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DANIEL BRUNNSÅKER
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Abstract
This thesis proposes a method for predicting drug incuded liver injury using tran-
scriptomic data from the toxicogenomical databases TG-GATEs (Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation System) and DrugMatrix with the
help of various machine learning algorithms. The possibility of using the toxicolog-
ical database CMap in cooperation with the NCI60 human tumor cell lines screen
to make prediction models for in vitro cytotoxicity using the same methodology was
also investigated.

It was found that transcriptomic data can indeed be used to predict liver injury
in rat with very high accuracy. The in silico models developed in this project also
outperform similar existing solutions on completely external testing sets, generating
models successfully predicting four different injuries in the context of liver: necrosis,
fibrosis, hyperplasia and mitotic alterations.

In vitro cytotoxicity was also predicted by the models with relatively high accu-
racy, more specifically on the cancer cell line A-549. The model was also evaluated
on primary human hepatocytes exposed to hepatotoxic agents, finding dose-response
relationships. Additional learnings included the importance of selecting appropriate
featuresets when predicting specific adverse effects and also the applicability of syn-
thetic oversampling techniques in collaboration with transfer-learning when used on
transcriptomic data.

Keywords: Computer, science, computer science, engineering, thesis, data science,
dili, deep learning, machine learning, cytotoxicity, connectivity map, tg-gates, drug-
matrix, nci60, biotechnology, transcriptomics, bioinformatics.
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1
Introduction

1.1 Background
Modern drug development is a costly and time consuming process, potentially span-
ning up to a decade for a single drug. During this time, several billion dollars are
spent continuously trying to drive the process forward. However, most drugs fail
during this undertaking. Drugs that initially seem promising in terms of overall
efficacy could be stopped due to even minor safety issues and side effects during
toxicity evaluations. If this happens late during the development phase, billions of
dollars are potentially wasted [1].

Organ toxicity is a major problem when applying and developing drugs [1]. If
this problem could be detected at an earlier stage, it would streamline the process.
In extension, this would allow for a quicker, safer and much more effective drug
development phase. For example, when using drugs to regulate gene expressions, it
can be extremely hard to predict possible adverse affects, as a simple modulation
of gene expression could introduce a cascade of changes unrelated to the original
modification. Therefore, a helpful tool for use in this problem would be an in silico
model that could analyze these complex interactions and predict possible adverse
effects.

Machine learning is a subfield of artificial intelligence, a field in which a model
can make predictions without explicitly being programmed to do so. It does so by
statistical analysis and pattern recognition, allowing the model to train on existing
data, and in extension, using that knowledge to then make said predictions on pre-
viously unseen inputs. Depending on the quality and size of the data-sets fed to the
model, it can be used to make very accurate predictions.

A lot of effort has been put into creating and maintaining toxicogenomical databases
which contain gene expression data for various kinds of organisms treated with dif-
ferent compounds, in the form of for example, the Toxicogenomics Project-Genomics
Assisted Toxicity Evaluation System, DrugMatrix and the Connectivity Map (See
sections 1.2.1-1.2.4). With this plethora of data available, the conditions to create
a machine learning model with high efficacy and predictive power have never been
better.
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1. Introduction

1.1.1 Objective
This thesis aims to test various machine learning approaches to build gene expression-
based signatures of a key human organ such as the liver, with data retrieved from
toxicogenomical databases. This is then to be used for toxicity analysis, including
prediction of pathological endpoints in drug induced liver injury and cytotoxicity.
In extension, this model could potentially be used to predict harmful signatures of
specific drug-treated in vitro and in vivo models.

Figure 1.1: Overview of objective: Use of transcriptomic responses from immor-
talized cell lines1 and rat liver exposed to chemical compounds for use in predicting
cytotoxicity and liver injury using machine learning.

1A cell which, due to induced mutation, can proliferate endlessly.
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1. Introduction

1.2 Toxicogenomical Databases
This section introduces the different databases that enabled this project.

1.2.1 Open TG-GATEs
Open TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System) is an extensive toxigenomic database, containing data on 158 different com-
pounds, most of them reported as known hepatotoxicants (compounds harmful to
liver) and nephrotoxicants (compounds harmful to kidney) [2]. This data is com-
prised of gene expression profiles, biochemistry, hematology and histopathological
findings on three different platforms: rats, primary rat hepatocytes and primary
human hepatocytes (specific liver-type cells). These in turn sampled with two dif-
ferent whole-genome type microarrays, to allow for complete measurements of gene
response, for both rat and human studies respectively (see Section 2.2).

The database was developed during the course of ten years by the Japanese Toxige-
nomics Project Consortium, with the aim of providing a standardized and reliable
source of data for use in drug safety assessments.

The in vitro part dataset is comprised of two different subcategories: studies per-
formed in primary rat hepatocytes, measured in three different doses and times after
initial exposure (2 hours, 8 hours and 24 hours). The same protocol was also applied
to the primary human hepatocyte experiments [2].

The rat in vivo experiments are divided into two subcategories: single dose ex-
periments, where the rats were sacrificed and sampled at four different timepoints
(3 hours, 6 hours, 9 hours and 24 hours) after an initial dose. The other category
is comprised of month-long studies, in which the rats were treated with compounds
on a daily basis, sacrificed and in extension sampled at 4 different timepoints after
initialization (3 days, 7 days, 14 days and 28 days). Both of these studies were also
repeated for 3 different doses per compound [2]. A full schematic describing the
database-structure can be seen in Figure 1.2.

3



1. Introduction

Figure 1.2: Overview of TG-GATEs database structure.

In conclusion, 6765 rats were studied, and the data available for each of subcategories
are included in Table 1.1.

1.2.2 DrugMatrix
DrugMatrix (DM) is a large scale toxicogenomic database generated in 2006, with
the intent of providing both in vivo and in vitro gene expression profiles for use with
toxicological studies [3]. It is comprised of toxicological experiments on live rats and
primary rat hepatocytes, in turn treated with over 600 different compounds. These
compounds include among others therapeutic drugs and industrial chemicals [4].

The in vivo studies were comprised of samples taken at several different durations of
exposure and doses. Extensive studies were performed in these experiments, which
included pharmacology, clinical chemistry, hematology, histology, organ weights and
clinical observations. The main part of the available data is the derived gene ex-
pression profiles from all of the aforementioned experiments, made possible by using
Affymetrix whole-genome genechip arrays. All of these measurements are available
on seven different types of tissues: liver, kidney, brain, heart, bone marrow, spleen
and skeletal muscle [3].

The transcriptomic data in DrugMatrix roughly follows the outline explain in the
previous section on TG-GATEs, but with a few modifications. The in vivo part
of the study was performed with a repeated dosing model, in which the rats were
subjected to a daily dosage, and in extension sacrificed and sampled at four different

4



1. Introduction

times (6 hours, 24 hours, 3 days and 5 days). A minority of the compounds had
experiments done for several different doses. The in vitro experiments had sam-
ples collected at 2 hours, 8 hours and 24 hours after the initial dose, with some
compounds being repeated with different doses [3]. A full schematic describing the
database-structure can be seen in Figure 1.3.

Figure 1.3: Overview of DrugMatrix database structure

2218 rats were studied, and a summary of the entirety of the gene expression samples
available from the DrugMatrix database can be seen in Table 1.1.

Table 1.1: Number of microarray-derived gene expression samples and avail-
able compounds per study from the DrugMatrix and TG-GATEs toxicogenomic
databases [2][3].

Database Subset Samples Compounds
DrugMatrix Rat Repeated Dose Studies 1719 299
DrugMatrix Primary Rat Hepatocytes 7483 130
TG-GATEs Primary Human Hepatocytes 2004 168
TG-GATEs Primary Rat Hepatocytes 3139 168
TG-GATEs Rat Single Dose Studies 6427 162
TG-GATEs Rat Repeated Dose Studies 6283 162

5



1. Introduction

1.2.3 Connectivity Map
The Connectivity Map (CMap) is a large project consisting of gene-expression pro-
files from cultured human cells treated with bioactive small molecules. It is intended
to provide information regarding the different small molecules and to find similarities
in mechanism of action and physiological processes between them. It was originally
an aggregation of Affymetrix-microarray derived gene expression profiles from four
different cell-lines (MCF7, PC3, HL60 and SKMEL5) treated with 164 distinct per-
turbagens for a total of 564 unique gene expression profiles [5].

Recently, due to a collaboration with the NIH LINCS Consortium, the number
of gene expression profiles in the CMap database has vastly increased. This is made
possible by a new high-throughput screening method called L1000. This expansion
of the database has resulted in data on 54 different cell lines, known as the CMap
cell panel, and now has almost 1.3 million gene expression profiles [6].

1.2.4 NCI-60 Human Tumor Cell Lines Screen
The NCI-60 database is a staple of modern cancer research. It was initialized in 1990,
and has data on 60 different human tumor cell lines and their response to various
compounds and small molecules during in vitro experiments. It was developed with
the intent of providing researchers with a vast amount of information regarding the
mechanisms of growth inhibition and lethality of compounds and small molecules
when applied to a plethora of different cancer cell-lines in in vitro experiments [7].

The measured responses of use in this thesis are the different degrees of cell line
growth inhibition and lethal concentration when exposed to certain compounds. It
is therefore an invaluable resource for information regarding cytotoxicity of com-
pounds in different cells and tissues, as many of the cell-lines and compounds used
in this study overlaps with the CMap cell panel and available perturbations.

6



2
Theory

This chapter encompasses the mechanisms behind drug induced liver-injury and the
computational methods used in this thesis: preprocessing techniques, methods for
extracting differential expression and various machine learning methods.

2.1 Drug Induced Liver Injury
Drug induced liver injury (DILI) is a patient specific adverse effect of drug-intake.
It depends on a multitude of different factors, and has yet to been properly summa-
rized by a single model [8].

DILI is responsible for more than half of the known cases of acute liver failure,
and this through various chemical causes. However, it is mainly divided into two
categories: idiosyncratic DILI and intrinsic DILI. The latter acts through direct
causes of hepatotoxicity and the former through mechanisms causing adaptive im-
mune responses eventually leading to injury [8]. Due to this project mostly using
short time-series of treatments (up to 28 days of treatment), the latter will be the
most prevalent.

Drug induced liver injury can become apparent in a multitude of cellular perturba-
tions, but this thesis will cover the mechanisms of the three main ones: mitochondrial
impairment, biliary efflux impairment and oxidative stress.

2.1.1 Mitochondrial Impairment & Oxidative stress
Mitochondrial dysfunction is one of the main components of DILI, and as much
as 60% of currently known hepatotoxic drugs are known to cause some form of
mitochondrial impairment in a clinical setting [8]. However, these hepatotoxicants
rarely cause significant direct mitochondrial damage, but can do so in combination
with other extrinsic effects. Drug induced stress is most often combated with up-
regulation of anti-oxidation factors such as NRF2 (Erythroid 2-related factor 2).
Although this defense can be hindered due to the aforementioned extrinsic strains
such as immune system malfunctions, infections, genetics and other environmental
factors. This could end in mitochondrial impairment, sometimes leading to hepato-
cyte injury, causing secondary-cascade triggers of death signaling pathways such as
c-jun Kinase (JNK) [9].

7



2. Theory

In the case of directly mitotoxic compounds, for example Stavudine, Tamoxifen
and Valproic Acid, they alter mitochondrial function such as mitochondrial respira-
tion and β−oxidation, which can cause membrane disruption. This can in extension
induce hepatic necrosis or apoptosis, eventually triggering death-signaling pathways
such as the aforementioned JNK [9].

On top of the loss of produced ATP due to damage because of the involvement
of these aforementioned pathways, oxidative stress is highly correlated with mito-
chondrial impairment. The liver is the most important detoxifying organ in the
body, involved in the metabolism of various compounds. This metabolization can
in turn generate reactive oxidative species (ROS), a type of highly reactive molecule
containing oxygen, otherwise known as a free radical [10]. Some types of drugs can
increase accumulation of these molecules by inadvertently targeting and impairing
the regulatory mechanisms such as the antioxidative system. When this balance is
disturbed, and ROS are unregulated, they interact with electrons from neighboring
molecules, causing a chain reaction. Possibly leading to further injury such as lipid
peroxidation (reaction between the free radicals and cell membranes, causing severe
cell damage), DNA-damage and further mitochondrial impairment [11].

Figure 2.1: Overview of general mechanism of oxidative stress.

2.1.2 Biliary efflux impairment
Efflux proteins have an important role in drug metabolism, as they help with uptake
clearance and excretion of drug-related compounds from hepatocytes and blood-
stream into bile, forwarded through the bile ducts [9].
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This is done primarily with the help from the so called ABC-superfamily of proteins,
which are ATP-dependent transporters. Proteins belonging to this superfamily in-
clude, among others: multidrug-resistance proteins (MDR), multidrug-resistance
associated proteins (MRP) and the bile salt export pump (BSEP). BSEP is entirely
responsible for transportation of certain monoanionic drug derivates. As such, any
inhibition, even mild, of this protein can cause repercussions in liver health and may
lead to adverse pathological outcomes [12].

In fact, any functional perturbation of these transport proteins can cause adverse
events, ranging from bile acid accumulation, cholestasis and even to severe liver
injury [12].

2.1.3 Liver injury & histopathological findings
The aforementioned pathways of hepatocyte injury (and many more) can in turn
cause severe injuries to the liver. These can present themselves in a variety of
histopathologies, depending on the mechanism. Drug induced liver injury is com-
monly divided into one of 18 different patterns such as acute hepatitis, acute cholesta-
sis and nodular regenerative hyperplasia. These patterns involve specific injuries
such as, hepatocyte cell death (necrosis), scarring of the liver (fibrosis) and vastly
increased cell proliferation in response to hepatocyte stress [13].

Quantification of injury is usually done by a pathologist, with the help of strict
guidelines where patterns of injury and severity are standardized [14].

2.2 Microarrays
All of the transcriptomic data used in this study are collected by the means of
microarrays. A microarray is a tool used to detect thousands of simultaneous gene
expression levels. In essence, a microarray is a vast collection of different microscopic
features, which can be probed with specific target molecules, leading to quantitative
measurements of expression [15].

In this study, the microarrays in use are in situ-synthesized oligonucleotide microar-
rays. They make use of single stranded oligonucleotides as probes (with a length of
25 base pairs in this case), which are in turn directly synthesized onto the surface
of the array. Essentially, this allows for high amount of features (genes) with an
extremely high density of RNA-probes [15].

To perform the measurement, mRNA molecules are collected from the sample in
question, and tagged with biotin. The biotin-tagged mRNA is then applied to the
microarray, which allows the probes to attach to the target mRNA. The biotin
then acts as a receiver for a fluorescent molecule. This molecule in turns allows
for quantification of the amount of bonded RNA-molecules by way of fluroescence
measurements [15].

9
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2.2.1 Microarray Treatment
Microarrays have a lot of variation between measurements, so to allow for proper
comparison between arrays, a lot of precautions and preprocessing steps need to be
performed. This section will describe these methods, specifically, the Robust Mul-
tichip Average Algorithm, which is comprised of three different steps: Background
correction, Normalization and Summarization.

Differential expression between microarrays will be encompassed in Chapter 3.

2.2.1.1 Background correction

The following step is performed due to the need to remove, for example, local arti-
facts and noise. The background correction process is based on the assumption that
every real-valued signal/intensity is a combination of background intensity (B) and
the actual signal intensity (S) described by the relation in Equations 2.1-2.3.

PM = S (Signal) +B (Background) (2.1)
S ∼ exp γ (2.2)
B ∼ N(µ, σ2) (2.3)

The background corrected intensity is then specified as the expected value of the
actual intensity given the total intensity (S + B). The expected value of the PM-
intensity in regards to the signal- and background noise can then be calculated using
Equation 2.4 [16][17][18].

E (S|PM) = PM − µ− γσ2 + σ
ϕ
(
PM−µγσ2

σ

)
− ϕ

(
µ+γσ2

σ

)
φ
(
PM−µγσ2

σ

)
− φ

(
µ+γσ2

σ

)
− 1

(2.4)

Where ϕ denotes the probability density function for N(0, 1) and φ the distribution
function for N(0, 1).

2.2.1.2 Normalization

As previously mentioned, microarrays are prone to high variability between mea-
surements, and as such, there will always exist discrepancies between the samples
when comparing different microarrays. To solve this issue, this study makes use of
quantile normalization. The objective of quantile normalization in this case is to
force the intensities of the differing microarrays to adhere to the same distribution.

That is, if there exists n samples (s), the desired result is for the line given by
the collection of unit vectors with length n,

(
1
s1
, ... , 1

sn

)
to be in complete adherence

with the, up to, nth-dimensional quantiles [16].

projdqk =
 1
n

n∑
j=1

qkj, ...,
1
n

n∑
j=1

qkj

 (2.5)
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The algorithm works with the following pattern [16]:
1. If n arrays of length p, form array X with the dimensions p× n.
2. Sort the columns in X.
3. Take row-dependent means, assign mean to all elements in the row.
4. Rearrange X to original unsorted state.

After thorough iterations, the samples should now be more directly comparable.

2.2.1.3 Summarization

Summarization is the final step of the algorithm, it combines the background-
adjusted and normalized intensity-values from all of the probes in the probe set
to infer a single intensity for each gene.

The general methodology used in this project, namely Tukey’s median polishing,
is described as follows [19]:

1. Entire microarray normalized to median.
2. Each gene (all included probes) normalized to median.
3. Steps 1-2 are reiterated until the respective medians have converged to a similar

value.
This methodology allows for a robust summarization, potentially lessening the im-
pact of outliers.

2.3 Machine Learning Algorithms
This section includes the basic theory in the different machine learning algorithms
used in this thesis, namely: Support Vector Machines, Random Forest and Deep
Neural Networks.

2.3.1 Support Vector Machines
Support vector machines (SVM) is a type of supervised learning method, in that
it uses labeled input data to produce input/output mappings. The type of output-
mapping can either be a classification function, or a regression function. This section
will only encompass the former.
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Figure 2.2: Overview of the type of hyperplane separation made by the support
vector machine in 2 dimensions. The outmost lines denote the support vectors.

The SVM is capable of doing linear classifications and non-linear classifications on
high-dimensional data. The latter performed through the use of a mathematical
modification informally called the kernel trick, in which the input is remapped to a
hyperspace in which the data can be linearly separated [20]. The type of kernel trick
can differ between applications, but the kernel used in this thesis is the RBF kernel
(Radial Basis Function). For a visualisation of the methodology in 2 dimensions,
see Figure 2.2.

In general, the kernel has the following form [20]:

K(x, x′) = 〈ψ(x), ψ(x′)〉 (2.6)

ψ denotes a function that projects x and x′ into another dimensional space. In the
case of the RBF-function, the space being projected is in infinite dimensions, that
is, ψRBF : Rn → R∞.

The RBF-kernel has the following form:

KRBF (x, x′) = e−γ||x−x
′||2 (2.7)

This, in theory, allows for separation between classes without explicitly having to
transform the data into an infinite dimension.

Support vector machines are very effective when the used data has more features
than number of samples, which makes it a fitting methodology for this study.
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2.3.2 Random Forest
Random forest makes use of decision trees. These are categorical structures based
on nodes, branches and leaves. Each node represents a statement based on involved
features, where in the branches are based on the answer to that specific question.
These branches either lead to more nodes (i.e. more questions) or leaves (the cate-
gorical classification) [21].

Figure 2.3: Generalized view of decision tree structure, showcasing the nomencla-
ture and methodology.

When building the tree, one selects the feature that results in the lowest Gini im-
purity (the "question" which can separate the different samples most efficiently) as
seen in Equation 2.8.

C∑
i=1

= fi(1− fi) (2.8)

C being the different types of labels available for classification and fi being the fre-
quency of said classification.

It then calculates node importance using Equation 2.9 and sorts the nodes accord-
ingly, with the root having the lowest impurity.

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (2.9)

w denotes the weighted amount of samples.

This process is reiterated until branches no longer result in lower impurities, pro-
ducing a decision tree classifier [21].

A random forest is a type of classifier that is a combination of a set of decision
tree-predictors. The set will act as a voting committee and thus, by majority vote,
perform a classification of samples. Each of these trees are trained in isolation from
one another [21].

Decision trees are very sensitive to the input data, even minor changes can bring
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along massive changes in the tree structure. This is used to the algorithms advan-
tage; by randomly sampling (with replacement) the data set in question, it gives
a new representation for the data set with every iteration. Due to sampling with
replacement, only about two thirds of the dataset is used each time. This process
is called bagging (bootstrap aggregation) [21].

As previously mentioned, when constructing a decision tree, one would usually build
the tree using the features giving the highest degree of separation between the end-
classifications. In random forest, one randomly samples sets of features to use, and
subsequently sorts them according to their Gini impurity. This is repeated for all of
the trees, using the remaining one third for validation [21].

Random forest algorithms usually perform very well on data sets with a small
amount of samples and can handle imbalances in the data very well, making it
very fitting for the data used in this thesis. However, in optimal settings, random
forest does not usually, by itself, reach the performance of other algorithms.

2.3.3 Artificial Neural Networks
Artificial neural networks, and in extension deep neural networks, are popular com-
putational algorithms used in various applications of machine learning. Note that
in this project, only feed forward type neural networks were used.

The general structure of neural networks was initially inspired by the biological
systems present in the brain. The system is based on interconnected sub-units
called artificial neurons. These neurons work by interacting with each other, by
processing signals from connected neurons and transmitting those to other neurons
down the line. This collection of interconnected neurons can in unison create an
extremely complex system, learning from their inputs, and in extension performs
specific tasks, despite not being explicitly programmed to do so [22].

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.4: Image of typical neural network architecture. Each connection between
neurons has an associated weight, defining behaviour.
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The neural network makes use of the universal approximation theorem [22]. That
is, there exists a set of parameters that can approximate any function. These sets
of parameters (weights) are not initially known, however, the search for them can
be formulated as an optimization problem.

The general procedure for training a neural network is outlined as following:
1. Randomly initialize weights.
2. Using the current settings, test samples from training set and compare output

with actual result.
3. Modify weights.

Step 2 and 3 are iterated until a user defined threshold is reached.

Step 3 makes use of an algorithm called backpropagation, in which one uses the
error of the output from the neural network to improve predictor performance by
modifying the weights. This error is defined as the loss function and can take many
different forms depending on the task. For binary classification problems, such as
the one defined in this thesis, one can use binary cross-entropy, which is calculated
from Equation 2.10 [23].

Loss = −ylog(p)− (1− y)log(1− p) (2.10)

y denotes the actual binary classification of used sample, and p the probability of
classification made by the model.

The backpropagation algorithm used in this thesis is the Adam optimizer (for more
inforation, see Adam: A Method for Stochastic Optimization by Diederik Kingma
and Jimmy Ba [24].)

Neural networks and in extension deep neural networks1 work very well when there
exists an abundance of data. They can, however, be very computationally expensive
[22].

2.3.4 Synthetic Minority Oversampling Technique
When working with most supervised learning methods it is of utmost importance
that there is an even distribution of categories in the training set; this might other-
wise cause bias in the predictions [25].

The synthetic minority oversampling technique (SMOTE) is a method that utilizes
random oversampling to even the distribution of categories, but with some synthetic
modification. It produces these synthetic examples via Equation 2.11.

Synthetic Sample = x+ u · (xR − x), 0 ≤ u ≤ 1 (2.11)
1A variation of a neural network with multiple layers inbetween input and output layers.
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x specifies the targeted sample from the minority class, and xR the classified nearest
neighbour.

To summarize, the new synthetic samples are a linear combination of two simi-
lar samples from the minority-class. The relevant minority samples are classified
and located by a K-nearest neighbour algorithm.

2.4 Evaluation metrics
When evaluating class-imbalanced datasets, one needs to consider the possibility
that certain metrics might be unreliable. Below are some of the metrics used to
evaluate algorithm performance in this thesis.

2.4.1 Confusion Matrix
The confusion matrix is a representative technique to evaluate performance in clas-
sification problems. It is used to classify the predictions made by the model into four
different categories: True Positives (TP, an accurate positive prediction), True Neg-
ative (TN, an accurate negative prediction) and False Negatives/Positives (FN/FP,
a misclassification) as seen in Figure 2.5.

This type of matrix can be very descriptive and allows for better troubleshooting as
it allows for a more specific description of the classifiers performance. Depending
on the application, the types of errors made might be more reasonable. It is also
helpful in calculating other performance metrics, as seen in the next subsection.
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Figure 2.5: Vizualisation of a confusion matrix for binary classification.
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2.4.2 Matthew Correlation Coefficient
In this study, all of the results will be measured by a metric called the Matthew
correlation coefficient (MCC). This is widely used metric in binary classification
problems. It is mostly used as an alternative metric when normal accuracy is inca-
pable of showing an unbiased result, for example in class-imbalanced classification
problems [26]. MCC can be defined as the discretization of the better known Pearson
correlation coefficient seen in Equation 2.12.

r(x, y) =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.12)

If we then define x and y as binary coefficients, further denoting them by their four
potential outcomes, the following formula can be derived, as seen in Equation 2.13
[27].

r(x, y) = n× TP − (TP + FN)(TP + FP )√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(2.13)

Which in turn can be simplified to Equation 2.14.

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2.14)

The Matthew correlation coefficient can now, in the cases of binary outcomes, be
calculated using a confusion matrix (see Section 2.4.1.)

To help with the actual interpretation of the metric, Table 2.1 can be used as
reference.

Table 2.1: Interpretation of the Matthew correlation coefficient values [28].

Matthew Correlation Coefficient Interpretation
0.70 to 1.0 Very strong positive relationship
0.40 to 0.69 Strong positive relationship
0.30 to 0.39 Moderate positive relationship
0.20 to 0.29 Weak positive relationship
0.01 to 0.19 No or negligible relationship
-0.01 to -0.19 No or negligible relationship
-0.20 to -0.29 Weak negative relationship
-0.30 to -0.39 Moderate negative relationship
-0.40 to -0.69 Strong negative relationship
-0.70 to -1.0 Very strong negative relationship
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3
Differential Gene Expression

This chapter will describe how the data was processed and curated, but also how
the differential gene expression analysis was performed, in turn producing the type
of data used in this thesis.

3.1 Data Acquisition
The data in use are from the aforementioned databases (see Sections 1.2.1-1.2.3):
TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation Sys-
tem), DrugMatrix and cMAP (Connectivity-Map). The entirety of DrugMatrix and
TG-GATEs was accessed and downloaded via the query/download-package for Ar-
rayExpress (v.1.46.0), integrated in the R/Bioconductor-project.

Pathology data from the TG-GATEs project was downloaded from their website
(https://toxico.nibiohn.go.jp/english/). Since the DrugMatrix pathology
repository is no longer publicly hosted, efforts were made to reach out to the current
overseer of the database, Scott S. Auerbach.

Build 01 and 02 of the cMap data was downloaded from the online repository Clue.io
(https://portals.broadinstitute.org/cmap/). It was downloaded completely
preprocessed.

The NCI60 data was downloaded via the online tool CellMinerTM [29]. The molec-
ular formulas of the compounds avaliable in the two CMap builds were used to query
the NCI60 database.

Note that molecular formulas are not unique, further filtration was done later on.
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3.2 Preprocessing & Outlier removal
The data was loaded using the R/Bioconductor package Oligo (v.1.50.0) [30]. An
initial quality control of the data was performed, more specifically, inspecting met-
rics such as the maximum, minimum and median intensity values of each microarray,
so as to ensure the absence of obvious outliers that would otherwise interfere with
the normalization process. The data was then normalized and background-corrected
using the RMA-algorithm included in the aforementioned Oligo-package (see Sec-
tion 2.2.1).

Data was further curated using the R/Bioconductor package ArrayQualityMet-
rics (v.3.42.0). In extension, this means the usage of relative log expression of
microrarray-intensities (see Figure 3.1), intensity heatmaps and Bland-Altman plots
(MA-plots, a method in which the average measurement of two samples is plotted
against the difference [31]). The latter was used to ensure that the background
intensities of the different microarrays are similar, to ensure lack of strong batch-
effects (see Figure 3.2).

PCA-analysis of the data was also performed; however, due to the high dimen-
sionality of the data, it was difficult to make any definitive conclusions.

Figure 3.1: Slice of relative log intensities of the DrugMatrix in vivo dataset.
Visualizes log2-intensity and variance in regards to the mean. The star indicates a
probable outlier.

20



3. Differential Gene Expression

A

M

−2

0

2

4
array 1336 (D=0.14)

4 6 8 10 12 14

array 1331 (D=0.11) array 1922 (D=0.11)

4 6 8 10 12 14

array 1943 (D=0.10)

4 6 8 10 12 14

array 996 (D=0.00) array 990 (D=0.00)

4 6 8 10 12 14

array 1975 (D=0.00)

−2

0

2

4
array 2133 (D=0.00)

Figure 3.2: Examples of Bland-Altman plots of samples from the DrugMatrix
in vivo dataset. The D-parameter indicates the discrepancy in background inten-
sity between the specific array and the mean. The topmost figures would indicate
probable outliers, as the difference between the measurements vary a lot from the
average.

The next step of the process was to annotate the different transcript clusters present
on the microarrays with their associated genes. This was done using the R/Biocon-
ductor package AnnotationDbi (v.1.49.0), using the Arrays included ENSEMBL-
identifiers1. If a cluster did not have an associated gene, it was removed from
the dataset. If the transcript-clusters were mapped to several different genes (and
therefore, cannot be unambigously assigned) they were removed. This process was
done sequentially for all of the used microarray-based datasets: TG-GATEs in vivo
rat liver, TG-GATEs human primary hepatocytes2 and DrugMatrix in vivo rat liver.

The CMap data was downloaded as an already pre-processed version, as recom-
mended by the publisher, Broad Institute.

Table 3.1: Overview of the amount of samples remaining after curation for TG-
GATEs (TG-G) and DrugMatrix (DM).

Data items DM (#) DM (%) TG-G (#) TG-G (%)
Pre-curation
Non-control samples 1931 100% 4289 100%

Post-curation
Non-control samples 1883 97.5% 4263 99.3%

Post-annotation
Non-control samples 857 44.4% 1354 31.7%

1A type of unique identifier used for biological data, containing information on species (rat or
human in this case), object type (genes and proteins for example) and name.

2Primary cells are a type of cell which has been directly isolated from living tissue.
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3.3 Extracting differential expression
In order to extract the differentially expressed genes (DEGs) for each compound
(in relation to their control) a linear model has to be fitted to the data. This was
done using the R/Bioconductor package limma (LInear Models for MicroArray data,
v.3.43.0).

The compound-treated arrays were directly compared to their associated control
measurements (i.e. control measurements from the same dose and collection time).
These differential expression measurements were performed in two ways: Firstly,
the experimental treatment groups were compared to their inherent controls (see
Table 3.2 for design matrix). Lastly, each specific sample was compared to its ex-
perimental controls (see Table 3.3 for design matrix). After the model had been
subsequently fitted using the design matrices, an empirical Bayes variance method
was then applied to the results, resulting in moderated t-statistics, further improv-
ing the variance estimate. The resulting differential gene expressions (with their
associated fold-changes and adjusted p-values) were then extracted and written to
.csv-files, for use with implementations later on.

Note that for the data from TG-GATEs this means comparison with the controls
in that specific experiment-series, and for DrugMatrix, an average of all of the con-
trols using the same conditions and vehicle were used.

Table 3.2: Methodology 1,
orthodox approach.

Treatment/
Sample Treated Control

Sample1 1 0
Sample2 1 0
Sample3 1 0
Control1 0 1
Control2 0 1
Control3 0 1

Table 3.3: Methodology 2,
unorthodox approach.

Treatment/
Sample Treated Control

Sample1 1 0
Control1 0 1
Control2 0 1
Control3 0 1

The first methodology was used to supply foldchanges with accompanying p-values
for other projects performed at AstraZeneca, whilst the second approach of doing a
per-sample differential expression measurement was used for this project (see Sec-
tion 4.2).
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Figure 3.3: Volcano-plot showing example of differential expression in primary
human hepatocytes exposed to a hepatotoxicant. The y-axis denotes the foldchange
of said gene, whilst the x-axis denotes the increasing p-value.

As the CMap data had already been normalized and aggregated via the replicates,
the differential expression was extracted by calculating the log2-ratio between the
specific measurement and the average of the related controls. As there is a vastly
differing amount of samples between compounds and doses in the CMap-dataset,
only one measurement per dose, cell-line and compound was kept in the dataset.
The aforementioned measurement was chosen by calculating the Euclidean distance
(L2-norm) of the foldchange-vector, and then keeping the one with the median-
most value. This in an effort to avoid compound-specific overfitting and potentially
making the model more robust.
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4
Annotation & Features

This chapter encompasses the methodology used in treating the data extracted from
the previous chapter, features available for the samples and their annotations.

4.1 Feature selection
Due to the high dimensionality of the microarray data (around 15000 genes per ar-
ray), selection of an appropriate subset becomes extremely important, as genes not
causal to cytotoxicity and liver injury may provide the later models with non-trivial
noise levels.

The different feature sets used in the study are the following:
1. 1331 PTGS-genes [32].
2. 299 core PTGS-genes, subset of PTGS deemed more relevant for DILI [32].
3. 551 core fitness genes [33].
4. 978 landmark genes from the L1000 platform [6].
5. 1000 randomized genes (not present in PTGS, L1000 or core fitness genes).
6. 500 randomized genes (not present in PTGS, L1000 or core fitness genes).

The PTGS-genes were chosen for their relevance for general cytotoxicity and drug
induced liver injury [32]. Whilst the core fitness genes were chosen to see if genes
critical for cell-survival, but not enriched in the liver [34], could be used for the same
aforementioned prediction. The subset, L1000, was picked as it was determined to
be a valid approximation of the whole genome according to the L1000-study [6].
Two other featuresets, comprised of 500 and 1000 randomized genes, are to be used
as comparison, possibly denoting the importance of a relevant featureset.

Due to the different models of microarrays used in the studies, some of the genes con-
tained in the aforementioned featuresets were absent from the lists of differentially
expressed genes from the different types of compounds. When combining the data,
the sets were reduced to the intersection between all of the different array-types,
causing only a minor reduction in used genes as seen in Table 4.1.
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Table 4.1: Number of genes available for analysis after intersection with
microarrays.

Feature set Number of genes Available genes for analysis
PTGS 1331 1078
PTGS-DILI 299 255
Core 551 401
L1000 978 886
R1000 1000 1000
R500 500 500

To ensure that the feature sets were sufficiently dissimilar, efforts were made to
analyze number of overlapping genes. See Figures 4.1 and 4.2.

Figure 4.1: Venn-diagram showing intersections of genes between the different
feature sets.

Note that the PTGS-DILI subgroup was not included in the Venn diagram as it is a
part of the PTGS-space.

Albeit a relatively large overlap between L1000 and the PTGS-space, the subsets
were deemed dissimilar enough for this study.
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Figure 4.2: Venn diagram showing intersections of genes between the different
feature sets.

The randomized feature-sets showed only a small overlap.
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4.2 Annotation

4.2.1 In vivo liver injury
As the machine learning algorithms used in this project are fully supervised methods,
there needs to be proper labeling for each of the samples. This was performed using
the included histopathology data from TG-GATEs and DrugMatrix. The data was
collected from https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.
html (TG-GATEs) and from personal correspondence with the current overseer of
the DrugMatrix database (Scott S. Auerbach, Ph.D).

Histopathology findings were matched with their appropriate microarray-sample us-
ing experimental ID and sample ID and given a score associated with the presence
of the finding (1 for presence of finding, 0 if not present). This being a slight modi-
fication of the method suggested by Grafström et al. [32].

Due to the nature of the reporting system for the different histopathology find-
ings, downstream analysis was limited to necrosis, mitotic alterations, fibrosis and
hyperplasia of the liver. A visualization of the selected pathological endpoints,
properties and tissues are shown in Figure 4.3 for DrugMatrix and Figure 4.4 for
TG-GATEs. As histopathology annotations adhered to different standards between
the two datasets, nomenclature differences were reviewed manually.

Samples without a related finding were removed from the dataset in an effort to
improve the data distribution. For the more imbalanced categories (hyperplasia and
fibrosis) the negative samples from TG-GATEs were removed. Final distributions of
histopathology findings in the data can be seen in Table 4.2 and Figures 4.5a-4.5b.

Table 4.2: Table showing final amount of samples, label and their distribution for
the entirety of the in vivo training set.

Histopathology Positive samples Negative samples Fraction of positives
Necrosis 400 1812 0.22
Mitotic Alterations 168 2044 0.082
Hyperplasia 48 971 0.049
Fibrosis 70 949 0.074
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4. Annotation & Features

Figure 4.3: Used pathological endpoints in DrugMatrix and their related proper-
ties.

Figure 4.4: Used pathological endpoints in TG-GATEs and their related proper-
ties.
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4. Annotation & Features

(a) Class-distribution of fibrosis and hy-
perplasia.

(b) Class-distribution of necrosis and
mitotic alterations.

Figure 4.5: Visualization of class-distribution for the different histopathology find-
ings in the in vivo dataset.

4.2.2 In vitro cytotoxicity
The in vitro CMap-data was annotated with the help of the NCI60 human tumor
cell line screen using the included GI50-doses in combination with the doses included
in the CMap experimental data.

4.2.3 Compound matching
As mentioned in Section 3.1, compounds from the NCI60-database were downloaded
using the molecular formulas from CMap as the identifier. This due to the need for
a broad search, minimizing the risk of lost datapoints. Do note however, that molec-
ular formulas are not necessarily unique, and as such, the matches between the two
datasets were further filtered. To perform this additional filtering, conversion tables
from the CellMinerTM website were used. These tables contained the SMILES1 for
each of the compounds present in the NCI60-database. These were then converted
to their inherent canonical SMILE2. In similar works, chemical names were used as
the unique identifier [32][35]. This was deemed insufficient for this project, as there
was too much variability in names and synonyms for the available compounds.

As each available chemical now had an exact match in the NCI60-database, each
compound was assigned a GI50-value (50 percent of maximal inhibition of cell pro-
liferation) for each compound/cell-line combination. If several series of experiments
were performed using the same parameters, the median of the GI50 values was used.

1Simplified Molecular-Input Line-Entry System, a line notation describing the chemical struc-
ture of said molecule.

2A canonical SMILE is an unique identifier, denoting exact structure and composition
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4.2.4 Dose dependent toxicity
The labeling for each of the samples was annotated using dose dependent toxicity
(DDT) as suggested by Grafström et al. [32]. The DDT was subsequently calculated
by computing the sum of the logarithm of used dose minus the logarithm of the
related GI50 dose, as seen in Equation 4.1 (note that the base-10 logarithm is used
because of how GI50-doses in the NCI60-database are presented):

DDT = log(Dosesample)− log(DoseGI50)

1, if DDT ≥ 0
0, otherwise

(4.1)

To specify, if the outcome was negative, that would mean that the dose is below the
inhibitory concentration and as such, non-toxic using this form of annotation. This
resulted in the number of available samples presented in Table 4.3.

Table 4.3: Amount of samples, compounds and cell lines available after intersection
with NCI60.

Data items CMap (Number) CMap (%)
Pre-annotation
Non-control samples 591697 100%
Cell lines 98 100%
Compounds 29667 100%

Post-annotation
Non-control samples 4286 0.72%
Cell lines 6 6.1%
Compounds 355 1.2%

The intersection between NCI60 and CMap resulted in the cell lines and sample
distributions seen in Table 4.4. A visualization of the distributions can be seen in
Figure 4.6.

Table 4.4: Summary of included cell lines, amount of samples and short description.

Cell line Samples Pos. Samples Neg. Samples Description
PC-3 1251 326 925 Prostate cancer cell line
HT-29 1255 329 926 Colon cancer cell line
MCF-7 1295 396 899 Breast cancer cell line
A-549 459 161 298 Lung cancer cell line
SKMEL-28 26 13 13 Melanoma cell line
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䠀吀ⴀ㈀㤀
㈀㘀⸀㈀─ 倀漀猀⸀ 匀愀洀瀀氀攀猀

䄀ⴀ㔀㐀㤀
㌀㔀⸀─ 倀漀猀⸀ 匀愀洀瀀氀攀猀
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Figure 4.6: Visual representation of data-distribution from included CMap cell-
lines. A-549 is highlighted due to being used as test later on.
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5
Supervised Learning

This chapter will encompass the used methodology regarding selection of machine
learning algorithms, optimization and validation.

5.1 Preprocessing
Each sample was matched with its annotation, and subsequently oversampled with
the SMOTE algorithm (see Section 2.3.4). As per standard procedure, all of the
data was scaled using the Scikit-learn StandardScaler. This methodology was used to
remove potential variance and cardinality differences between the different integrated
data sets.

5.2 Selected algorithms
The scaled data was then used as the input to the supervised learning models. The
libraries and algortihms used in the project were:

• Python/Scikit-learn (v.0.22) for support vector machines (SVM) and Random
Forest (RF).

• Tensorflow (v.1.13.1) for the design and implementation of deep neural net-
works (DNN).

• Imbalanced-learn (v.0.5.0) for the SMOTE-implementations.

The three different machine learning algorithms (RF, SVM, DNN) were chosen due
to simplicity of implementation, interpretability or because of existence of compar-
ative results using similar data in literature [32][35].

An additional modification of deep learning was also attempted, namely, transfer
learning. More specifically, using the different histopathological categories as source
and target domains.
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5.3 Cross-validation
General performance was evaluated using K-fold cross-validation, in which we iter-
atively evaluate the model on a randomized majority split of the entirety of data,
while simultaneously testing on the remaining minority. A visualization of the pro-
cedure can be seen in Table 5.1.

Table 5.1: Visualization of a 5K-fold cross-validation split. Fraction marked in
grey is used to evaluate performance in each split.

Split Dataset
Split1 Test Train Train Train Train
Split2 Train Test Train Train Train
Split3 Train Train Test Train Train
Split4 Train Train Train Test Train
Split5 Train Train Train Train Test

The cross-validation algorithm was designed as in the pseudo-code example in Algo-
rithm 1. The scaler was trained on the training-part of the split to avoid any sort of
data leakage. Note that the fraction in this case denotes the size of different folds.

Algorithm 1 Splitting and Evaluating
1: procedure CrossValidation(Data, SplitFraction)
2: TrainingData ← SplitFraction of Data
3: TestData ← (1-SplitFraction) of Data
4:
5: Scaler ← fit.Scaler(TrainingData) . Fit scaler & transform
6: TrainingDataTransformed ← Scaler(TrainingData)
7: TestDataTransformed ← Scaler(TestData)
8:
9: model.fit(TrainingDataTransformed) . Train model with Training Data

10: Predictions ← model.predict(TestDataTransformed)
11:
12: Results ← EvaluationMetric(Predictions) . Save results from iteration
13: goto top.

The results from each of the splits are aggregated and used to estimate performance
of the model.
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5.4 Gridsearching
For some of the models used in this thesis, especially support vector machines, hy-
perparameter tuning is very important [20]. This due to directly controlling the
behaviour of the model, making it a possible make-or-break tweak. The optimal
value for these parameters usually differ due to the nature of the problem in ques-
tion, and as such, is also a necessary part of improving predictor performance and
making them directly comparable.

Gridsearching in this study was kept simple due to time constraints and to avoid un-
necessary complexity, and because of that, only two parameters were optimized at a
time. This was performed by using an iterative approach, evaluating cross-validation
scores for a selection of different hyperparameters. The best parameters from each
model were then chosen to represent the model. This was done for every feature
set and input, as to allow for a more fair comparison and optimize end-results. See
Algorithm 2 for a general overview of the procedure.

Algorithm 2 Gridsearching for two hyperparameters
Require: A1 . . . AN , B1 . . . BN

1: for P1 ← A to B do
2: for P2 ← C to D do
3: Model ← Algorithm(Hyperparameter1 = P1, Hyperparameter2 = P2)
4: Score ← CrossValidation(model, data)
5:
6: SavedScores ← CVScore, P1, P2
7: Evaluate SavedScores, Select best combination

In the case of deep neural networks, the same architecture and hyperparameters used
in the study Deep Neural Network Models for Predicting Chemically Induced Liver
Toxicity Endpoints From Transcriptomic Responses by Wang et al. were selected
[35]. However, the optimization involved evaluating the amount of frozen layers
and/or addition of trainable layers.

5.5 Model & feature set selection
The best performing models for the different feature sets, with optimized hyperpa-
rameters were compared to one another. Due to the stochastic nature of synthetic
oversampling, neural networks and random forest, the training and evaluation pro-
cess was re-iterated 10 times. The mean and standard deviation was then calculated,
to be used as the metric for comparison between the models.

In the case of in vivo liver injury, the best performing models for each in vivo
histopathology were then aggregated in a wrapper, producing four different predic-
tions based on the same input, as illustrated in Figure 5.1. This was then used for
final evaluation on an external test-set.
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Figure 5.1: Visualization of the in vivo aggregated-model. A sample input will
yield four different predictions, one for each of the histopathologies.

5.6 Testing procedure
When assessing performance of a model, one traditionally uses a train-test split.
However, due to availability of external studies measuring similar responses, the
models were assessed using data not related to the one used in training.

5.6.1 In vitro
The cell line A-549 was removed from the training data and used separately as a
test set (see Figure 4.6). This was done as it was deemed more descriptive of per-
formance in a foreign cell line than a standard train-test split.

The best-performing model based on cross-validation was used and the test-data
was scaled using the pretrained scaler.

As another means of validation, the trained model was also applied on the TG-
GATEs Primary Human Hepatocytes (see Section 1.2.1), using the different dosages
and timestamps as unique samples. This was done to see if the model could cap-
ture dose-response relationships, similar to predictions made in similar studies [32].
Toxicity is dependent on the dose, and ideally the model should capture toxic re-
sponses in relation to an incremental increase of said dose [32]. Results can be seen
in Section 6.3.

5.6.2 In vivo
Two completely external test-sets were used to evaluate performance for the histopathol-
ogy predictive models. The studies chosen for this task were selected due to their
relevance regarding histopathology and treatment procedures, but also due to avail-
ability of sample-based histopathology findings [36][37].
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The first dataset is a study wherein rats of the species Rattus Norvegicus had been
treated with four different hepatotoxic compounds and sampled with whole-genome
microarrays [36]. The compounds present in this set were removed from the training
data. Sample distribution can be seen in Table 5.2.

Table 5.2: Overview of available transcriptomic samples with related histopathol-
ogy for study by Ippolito et al.

Histopathology Number of afflicted rats Number of unafflicted rats
Necrosis 31 46
Fibrosis 19 58
Hyperplasia 20 57
Mitotic Alterations 42 35

The second study is a study on the effects of bile-duct ligation1 and the transcrip-
tomic changes due to said treatment [37]. The transcriptomic data was sampled via
microrrays. This specific study was also chosen due to test model-performance on
non-chemical based treatments. Amount of samples available can be seen in Table
5.3.

Table 5.3: Overview of available transcriptomic samples with related histopathol-
ogy for study by Sutherland et al.

Histopathology Number of afflicted rats Number of unafflicted rats
Necrosis 24 0
Fibrosis 14 10
Hyperplasia 16 8
Mitotic Alterations 2 22

The differential gene expression from these databases was extracted using the same
methodology described in Chapter 3.

5.6.2.1 Y-scrambling

The model and feature set combinations were also evaluated using Y-label random-
ization (or Y-scrambling for short). This is a methodology in which one randomly
shuffles the sample labels and then consequently trains the model. This is done to
ensure the model is not currently overfitting to the noise in the model [38]. Care
was taken to ensure that the shuffle was sufficiently different from the original or-
dered state by calculating the Jaccard index2. The model was then evaluated and
retrained 10 times.

1A procedure in which the rats are the subjects of an operation designed to induce liver fibrosis.
2A metric for evaluating similarity between two sets of samples.
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6
Cytotoxicity Predictions

This chapter contains the results produced by one of the models developed for this
thesis, more specifically regarding cytotoxicity. It describes predictions made on
general in vitro dose dependent cytotoxicity in immortalized human cancer cells
and human primary hepatocytes.

6.1 Cross-validation & Model Selection
The models were optimized using basic gridsearching, as described in Section 5.4.

The different featuresets were evaluated using only support vector machines and
random forest algorithms, with the subsequent help of 10 K-fold cross-validation.
Only the best performing models for each hyperparameter-combination are repre-
sented. Shown in Figure 6.1 are the results, bar height denoting the average score
from the cross-validation process, while the error bar denotes the standard deviation.

Figure 6.1: Cross-validation scores using the different subsets with optimized SVM
and Random Forest algorithms.
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6. Cytotoxicity Predictions

Note that the high variance is due to the imbalanced nature of the dataset, as the
temporary fraction used as the test is not oversampled via SMOTE, causing large
discrepancies in classifier performance depending on the fold.

The performance difference between algorithms seem negligible. With differences
between the worst and best performing combinations showing discrepancies less than
0.03 MCC. In general, random forest seems to perform the best. However, L1000,
using a support vector machine algorithm had the highest mean performance, and
as such was selected for further testing.

6.2 A-549 Cytotoxicity
In the interest of attaining a more valid description of the importance of a curated
featureset, all of the above models were applied to the leave-one-out set consisting
of transcriptomic data on the cell line A-549. Results can be seen in Figure 6.2.

PTGS L1000 Core PTGS (DILI)
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Performance on A-549 cell line
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Figure 6.2: Scores regarding cytotoxicity predictions on cell line A-549 for the
different featuresets and algorithms.

When applied to the cell line A-549, the same general trend of random forest being
the better performer is still valid, but with a much larger discrepancy in performance,
especially for the PTGS, core-fitness genes and the PTGS-DILI feaure sets. However,
the support vector machine-model using the L1000 genes still manage to outperform
the other models, further showcasing that the right selection was made during cross-
validation.
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6.3 Primary Human Hepatocytes
As mentioned in Section 5.6.1, the model was evaluated on the transcriptomic data
from the TG-GATEs primary human hepatocytes. These were performed using
the best performing model shown in Figure 6.1. Out of all the data available, 10
compounds were randomly selected. Predictions were made on all the different
dosages and timepoints of the included compounds, shown in Figures 6.4 and 6.5.
A summarization of the predictions for each of the different compounds is visualized
in Figure 6.3.
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Figure 6.3: Bar plot showing fraction of positive cytotoxicity classifications in
increasing dosages and collection times.

The model seemingly captures the relationship between increased dosages and in-
creased likelihood of cytotoxicity, with an increasing fraction of positive classifi-
cations, providing further validation that the model captures relevant features in
dose-based transcriptomic profiles. Due to the randomness of the selected com-
pounds, they lack the same pharmocokinetic curves (time dependent uptake and
metabolization in the recipient). However, an assumption is usually made that 6-8
hours after treatment is a good reference for transcriptomic changes [2][3][6].

Below, in Figures 6.4-6.5 are all of the predictions based on the drug-treated human
primary hepatocytes:
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6. Cytotoxicity Predictions

(a) Cytotoxicity predictions on primary
hepatocytes exposed to benzbromarone.

(b) Cytotoxicity predictions on primary
hepatocytes exposed to cimetidine.

(c) Cytotoxicity predictions on primary
hepatocytes exposed to diclofenac.

(d) Cytotoxicity predictions on primary
hepatocytes exposed to flutamide.

Figure 6.4: Dose- and timebased cytotoxicity predictions on four primary hepatocytes
exposed to four different componds: benzbromarone, cimetidine, diclofenac and flutamide.

The predictions made on the four compounds seen above seem to correlate some-
what with literature. Where benzbromarone, diclofenac and flutamide are regarded
as drugs with high concern of liver injury and cimetidine is regarded as a lesser con-
cern. This according to the largest reference database of DILI-causing compounds,
DILIRank [39].

Note that DILIRank does not provide pharmacokinetic information regarding the
toxicity.
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(a) Cytotoxicity predictions on primary
hepatocytes exposed to caffeine.

(b) Cytotoxicity predictions on primary
hepatocytes exposed to ketoconazole.

(c) Cytotoxicity predictions on primary
hepatocytes exposed to methapyrilene.

(d) Cytotoxicity predictions on primary
hepatocytes exposed to vitamin A.

Figure 6.5: Dose- and timebased cytotoxicity predictions on human hepatocytes exposed
to four different componds: caffeine, ketoconazole, methapyrilene and vitamin A.

According to the model, all of the compounds seemingly shows cytotoxic profiles
at higher doses with the exception of vitamin A, which is of lesser liver injury
concern [39]. Methapyrilene and ketoconazole toxicity also correlates with results in
literature [39][40]. However, caffeine is not classified in literature as a hepatotoxicant
[39].
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6.4 Secondary Validation
In order to assess the selection of feature sets and avoidance of overfitted models,
models trained using randomized feature sets and scrambled labels were evaluated.

6.4.1 Randomized featuresets
Randomized featuresets were used as control, to estimate the performance of a well-
curated featureset. The results from cross-validation and two external tests are
shown in Table 6.1.

Table 6.1: Results from cross-validation and test performance on the cell line
A-549.

Featureset Prediction Cross-validation A-549
R1000 Cytotoxicity 0.43± 0.076 0.39
R500 Cytotoxicity 0.32± 0.083 0.32

The randomized featuresets seemingly still allow for a semblance of prediction perfor-
mance. However, at a great loss when compared to the curated featuresets presented
in Sections 6.1 and 6.2.

6.4.2 Y-scrambling
Y-scrambled models showed no predictive power in cross-validation and on external
performance when evaluated on the cancer cell line A-549.

Table 6.2: Results of Y-shuffled cytotoxicity model presented in MCC. Note that
they are an average of 10 different models.

Prediction CV (µ) CV (σ) A-549 (µ) A-549 (σ)
Cytotoxicity 0.012 0.00011 -0.056 0.0078

44



7
Liver-Injury Predictions

The following chapter will summarize the results of the histopathology-predictive
models generated in this thesis. These results will include scores based on both
cross-validation and on external test sets. It will also showcase an example of a
future application.

7.1 Cross-validation & Model selection
All of the following models were optimized using basic gridsearching, as described
in Section 5.4.

Attempts were made at assessing the potential applicability of transfer-learning,
using different pathological findings as source/target-domains. In Table 7.1 are
cross-validation results using the PTGS-subset (see Section 4.1).

Table 7.1: Results of cross-validation using different source/target-domain com-
binations with a deep learning architecture. Cells marked in grey are classical ap-
proaches, i.e. networks trained only on that input.

Target/
Source Fibrosis Necrosis Hyperplasia

Fibrosis 0.609± 0.226 0.104± 0.162 0.631± 0.186
Necrosis 0.629± 0.240 0.322± 0.190 0.618± 0.232
Hyperplasia 0.572± 0.096 0.133± 0.117 0.560± 0.251

Two of the combinations showed better results than a classical approach, namely,
fibrosis to hyperplasia, necrosis to fibrosis and necrosis to hyperplasia. Out of those,
the first two were chosen as the models going further. Random Forest was chosen
for the other histopathologies, as deep learning showed poor performance in other
studies [35]. Support vector machines were omitted in this part of the study due to
the need for classification probabilities, a feature which that algorithm usually lacks
(see Section 2.3.1).

The models of interest are presented in Table 7.2.
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Table 7.2: Summary of the selected model for each of the histopathological findings.

Histopathology Algorithm
Necrosis Random Forest
Mitotic alterations Random Forest
Fibrosis Deep Neural Network (Transfer-based)
Hyperplasia Deep Neural Network (Transfer-based)

The best combinations of hyperparameters for each of the feature sets and selected
models were compared to each other via their cross-validation results. Scores are
presented in Figure 7.1.
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Figure 7.1: Mean cross-validation scores on the four pathologies using different
featuresets. The error-bars denotes the standard deviation.

As in results presented for the in vitro models, some of the differences between the
results show no significant improvement over the others, for example, PTGS and
PTGS-DILI in fibrosis and hyperplasia. However, due to having the higher mean,
the following models were selected: L1000 for necrosis, L1000 for mitotic alterations,
PTGS for fibrosis and PTGS for hyperplasia.
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7.2 External validation
In order to properly validate the developed models, two external test sets were
chosen, as explained in Section 5.6.2. This to measure the performance on the type
of data the model would be used on. That is, non-related data from a different
experimental setting.

7.2.1 Rats exposed to hepatoxicants
Shown in Figure 7.2 are the confusion-matrices (see Section 2.4.1) for the predictions
made on transriptomic data from rats exposed to four different hepatotoxic com-
pounds, collected from the study by Ippolito et al. [36]. Note that the compounds
present in this study were removed from the training data beforehand.

(a) CM for fibrosis. (b) CM for hyperplasia.

(c) CM for mitotic alterations. (d) CM for necrosis.

Figure 7.2: Confusion matrices for four different injury predictions on data set by
Ippolito et al.

The Matthew correlation coefficients were calculated from the aforementioned con-
fusion matrices using Equation 2.14. The scores for the different histopathology
predicting models can be seen in Table 7.3.
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Table 7.3: MCC-scores on predictions made on rats exposed to four hepatotoxic
compounds.

Featureset Algorithm Histopathology MCC
L1000 Random Forest Necrosis 0.77
PTGS DNN (Transfer) Hyperplasia 0.90
PTGS DNN (Transfer) Fibrosis 0.93
L1000 Random Forest Mitotic Alteration 0.75

The models seemingly perform very well, predicting the different histopathologies
with very high correlation. Although these results may seem unreasonably high,
similar results have been shown in related studies, such as in the study by Wang et
al. [35]. A comparison between the achieved performances can be seen in Figure
7.3.
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Figure 7.3: Comparison with results from similar study by Wang et al. [35].

As seen in the figure, the models generated in this thesis outperform results previ-
ously achieved in literature in all comparable categories (necrosis, hyperplasia and
fibrosis).

Do note that this project uses the same input-data, however, with different method-
ology and featuresets.
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7.2.2 Rats exposed to bile duct ligation
The next test was done on rats exposed to bile duct ligation, as seen in Section
5.6.2. Shown in Figure 7.4 are the confusion matrices for the predictions made on
transriptomic data collected from the study by Sutherland et al. [37].

(a) CM for fibrosis. (b) CM for hyperplasia.

(c) CM for mitotic alterations. (d) CM for necrosis.

Figure 7.4: Confusion matrices for four different histopathological predictions on data
set by Sutherland et al.

The Matthew correlation coefficients were calculated from the aforementioned con-
fusion matrices using Equation 2.14. The scores for the different histopathology
predicting models can be seen in Table 7.4 or visualized in Figure 7.5.

Table 7.4: MCC-scores on Sutherland et al.

Featureset Algorithm Histopathology Sutherland et al.
L1000 Random Forest Necrosis 71%
PTGS DNN (Transfer) Hyperplasia 0.66
PTGS DNN (Transfer) Fibrosis 0.84
L1000 Random Forest Mitotic Alteration 0.80
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Figure 7.5: Performance on rats exposed bile duct ligation by Sutherland et al.

The models seemingly perform very well in predictions of liver injuries, even when ex-
posed to a non-chemical based treatments, such as bile duct ligation. The Matthews
correlation coefficient was omitted when estimating performance on necrosis, this
due to all of the presented samples having shown that particular injury.
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7.2.3 Pathology prediction profiles
In this subsection, a potential application of the models will be presented.

Table 7.5 shows actual pathological endpoints from three animals from the species
Rattus Norvegicus, while Figure 7.6 shows the developed models prediction proba-
bilities using the transcriptomic responses from those same individuals.

Table 7.5: Measured pathological outcome and severity for individuals treated with
bile duct ligation, 3 days after treatment.

Sample Necrosis Fibrosis Hyperplasia Mitotic Alterations
1 Minimal Minimal Moderate None
2 Moderate Minimal Moderate Minimal
3 Minimal Minimal Moderate Minimal

Note that a prediction probability of over 0.5 returns a positive prediction.

䠀礀瀀攀爀瀀氀愀猀椀愀

䘀椀戀爀漀猀椀猀一攀挀爀漀猀椀猀

䴀椀琀漀琀椀挀 愀氀琀攀爀愀琀椀漀渀猀

(a) Treatment group 1, sample 1.

一攀挀爀漀猀椀猀

䴀椀琀漀琀椀挀 愀氀琀攀爀愀琀椀漀渀猀

䘀椀戀爀漀猀椀猀
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(b) Treatment group 1, sample 2.
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(c) Treatment group 1, sample 3.

Figure 7.6: Prediction probabilities for four different pathological endpoints.
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As seen in Figure 7.4c, these are the only samples having been predicted with this
specific histopathology. Looking at Figure 7.6a, one can clearly see that the model
returns a false positive for mitotic alterations. This could however indicate that the
histopathology has not yet been developed, due to all the other samples present in
that treatment group having been diagnosed with it.

7.3 Secondary Validation
In order to assess the selection of feature sets and avoidance of overfitted models,
models trained using randomized feature sets and scrambled labels were evaluated.

7.3.1 Randomized feature sets
Randomized feature sets were used as control, to estimate the performance of a
well-curated feature set. The results from cross-validation and two external tests
are shown in Table 7.6. Note that necrosis was not measured as all cases had reports
of said pathology.

Table 7.6: Cross-validation scores and performance on external test-sets using
using randomized featuresets.

Featureset Histopathology CV-Score Ippolito et al. Sutherland et al.
R1000 Necrosis 0.25± 0.10 0.63 N/A

Hyperplasia 0.65± 0.28 0.70 0.45
Fibrosis 0.59± 0.22 0.76 0.53
Mitotic Alterations 0.38± 0.17 0.33 0.0

R500 Necrosis 0.14± 0.093 0.13 N/A
Hyperplasia 0.62± 0.27 0.49 0.21
Fibrosis 0.61± 0.17 0.71 0.0
Mitotic Alterations 0.37± 0.14 0.47 0.69

Although comparable in cross-validation scores, the randomized feature sets suffers
some losses in generalization when applied to foreign test sets.
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7.3.2 Y-scrambling
Y-scrambled models showed no predictive power in cross-validation and on external
data as seen in Table 7.7.

Table 7.7: Results of Y-scrambled injury models, presented in MCC. Note that
they are an average of 10 different models.

Histopathology CV (µ) CV (σ) Ippolito et al. (µ) Ippolito et al. (σ)
Necrosis 0.0056 0.013 0.047 0.11
Mitotic Alterations 0.010 0.070 -0.078 0.088
Hyperplasia 0.041 0.030 0.011 0.027
Fibrosis 0.033 0.0013 0.042 0.0
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Predictive models can only perform as well as the quality of used data allows for.
Depending on the variance inherent to the platform, development of these models
can become problematic. This statement holds especially true for microarray-based
data as mentioned in Section 2.2. Another complication when using biological data
is the somewhat inexact type of annotations used in this study; the in vivo models
make use of sample-based histopathology findings, which are subjectively located
and ranked by trained professionals. This introduces a human factor, potentially
adding more noise to the data. This type of problem is also occuring for the cy-
totoxicity model, in which the label of choice is dose dependent growth inhibition.
Experimental validation by assay is not an end-all be-all solution, with a track-
record being far from perfect. However, despite this, the in silico models developed
during this project indicate that prediction of in vitro cytotoxicity and in vivo liver
injury is indeed possible.

On the case of performance for the different injury-categories, they all seem to pro-
duce extremely high prediction metrics, even in regards to the conditions previously
mentioned. Fibrosis and hyperplasia are the top performers in the test set created
in the study by Ippolito et al., wherein rats are exposed to four hepatotoxicants [36].
Fibrosis goes on to produce very impressive predictions on non-related test-set in
which rats are exposed to bile duct ligation [37]; A very surprising discovery due to
the lack of positive samples in these categories, and also due to the non-chemical
treatment present in that set. The other two categories, mitotic alterations and
necrosis, reach respectable performance, especially the former one. However, re-
garding necrosis, the model seemingly was not able to capture all of the essential
features, suffering from a large loss in performance in some settings, as seen in Fig-
ure 7.1.

Keeping the previous paragraph in mind, these results could potentially indicate
that transcriptomic signatures are more well defined in some categories of injury.
Necrosis is a relatively well-studied phenomena, and involves the use of a plethora of
different pathways, while also interfering with the functionality of nearby tissue [41].
The features in use do not seem able to capture this process in its entirety, causing
loss of performance. The other three categories show differing results, by having a
profile that is seemingly well captured in the different feature sets, whilst still having
a smaller amount of samples to train on. For example, mitotic alterations showed
higher performance using the L1000 feature set, a set which is designed to infer the
complete genome. This also correlates to an interesting result regarding the appli-
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cability of transfer learning between the different pathologies. Some injuries, such
as fibrosis, are often preceded by necrosis. By looking at Table 7.1, one sees that
using necrosis as a source domain results in improved classifier performance for all
relevant categories, while not being, in itself, an indicator of strong performance.

In the study by Wang et al. they use more classical approaches when predicting the
different types of injury, more specifically using a deep neural network to predict
the endpoints [35]. These results are evidently outperformed by the changes made
for this thesis, namely, applying transfer learning between the different injuries, and
using a simpler random forest model for necrosis. However, a large caveat is the size
of the studies used for external validation. To further ensure actual performance, a
larger test would be needed, minimizing variation.

A transcriptomic change usually occurs before a physiological one, denoting the
potential of this model to produce predictions regarding future injuries as shown in
Section 7.2.3. A property that, in theory, could be used to great effect in short-term
studies, where the allotted times are too short to induce physiological injuries or
responses.

The second set of models produced in this study are on the topic of predicting
cytoxicity using transcriptomic responses from immortalized cancer cell lines, with
data collected from CMap and annotation given by growth inhibition data from the
NCI60 cell line panel. The model was tested on a foreign cell line, A-549, indicat-
ing good performance as seen in Figure 6.2. However, as previously mentioned, a
constantly occurring hindrance during this thesis is the problem of validation. In
order to find liver-specific cytotoxicity markers, there needs to be studies made on
that specific type of endpoint, which is hard to experimentally validate. Another
important observation is the non-specificity of not just the different tissues available,
but the fact that they are immortalized cancer cells. This might not in reality be
representative of normal primary human cells, as they are not identical in behaviour.

Under the assumption that cytotoxicity has a strong signature shared by the different
kinds of cell lines and tissues, predictions were made on primary human hepatocytes
from the TG-GATEs database. Although the model predicts cytotoxicity for higher
doses, one could argue that it is not liver specific, or even accurate, due to lack
of validation. But it is a good indicator that the model at least captures relevant
features, as compounds which are not toxic at all can still trigger cell-death in high
enough doses, an observation than can be made from analyzing Figure 6.3.

When investigating the predictions on the set of randomized compounds this seems
especially clear. The two prominent examples being caffeine and vitamin A. Caffeine
is not a typical hepatotoxicant, but the doses are high, causing a strong response,
which the models classifies as a toxic signature. The opposite can be said about vita-
min A, which is a an example of a typical hepatotoxicant. However, in this case, the
doses administrated are relatively low, not causing a strong response, subsequently
causing the model to classify the sample as non-toxic. These two observations are
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examples of the limitations of the model, as it is unable to handle more specific
intricacies regarding liver toxicity.

When measuring for cross-validation performance, a randomized feature set exhib-
ited predictive power similar to that of a curated one, such as the L1000-genes or the
PTGS-genes, an observation which can also be seen in the work by Wang et al. [35].
However, the performance on completely external testing seems lacking, although
it still capable of producing non-random predictions which can be seen in Figure
8.1. Correlation instead of causation is a typical problem in machine learning, that
is, when a model deems non-causative features important due to correlation. When
using transcriptomic responses, one needs to consider the possibility of interaction
between the different genes. The results shown in Sections 6.4 and 7.3 indicate that
correlated genes can produce strong performance. However, due to the selection pro-
cess being completely random, causative genes might have been captured. Further
study needs to be done before a more definitive conclusion can be made.

Necrosis Hyperplasia Fibrosis Mitotic Alteration
Featureset

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

Comparison between featuresets (Ippolito et al.)
R1000
PTGS & L1000

Figure 8.1: Bar plot showing the discrepancy in predictor performance when using
a curated feature set versus a randomized one (data from Section 7.3).

Another significant finding is the applicability of the synthetic minority oversam-
pling technique for use in transcriptomic data, a statement mirrored in the study
by Wang et al. Even though it is traditionally seen as a subpar method for high-
dimensional data, due to the dimensionality reduction caused by using the curated
feature sets mentioned in Section 4.1 it seemingly provides a reasonable way to im-
prove balance without losing performance.
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8.1 Future work
A cell line which was not included in this study but does have data available in
CMap, namely HL-60 (Human Leukemia), shows promise as a cell line which can
be highly representative of human hepatocytes, shown in the work by by Liu et al.
[42]. However, one needs to keep in mind that liver-specific pathways might not be
captured fully, denoting the importance of a well defined prediction.

Due to there being a higher prevalence of data available for these less specific types
of cell lines, in part due to the difficulties inherent to working with primary cells,
the previous paragraph could be used as an indication for future work regarding
the subject of drug induced liver injury [43]. As more data becomes available, the
efficacy of these types of studies will increase. The same can be said about high-
throughput sequencing technologies; microarrays, which were used in this study is
a relatively outdated technology, having been replaced with the likes of the more
qualitative RNASeq. The availability of more data from these different techniques
should result in better predictive performance.

The data produced in this thesis could also be used for more types of predictive
models. There exists a plethora of biochemical and hematological measurements in
both the DrugMatrix and TG-GATEs databases, potentially allowing for regression
models of important liver health metrics such as alanine-aminotransferase.
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