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Abstract
City safety technology aims to reduce vehicle collisions using activated warnings
and braking based on automated detection of environmental threats. However, au-
tomatic detection of tentative collisions may differ from driver perception, leading
to false positive activations. This work analyses vehicle on-board sensor suite in
the event of City Safety activations and learns the optimal features responsible for
activation classifications. From the 152 activation events, 8 second multivariate
logs containing 316 signals are mined to achieve around 98% of ROC_AUC score
in event classification. Thus, supervised and semi-supervised classifications signif-
icantly bridge the gap between automated and human perception for autonomous
driving functionalities.

Keywords: Data Science, machine learning, time series analysis, binary classifica-
tion, data pre-processing, feature engineering, thesis.
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1
Introduction

Advances in technology have always influenced human lives and created plentiful
opportunities for boosting effectiveness in many different areas of applications such
as education, manufacturing or business. Besides specific uses in concrete domains,
technologies, if carefully employed, can also lead to an increase in safety. This is in
particular crucial in industries, such as the automotive industry, where the risk for
injuries or casualties is higher than normal.
Nowadays, the automotive industry is moving towards autonomous driving and
Volvo, among other companies like Mercedes-Benz or Tesla, is one of the active
research organisations in this area. However, before an autonomous dream will be
achieved, all its small elements have to be flawless. City Safety is one of them.
In a nutshell, City Safety is a technology introduced by Volvo and is an umbrella
name for a mechanism that aims to reduce car collisions. The system sends a set
of warnings to a driver if an object has been detected in front of a car that may
be the cause of the potential collision. Ultimately, if the driver does not respond
within a sufficient amount of time, the car should automatically brake (auto-brake),
as triggered by City Safety (see Figure 1.1). Hence, if a system has sent a warning
or started to auto-brake, this is understood as a City Safety activation. The area
in front of a car is explored by sensors and cameras. However, on rare occasions, it
may happen that the sensors’ perception of the environment does not correspond to
the driver’s perception. This can lead to City Safety activation that is perceived as
false.

1.1 Goal

The primary goal is to classify with high accuracy whether the City Safety system
was activated correctly (there was a potential collision, and the system activation
prevented it) or incorrectly (there was no potential collision) in a given road event.
A road event is represented by a multivariate time series with a length of 8 seconds.
More information about the data can be found in section 3.4.
The secondary goal is to have a deep understanding of what influences misclassifi-
cations. What are the most significant features that are associated with misclassifi-
cation? Answering these questions will help to improve the system in the future.

1



1. Introduction

Figure 1.1: City Safety visualisation. Source: [47]

1.2 Approach
In this thesis, binary classification of multivariate time series is performed. As most
of the available data is unlabelled, a semi-supervised learning1 approach is used.
This model is named the pseudo-labelling model.
Moreover, two baseline models are constructed for a benchmark against the main
model. The first baseline model outlines how the false events are classified at the
company now. The second baseline model is a simple machine learning model that is
applied to almost unprocessed multivariate time series data. For the sake of clarity,
the first model is called the annotator model, while the second one is called the
baseline model.

1.3 Motivation for this analysis - the annotator
model

Firstly, City Safety activations are mostly analysed upon request at present, when
there is a need to understand the cause for it. This procedure is extremely time-
consuming and inefficient. Human annotation of one event can take up to half of
a working day. Additionally, an annotator needs to be trained beforehand, so that
his/her decision will be consistent and of high quality. Nevertheless, assuming that
the company is already in a possession of such an asset, thus no training or knowl-
edge sharing needs to be done, the accuracy of one event annotation approximates
100%. Such an excellent score is challenging and almost impossible to achieve for an
artificially created classifier. Yet, constructing even a simple algorithm that is able
to predict false activation with fairly good accuracy can act as a helpful counterpart
to human annotation due to significant time reduction.

1The definition of semi-supervised learning is given in Problem chapter.

2



1. Introduction

Secondly, this slow pace of event annotations limits the possibility of grouping false
events with the same root cause. Being able to cluster similar events would make
a good start for improving City Safety system algorithms in the future. Being able
to detect which factors influence false activations is a proactive approach for system
improvement.
Finally, it seems to be interesting to scrutinise existing machine learning techniques
in this problem setup. Using them instead of the traditional approaches may result
in detecting new patterns that are not as easy to be noticeable by humans.

1.4 Research questions
This thesis aims to answer the following research questions:

1. Does machine learning, with all its semi-automatic procedures, achieve better
performance than a simple model constructed with the help of expert knowl-
edge within this field?

2. Does a semi-supervised approach reach better results than a supervised ap-
proach? What are the limitations and assumptions of each of them? What is
the confidence level of each of the approaches?

3. What are the most significant signals for a true/false activation City Safety
system?

4. To what extent can we believe that labelling of unlabelled events using a semi-
supervised approach is adequate? Is the distribution of labelled events a good
indicator of inference about the whole population? Which method is best?

5. What dimensionality reduction method performs the best and to what extent
it provides meaningful and interpretable results?

1.5 Scope
The thesis is organised into several chapters.
The first chapter, Background, describes the related work to this research topic. It
outlines the concept of safety in the vehicles and Auto-Braking and describes the
devices which collect the data. In the second chapter, Problem, Machine Learning
principles and the data used for the analysis is explained in detail. The third chapter,
Methods, gives a summary of methods that are used for the modelling. This includes
the description of data pre-processing methods, the selection of learning algorithms
and an overview of evaluation techniques. In the next part, Results, the outcomes
of modelling are demonstrated and discussed. Moreover, the research questions are
answered. In the end, the future work recommendations are outlined. Finally, the
last chapter, Conclusions, summarises this thesis.

3
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2
Background: Auto-Braking

The purpose of this chapter is to introduce the societal and industrial setting of
the industry, car safety and Volvo’s City Safety System. We indicate current trends
in the industry and characterise sensors that gather data. Last but not least, we
summarise relevant studies and discuss ethical concerns in this research.

2.1 Road Accidents
According to the World Health Organisation (WHO), 1.35 million people die an-
nually in road accidents. Today, road accidents constitute the 9th leading cause of
death and cause 2.2% of all deaths in the world. Additionally, if no action in this
area is taken, WHO predicts that road accident will become the 5th leading cause
of death by 2030 [70].
These are only a few statistics associated with road crashes and their impact on
individuals and societies. Although the aspect of roads safety is complex and there
are usually many factors involved, there is always a common facet - a vehicle. For
these very reasons, keeping roads safe should be the main concern for automotive
companies. Consequently, it is one of the goals of The 2030 Agenda for Sustainable
Development under the 11th goal of Sustainable cities and communities1 [63].

2.2 Safety in vehicles
Within the automotive industry, we can distinguish two types of safety: (1) passive
safety and (2) active safety.
Passive safety is a term that refers to systems installed in vehicles that are called
to action during an accident. Therefore, they are not working while normal driving.
Examples of passive safety systems are seat belts or airbags.
Active safety, on the other hand, is a term that refers to systems that are moni-
toring the vehicle constantly in the background while driving, hence accidents can
be prevented. Examples of active safety system are a driver assistant or a collision
warning system. City Safety is an example of an active safety system.
Experts in the automotive industry agree that passive safety systems have attained
theirs maturity [10]. That means that supplementary improvements in this area are
both expensive and complicated. Therefore, more focus and resources are given for
research in developing active safety technologies nowadays.

1One of the targets under this goal is to increase safety in the roads.

5



2. Background: Auto-Braking

2.3 City Safety System
The City Safety system consists of three levels: Collision Warning, Brake Assistance
and Auto-Brake. As shown in Figure 2.1, each level has a different moment of
activation.
The first level is the Collision Warning. It is activated if there is an object detected
by sensors which aligns with the predicted path of a host vehicle and which may
be a potential threat. If the driver brakes as a response to the Collision Warning,
but not enough to avoid a collision, Brake Assistance amplifies the driver induced
braking (the second level). Ultimately, if there is no reaction from a host vehicle
driver within a sufficient amount of time and a collision is very likely to happen,
then the third level is activated, which is an Automatic Brake (Auto-Brake).
In this thesis, an activation of City Safety is understood if the last level (Auto Brake)
was activated.

Figure 2.1: City Safety. Source: [47]

2.4 Sensor Data Fusion
As stated by Sangorrin et al. [51], active safety system interventions in road events
are automatic, therefore there is a necessity for extremely reliable programs that
estimate a potential collision with high accuracy. According to many researchers in
this area [34], sensor fusion is a prominent technique in this kind of application.
The idea of sensor fusion is quite simple. Vehicles are equipped with various types
of sensors, such as radars, LIDARs or cameras, that explore the area around them.
Radar is a radio waves emitter and is used to detect objects and their speed. A LI-
DAR, on the other hand, is a sensor that uses light for estimating a distance between
objects. A camera records a driver perception and, with the help of classification
algorithms, a camera recording can be used to classify detected objects. Analysing

6



2. Background: Auto-Braking

outputs from each type of sensors separately lacks a comprehensive understanding
of an environment around a vehicle. However, if all of these outputs (called usually
raw data) are employed simultaneously and consciously of own advantages and lim-
itations, the overview of the environment might be enhanced. This step refers to
Data Fusion and requires an implementation of processing algorithms [51].
In this thesis, the analysis is performed on processed data (not raw data from sen-
sors).

2.5 Related work

The research in the Auto-Braking area is conducted on many levels because the
complexity of such systems is relatively high. The first subsection refers to sensors as
they gather signal data and, in this thesis, the modelling uses such data. However, to
give a broader overview of methods discussed in the community, another technique,
hazard analysis, is also presented.

2.5.1 Sensors

As there are different sources of data in the Active Safety system, the analysis of
false Auto-Brake activations can be conducted on several stages. For instance, one
would be interested in investigating sensors data separately. An example of this kind
of approach was presented in 2019 by Saghafi et al. [49]. The researchers aimed to
classify events with and without road accidents that were recorded by dash cameras
in Taiwan. They decided to apply state-of-the-art deep learning techniques to these
video recordings, that is Convolutional Long Short-Term Memory Networks, to im-
age sequence classification. The choice of this method was motivated by preserving
the spatial and temporal relationships. Similarly to this thesis, the authors did not
have a large sample of labelled data.
In contrary to the first example, Kaempchen et al. [29] investigated false active safety
activations in order to propose a new mechanism for an Auto-Brake trigger. They
based their work on a novel approach within the sensor fusion domain, thus different
road scenarios could be addressed (e.g. rear-end collisions, etc.). Deviating from
previous work in this area, they focused on consolidating an orientation of vehicles
when estimating the possibility of collision. This paper provided meaningful insights
on how active safety systems work in detail and which signals may have the highest
influence for a particular road situation.
Last but not least, Rakhshan et al. [45] discussed an important aspect of active
safety systems. Depending on individual driving styles, there may be different brake
response time expected by drivers. For this reason, the authors suggested algorithms
for tuning an active safety system in accordance with the pre-studied estimation of
brake response time distribution. According to their analysis, they managed to
reduce false activations by more than 50%.

7



2. Background: Auto-Braking

2.5.2 Safety analysis using hazard analysis

Safety analysis can be also tested in an engineering approach, such as risk and
hazard analysis. This approach can be employed to evaluate whether an intensively
complex IT system is resistant to hazardous factors that may cause a system failure.
An example of such analysis was published by Sulaman et al. [58]. The authors
compared qualitatively two hazard analysis methods on Forward Collision Avoidance
System (FCA)2 that detect potential system failures. As a result of such hazard
analysis, the system’s components vulnerability can be addressed, so that IT system
reliability is ensured.
In contrast to this thesis, risk and hazard analysis is frequently used before an
IT system is released. As City Safety is already installed in new generation cars,
there is a need for post-release analysis of past events that are represented by data
from sensors. Finding a system’s bottlenecks thought data it generates, can help to
address issues that the existing IT system faces.

2.6 Active Safety - a step ahead

Active Safety systems are only a part of a big picture of trends noticeable in the car
industry. An increasing amount of automation, that is offered to a driver partly to
facilitate a journey, intends not only to provide a reliable Auto-Braking technology
but also to enable fully autonomous driving in the future.
Although attempts of autonomous vehicle development already began in 1920 [54],
providing a vehicle that would act closely as a normal driver was (and still is) chal-
lenging and required advanced algorithms that imitated the normal environment.
Therefore, the rapid development of such vehicles boosted in the last decades [11]
[17] [62], mostly due to simultaneous advancements in computational capabilities,
Image Analysis and Machine Learning.
At the moment, there are four levels of vehicles autonomy [15] distinguished in the
community:

• Level 0: No automation is installed in cars.
• Level 1: Only some specific functions are automated. For instance, braking

assistance. Volvo vehicles with the City Safety system are in this category.
• Level 2: This level requires alignment of two automatic functions, for example,

a lane centring3 and adaptive cruise control4.
• Level 3: Cars are able to operate almost autonomously with limited help of

the driver and convenient transition time.
• Level 4: Fully autonomous cars, no human interaction is needed.

2FCA works the same as City Safety.
3Lane centring is a system that aims to keep a host vehicle in the centre of the lane while

driving.
4Adaptive cruise control aims to keep a safe distance between other road users by manipulating

a host vehicle’s speed.
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2.6.1 Challenges
Despite intensive research and ongoing tests in this area, several issues need to be
addressed before autonomous driving will become part of our lives.
Firstly, autonomous driving needs solid and transparent regulations made by coun-
tries both locally and globally. A wide range of laws has to be reconsidered to
provide a rightful judgement in case of an accident with a driver-less car. For ex-
ample, should it be the same penalty if an accident happens with an unoccupied
car, an occupied car or a car carrying children? How to determine to what extent a
driver has an influence in almost fully autonomous driving? Moreover, the difficulty
in addressing such issues corresponds also how to regulate international law if the
journey of an autonomous vehicle passes through different countries?
Secondly, it is commonly believed that autonomous driving will decrease the number
of accidents. Ideally, it would be true if all vehicles worked accordingly to the
same algorithms, thus there would be no unexpected behaviours in the environment.
However, analysing the current trends and the number of companies that attempt to
develop this technology, an autonomous driving monopoly seems to be quite dubious
to expect. Additionally, driver-less cars will be introduced in cities and highways
gradually, so the autonomous driving algorithms have to be extremely reliable in
order to operate in a semi-automatic environment. This raises the question if this
technology is mature enough to be launched? Moreover, most of these algorithms
are based on continuous GPS readings. Therefore, in the near future only highly
mapped environments will be able to embrace autonomous cars.
Thirdly, with the initiation of autonomous driving, wise steering of economies will
be needed. At the moment, there are around 5 million people in Europe employed
in the transportation industry, working in positions such as a bus, taxi or truck
driver [4]. Although it is said that the autonomous driving cars and trucks will be
instituted gradually, there is a social responsibility of state leaders to govern the
economy is a way to provide the smoothest transition as it is possible.

2.7 Ethics
Data ethics is a novel term in the Data Science terminology [18] that refers to proper
usage of data. According to the ethical principles, data science projects should follow
ten simple rules in order to assure that research is socially responsible. This includes,
for instance, the acknowledge that data is a description of people and can harm, or
the people’s privacy is a virtue [74].
City Safety event data analysis was therefore scrutinised for ethical violations that
could potentially concern the investigation. As the data used for analysis was fully
anonymous, no ethical violations were detected.
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3
Problem: Machine Learning

and Data

In this chapter, we give a detailed description of the problem. In the first part,
the machine learning principles are outlined, so that the later chapters will be more
accessible. In the second part, the data used for the analysis is characterised.

3.1 Machine learning
Machine learning (ML) is an essential part of data science. It is a technique which
aims to discover and learn patterns from historical data and by that predict future
data. As stated by Arthur Samuel in 1959 [50], ML is "Field of study that gives
computers the ability to learn without being explicitly programmed".

3.1.1 Process
A typical machine learning process is composed of several steps. The standard and
high-level process is shown in Figure 3.1.

Problem

Data

Pre-

processing
Train data

ML

 Learning

ML Process

Sufficient 

performance

Insufficient 

performance

Validation

 data

Test data

Score

Figure 3.1: The visualisation of the typical machine learning process.

The first step of the ML process is to formulate a problem. In this thesis, the
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and Data

problem is binary classification, as the algorithm aims to predict only one of two
classes (true or false activation of City Safety).
The second step is to identify the data, such as to provide a proper data structure and
to pre-process the data. The pre-processing is considered to be a time-consuming
and an important phase. It also includes data cleaning, integration, transformation
or reduction.
Once appropriate data is ready for analysis, the data is split into train, validation
and test set. A training set is an input for an ML algorithm. A validation is used
for tuning the parameters and a test set is used for evaluating the classification
performance.
When the training (called also fitting) is finished, then the algorithm parameters
are evaluated on the validation set. If the results are satisfactory, then the learning
is accomplished. Next, the modelling is evaluated on the test set. If the results
on validation sets are not satisfactory, then supplementary improvements can be
applied in order to reach better classification. There are different possibilities of
how to achieve it. For instance, the algorithm’s parameters can be tuned, the pre-
processing techniques can be changed or another ML algorithm can be selected. In
the end, the algorithm’s performance is calculated on the test set. It is especially
important to have the test set for in such iterative process, to avoid data over-fitting.

3.1.2 Algorithms and learning
Algorithms form the central part of ML. Depending on whether labels are available
during training or not, we speak about supervised learning (labels available) or
unsupervised learning (labels unavailable). A common situation in data science
projects is that only some data has labels, whilst the rest (often the majority) does
not. In this case, it is called semi-supervised learning.
Furthermore, depending on a type of output, if it is continuous or categorical, learn-
ing is divided into regression and classification.
Two ML algorithms types are employed in this thesis. The baseline model is built on
supervised learning algorithms, while the pseudo-labelling model on semi-supervised
learning algorithms. The details of these two models are described in the Methods
chapter. Due to the categorical type of output, both algorithms are classification
algorithms, called in machine learning terminology classifiers. As the output val-
ues are limited to only two categories (called classes), we refer to this as binary
classification.

3.2 Data
Volvo is gathering road data from new generation cars where the City Safety mech-
anism are installed. As the main goal in this thesis is to classify the City Safety
activations, the data was limited only to the road situations that triggered City
Safety Auto Brake. One observation xn is called an event in this thesis and is a col-
lection of up to 316 signals i = 1, 2, ..., 316 represented as a time series of 8 seconds.
As shortly mentioned in the Introduction section, the first 4 seconds represent the
time before the system was activated, while the next 4 seconds after it was activated.
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As measurements are done five times per second, every time series constitutes to 40
data points t = 1, 2, ..., 40.
Events have labels y and this results in an output vector yn, where yn ∈ {∅, 0, 1}.
If, for example, y1 = ∅ this means that the event x1 does not have a label.
One event can be expressed by a matrix:

x1,i,t =


x11 x12 x13 . . . x1t

x21 x22 x23 . . . x2t
... ... ... . . . ...
xi1 xi2 xi3 . . . xit



3.2.1 Data characteristics
There are several data characteristics associated with this analysis:

1. In total there are 223 labelled events. Initially, there were only 152 labelled
events available, hence these events were used for the train and validation
sets. After some months since the beginning of work for this thesis, 71 extra
events were annotated. These 71 events were used for testing the algorithms’
performance.

2. If an event has a label, then there are two classes {0, 1} possible in the output
vector y, where {0} implies an incorrect activation and {1} implies a correct
activation. Moreover, there are two events for which a class was labelled as
"Nuisance". This is because according to the system principles the activation
was correct, yet in these particular events the activation was not necessary.
These two cases are treated as "True" events (y = 1).

3. The classes are slightly imbalanced.
4. The length of a time series is fixed (t = 1, 2, ..., 40). The activation of the City

Safety system always occurs when t = 20.
5. Some signals i are missing in some events. This is because different City Safety

upgrades were installed since the beginning of system usage. There are 132
signals that appear in all of the labelled events, and therefore they will be used
for the modelling.

6. Given all described characteristics above, one signal is visualised in Figure 3.2.

3.2.2 Signal description
A wide range of signals is measured with the help of car sensors to evaluate if a car
should auto-brake to avoid a potential collision. Table 3.1 contains the description of
several example signals. Host vehicle refers to the Volvo car with the active safety
system event (see Figure 2.1), while a target object refers to the object which is
detected by sensors and can be a probable threat.

3.2.3 Train-(validation)-test split
Typically in ML projects, the available data is divided into two or three sets: a
training set (the algorithm learns on this set) and a testing set (the performance
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Figure 3.2: Example visualisation of one of the signals over 8 seconds (40 time
stamps) period for all 152 annotated events. The green label indicates the correct
activation of City Safety, while the red label indicates the incorrect activation. The
City Safety system activations occur when time series data point equals 20.

No Signal name Unit Description
1 Lat_acc m/s2 Lateral vehicle acceleration
2 Long_acc m/s2 Longitudinal vehicle acceleration
3 Lat_pos m Lateral position of target
4 Long_pos m Longitudinal position of target
5 Yaw_rate rad/s The vehicle yaw rate
6 Lat_v m/s Lateral velocity of the target
7 Long_v m/s Longitudinal velocity of the target

8 Ass_gain − Gain to multiply driver intended brake
with in safety critical situation.

9 V_tar m/s Velocity of a target.

Table 3.1: Example signals with units and description

of the algorithm is evaluated on this set), and a validation set (for the algorithm’s
parameters tuning). In most articles, if data is split to two sets, usually 70-30
ratio is used, where 70% of data is training data, and 30% is testing data. Setting
the golden ratio for training and testing set is a trade-off between the learning
generalisation and accuracy of prediction. On one hand, the more data is given
for training, the algorithm should learn more or generalise better. On the other
hand, the more observations there are in the testing set, the more comprehensively
the score measures how well the algorithm predicts new observations. If there is
an enormous amount of data available (commonly called big data), the decision of
what split ratio to choose becomes less important. Generally, algorithms tend to
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generalise better if they are fitted on bigger amounts of data.

3.2.3.1 Splitting techniques

Moreover, there exist different approaches of how to split the data into two sets.
For example, some of them aim to select observations in such a way to preserve the
structure of data, while others aim to reduce the variance of a model. A few of the
most common approaches are random splitting, trial-and-error methods or stratified
random sampling [46].
Random splitting is a technique that is most commonly used. Observations are
assigned to one of the sets randomly, thus the algorithm is quite efficient and easy
to implement. In other words, each observation in data has an equal probability
to be assigned to one of the sets. Despite its simplicity, this method has a serious
disadvantage when applied to the data with the unequal class distribution. Random
splitting can lead to an increased variance of the model’s error estimate, as training
data may not capture the data distribution properly [46].
The trial-and-error method is more sophisticated than random sampling. It aims
to reduce the variance of the model’s error estimate by performing multiple random
sampling. Then, the results are averaged, thus the new set properly represents the
characteristics of the data. One of the approaches is to provide a similar mean and
variance to in the new set to the one occurring in the data [9]. This method is
time-consuming and computationally expensive.
Stratified random sampling is a modified random sampling. It aims at dividing ob-
servations based on common attributes in order to preserve the structure of data.
In the beginning, the data is explored and divided into clusters of similar character-
istics. Later, a random sampling from each created cluster. This approach is widely
used in demography, so the structure of the population is kept.

3.2.3.2 Train-validation-test split

As mentioned in 3.2.1, initially, there were only 152 labelled events available. Thus,
in the beginning the data was split to two sets and the train-test split ratio was set
to 70-30, following [67] and [73]. Here, 70% of labelled events constituted to 106
events.
However, as the number of labelled events increased to 223 along with this thesis’
research, a slight modification of train-test data was applied. Therefore, the 30% of
data which was initially used for testing was transformed to the validation set. This
enabled to tune models parameters. Newly labelled events (71 instances) were used
for testing the algorithm’s parameters to provide an unbiased method of evaluation.
In addition, the random splitting was used due to its simplicity. There were 100
random train-validation splits performed (called data setups) to reduce the bias of
a training set. As mentioned above, 71 events were used for testing the algorithms.
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Methods: Algorithms

This chapter describes two ML models: the baseline model and the pseudo-labelling
model. It is organised into four sections: software used, data pre-processing, learning
algorithms and model evaluation. Each of these sections has a specific subsection
that refers to both models.

4.1 Software
Most of the analysis is performed in Python and its packages, such as Pandas [36],
which helps to keep the adequate data structures, Matplotlib [26] and Seaborn [68],
which visualise data or NumPy [65], which is used for mathematical transforma-
tions of the data. In addition, a set of machine learning packages is employed.
scikit-learn [42] provides machine learning pipelines, learning algorithms and de-
composition methods. tslearn [61] is applied in the Baseline model for time series
classification. Feature engineering is performed with a use of tsfresh [14]. Finally,
the implementation of TPOT [40] enables for an automatic search for the optimal
learning algorithm. Addionally, the mRMR scores are calculated in R [44], using
praznik package [30]. To enable R interface within Python environment, the rpy2
package [23] is also employed.

4.2 Models

4.2.1 The baseline model
The baseline model is constructed using simple pre-processing and learning algo-
rithms. There are four variants of the baseline model (see Table 4.1).

Model name Data Pre-processing Input
Baseline_11 + pre-processing yes 11 signals
Baseline_11 + no pre-processing no 11 raw signals
Baseline_all + pre-processing yes 132 signals
Baseline_all + no pre-processing no 132 raw signals

Table 4.1: The baseline model variants

Baseline_11 uses only those 11 signals which are the most relevant according to
a pre-study within Volvo Cars together with a domain expert. It is also the least
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automatic model, as a priori it is based on a limited subset of signals. Therefore, it
could be potentially biased.

Data pre-processing

Data: Labelled multivariate time series data

The baseline model The pseudolabelling model

1a. If Baseline_11 variant:

signal selection based on 

a domain expert

 

Shape: (n=152 events, i=316 signals, t=40 length of a time series)

1b. If Baseline_all variant:

signal selection excluding

missing signals

 

 (n = 152, i = 11, t = 40)

 (n = 152, i = 132, t = 40)

3. 100 random train-val splits 

 

1. Signal selection excluding

missing signals

 

2. Feature engineering

 

3. 100 random train-val splits

 

4. Dimensionality reduction

4a. Feature filtering - relevance

 

4b. Feature filtering - mRMR

 

4c. Feature extraction

 

 (n = 152, i = 132, t = 40)

 (n = 152, i' = 104 014)

 (train: n = 106, i' = 104 014)

 (n = 106, i' = ~12 000)

 (n = 106, i' = ~1 200)

 (n = 106, i' = 100)

The input to the baseline 

model learning algorithm

The input to the pseudo-

labelling algorithm

2. If pre-processing variant:

signals scaling 

 

Figure 4.1: Data pre-processing steps.

In contrast to Baseline_11, Baseline_all uses all 132 signals. Having more input
variables can be beneficial, due to an increased amount of information that a model
may learn from. However, a higher number of variables can also lead to information
redundancy or even increased error rates if a variable is irrelevant. Therefore, these
two variants are constructed to test how differently the number of input signals
affects the classification score.
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In addition, two variants are investigated to explore the effect of input data modifi-
cations (i.e. scaling).

4.2.2 The pseudo-labelling model
The pseudo-labelling model is more automatic in comparison to the baseline one. It
relies on heavy data pre-processing and more advanced learning algorithms.

4.3 Data pre-processing
Data pre-processing is an important step in data science projects as only high-quality
data can properly describe the reality [22]. The data, which is to be applied to a
learning algorithm needs to be screened beforehand in order to exclude redundant,
noisy or irrelevant information that can hinder the modelling. In particular, careful
data pre-processing should be conducted if the sample size is not sufficiently large,
because the distribution of available data may not be a representative sample of
the unknown population of a particular variable. Inappropriate assumptions of
distribution may result in higher error rates when making predictions.
There are multiple advantages of using data pre-processing before modelling. Ac-
cording to [22], data pre-processing benefits a researcher as it helps to understand
the data, can decrease calculation time or algorithmic complexity of modelling and
increase the accuracy of predictive tasks. Depending on the ML task to perform,
different data pre-processing methods can be chosen.
In this thesis, we employ distinct pre-processing methods in both models. They are
outlined in Figure 4.1 and detailed in the following subsections.

4.3.1 Pre-processing of the baseline model
As mentioned in the Problem section, the baseline model uses the raw signals.
The input to this model is a three-dimensional data of a shape of [152, 11, 40] (for
Baseline_11) or [152, 132, 40] (for Baseline_all), where: 152 is the number of events,
11 (132) is the number of signals and 40 is the length of a time series. Pre-processing
is applied to two variants of the baseline model.
Each event is rescaled by its mean and variance in each dimension, according to the
following equation:

∀n=1,2,...,152∀i=1,2,...,11∀t=1,2,...,40rescaled_x = (xn,i,t −meanni)
stdni

, (4.1)

where:
• meanni =

∑
t=1,2,...,40 xn,t,i

40 , and

• stdni =
√∑

(xn,i,t−meanni)2

40 .

As a result, the structure of signals is preserved, whilst the magnitude of data points
in a time series is equal among signals (see Figure 4.2).
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Figure 4.2: The comparison of two raw signals standardisation. Standardisation
reduces the influence of a signal magnitude.

4.3.2 Pre-processing of the pseudo-labelling model

The pseudo-labelling model is constructed based on extensive data pre-processing.
This approach includes feature engineering, feature filtering and dimensionality re-
duction. Each subsection gives a short overview of the pre-processing method used,
and finally, explains how these techniques were applied to the model. The pre-
processing steps are outlined in Figure 4.1. In opposite to Figure 3.1, in this thesis
a slightly modified procedure is applied.
Feature engineering means that new features are created based on raw input data,
whilst feature extraction means to transform input data into another features space.

4.3.2.1 Missing signals and values

As mentioned in subsection 3.2.1, the data is represented by 316 distinct signals
that are collected by the car sensors. Due to different versions of the data recorder,
it may happen that some signals are missing in some events. For this reason, the
first step of data pre-processing provides the same set of signals for each event to
combat the imbalance. This results in shrinking the signal set to the common 132
signals. An example of signal is shown in the subsection 3.2.1 in Figure 3.2.
Moreover, data was assessed with respect to the missing values. No missing values
were detected at this stage.
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4.3.2.2 Feature engineering

Analysing multivariate time series (i.e. three-dimensional data) is challenging and
in some sense limited, as there are not that many models applicable to this kind
of data. Additionally, three-dimensional data may require questioning many prior
assumptions (e.g. ARIMA model assumes stationarity1 of time series) or a vast
amount of computational power that would handle complex algorithms. Last but
not least, consecutive values in a time series very often contain redundancy, because
they are not independent, thus highly correlated to each other [37].
Feature engineering, a technique that transforms the input data to its representative
descriptive attributes [57], solves the issues pointed out above. It enables to reduce
noise or correlation or to compress a time series to a smaller format, therefore only
the most relevant information is kept. According to [37], algorithms operating on
engineered features can also reach better results as well as speed up the computation,
if the appropriate features are engineered. Finally, feature engineering can also make
a model more interpretable.
As motivated above, various features were calculated for each signal and event, using
an automatic feature extraction package tsfresh [61]. Three example features are
shown in Figure 4.3. The calculated features aim at describing multivariate time
series in order to reduce the dimensionality of data.
There are two types of features that are calculated: (1) simple features, which return
a single value; and (2) combined features, which return a set of features depending on
parameters existing in a feature formula. Moreover, features can be also divided into
two groups based on the complexity of formulas: (1) basic features, e.g. minimum,
number of peaks or sum of all squared values in a time series; and (2) complex
features, e.g. entropy, the descriptive statistics of the absolute Fourier Transform
spectrum or auto-correlation. The full list of calculated features is presented in [13].
There are 65 formulas provided in the automatic feature extraction package. How-
ever, many of them are combined features that result in more than one return value.
Given that there are 132 signals of length 40 that are the input for the feature ex-
traction and for each of them the 65 formulas are applied, feature engineering step
produces a vector of 104 014 features for each input event. Nevertheless, many of
these 104 014 features contain null values or infinite values, thus these features are
automatically reduced from the feature space.

4.3.2.3 Dimensionality reduction

The high-dimensionality problem refers to the situation when the number of at-
tributes p (further referred to as features) exceeds the number of observations n
(referred to as events) [21]. As a result of feature engineering, the number of fea-
tures p equals 104 014, whilst the number of events depends on the train-val set
split ratio.
The number of labelled events for training and validating is n = |X| = 152. If,
for instance, applying a train-val split of 70-30 ratio to all labelled events creates a

1In time series analysis terminology, a stationary time series is a time series which is constant
over time. It means that the time series properties, such as mean or variance, are constant if the
time is shifted.
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Figure 4.3: Example features engineered from signals. From two events (one
true event and one false event) four signals were sampled from the signal space.
For these signals, three example features were calculated. Signals were scaled to
facilitate visualisation.
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train set of 106 events (|Xtrain| = 106) and, correspondingly, a validation set of 46
events (|Xval| = 46). Therefore, after the feature engineering step, a severe high-
dimensionality problem is faced, as the number of features exceeds the number of
events in the training set 981 times.
There are two approaches to solve the high-dimensionality problem. The first ap-
proach seeks to find a projection of existing features to a new and smaller feature
space. This technique is known as feature extraction and a common example of it is
Principal Component Analysis (PCA) or Linear Discriminant Analysis. The second
approach aims to reduce the existing feature space by selecting some features based
on specific criteria and is called feature selection.
In this thesis, both approaches have been tested, and the subsequent subsections
describe them in more detail.

4.3.2.3.1 Curse of dimensionality
In the literature, the problem of having an immense number of features in com-
parison to a number of observations is known as the curse of dimensionality. It is
a common problem in contemporary data analysis partly due to advancements in
microelectronics that caused rapid development of competitive sensors, which can
collect cheaply different type of data. Although the increased amount of data can
enhance modelling, it may also happen that pieces of information will be irrelevant
or useless [66].
There are two difficulties in analysing high-dimensional data: (1) features are less
intuitive to understand, as visualised geometrical properties can contradict them-
selves [66]; and (2) many methods, especially linear data tools, are designed for
low-dimensional datasets.
The classical formula that can exemplify this problem is an estimate of covariance
matrix or its inverse [72] in the multivariate statistics. A sample covariance S is
calculated using the formula:

S = 1
n

n∑
i=1

(
X(i) −X

) (
X(i) −X

)′
, (4.2)

where:
• X is a p-dimensional vector of instances (X1, X2, ..., Xp),
• n is a number of independent vectors X, and
• X is a mean value of X.

To calculate the estimate of covariance, the number of parameters which needs to be
calculated equals (p(p+ 1)/2). For n = 106 and p=104 014, estimating a covariance
matrix would require the computation of around 5.41×109 parameters. That would
be an unnecessary computational effort; therefore, a complex feature selection and
dimensionality reduction methods should be applied beforehand.

4.3.2.3.2 Feature selection
Feature selection is a technique to select a subset of relevant features based on
some conditions. It assumes that a selected subset of features properly represents
the whole dataset, thus there is no information loss. There are three groups that
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feature selection methods can be categorised into (1) supervised, (2) unsupervised
and (3) semi-supervised, depending on whether labels are considered during decision
making. Furthermore, supervised feature selection algorithms can be also divided
again into (1) filtering, (2) wrapper and (3) embedded algorithms [60].

4.3.2.3.2.1 Filtering, wrapper & embedding
Filtering selects a subset of features based on a certain property, such as a measure
of consistency, distance, correlation or dependency. The main advantage of this
approach is that filtering algorithms do not rely on a learning algorithm, thus their
bias does not affect the result of feature selection algorithms [60]. Additionally,
filtering methods are considered to be simple and computationally inexpensive [60].
Nevertheless, most of the filtering methods are univariate, which is one of the most
common disadvantages of this approach. Univariate filtering means that each feature
is individually compared to a target variable. Therefore, an interaction between
some features can be omitted [48].
The most common filtering algorithms are: ReliefF [64], that evaluates the distance
between observations with the same label and an average across other labels; Infor-
mation Gain [71], which comes from a family of information theory methods and
aims to select the most informative features based on reduction of an entropy of
observations of the same class; or F-test [19], which comes from a family of class
variation methods and calculates between and within class variation.
The wrapper algorithms evaluate whether to select a feature within a learning al-
gorithm. In other words, subsets of features are chosen as an input to a learning
algorithm. For each chosen subset, the error rates of the learning algorithm are
compared. The smallest error rate of the model indicates which subset of features
is the most informative. There are different methods of how to divide the feature
space into subsets. For instance, all possible combinations can be listed. Although
this approach would give the most comprehensive results, it is very seldom used in
practice due to its high time complexity [32]. Therefore, usually, the modification of
this approach is used, such as Recursive Feature Elimination. This method initially
trains the learning algorithm on all features and then iteratively eliminates features
that are less important. To choose the optimal number of features the error rate is
monitored during iterations [69].
The embedded algorithms bridge filtering and wrapper feature selection methods.
The feature selection process is incorporated in a learning algorithm, hence it com-
monly reaches a higher accuracy compared to previously mentioned approaches [60].
Embedded feature selection method aims to find a subset of features that generalises
data the most. The popular examples of this approach are decision trees or LASSO
with L1 penalty [31].

4.3.2.3.3 Feature selection methods used
In this thesis, the two-step feature selection is employed. Firstly, the number of fea-
tures is reduced by testing statistical significance and, secondly, by an information-
based filtering method.
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4.3.2.3.3.1 Statistical Significance Tests
The first step of feature selection is based on statistical testing. For each feature,
a p-value vector is estimated with respect to the target variable vector. Then, the
significance of p-value is tested, and only significant features are selected.
The p-value of each feature is estimated individually and independently. As the tar-
get variable is binary and features are real, the p-values are evaluated with the help
of the Kolmogorov–Smirnov (K-S) test. The basic variant of this non-parametric2

test aims to compare a sample probability distribution to the reference probability
distribution (one sample K-S). Since in this case there are two possible values of the
target variable, a modified K-S test is applied. In this variant, the data is divided
into two subsets depending on the value of the target vector. For each X variable,
a sample probability distribution of the first subset is compared to a sample prob-
ability of the second subset, hence the separation of classes can be evaluated. The
comparison of distribution is evaluated by calculating a distance between empirical
distributions of both samples [1]. It is a commonly chosen variant, as the shape
and location of two distribution can have a strong influence on a test score. Addi-
tionally, it is worth noticing that this test does not specify what kind of empirical
distribution the samples have, yet if they are alike.
Once a vector of p-values is estimated by the K-S test, the significance of features
is tested using Benjamini-Yekutieli (B-Y) procedure [7]. This procedure estimates
if the null hypothesis (a result of K-S test) can be rejected with the respect to
the ratio between false rejection to all rejection, called a global discovery false rate.
The authors of the B-Y procedure state that this approach is much more power-
ful than traditional procedures, by proving that a false discovery rate (FDR) can
be controlled for independent test statistics. The number of features that can be
considered as irrelevant, yet not rejected by significance testing, is controlled by a
parameter FDR_level and was set to 50% in this thesis.
As the result of statistical tests, the number of features p = 104 014 is reduced to
p ≈ 10 000, depending on the global discovery false rate FDR_level and a train-val
split seed. The global discovery false rate is set to 0.5 in this thesis.

4.3.2.3.3.2 mRMR
As mentioned in 4.3.2.3.2, the main disadvantage of most filtering methods is that
they ignore the interaction between features. An example of such a method is Mu-
tual Information (MI). MI measure evaluates how much mutual dependency exists
between two variables by calculating an entropy. Entropy is a term from Shannon’s
Information Theory and is a quantified uncertainty about an output class [56]. In
this case, each feature is contrasted with the categorised target variable resulting
in a vector of MI scores of the length of a number of features. In contrast to the
traditional correlation method, MI can discover also some non-linear dependencies
[5]. For these reasons, MI is a widely used technique and it provides a base for many
more advanced uncertainty measures.
There are multiple modifications of the MI algorithm and one of them, Minimum
Redundancy Maximum Relevance (mRMR), was used in this thesis. mRMR was
introduced in 2005 by Peng et al. [43]. Similarly to the standard MI algorithm, it

2A non-parametric test does not assume the distribution of a variable.
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uses a dependency criterion to indicate important features. However, in contrast to
the standard MI, it is a multivariate feature selection method. It means that features
are investigated twofold: (1) firstly, the standard dependency is evaluated, hence the
maximum relevance between a feature and a target variable is calculated; and (2)
secondly, the maximum relevance scores are depreciated based on redundancy in
between features, thus less correlation in a feature space is encountered [60]. Since
maximal dependency can be problematic to implement [60], the approximation of
maximal dependency between the joined distribution of variables is performed in
the mRMR calculations.
In this thesis, mRMR was computed using the package praznik available in R. The
algorithm works as follows: (1) the MI score is calculated for all features, (2) the
features are sorted according to the MI score, (3) thereupon, the features are added
iteratively and greedily to the selected features set S based on the maximal value of
the formula below:

J(X) = I(X;Y )− 1
|S|

∑
W∈S

I(X;W ), (4.3)

where:
• X is the training set matrix,
• Y is the target vector,
• J(X) is the MRMR function of the input matrix X,
• I(X;Y ) is the MI function between an input X and a target vector Y,
• S is the set of selected features, and
• W is the feature evaluated per iteration.
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Figure 4.4: The mRMR score per feature. The features were sorted by the score
value, thus the number of features to be selected can be easily approximated for a
cut-off point.

The mRMR scores are within a range of [−1, 1] and the higher the score, the higher
relevance and smaller redundancy of the feature. The mRMR scores per features
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are shown in Figure 4.4. The cut-off point was set to 0 which results in shrinking
the feature space from p ≈ 9500 to around p ≈ 2000, depending on the train-val
split seed and the outcome of the previous feature selection.
To evaluate how well the mRMR filtering algorithm separated data by the target
class, two features which scored (1) high, and (2) low, were plotted. The results are
shown in Figure 4.5.
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Figure 4.5: Class distribution per feature. The left plot visualises the class distri-
bution of a feature which struck one of the lowest mRMR scores, whilst the right
plot - the highest mRMR score. Class distribution is overlapping for the left plot,
while it is separable for the right one.

4.3.2.3.4 Feature extraction
After applying the twofold feature selection method, the number of features p still
exceeds the number of events n. Stricter filtering could cause a higher information
loss, therefore different dimensionality reduction methods are employed thereafter.
As introduced at the beginning of this section, the feature extraction methods aim at
finding the appropriate projection of existing features. The essence of this approach
is to provide new features, called components, that could maintain as much variance
of input features as possible. As a consequence, the components are uncorrelated
with each other [28]. This is the second considerable advantage of applying this
algorithm, with many learning algorithms assuming independent features.

4.3.2.3.4.1 PCA
The standard method within this approach is Principal Component Analysis (PCA).
It was formulated by Karl Pearson in 1901 [41], yet some researchers also refer to
Harold Hotelling who exploited it further and gave a definition in 1930 [28]. Due to
its straightforward mathematical transformation, which enables an instinctive inter-
pretation (most commonly in the form of visualisation), PCA achieved widespread
popularity among statisticians. Additionally, it is also successfully adapted to many
other variants where the application of the classical PCA form is limited.
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Algorithm
In short, the classical PCA algorithm calculates an orthogonal linear transformation
of the input matrix X. Depending on the parameters (i.e. some matrix P , that X
will be multiplied with) chosen during this step, the coordinate system of an initial
matrix X is transformed to a new coordinate system. The new coordinate system
can be the same shape as the old (only matrixX rotation) or smaller (dimensionality
reduction of matrix X). The classical PCA has the following assumptions: linear
correlation between the features, the number of observations exceeding the number
of features and the absence of outliers.

PCA modifications
In case some of the assumptions are violated, the modified PCA can be used. The
non-linear features dependency can be solved, for instance, by the kernelPCA [52].
The term kernel refers to a kernel function, which is a definition introduced in
the mathematical operator theory. In kernel PCA, kernels specify what kind of
dependency is investigated during PCA decomposition.
Another variant of the PCA is the SparsePCA (SPCA). This algorithm overcomes
the shortcoming of the classical PCA which requires each calculated component to be
a linear combination of the p features. Moreover, loadings3 should also be non-zero
[75]. This becomes a problem if a sparse matrix is to be transformed into a reduced
size. For this reason, solving this issue was an active area of research, especially
crucial in the fields where operations on sparse matrices are frequent [75]. Although
the main motivation of this method was to provide a method that will handle the
zero loadings, it also solved another issue of the classical PCA. In the standard
PCA, if the features number exceeds the number of observations, the method will
not be consistent. Thus, another advantage of the SPCA algorithm is that the input
matrix can have high-dimensionality and the result will retain consistency [27].
In this thesis, SPCA was applied to the output of the filtering methods and the
number of components was set to 100.

4.3.2.4 Data transformation - scaling

Many learning algorithms require that input data should be standardised before-
hand.
Standardisation is a technique to transform the raw data into standard and normally
distributed data, e.g. mean equals to 0 and variance equals to 1. Whereas the goal
of the machine learning tasks is usually not to detect the distribution of data, the
shape of the data distribution is ignored. Therefore, raw data is commonly only
centred by subtracting the mean value and then scaled by the standard deviation
value. Mathematically, it can be expressed by the formula:

z = (x− µ)
s

, (4.4)

3A loading is a term used in the PCA terminology that describes a weight of each initial value
of a feature to calculate its principal component.
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where:
• x is the feature vector,
• µ is the mean of the x,
• s is the standard deviation of the x, and
• z is the scaled vector.

The other and yet popular technique is normalisation. Similarly to standardisation,
it transforms the input vector into a modified form by scaling its values to the
range [0, 1]. The values in the input vector are subtracted by the minimum value
and then scaled by the difference between the maximum and minimum value (see
Equation 4.5),

z = x− xmin

xmax − xmin

. (4.5)

Data transformation aims at reducing the variability between features so that the
learning algorithms are not misled by the input values’ magnitudes. It is especially
important if the algorithms depend on distance metrics, such as the Euclidean dis-
tance, to decide how to classify instances. Moreover, scaled features are crucial
for the PCA transformation. The objective of PCA is to reduce the variance be-
tween features and if the features are not scaled, then their variance is also high.
Not scaling the features before the PCA algorithm, would skew the components to-
wards features with large magnitude. Finally, smaller features values can also speed
up computation as less information needs to be stored in the computer temporary
memory [22].
In this thesis, the scaling is performed before statistical test filtering and before
SPCA.

4.3.2.5 Class imbalance

If classes are not balanced we refer to this as class imbalance. Most of the ML
algorithms require or assume a balanced class distribution, therefore applying data
to them before checking this constraint would be a serious error. It is especially
important, if the distribution of classes in highly unequal, sometimes even extremely,
such as 100:1 or 1000:1 [25]. In this thesis, the class distribution of labelled data is
2.4:1, thus it is a moderate class imbalance.
The goal of an ML algorithm is to minimise the objective function, so if this function
does not penalise incorrect classification it may lead to the situation that classifier
will always predict the majority class for new instances. Moreover, sometimes the
cost of incorrect prediction of false and positive class differs. For example, in the
health care domain detecting cancer patients may be more urgent than detecting
healthy patients.
Generally, there are two approaches to handling this dilemma. The first refers to
the data level. It means that unequal classes are artificially re-sampled by under-
sampling the majority class or over-sampling the minority class. Although this is a
fairly simple approach, it has some disadvantages, for instance, the probability of
disregarding some potentially useful data (under-sampling) or to the risk of over-
fitting (over-sampling). The second approach refers to the algorithm level. As
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shortly mentioned before, the objective function of the ML algorithm can have a
penalisation for misclassifying an instance.
In this thesis, the algorithm level of handling the class imbalance was chosen. In
a training phase, that will be described in detail in the next section, the algorithm
sets weights per each class prediction. Therefore, a class prediction probability is
discounted by its weight factor.

4.4 Learning algorithms

Learning algorithms are a fundamental part of machine learning. Choosing a learn-
ing algorithm depends on what kind of machine learning task is performed (e.g.
supervised or unsupervised). For classification in the supervised learning approach,
the purpose of the learning algorithm is to find patterns of the input data, and, in
consequence, to classify the instances. The classification algorithms can be grouped
into the following categories (see Table 4.2).

Classifier Description Example models

Linear
Classifiers

Instances are separated based on the
linear combination of the features. A
hyperplane that isolates instances is
constructed.

Logistic Regression, the
Naïve-Bayes Classifier,
Support Vector Classifier

Quadratic
Classifiers

In contrast to Linear Classifiers, in this
approach instances are isolated by a
quadratic surface.

Quadratic Discriminant
Analysis

Decision
Trees

Instances are grouped into nodes based
on decision rules.

CART, Random Forest
Classifier

Neural
networks
(NN)

A class of instances is predicted by a
complex combination of many ML al-
gorithms and no specific rules. Despite
its increased complexity, NN can han-
dle much more advanced inputs, such
as images or video recordings.

Perceptron, Convolutional
Neural Networks, Recurrent
Neural Networks

Nearest
Neigh-
bours

A class of a new instance is assessed
based on the distance measurement be-
tween k nearest neighbours of the in-
stance.

k-Nearest Neighbours

Table 4.2: The categories of the classification algorithms.

4.4.1 The baseline model - k-NN

The learning algorithm of the baseline model is based on k-Nearest Neighbours. The
basic k-Nearest Neighbours (k-NN) is a straightforward non-parametric algorithm
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which is considered as a lazy learner4. The k-NN pseudo-code is noted in the Algo-
rithm 1.

Algorithm 1 The basic k-nearest neighbours
Require: (Xn,yn, x, k), where Xn is a matrix of n training instances, yn is a label
vector of n training instances, x is a new observation to classify and k parameter
is a number of neighbours
for i = 1 to n do
compute the distance between x and Xi

end for
select k nearest instances around x and calculate how many times each class
occurred x with a majority class label

In this thesis, the modified k-Nearest Neighbours algorithm is used which takes
three-dimensional data (raw time series) as input. Therefore, the distance between
each data point at a particular time point in a time series is compared to the other
data point in another time series.

4.4.1.1 Parameters

There are three parameters which can be chosen in the k-NN algorithm:
• k: the number of neighbours. Usually, an odd number is chosen, so that there

is always one majority class of labels in binary classification. The higher the k,
the simpler class boundary and the noise in data more suppressed. Choosing
the optimal k is not simple, as if too small k is chosen, then the model can
be over-fitted. On the other hand, setting a higher k may lead to model
simplifications. In such scenario, the data will be under-fitted.

• distance metric: a function which calculates the distance between two in-
stances. The common metrics are: Euclidean distance, Squared Euclidian
distance, City-block5 distance or Minkowski distance. To calculate the dis-
tance between time series the dynamic time wraping algorithm (DTW) can be
used as well. This method considers also temporal fluctuations that may vary
in speed. In other words, if there are two peaks in two time series but shifted
in time, the similarity between them should still be relatively high.

• weight function: uniform or distance. The majority vote of neighbours decides
which label to assign to a new observation. If weights are uniform, then each
label has as weight equal to 1, whilst if the weight is distance, each label weight
is discounted by distance factor of neighbours. This promotes the labels that
are nearer to x.

4.4.1.2 Advantages and disadvantages

Notwithstanding the simplicity of k-NN, it is widely used in the community, as it
does not call for any underlying assumptions on the data distribution and is quite

4In data science, a lazy learner algorithm is an algorithm that not have a discriminative function
(called often a model) which after a learning step predicts a class of a new instance.

5Called Manhattan as well.
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intuitive. Moreover, it can relatively easily adjust if new data is added and it does
not require a training step to estimate a model. It can also be applied to the
regression tasks and multi-class classification.
Nonetheless, k-NN also has some constraints and disadvantages. The distance com-
putations become computationally exhaustive if the data dimensionality or the num-
ber of observations is large. Choosing the optimal number of k is also highly depen-
dent on the nature of the data. In addition, the algorithm is sensitive to outliers
and unscaled feature values.

4.4.2 The pseudo-labelling model
Pseudo-labelling is an intuitive semi-supervised technique known also as self-labelling
or self-training [12]. The idea behind it is fairly simple. In the beginning, if labelled
instances are available, the model is trained only on labelled data. Once training is
completed, the model predicts the class of the remaining unlabelled instances. The
output of this prediction is a probability score of the observation belonging to one
of the class. Based on the chosen decision function, some instances are added to
the training data (with a pseudo-labelling class) and the model is retrained. The
procedure is repeated until the user-defined stop criterion, for instance, a fixed
number of iterations.

The Pseudo-labelling Model

Labelled 

data

Unlabelled 

data

Pseudolabelled

data

1. Training only 

on labelled data

2. Predicting labels

of unlabelled data 

4. Retraining the supervised
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3. Selecting a subset of

unlabelled data based 

on a decision function

Supervised 

model

Pseudo-labelling

model

Figure 4.6: The pseudo-labelling model visualisation.

4.4.2.1 Pseudo-labelling

This basic approach is one of the first semi-supervised methods that appeared in the
Information Theory literature around 50 years ago in the publications in [3], [20] or
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[53]. There, the researchers discussed the Bayesian approach of estimating the un-
known parameters of class distributions by repetitively adding new observations to a
statistical model (see Figure 4.6). With the increased exploration of machine learn-
ing techniques, pseudo-labelling algorithm was also applied to deep neural networks.
For example, Lee [33] investigated this approach for semi-supervised classification
of the MNIST handwritten digit dataset [16].
Although the popularity of pseudo-labelling surfaced mostly due to its simplicity,
this approach has several disadvantages. Since the classifier is based on the la-
belled data, the classification error in consequent iterations of the algorithm can be
reinforced. What is more, if the classifier’s objective function is to minimise the
empirical risk, the unlabelled data will not have any effect on the results. On the
other hand, if the objective is to maximise the margin between the separation of
two classes, the boundary will be shifted from unlabelled data [12].

Algorithm 2 Pseudo-labelling
Require: (setup, Ltrain, Lval, U, T, iter), where setup is an index of train-val data
setup, Ltrain is labelled data for training, Lval is labelled data for validating, U
is unlabelled data, T is a threshold for selection, iter is the number of pseudo-
labelling iterations
for i = 1 to setup do
search for the best learning algorithm on Ltrain

return the best learning algorithm for setup
end for
choose several best learning algorithm from the previous loop (selection 1)
for i = 1 to setup do
train on the chosen learning algorithms
return train score of each learning algorithm

end for
select the learning algorithm C for the main pseudo-labelling part (selection 2)
for i = 1 to setup do
for i = 1 to iter do
train classifier C on data Ltrain

predict U
add instances predicted instances to Ltrain if predicted class probability
is higher than T

return evaluate the model on Ltest

end for
end for

4.4.2.2 Model description

In this thesis, a slightly modified pseudo-labelling approach was used. Firstly, due
to the small sample size of the training instances, 100 random train-val data splits
were performed to minimise the bias in data. Then, for each data setup, the opti-
mal learning algorithm was sought. After this step, several (for example 15) best
performing algorithms (evaluated by the score on validation sets) was selected and
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run again on all setups. Once one learning algorithm (classifier C) was chosen, the
prediction on unlabelled data (which was previously pre-processed) was performed
(see the pseudo-code Algorithm 2).

4.4.2.2.1 Learning algorithm search
Hundreds of algorithms are analysed with the help of TPOT package [40], which
automatically scrutinises numerous combinations of learning pipelines6. An auto-
matic pre-processing and model selection is implemented in the package. After
convergence, the package exports one learning pipeline. Due to an extensive brute
force search that finds the best algorithmic architecture, this step is relatively time-
consuming.
Exemplary learning algorithms which are evaluated in this step: Gradient Boosting
Classifier, Naive Bayes Classifier, Random Forest Classifier, Extra Randomised Trees
Classier or k-Nearest Neighbours Classifier.

4.4.2.2.2 Learning algorithm selection
There are two selections performed in the Algorithm 2.
Selection 1: Since 100 train-val setups are created, there are as many best learning
pipelines which are optimised only for a specific setup. Therefore, several of those
are selected and run on all setups. The selection of pipelines is based on the test
score value.
Selection 2: At this step, there are several learning pipelines that are applied to all
setups. The selection of one best pipeline is based again on average val score value,
i.e. the mean value and variance are considered.

4.5 Model evaluation methods
In a supervised binary classification task, there is a wide range of methods to evaluate
how well the chosen classifier performs. There are only two classes (1 and 0)7. Since
the true class of an instance is available, each predicted class can be compared to
the true class. If the predicted class is the same as the true class, it means that the
classifier classified the instance correctly. The sum of all correct predictions over the
number of all prediction is an accuracy score, represented by the formula below;

accuracy = number of correct predictions

number of all predictions
= TP + TN

TP + TN + FP + FN
. (4.6)

There are two forms of correct predictions: true positives TP (when a model predicts
1 and a true class is also 1) and true negatives TN (similarly, the model predicts 0
and a true class is also 0); as well as there are two forms of incorrect predictions: false
positives8 FP (when the model predicts 1 and a true class is 0) and false negatives9

6A pipeline is a term used in Machine Learning which a work-flow of ML algorithms.
7In the literature often a class 1 class is noted as true, and a class 0 as false. Here 1 and 0 are

used to not to confuse with a true (real) label of the predicted instance.
8Known as Type I error.
9Known as Type II error.
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FN (the model predicts 0 and a true class is 1). It is commonly represented as a
confusion matrix (Table 4.3).

PREDICTED = 1 PREDICTED = 0
TRUE = 1 TP FN
TRUE = 0 FP TN

Table 4.3: Confusion matrix

Therefore, if data is imbalanced, it is usually more relevant to use other formulas to
state the predictability of a classifier, such as Precision, Recall, True Positive Rate
(called also Sensitivity), False Positive Rate or Specificity.

Precision = TP

TP + FP
(4.7)

Recall = TP

TP + FN
(4.8)

True Positive Rate = Sensitivity = TP

TP + FN
(4.9)

False Positive Rate = FP

FP + TN
(4.10)

Specificity = TN

TN + FP
(4.11)

The above metrics are preferred if the cost of FP (or FN) is higher/lower than of
FN (or FP ) so that some wrong predictions are more acceptable than the others.
Additionally, since in some projects the trade-off between them is needed, another
broadly used metric is a F1 score. It is a harmonic mean between the precision and
recall scores;

F1 = 2 · precision · recall
precision+ recall

. (4.12)

Furthermore, since most of the classifiers do not explicitly return one class, but
a probability score of belonging to one of two classes, a classifier selects a class
depending on a cut-off threshold. For example, initially, a true instance can be
predicted as 40% probable to be 0 and 60% probable to be 1. If a cut-off threshold
is 50%, then the instance will be predicted as 1. However, the default threshold is
changed to e.g. 30%, then the same instance will be predicted as 0. Different values
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Figure 4.7: ROC Curve. The shape of the curve illustrates Sensitivity vs. False
Positive Rate (100− Specificity) for different values of a cut-off threshold. Ideally,
if there is a complete class separation, the curve passes through the upper left corner
(the green line). If the ROC curve shape is asymmetric, it means that distributions
of False Positives and False Negatives represent unequal widths [35] (slightly the
orange line). A blue line indicates a random classification.

of this threshold are used, for example, if there is a slight class imbalance in the
training set. Thus, the random guess of the class equals is not biased.
The diagnostic of how the threshold affects the classification performance is depicted
by the Receiver Operating Characteristic curve (ROC curve) (see Figure 4.7).
When comparing multiple models, the analysis of many ROC curves becomes hardly
possible. Therefore, in practice, the Area Under Curve (AUC) score is calculated.
It is an integral of ROC which takes values of the range [0, 1] and the larger the
value of AUC, the better the algorithm performs.
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5
Results: Models Comparison

In this chapter, we examine the results of the two models. The first section in-
troduces the results of the baseline model, whilst the second section describes the
pseudo-labelling model’s results. Afterwards, we discuss the results in terms of ef-
fectiveness, limitations and usage. Furthermore, research questions are reviewed.
Finally, we suggest further research directions and discuss the issues raised during
the thesis defence.

5.1 Baseline model
As mentioned in the Methods chapter, there were 3 parameters1 tested in the base-
line model’s learning algorithm (which was k-NN). Each distance metric, weight
function and k in the k-nearest neighbours classifier was investigated in 100 data
setups (of the split ratio 70-30) and in four baseline variants. The classification
results performed on the validation sets for 100 data setups are shown in Figure 5.1,
Figure 5.2 and Figure 5.3. The value of the ROC_AUC score was used to evaluate
performance of different parameters setting. In the end, the overall performance of
the chosen parameters is calculated based on additional 71 test instances.

5.1.1 Parameters tuning
This section refers to the parameters tuning on 100 validation sets.

5.1.1.1 Parameters k and distance metrics

Figure 5.1 depicts the ROC_AUC scores of four variants of the baseline model2 with
respect to the parameter k and the distance metric.

City-block metric vs. other metrics
The City-block metric tends to perform best in the Baseline_11 + no pre-processing
variant. It reaches around 90% of mean ROC_AUC score for small values of k
(k ∈ {3, 5}). When increasing k, the performance drops to around 87% of the mean
ROC_AUC score (for k = 21). Yet, it still surpasses the other tested parameters and
model variants. Additionally, the training on raw data using this metric seems to be
more stable than using other metrics. The box-plot whiskers are within the range of

1The number of k neighbours, the distance metric and the distance weight function.
2The models are: Baseline_11 on unscaled data, Baseline_11 on scaled data, Baseline_all on

unscaled data and Baseline_all on scaled data.
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Figure 5.1: Four baseline model variants. The box-plots of the ROC_AUC scores
tested against different k numbers and distance metrics.
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73-100% of the ROC_AUC score, regardless of the value of k. By comparison, the
DTW metric’s whiskers are within the range of 52-98%. Interestingly, generally, the
City-block metric does not perform better than other metrics (Euclidean, Squared
Euclidean, DTW) if the training is done on pre-processed data.

Baseline_all vs. Baseline_11
The ROC_AUC scores of the Baseline_all variants (both with and without pre-
processing) are on average lower than the corresponding ones in the Baseline_11
variants. That means that including additional information in the Baseline_all
did not improve the performance. The highest mean value of ROC_AUC score
for the Baseline_all variant is around 87% for the City-block metric, while for the
Baseline_11 variant it is around 90%.

Data pre-processing vs. no data pre-processing
All tested metrics seem to achieve similar results on the pre-processed data in both
Baseline_11 and Baseline_all variants, ranging in the values of ROC_AUC score
from 70% to 80% (depending on the k number). Additionally, the City-block metric
appears to be more sensitive than other metrics in the higher dimensions (Base-
line_all variant) and higher k numbers, as the mean value of ROC_AUC score
for k = 21 is lower by 5 percentage points than the corresponding value for other
metrics.

Euclidean vs. Squared Euclidean metric
The difference between Squared Euclidean and Euclidean distance is that Squared
Euclidean metric does not take a root of a distance between two datapoints. Thus,
in a basic k-NN algorithm, the results of these two metrics should be the same as
if |x| > |y| then |x|2 > |y|2, assuming the same random data splits for two metrics.
However, there are some minor differences between these two metrics visible in
Figure 5.1 due to class weight calculations. Also, in this thesis the modified k-NN
algorithm is used, which takes a time series data format as the input.

Small k values vs. higher k values
Finally, although small values achieve better results (across all metrics), choosing
the parameter k to equal 3 or 5, poses a risk of over-fitting the model. The small k
values create a complex decision boundary of the classification. If the training data
is noisy, the model will not generalise well on the testing data.

5.1.1.2 Distance metrics and weight functions

Figure 5.2 illustrates how different distance metrics and weight functions affect the
ROC_AUC score of the four variants of the baseline model. As choosing the op-
timal value of parameter k is relatively hard, its value was ignored in this section.
Therefore, the remaining two parameters can be discussed.

Uniform vs. Distance weight function
Generally, there is no much discrepancy in the ROC_AUC score between uniform
and distance weight functions per metric and model variant. Especially, the scores
are nearly identical for the Baseline_all + pre-processing variant. Nevertheless, the
distance metric seems to slightly outperform the uniform one, for instance for the
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DTW metric in the Baseline_11 + no pre-processing, where the difference between
the mean value of uniform and distance weight is around 2 percentage points.
Moreover, there are fewer outliers in models with the distance weight function, as
well as the boxplots’ whisker range is usually smaller in models with the uniform
weight function.
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Figure 5.2: Four baseline model variants. The box-plots of the ROC_AUC score
tested against different distance metrics and weight functions.

5.1.1.3 Parameters discussion for the Baseline_11 model

The Baseline_11 variant, the model which input data was reduced to only 11 most
influential signals according to the domain expert, averagely performs better than
the Baseline_all. Hence, further analysis was limited only to this model.

5.1.1.3.1 Weight function
As shown in Figure 5.3, the difference in performance between the uniform and
distance weight function gets reinforced with the increased number of k parameter
for all tested metrics.
Although both weight functions perform quite similarly, it seems that the distance
weight function should be chosen for modelling over the uniform one. This weight
function is more stable since the mean value of ROC_AUC score does not drop
as much as for the uniform weight function when increasing k. Additionally, the
whisker range is usually lower for this weight function than for the uniform weight
function.
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Figure 5.3: The Baseline_11 + no pre-processing variant in four different metrics.
The box-plots of the ROC_AUC scores tested against different k numbers and
weight functions.
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5.1.1.3.2 Distance metric
As partly discussed in the previous subsection, the City-block metric models the data
with the highest efficiency. Regardless of the weight function or the k parameter,
the mean value of ROC_AUC score oscillates around 88-90%, having also relatively
lesser fluctuations in range in comparison to the Euclidean or the Squared Euclidean
metric.

5.1.1.3.3 Parameter k
There is not much fluctuation of the mean values across the ROC_AUC scores for
all tested k parameters for the distance weight function and the City-block metric.
These values range from 87% to 90%. Undoubtedly, smaller k values, such as k = 3
or k = 5, are superior. Nevertheless, k = 3 seem to over-fit, on account of the higher
whisker range in comparison to the one of k = 5. Thus, the optimal number of k,
based on visual analysis, is chosen to be 5.

5.1.2 Train-val split ratio
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Figure 5.4: The Baseline_11 + no pre-
processing variant for different train-val
split ratios.

Last but not least, the best variant of
the baseline model (Baseline_11 + no
pre-processing) was examined for the
different train-val ratio split (see Fig-
ure 5.4). Two train-val splits were in-
spected: 70-30 and 60-40, where the
first number corresponds to the train-
ing size fraction. Likewise, the same
parameters, i.e. the distance weight
function, the City-block metric and the
k = 5 nearest neighbours, were applied
to both splits.
As illustrated in Figure 5.4, the mean
value of ROC_AUC score is higher for
the 70-30 split. In addition, the mean
value in this split deviates slightly more
from the median (compared with the 60-
40 split), which can be caused by the
low value of the outlier. Similarly, the
width of boxes for both splits seems to
be alike, yet a little shifted down for the
60-40 split. Finally, the whiskers range is wider for the 60-40 split.
In conclusion, having less data to train the model weakens the performance (the
mean of ROC_AUC score dropped by 2 percentage points) and makes it slightly
less stable (the whiskers range increased by 2.5 percentage points).
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5.1.3 Testing
Finally, testing data was predicted on Baseline_11 + no pre-processing model for
the chosen parameters. The mean accuracy for different train-val splits was 82%
and the whiskers range was within 76%-90%. The mean ROC_AUC score was 57%.

5.2 The pseudo-labelling model
The pseudo-labelling model was based on extensive data pre-processing which firstly
transformed the multivariate time series into the engineered features and, subse-
quently, into the variance-free components.

5.2.1 Parameters
The Gradient Boosting (GB) classifier was applied to the components of the pseudo-
labelling model. It is an ensemble method combining several weak learning algo-
rithms to create a single better learning one.
The GB algorithm has multiple parameters to tune. As stated in the Methods chap-
ter, they were examined by the Automated Machine Learning Tool TPOT package.
The parameters chosen are shown in Table 5.1.

Parameter Value
learning_rate 0.1
max_depth 4
max_features 0.05
min_samples_leaf 14
min_samples_split 16
n_estimators 100
subsample 0.95

Table 5.1: The parameters chosen for the GB algorithm.

5.2.2 Iterations
Firstly, the algorithm was implemented only on the labelled data. For each setup,
30% of data was left to validate the classifier performance (the base iteration).
Secondly, the classifier predicted the class of the unlabelled data3. Based on the
score of the certainty measure, some pseudo-labelled instances were appended to
the training set and, then, the model was refitted. Accordingly, the performance of
the classification was evaluated on the val set (the 1st iteration).
Finally, the class of the remaining (i.e. not added to the training set in the 1st
iteration) unlabelled instances was again predicted using the model from the 1st
iteration. Similarly, some instances were added to the training set, the model was

3To which the same pre-processing techniques were applied to beforehand.

43



5. Results: Models Comparison

again refitted and the correctness of predictability was examined on the val set (the
2nd iteration).
The results of the pseudo-labelling model for the validation sets are depicted in
Figure 5.5. The ROC_AUC scores are used to compare the model efficiency.
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Figure 5.5: A comparison of different training approaches evaluated by ROC_AUC
score on the val set. Train-val split ratio: 70-30, threshold value: 99%. The box-
plots are grouped by the number of pseudo-labelling iterations. The base approach
refers to the standard training only on labelled instances. Once the initial (base)
iteration is applied, new and pseudo-labelled instances are appended to the training
set and the model is retrained. If the same weights as in the base iteration are used,
then it is a retrain approach. In case the model weights are initialised (set to 0),
it is named an init approach. The init+shuff approach refers to the training where
the model weights are initialised and instances are shuffled.

The evaluation of the base iteration
As illustrated in Figure 5.5, the pseudo-labelling model achieves high classification
precision on the validation data. The mean value of ROC_AUC scores totals to
98%, while the lower whisker of the box-plot is slightly higher than 94.5%.

The evaluation of the iterations
The classification accuracy of the pseudo-labelling model does not improve after
addition of the pseudo-labelled observations, as the mean (or median) value of 1st
or 2nd iteration does not exceed the mean (or median) value of the base iteration.
However, the drop in the ROC_AUC score between the base and the 1st iteration
(for all learning approaches) is smaller than 0.5 percentage point. Correspondingly,
the drop between the base and the 2nd iteration is around 1 percentage point.
Although there are more outliers in the 1st and 2nd pseudo-labelling iterations than
in the base iteration, the modelling seems to be relatively stable.
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The evaluation of the training approaches
There were different manners of adding new instances to the model and retraining
it. However, the differences in accuracy between these approaches are relatively
diminutive.

5.2.3 Thresholds and train-val split ratio
Furthermore, the pseudo-labelling model was tested against two different train-val
split ratios (70-30 and 60-40) and threshold values (99% and 95%).
As shown in Figure 5.6, the more rigorous the threshold, the more precise and stable
classification of the validation instances. The box-plot width, both for train70val30-
thres99 and train60val40-thres99 is tighter than for the corresponding ones for the
thres-95. Moreover, the larger the training sample size (train70val30 ), the higher
the mean (or median) value. For instance, the mean value of train70val30-thres99
is around 1 percentage point higher than the mean value of train60val40-thres99.
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Figure 5.6: The comparison of the pseudo-labelling models in terms of train-val
split ratio and threshold of pseudo-labelling. The init+shuffle approach was used
for the 1st iteration, while init approach for the 2nd one.

5.2.4 Important components, features and signals
The secondary goal of this thesis was to determine which signals are most associated
with false activations. In order to obtain this information, the components and
extracted features had to be post-processed. This post-processing was applied only
to the base iteration of the pseudo-labelling model.
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During training, the model evaluated how well each component separated classes of
the target vector. This information was represented by the importance score. The
higher the importance score, the better the separation of the feature and the target
vector. Figure 5.7 shows the importance score per component.
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Figure 5.7: Importance of components.
The left axis depicts the importance score
per component. The right axis shows the
cumulative value of the importance scores.
Around 60 components influence the clas-
sification.

Due to the fact that each component can
be a combination of tens or hundreds of
features, only one component per each
modelling setup of the highest impor-
tance score was chosen for further anal-
ysis.
Subsequently, the chosen component
was decomposed to the features that
it was based on, using the decomposi-
tion matrix from the SPCA step. De-
pending on the setup, the number of
features that one component was con-
structed from varied between 30 and
240, with the mean value of 90 features.
Afterwards, since each feature was a
mathematical transformation of an ini-
tial signal, each feature was assessed in
terms of its base. For example, a feature signal1_entropy was post-processed to the
form signal1, or signal2_max to signal2. In this step, the mathematical transfor-
mations were ignored to enable easier interpretation for the domain expert. The
sample of results is stored in Table 5.2

Signal Sum Count Setup0 Setup1 ... Setup99
signal1 410 48 32 16 ... 40
signal2 65 30 7 10 ... 13
signal3 0 0 0 0 ... 0
... ... ... ... ... ... ...
signal132 529 20 25 35 ... 45

sum 102 59 ... 158

Table 5.2: Post-processing.

Finally, the classification performance was not excellent for some of the setups,
thus considering all setups in detecting dominant signals would lead to a bias in
post-processing mechanism4. To avoid this, the setups were filtered based on the
ROC_AUC score. Hence, only the best performing setups were included in further
analysis, resulting in shrinking the results shown in Table 5.2. As a consequence,
the list of signals, sums of features and count of features was communicated to the
domain expert.

4The post-processing mechanism would have been misled by the features that did not achieve
high accuracy, therefore they were not able to successfully separate the classes of the target vector
during modelling.
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5.2.5 Testing
Finally, the base iteration of the model was examined on test data.
71 testing events were pre-processed and predicted on the trained base model. The
classifier returned two values: (1) the probability of belonging to the false class, and
(2) the probability of belonging to the true class. A sample of results is shown in
Table 5.3. The events were sorted by the difference in probability.

No Event Prob0 Prob1 Abs_Diff Annotation Corr
1 event1 1.00 0.00 0.9990 FALSE yes
2 event2 0.00 1.00 0.9989 TRUE yes
3 event3 1.00 0.00 0.9986 FALSE yes
4 event4 1.00 0.00 0.9980 FALSE yes
5 event5 1.00 0.00 0.9970 FALSE yes
... ... ... ... ... ... ...
39 event39 0.10 0.90 0.8031 TRUE yes
40 event40 0.10 0.90 0.8004 TRUE yes
41 event41 0.90 0.10 0.7967 FALSE no
... ... ... ... ... ... ...
69 event69 0.46 0.54 0.0704 FALSE no
70 event70 0.52 0.48 0.0430 TRUE no
71 event71 0.52 0.48 0.0319 TRUE no

Table 5.3: Results of testing. The predicted class of an event versus the anno-
tated class. Prob0 : probability of belonging to false class (rounded to 2 decimal
places), Prob1 : probability of belonging to true class (rounded to 2 decimal places),
Abs_Diff : absolute difference between Prob0 and Prob1 (rounded to 4 decimal
places), Annotation: an annotated class of an event, Corr : if "yes", then prediction
was correct, if "no", then prediction was incorrect

Out of 71 additional annotations, 58 of them were correctly classified (corresponding
to 82%). However, most of the misclassifications were noted in the lower part of
Table 5.3, indicating the events about which the classifier was the most uncertain
about. If to calculate the correctness only for the events for which the Abs_Diff was
higher than 0.70, then 47 out of 50 annotations were correct (accuracy 94%). More-
over, the ROC_AUC score for these test data reached 91%. This extra verification
gives promising results.

5.3 Comparison of models
Last but not least, an annotator model and two implemented models were inspected
in terms of correctness of prediction, time complexity, advantages, limitations and
applicability. The results are shown in Table 5.4.
The biggest advantage of producing the ML model to label the City Safety events
is the annotation time reduction as well as the possibility of not involving human
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Category Annotator Baselinea Pseudo-
labellingb

Accuracy on
test Approx. 100% 82% 82% (94%)c

ROC_AUC
on test - 57% 91%

Time
complexityd 0.5 - 2 h 0.00192 s 0.013 s

Limitations human resource in-
volvement

no important fea-
ture scoring

extensive data pre-
processing

Advantages

deep understanding
of the environment,
clear reasons why
City Safety was ac-
tivated

fast and simple,
sufficient for bench-
marking of complex
methods

features scoring,
high correctness,
features interac-
tions taken into
account, fast

Applicability low low high
aBaseline_11 + no pre-processing with the City-block metric, the distance weight function and
the parameter k=5, bbase interaction of the pseudo-labelling model, c94% accuracy more certain

predictions, dthe time needed for one event labelling, excluding data pre-processing

Table 5.4: The models’ comparison in terms of correctness of prediction, time
complexity, limitations, advantages and applicability.

resources in this process. As there are ten thousands of events stored in the com-
pany database, a manual annotation seems unfeasible. Additionally, even having
thousands of events labelled, there would still be a need for a process that would
determine what affects the false activations of the City Safety system.
Furthermore, the pseudo-labelling model outperforms the baseline model due to
careful pre-processing and an application of a strong learning algorithm, which en-
abled the detection of features that improved the classification. This ability to rank
the importance of features is the most advantageous because the further investi-
gation of the false activations can account for potential improvements of the City
Safety system in the future.
At last, the pseudo-labelling model is the most applicable, meaning that this model
is more dynamic and shows a more data-driven approach in comparison to the other
two.

5.4 Review of the research questions
1. Does machine learning, with all its semi-automatic procedures, achieve
better performance than a simple model constructed with the help of
expert knowledge within this field?
If we define that performance is a measure of correct predictions, then a machine
learning model (the pseudo-labelling model) achieves better results than a simple
model constructed on the reduced set of signals indicated with the help of expert
knowledge (the baseline model). The average precision of the model constructed
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with the help of expert knowledge achieves 90% measured by ROC_AUC score,
while the average ROC_AUC score of the machine learning model achieves 98%.
The second model is slightly slower in labelling one new event (0.013s vs. 0.002s).
2. Does a semi-supervised approach reach better results than a super-
vised approach? What are the limitations and assumptions of each of
them? What is a confidence level of each of approaches?
The semi-supervised approach, which is referred to as 1st and 2nd iteration of the
pseudo-labelling model does not reach better results than the supervised approach
(base iteration). However, the results are not significantly worse either, as the
decline in the ROC_AUC score is around 0.5 - 1 percentage points. The pseudo-
labelling model is limited as it is prone to escalate prediction errors if the underlying
distribution of data is assumed wrongly.
3. What are the most significant signals for a true/false activation City
Safety system?
Since modelling involved extensive data post-processing, indicating the most signifi-
cant signals depends on the method of how we transform back the PCA components
as well as the extracted features. If we apply the method which was presented in
subsection 5.2.4, then the most significant signals are identified by the majority
voting of features that they are compound of.
Interestingly, several of the most relevant signals according to the model are exactly
the same as the 11 signals used for the Baseline_11 model (selected by the domain
expert). In this setting, we can claim that that classifier performed well since it
discovered the important signals by itself. However, among the top 10 high-scoring
signals, there were some which were not previously considered. Thus, it is a good
start for another research why these particular signals were chosen. This will be
further elaborated in section 5.5.
4. To what extent can we believe that labelling of unlabelled events using
a semi-supervised approach is adequate? Is the distribution of labelled
events a good indicator of inference about the whole population? Which
method is best?
Section 5.2.5 describes the test which evaluates how well the pseudo-labelling model
predicts the new and unseen data. The prediction of test instances achieved quite
a high score, namely, 82% of test events were labelled correctly. Those events that
were misclassified were usually different from the observations in the training set,
meaning that the classifier did not have enough information about the population in
the training. There was only one learning algorithm applied in this model (Gradient
Boosting Classifier), however, Naive Bayes was also scoring high in some data setups.
5. What dimensionality reduction method performs the best and to what
extent it provides meaningful and interpretable results?
It is difficult to select solely the most critical one dimensionality reduction method
since all of them contributed towards the common goal of constructing a high quality
model. Since the K-S test, mRMR and SPCA were not the only methods tested, it
is worth mentioning that the combination of all three assisted the modelling. The
K-S provided a reduced feature set based on univariate filtering, while mRMR on
multivariate filtering. Then, SPCA found a linear combination of an input data to
its reduced form, thus the collinearity of the features was eliminated. Additionally,
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MI and F-ANOVA filtering methods were also tested. However, none of these was
of the multivariate approach.
Out of the three-dimensionality reduction methods, SPCA tends to be the most
difficult one for a straightforward interpretation. The components computed by this
method are created from the original features given in the input and they represent
the variability of them.

5.5 Future work directions
The major limitation we faced was the small number of samples. As a consequence,
more advanced techniques, such as basic Recurrent Neural Networks or Long Short-
Term Memory, could not have been applied. These models were tested initially, but
this approach was rejected due to too few training instances that resulted in highly
unstable outcomes.
Moreover, bootstrapping methods can be applied in future work to increase the
number of samples. Having more observations would allow for less strict filtering.
In addition, as illustrated in Figure 5.7, there are around 40 components that scored
approximately zero in the importance score for one example data setup. In future
work, these components could be removed from the feature space and the model
should be trained again. Afterwards, the ROC_AUC score of the modified model
should be compared with the ROC_AUC score of the initial model to evaluate if
the application of this procedure improved the classification performance. Moreover,
there exists an automatic manner of doing it, namely Recursive Feature Elimination,
which was described in the Methods chapter.
Likewise, the number of computed components totalled to 100 to facilitate and speed
up computations, since searching for an optimal number of components is relatively
time-consuming in SPCA. In future work, it should be examined what would be the
optimal number of components.
Furthermore, several more learning algorithms could be inspected. In this thesis, due
to the result of the TPOT package that searched for an optimal learning algorithm,
a Gradient Boosting Classifier was used. However, a Naive Bayes Classifier was the
second best. In future work, a few more learning algorithms could be tested and
compared.
Finally, this thesis aimed to determine what influences true and false activations
of the City Safety system. Such an algorithm, which classifies instances rapidly
and with relatively high precision, allows the company to apply this technique to
thousands of unlabelled events. As a continuation of this research, false activations,
being the most critical, should be examined further. For instance, they could be
clustered based on some similarity measure. This procedure would enhance the
understanding of why the false activations occur (e.g. is it a severe weather condition
that distorts the sensor signals).

5.6 Discussion
This section discusses the issues raised during the thesis defence.
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Feature engineering approach suggested in this thesis has a significant disadvantage
of producing a high dimensionality problem. Nevertheless, this approach was cho-
sen to transform the time series features (called signals) into univariate features,
thus a bigger amount of common learning algorithms could be applied to such data.
Although such a procedure produced 100 000 features, thousands of these features
were irrelevant or redundant. The features were filtered by statistical tests and
information-based algorithms, hence after filtering step, the feature space was re-
duced to around 10 000 features. Given that initially there were 132 signals of length
40, which created around 5 200 features, the feature engineering step increased the
feature space only twice.
Additionally, LASSO regularisation was suggested in the discussion as another algo-
rithm for feature selection. Linear modelling is one of the approaches that could be
analysed further in the future work. In this thesis, the decision tree based algorithms
were used for classification (Gradient Boosting Classifier).
According to [6], the Receiver Operating Characteristic (ROC) Curve can be a biased
method to compare models’ performance. The advantage of the ROC Curve over a
simple accuracy measure is that the ROC Curve evaluates the model’s efficiency for
all cut-off thresholds, while the simple accuracy for only one threshold. However,
to assure the proper use of the ROC Curve, the cut-off threshold should be chosen
on train data and then it should be evaluated on test data. It may happen that
the best threshold on train and test set differs, as, for instance, data may come
from the same distribution but of the fixed size. To overcome the disadvantage of
this evaluation method, the authors propose a new evaluation method called The
Expected Curve [6], which aims to provide unbiased estimates for different cut-off
thresholds. In future work, this method should be used for models comparison to
avoid such potential bias.
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6
Conclusion

City Safety is an auto-braking mechanism that intends to detect a possible road
collision and, as a consequence, to prevent it. Activation of this system occurs if an
object appears in front of a vehicle and the driver does not respond in order to avoid
it. On rare occasions, it may happen that according to the driver’s perception, the
City Safety activation is not needed. Thus, this is a false activation of City Safety.
The purpose of this thesis was to develop a machine learning algorithm that will
classify activations and determine what influences this classification. Data used for
the analysis was represented as a multivariate time series. A length of a time series
was 40, constituting to 8 seconds and the activation of City Safety was at the time
equalled to 4 seconds. The variables represented the sensor fusion signals, such as a
speed of the host vehicle or a distance to the target object. There were 223 events
with a ground truth label. 71 events were used for testing, as they were annotated
after the start of the research. The rest (152 events), where therefore used for
training and validating. Due to the small sample size, 100 random train-val splits
were applied, creating 100 different data setups which were used for modelling.
Two machine learning models were proposed: (1) Baseline, and (2) Pseudo-labelling
model. Both models reached quite high performance (82% accuracy on tests sets)
for the optimal set of parameters.
The Baseline model was constructed on three-dimensional data, meaning that a
multivariate time series were given as an input. The classification was performed
using a modified k-Nearest Neighbours. The City-block metric was used a measure
to calculate distances between data points, the parameter k equalled to 5 and the
class of a test instance was determined as a majority vote of the k nearest neighbours,
adjusted by a distance weight.
The pseudo-labelling model relied on highly pre-processed data. The pre-processing
transformed a time series signals into the set of variables. As a consequence, two-
dimensional data could be applied to the learning algorithm. However, such a proce-
dure resulted in the enormous dimensionality of the data (1000 times more variables
than observations). Therefore, three-step dimensionality reduction method was em-
ployed. Firstly, the sample was filtered by a univariate statistical test Kolgomorov-
Smirnov (K-S). Secondly, the output of the K-S test was filtered again by the Min-
imum Redundancy Maximum Relevance algorithm (mRMR). In comparison to the
K-S test, mRMR not only evaluated the relevance between X variables and a tar-
get variable but also reduced collinearity of the X variables. Finally, the Sparse
Principal Component Analysis method transformed the variables into independent
components. Next, Gradient Boosting Classifier was selected as a learning algo-
rithm. Although the accuracy of the pseudo-labelling was same as for the Baseline
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6. Conclusion

model, but the ROC_AUC score outperformed the Baseline model by 34 percentage
point.
In addition, the pseudo-labelling model predicted the class of unlabelled data. De-
pending on the certainty of a prediction, several instances were added to the training
set. Afterwards, the model was retrained and tested. Two iterations as described
above was applied to the basic pseudo-labelling model. The accuracy of testing did
not improve, yet also did not significantly worsen (drop by 0.5-1 percentage point
in ROC_AUC score). This indicates that the instances in the training set were not
adequately representing the underlying distribution of all events.
Finally, two models were scrutinised and compared to the procedure existing nowa-
days in the company. Firstly, the machine learning models were much quicker in
annotating one event. Although the pseudo-labelling model was slightly slower (13
milliseconds vs. 2 milliseconds), the time reduction in comparison to the annotator
was drastic (0.5 - 2 h need for a manual annotation). By using a proposed classi-
fier, human resource involvement can be shifted from a tedious and manual work
towards the analysis of what factors are associated with false activations. Albeit
the correctness of prediction is lower for machine learning approaches, it is still suf-
ficiently high to offset the time complexity. When comparing the baseline and the
pseudo-labelling model, the pseudo-labelling model tends to outperform the other
one due to the higher accuracy of prediction and higher applicability. Since this
approach involved the learning algorithm that could rank the importance of the fea-
tures, it gives more insights for the domain experts than the baseline model which
only guesses a class of a test instance based on distances measures.
To conclude, this thesis contributed to a deeper understanding of which factors (sig-
nals) determined the true and false activations of the City Safety system. The pro-
posed machine learning approach (the pseudo-labelling model) reached good classifi-
cation performance, examined by additional testing instances. The pseudo-labelling
model can be used as a base for more advanced algorithms, such as Long Short-
Term Memory, that operate on sequence modelling, thus they do not require time
series extraction. An application of the extensive data pre-preprocessing was needed
in this thesis, due to the small amount of data, which constrained the selection of
modelling algorithms.
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