, but when running many constructions of variable-length Markov
chains in parallel, this might be a necessary optimisation.

Conclusions
With the min count and max depth parameters for VLMCs suggested by BIC to avoid
overfitting, the proposed implementations of VLMC construction greatly improves upon
the (available) state-of-the-art. The excellent scaling of the parallel implementation,
which is close to optimal for very long sequences considering Amdahl’s law, allows the
construction of VLMCs even for very large genomes in a short amount of time. Further
improvements are possible, as it does need to iterate the entire sequence multiple times,
and requires the entire sequence and an additional vector of the same size to reside in
memory. An external memory algorithm in combination with fast local disks might be
a viable alternative. It is noteworthy, that we observe inferior performance from the lazy
suffix tree variant for very long sequences and significant amounts of unique k-mers.

Page 21 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

On a more general note: we resolved the trade-off between frequent k-mers, which
is the main sequence features considered in Markov chains and VLMCs, and unique
k-mers used e.g. for identification of species in environmental samples using BIC.
Clearly, different choices might be reasonable for specific applications. Further investi-
gation of respective strengths and weaknesses in relation to this trade-off might, there-
fore, provide further insights into sequence models, and increase our understanding of
evolutionary footprints in various genomes.

Availability and requirements

Project name: pst-classifier.
Project home page: https://github.com/Schlieplab/PstClassifierSeqan.
Operating system(s): Platform independent.
Programming language: C++.
Other requirements: C++17 compatible compiler.
License: GNU GPLv3.
Any restrictions to use by non-academics: None

Abbreviations
VLMC: Variable‑length Markov chain; HTS: High‑Throughput‑Sequencing; BIC: Bayesian information criterion.

Acknowledgements
The computations handling was enabled by resources provided by the Swedish National Infrastructure for Computing
(SNIC) at NSC.

Authors’ contributions
A.S. conceived and supervised the study. J.G., P.N., J.Q., and A.S. designed the study. J.G. and J.Q. developed and
implemented the method. J.G. and A.S. designed the benchmarking comparison and wrote the initial draft. All authors
discussed, read, edited and approved the article. All authors have read and agreed to the published version of the
manuscript

Funding
Open access funding provided by University of Gothenburg. J.G., P.N., and A.S. acknowledge funding from FORMAS Grant
#2017‑01307. The funding body has not been involved in the design of the study, collection, analysis, and interpretation
of data or in writing the manuscript.

Availability of data and materials
The datasets analysed during the current study are available in NCBI, using the accession ids in Table 1.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests, however, A.S. is an Associate Editor at BMC Bioinformatics.

Author details
1 Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden. 2 Depart‑
ment of Computer Science and Engineering, University of Gothenburg — Chalmers University of Technology, Gothen‑
burg, Sweden.

Received: 20 April 2021 Accepted: 20 September 2021

Page 22 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

References
 1. Smith TF, Waterman MS. Comparison of biosequences. Adv Appl Math. 1981;2(4):482–9.
 2. Li H, Durbin R. Fast and accurate short read alignment with Burrows‑Wheeler transform. Bioinformatics.

2009;25(14):1754–60.
 3. Bray NL, Pimentel H, Melsted P, Pachter L. Near‑optimal probabilistic RNA‑seq quantification. Nat Biotechnol.

2016;34(5):525–7.
 4. Vinga S, Almeida J. Alignment‑free sequence comparison–a review. Bioinformatics. 2003;19(4):513–23.
 5. Vinga S. Biological sequence analysis by vector‑valued functions: revisiting alignment‑free methodologies for DNA

and protein classification. Adv Comput Methods Biocomput Bioimaging. 2007;71:107.
 6. Bernardi G, Bernardi G. Codon usage and genome composition. J Mol Evol. 1985;22(4):363–5.
 7. Roy RS, Bhattacharya D, Schliep A. Turtle: identifying frequent k‑mers with cache‑efficient algorithms. Bioinformatics.

2014;30(14):1950–7.
 8. Torney DC, Burks C, Davison D, Sirotkin KM. Computation of d2: a measure of sequence dissimilarity. In: Computers

and DNA: The Proceedings of the Interface between Computation Science and Nucleic Acid Sequencing Workshop,
held December 12 to 16, 1988 in Santa Fe, New Mexico/edited by George I. Bell, Thomas G. Marr. Redwood City,
Calif.: Addison‑Wesley Pub. Co., 1990.; 1990.

 9. Burke J, Davison D, Hide W. d2_cluster: a validated method for clustering EST and full‑length cDNA sequences.
Genome Res. 1999;9(11):1135–42.

 10. Bühlmann P, Wyner AJ, et al. Variable length Markov chains. Ann Stat. 1999;27(2):480–513.
 11. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.

2014;15(3):1–12.
 12. Kaderali L, Schliep A. Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics.

2002;18(10):1340–9.
 13. Schliep A, Rahmann S. Decoding non‑unique oligonucleotide hybridization experiments of targets related by a

phylogenetic tree. Bioinformatics. 2006;22(14):e424–30.
 14. Mahmud MP, Wiedenhoeft J, Schliep A. Indel‑tolerant read mapping with trinucleotide frequencies using cache‑

oblivious kd‑trees. Bioinformatics. 2012;28(18):i325–32.
 15. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome

distance estimation using MinHash. Genome Biol. 2016;17(1):1–14.
 16. Dalevi D, Dubhashi D, Hermansson M. Bayesian classifiers for detecting HGT using fixed and variable order markov

models of genomic signatures. Bioinformatics. 2006;22(5):517–22.
 17. Norberg P, Bergström M, Jethava V, Dubhashi D, e Hermansson M. The IncP‑1 plasmid backbone adapts to different

host bacterial species and evolves through homologous recombination. Nature Communications. 2011;2.
 18. Al‑Shatnawi M, Ahmad MO, Swamy MS. Prediction of Indel flanking regions in protein sequences using a variable‑

order Markov model. Bioinformatics. 2015;31(1):40–7.
 19. Liao W, Ren J, Wang K, Wang S, Zeng F, Wang Y, et al. Alignment‑free transcriptomic and metatranscriptomic com‑

parison using sequencing signatures with variable length markov chains. Sci Rep. 2016;6(1):1–15.
 20. Sürmeli BG, Eksen F, Dinç B, Schüller P, Tümer B. Unsupervised mode detection in cyber‑physical systems using vari‑

able order markov models. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). IEEE; 2017.
p. 841–846.

 21. Yang J, Xu J, Xu M, Zheng N, Chen Y. Predicting next location using a variable order Markov model. In: Proceedings
of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming; 2014. p. 37–42.

 22. Schultz M;. Personal Communication.
 23. Schulz MH, Weese D, Rausch T, Döring A, Reinert K, Vingron M. Fast and Adaptive Variable Order Markov Chain

Construction. In: Algorithms in Bioinformatics. vol. 5251 LNBI. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p.
306–317.

 24. Cunial F, Alanko J, Belazzougui D. A framework for space‑efficient variable‑order Markov models. Bioinformatics.
2019;35(April):4607–16.

 25. Giegerich R, Kurtz S. A comparison of imperative and purely functional suffix tree constructions. Sci Comput Pro‑
gram. 1995;25:187–218.

 26. Giegerich R, Kurtz S, Stoye J. Efficient implementation of lazy suffix trees. Software Practice Exp.
2003;33(11):1035–49.

 27. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. Cambridge: MIT press; 2009.
 28. Maaß MG. Computing suffix links for suffix trees and arrays. Inf Process Lett. 2007;101(6):250–4.
 29. Bühlmann P. Model selection for variable length Markov chains and tuning the context algorithm. Ann Inst Stat

Math. 2000;52(2):287–315.
 30. Rissanen J. A universal data compression system. IEEE Trans Inf Theory. 1983;29(5):656–64.
 31. Ron D, Singer Y, Tishby N. The power of amnesia: Learning probabilistic automata with variable memory length.

Mach Learn. 1996;25(2):117–49.
 32. Bejerano G, Yona G. Modeling protein families using probabilistic suffix trees. In: Proceedings of the third annual

international conference on Computational molecular biology; 1999. p. 15–24.
 33. Apostolico A, Bejerano G. Optimal amnesic probabilistic automata or how to learn and classify proteins in linear

time and space. J Comput Biol. 2000;7(3–4):381–93.
 34. Dalevi D, Dubhashi D, Hermansson M. A new order estimator for fixed and variable length Markov models with

applications to DNA sequence similarity. Stat Appl Genet Mol Biol. 2006;5(1).
 35. Qvick JR. Parallel construction of variable length Markov models for DNA sequences. Master Thesis, Chalmers Uni‑

versity of Technology. 2020.
 36. Schwarz G, et al. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.
 37. Mächler M, Bühlmann P. Variable length Markov chains: methodology, computing, and software. J Comput Graph

Stat. 2004;13(2):435–55.

Page 23 of 23Gustafsson et al. BMC Bioinformatics (2021) 22:487

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 38. Csiszár I, Talata Z. Context tree estimation for not necessarily finite memory processes, via BIC and MDL. IEEE Trans
Inf Theory. 2006;52(3):1007–16.

 39. Garivier A. Consistency of the unlimited BIC context tree estimator. IEEE Trans Inf Theory. 2006;52(10):4630–5.
 40. Reinert K, Dadi TH, Ehrhardt M, Hauswedell H, Mehringer S, Rahn R, et al. The SeqAn C++ template library for

efficient sequence analysis: A resource for programmers. J Biotechnol. 2017;261(February):157–68.
 41. Ankerl M. Fast & memory efficient hashtable;. https:// github. com/ marti nus/ robin‑ hood‑ hashi ng.
 42. Lin J, Adjeroh D, Jiang BH. Probabilistic suffix array: efficient modeling and prediction of protein families. Bioinfor‑

matics. 2012 04;28(10):1314–1323.
 43. Bejerano G. Algorithms for variable length Markov chain modeling. Bioinformatics. 2004;20(5):788–9.
 44. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. In: Proceed‑

ings of the April 18‑20, 1967, spring joint computer conference; 1967. p. 483–485.
 45. Narlikar L, Mehta N, Galande S, Arjunwadkar M. One size does not fit all: on how Markov model order dictates

performance of genomic sequence analyses. Nucleic Acids Res. 2013;41(3):1416–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/martinus/robin-hood-hashing

	Fast parallel construction of variable-length Markov chains
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Suffix tree
	Lazy suffix tree
	Suffix links
	Probabilistic suffix tree
	Support pruning
	Similarity pruning

	Implicit nodes
	Parallelisation of variable-length Markov chain construction
	Parallelisation of suffix link construction
	Hash map implementation
	Model selection
	Dataset
	Availability and implementation

	Results
	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	References

