
REDUCED REPRESENTATIONS FOR EFFICIENT
ANALYSIS OF GENOMIC DATA; FROM

MICROARRAY TO HIGH-THROUGHPUT
SEQUENCING

BY MD PAVEL MAHMUD

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Prof. Alexander Schliep

and approved by

New Brunswick, New Jersey

October, 2014

ABSTRACT OF THE DISSERTATION

Reduced Representations for Efficient Analysis of

Genomic Data; From Microarray to High-throughput

Sequencing

by Md Pavel Mahmud

Dissertation Director: Prof. Alexander Schliep

Since the genomics era has started in the ’70s, microarray technologies have been exten-

sively used for biological applications such as gene expression profiling, copy number

variation (CNV) or Single Neucleotide Polymorphism (SNP) detection. To analyze

microarray data, numerous statistical and algorithmic techniques have been developed

over the last two decades; specially, for detecting CNV from array comparative genomic

hybridization (arrayCGH) data, Hidden Markov Models (HMMs) have been success-

fully used. Still, due to computational reasons, the benefits of using Bayesian HMMs

have been overlooked, and their use has been, at best, minimal in practice. The large

demand for computational resources has also affected the analysis of high throughput

sequencing (HTS) data, which, over the last few years, has started to revolutionize the

field of computational biology. For example, the most sensitive tools for mapping HTS

data to reference genomes are generally ignored in favor of fast, less accurate ones.

In this dissertation, we strive for reduced representations of biological data which

enable us to perform efficient computations on large datasets. Since biological datasets

often contain repetitive, sometimes redundant, elements, it is a natural idea to identify

groups of similar elements and directly perform computations on these groups. Usually,

ii

the relevant type of similarity is specific to the type of data and application in hand.

Specifically, we make the following four contributions in this thesis. First, we

show that, by exploiting repetition in discrete sequences, Markov Chain Monte Carlo

(MCMC) simulations of Bayesian HMM can be accelerated, which can then be applied

to the DNA segmentation problem [1]. Second, in case of Gaussian observations repre-

senting copy number ratio data, we show that, through pre-computing similar, contigu-

ous observations into blocks, MCMC for Bayesian HMM can be well-approximated [2].

Third, by representing sequences to multi-dimensional vectors, we introduce a nearest

neighbor based novel technique for mapping HTS data to reference genome [3]. Fi-

nally, we present a highly efficient clustering approach for HTS data, which allows us

to speed-up computationally demanding, sensitive tools for mapping HTS data [4].

iii

Acknowledgements

First of all, I would like to thank Prof. Alexander Schliep for his supervision and support

during my PhD studies. He introduced me to the area of genomics and bioinformatics,

specially microarray technologies and high-throughput sequencing, and encouraged me

to work on challenging state-of-the-art problems. Most of the contributions presented

in this dissertation are results of our combined work from 2010 to 2014 [1–4]. Without

his guidance and novel ideas this dissertation would not be possible.

I would also like to thank Prof. William Steiger for his support and advices during

the initial years of my studies. Being his teaching assistant for many semesters helped

me tremendously in staying sharp in probability and statistics, which indirectly con-

tributed to my research in later years. I would also like to thank Prof. Mario Szegedy,

Prof. Danfeng Yao and Prof. Tina Eliassi-Rad for their help in various stages of my

studies. I would like to express my gratitude to Prof. Martin Farach-Colton and Prof.

Kevin Chen for their suggestions regarding this thesis.

I would like to thank my colleagues in Schliep Lab; Jonathan Shao, Eric Brugel, Ra-

jat Roy, John Wiedenhoeft and Ivani Lopes. They often read my manuscripts, provided

valuable suggestions, shared excellent ideas and often provided much needed encour-

agement. I express my sincere gratitude to them, and, specially to John Wiedenhoeft

for his contributions in [3].

This work would not be possible without the support and motivation of friends and

family. I want to specially thank Khairul Kabir, Ratan Dey and Ashique Reza Shovon

for their belief in me. I am very grateful to my sister Nilufar Easmin for always making

sacrifices for me. Lastly, I want to acknowledge the tremendous effort that my parents

have always made for my well-being. Without their unconditional love, support and

sacrifices I would achieve very little in my life.

iv

Dedication

I dedicate this work to my father, Noor Jalal, my mother, Farida Yasmin and my sister,

Nilufar Easmin.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. DNA . 1

1.2. Microarray Experiments . 3

1.3. High Throughput Sequencing (HTS) Experiments 4

1.4. Thesis Overview . 5

2. Hidden Markov Models and HTS Reads 10

2.1. Hidden Markov Model . 10

2.1.1. Inference in HMM . 12

2.1.2. Bayesian HMM . 13

2.2. HTS Reads . 15

2.2.1. Read Characteristics . 16

2.2.2. Genomic Characteristics . 17

3. Exploiting Repetition in Discrete Sequences 19

3.1. Related Work . 20

3.2. Time Dependent HMMs . 21

3.3. Fast Sampling Using Four Russian’s Method 22

vi

3.3.1. Compression and Forward Variables 22

3.3.2. Backward-forward State Sequence 23

3.3.3. Fast Sampling Algorithm . 26

3.4. Experiments . 26

4. Compressed Gaussian Observations . 30

4.1. Related Work . 31

4.2. Bayesian HMM for CNV . 33

4.3. Approximate MCMC Sampling . 33

4.3.1. Top-down Hierarchical Clustering 34

4.3.2. Fast Approximate Sampling Algorithm 35

4.4. Approximation Error in Symmetric HMMs 37

4.5. Experiments . 41

4.5.1. Synthetic Data . 42

4.5.2. Biological Data . 44

4.5.3. Discussion . 50

5. Geometric Embeddings for HTS Reads 59

5.1. Related Work . 60

5.2. The q-gram Lemma revisited . 62

5.3. Read mapping with cache-oblivious kd-trees 64

5.4. Experiments . 69

5.4.1. Simulated Data . 69

5.4.2. Biological Data . 71

5.4.3. Discussion . 72

6. Reduced Representation through Clustering 75

6.1. Related Work . 76

6.2. Clustering . 77

6.2.1. Clustering billions of reads for mapping 78

vii

6.2.2. Running time and memory usage 82

6.2.3. Additional points . 83

6.3. Read Mapping . 85

6.4. Experiments . 89

6.4.1. Clustering performance . 90

6.4.2. Read mapping performance . 92

7. Discussion . 100

Appendices . 104

A. Notations . 105

B. Abbreviations . 108

References . 109

viii

List of Tables

3.1. Speed-up for fast sampling . 29

4.1. Average posterior error in a 2-state HMM 56

4.2. Performance of EM, FBG-sampling and approximate sampling 57

4.3. Accuracy of EM, FBG-sampling and approximate sampling on simulated

data . 58

5.1. Running times of readmappers on simulated data 69

5.2. Performance of readmappers on biological data. 73

6.1. Comparison of clustering tools . 93

6.2. Running time and memory requirement of single-end clustered read map-

ping . 98

6.3. Running time and memory requirement of paired-end clustered read

mapping . 99

ix

List of Figures

1.1. DNA double helix structure . 2

1.2. ArrayCGH . 3

1.3. HTS - library preparation . 6

1.4. HTS - sequencing . 7

2.1. HMM with 3 states . 11

3.1. Conditional dependency in HMM . 22

3.2. Conditional dependency in HMM for sampling qs using B2 24

3.3. Conditional dependency in HMM for sampling qs using B3 25

3.4. Running time comparison on bacterial datasets 29

4.1. Log ratio of sample vs. control copy number data 31

4.2. Correspondence between blocked observations and a Gaussian HMM . . 33

4.3. Simulated data: approximate posterior 43

4.4. MCMC convergence . 45

4.5. HBL-2: chromosome 1 and 9 . 46

4.6. GBM: chromosome 7 (GBM29) and chromosome 13 (GBM31) 48

4.7. Affymetrix 100k SNP array . 51

4.8. Illumina HumanMap550 array . 52

4.9. Effect of width parameter . 55

5.1. Difference between q-gram filtering and geometric embedding 60

5.2. Comparison of popular read mappers with TreQ. 65

5.3. Effect of different parameters on TreQ 68

5.4. Speed-up achieved by the multi-threaded TreQ. 72

6.1. Schematic view of clustering . 78

6.2. Sub-optimal cluster choices . 81

x

6.3. Expected number of clusters . 86

6.4. Schematic view of clustered read mapping 87

6.5. Quality improvements in detecting SNPs and structural variants 95

6.6. Alternate mapping rate between clustered and individual single-end read

mapping . 96

xi

1

Chapter 1

Introduction

In this thesis we are concerned with the computational aspects of analyzing genomic

data in the form of deoxyribonucleic acid (DNA), array comparative genomic hybridiza-

tion (arrayCGH) data and high throughput sequencing (HTS) reads. In this chapter,

we briefly describe some basic concepts related to DNA and some biotechnological ex-

periments that either directly or indirectly measure quantities of interest from DNA.

We also discuss some computational difficulties that arise in analyzing large amount

of data using powerful but complex statistical models. We conclude by outlining the

contributions of this thesis and summarizing it’s content.

1.1 DNA

DNA molecule encodes genetic information for most organisms. It has a double he-

lix structure which consists of two long strand of nucleotides. Genetic information

is stored using four possible nucleobases–guanine (G), adenine (A), thymine (T) and

cytosine (C)–connected to a backbone of sugar-phosphate base (Figure 1.1). In eukary-

otes, several DNA molecules, called chromosomes, are present inside a cell nucleous.

Typically, each of the chromosomes has millions of base-pairs; the human genome has

around 3 billion base-pairs arranged into 23 pair of chromosomes.

The coding region of DNA stores genes, which are hereditary units responsible for

an organism’s traits and functionalities. A process, known as transcription, generates

complementary ribonucleic acid (RNA) from the DNA sequence representing a gene.

Then, another process (known as translation), guided by the RNA sequence, creates

amino acids, which represent the building block of proteins–responsible for carrying out

functions in an organism. Although non-coding regions in a genome do not directly take

2

Figure 1.1: DNA double helix structure. Two sugar-phosphate backbone holds
two complementary sequence of bases attached to each other. Figure reproduced from
Encyclopaedia Britannica.

3

Figure 1.2: ArrayCGH. Control and patient DNA with different fluorescent colors
get hybridized to the microarray. A high resolution scanner can detect the outcome
of hybridization for each probe in the array. Figure reproduced from Cancer Genetics,
Inc. (www.cancergenetics.com).

part in protein synthesis they also carry out some regulatory functions. Even though

molecular biology is a fascinating area of research, in this thesis, our focus is limited

to computational aspects of analyzing information extracted from DNA sequences in

various forms.

1.2 Microarray Experiments

Knowing each base of a DNA sequence is not necessary to answer every biological

question. Microarray experiments can be used to measure gene expression, detect

SNPs, find copy numbers, etc. from DNA or RNA samples without explicitly reading

every base. Here we describe a microarray experiment, known as arrayCGH, to detect

copy number variation (CNV) between a patient and a control genome (see Figure 1.2).

In this thesis, we will restrict our discussion of microarray technologies to arrayCGH.

www.cancergenetics.com

4

In arrayCGH experiment, at first, patient and control DNA are labelled with dif-

ferent fluorescent colors and separated into single strands. Then both sets of DNA

materials are brought onto a microarray chip where they hybridize to complementary

genetic material known as probes. By reading the fluorescent image, created from flu-

orescently labelled sample DNA bound to probes, with high resolution scanner we can

detect the level of comparative difference between the control and sample DNA. Loss

or gain in copy numbers manifest themselves by different colors while hybridization

intensity informs about the magnitude of change.

ArrayCGH technology has experienced tremendous success in cancer research and

detecting genetic aberrations. The datasets produced by these experiments involve

manual intervention, imaging and chemical processes which lead to noisy measurements.

As a result, statistical methods are required to analyze the data. In this thesis, we will

discuss an alternate representation of arrayCGH data and show that a highly used

statistical model can gain significant advantage from that representation.

1.3 High Throughput Sequencing (HTS) Experiments

The first methods for DNA sequencing—Maxam-Gilbert sequencing [5] and Sanger

sequencing [6, 7]—arrived in the early ’70s. These methods had been laborious and

highly expensive; The first human genome was sequenced only about a decade ago

using Sanger sequencing at a cost of nearly 3 billion dollars [8]. However, in about

a decade, the cost of sequencing has gone down a few orders of magnitude, and, just

recently, Illumina has announced the first DNA sequencer to sequence human genome

at a cost of 1,000$ per genome. In this thesis, we will focus on sequencing data produced

by HTS based methods such as Illumina’s.

The sequencing process used by Illumina can be described in two steps; DNA frag-

ment library preparation (Figure 1.3) and sequencing by synthesis (Figure 1.4). At

first, genomic DNA is randomly sheared into many fragments and unique adapter se-

quences are attached to the ends. Through hybridization the adapter sequences bind

single DNA strands to an array of primers. Then the attached segments are amplified

5

and clusters of DNA sequences are formed. In the second step, bases with fluorescent

labels are added, which attach to the DNA strands in the clusters. Unattached bases

are washed away and a high-resolution image informs about the first base of the DNA

strands. This step is repeated until the full strands are sequenced. We refer to the

collection of sequences generated in this process as HTS reads.

Although high-throughput nature of this experiment allows inexpensive sequencing

at a very fast rate, due to the nature of the chemical process involved, base call quality

degrades over time. As a result, the sequenced reads occasionally contain errors and are

reliable only up to a certain length (for Illumina, depending on their specific platform,

up to 150-300 bp). This poses some critical challenges in analyzing HTS reads. A

fundamental task in bioinformatics is mapping the sequenced reads back to a reference

genome–known as the read mapping problem. Without errors, mapping reads would be

equivalent to solving exact string matching problem. Because of errors and the sheer

scale of the datasets, sophisticated approximate string matching algorithms, known as

read mappers, have to be designed. The situation even gets worse due to the genetic

differences between the sample genome and the reference genome. In this thesis, we

propose a radically different read mapper capable of dealing with large amount of errors

and genetic variations, and argue that a different compressive approach is required for

computationally demanding read mappers.

1.4 Thesis Overview

The main focus of this thesis is to find reduced representations of biological data which

enables us to perform efficient computations on large datasets. Since large biological

datasets often contain repetitive, sometimes redundant, elements it is a natural idea

to identify groups of elements with respect to some similarity criteria and perform

computations on these groups. Usually, the type of similarity is specific to the type

of data and application for which it will be used. In this thesis, we will explore three

fundamentally different kind of data produced from biological experiments and show

how a particular representation can be exploited for one or more applications.

6

DNA fragment library generation

Figure 1.3: HTS - library preparation. After shearing DNA into random fragments
adapters are attached, which help to bind these fragments onto an array. Some par-
ticular DNA fragments can be targeted for sequencing through complementary DNA.
In whole genome sequencing, there is no need for this step. The generated fragments
are then amplified. Note that beads are used by some other non-Illumina platforms.
Figure reproduced from [9].

7

The Illumina sequencing process

Figure 1.4: HTS - sequencing. Bases with fluorescent labels are poured onto the
clusters. Through a bio-chemical process the labelled bases get attached to the first
base of the strands. A high resolution camera identifies the first bases. This process is
repeated for subsequent bases in the strands. Figure reproduced from [9].

8

In case of a DNA sequence, since it comprises of only four possible bases, some bases

may appear together more than once. The longer a sequence is, the greater is the chance

of this kind of repetition. This observation has led to efficient computations for Hidden

Markov models before [10,11]. We have extended this approach to even more complex

statistical computations. With copy number ratio data from arrayCGH experiments, we

shift our focus from the discrete to the continuous domain where exploiting sequence

repetition is not an option anymore. Instead we look into the Markov property of

the biological process in question. In particular, copy numbers have strong spatial

dependency, which can be successfully modeled using HMMs . Moreover, observations

in a particular HMM state can be modeled using Gaussian distribution, which, under

some assumptions, can be grouped together and represented in a computation-friendly

way. Unlike DNA sequence, this reduced representation leads to computations that

produce approximate results.

Although high resolution microarray experiments are getting cheaper and statisti-

cal analysis of these datasets have improved a lot, the future of biological data analysis

belongs to HTS. To overcome sequencing errors and increase statistical confidence of

analysis, HTS datasets are often generated with high coverage, which means more re-

dundant reads. This redundancy has been exploited in many applications in a somewhat

ad-hoc way. We propose a cluster based approach to produce reduced representations of

HTS data that can be directly used for biological applications. We extensively discuss

it’s applicability to read mapping problem.

In chapter 2, we introduce basic computations using Hidden Markov models, and

extensively discuss the details of MCMC approach in the context of Bayesian HMM. We

also discuss the basic characteristics of HTS datasets which are relevant in analysis. We

start our discussion on this thesis’s contribution with the DNA segmentation problem

in chapter 3. We motivate the use of Bayesian HMMs for this problem and show

how sequence repetition can be exploited to improve MCMC in discrete observation

settings. In chapter 4, we use continuous valued observations with Bayesian HMMs for

copy number variation detection. We show how similar consecutive observations can

be grouped together and exploited for approximating MCMC simulations.

9

We start our exploration of HTS datasets with a close look at the fundamental prob-

lem of read mapping. In chapter 5, we introduce a new read mapper and discuss how

the scale and variation of the dataset inspires a different approach in read mapping. We

propose in chapter 6 that the massive HTS datasets can be tackled through clustering

similar reads together. We show the effect of using a reduced representation of HTS

dataset through extensive experimentation on read mapping. Finally, in chapter 7, we

conclude with final remarks and future directions.

10

Chapter 2

Hidden Markov Models and HTS Reads

Hidden Markov Model (HMM) is a class of directed graphical models which are specially

useful when successive observations are correlated or a Markov process is assumed

to have generated the observations. HMMs have been used extensively for sequence

classification tasks in many areas including speech recognition [12], natural language

processing [13], and bioinformatics [14]. For analyzing biological sequences, HMMs are

particularly useful, for example in sequence alignment problems [14], gene finding [15],

CpG island detection [16], DNA segmentation [16–19] and promoter detection [20]. In

this chapter, we introduce the basic statistical and computational aspects of HMM. All

of these discussion has been extensively covered in the literature [21]. Additionally, we

introduce basic characteristics of HTS reads which are relevant for analysis.

This chapter is organized as follows: We start with the basic definitions and inference

in HMM (Section 2.1.1). Then, we introduce Bayesian HMM and a special kind of

MCMC named Forward-backward Gibbs sampling (Section 2.1.2). Finally, we discuss

characteristics of HTS reads and some necessary definitions related to their analysis

(Section 2.2.2).

2.1 Hidden Markov Model

We consider HMM with both discrete and continuous emission distributions; see [22] for

an introduction. We will use the following notation: N denotes the number of states,

S= {s1, s2, . . . , sN} ≡ {1, 2, . . . , N} the set of states, O the set of possible observations,

T the length of the observation sequence, O= (o1, o2, . . . , oT) ∈ OT the observation

sequence, Q= (q1, q2, . . . , qT) ∈ ST the hidden state sequence, A= {ai,j}1≤i,j≤N the

transition matrix, B= {bi,o}1≤i≤N,o∈O the emission matrix, and π= (π1, π2, . . . , πN)

11

S1 S2

a1,2

a2,1

a1,3

a3,1

a3,2

a2,3

a2,2a1,1

A C G TA C G T

b1,* b2,*

S3

a1,3 a3,2

a3,3A C G T

b3,*

Figure 2.1: Discrete HMM with 3 states, S1, S2 and S3, over alphabet {A,C,G, T}.
Here ai,j is the probability of making a transition from state i to j, and bi,o is the
probability of observing the alphabet o in state i. π, the initial distribution over states,
is not shown here.

the initial distribution over states; see Figure 2.1 for an example of a 3-state HMM.

We represent a consecutive set of observations with Oi,j= oi, . . . , oj and, similarly, a

consecutive set of state sequences with Qi,j= qi, . . . , qj . We will use two different sets for

O; for discrete observations O = {A,C,G, T} and for continuous observations O = R.

The hidden state sequence Q follows a first-order Markov chain and observations

solely depends on the current state. The following equations fully describe the behavior

of an HMM, represented by θ= (A,B, π).

P (q1) = πq1 , (2.1)

P (qt|Q1,t−1) = P (qt|qt−1) = aqt−1,qt , (2.2)

P (ot|qt) = bqt,ot . (2.3)

Thus, the joint probability of the hidden state sequence Q and the observation

sequence O, is

P (O,Q|A,B, π) = πq1bq1,o1

N∏
t=2

aqt−1,qtbqt,ot . (2.4)

12

2.1.1 Inference in HMM

There are three fundamental questions related to HMM. Given a model θ = (A,B, π)

and an observation sequenceO, (1) what is the most likely hidden state sequence (known

as Viterbi path) and (2) how likely is the observation sequence? (3) Given O, what

are the most likely parameters θML of the HMM? We discuss these questions below in

detail.

Viterbi Path

Given θ = (A,B, π) and O, the most likely state sequence QML is defined as,

QML = argmax
Q

P (Q|O, θ). (2.5)

Although there are O(NT) number of possible state-paths in a HMM, utilizing the

first-order property of the Markov chain, a simple dynamic programming algorithm can

find out the Viterbi path in O(TN2) time.

Forward Variables

Given θ = (A,B, π), for state j at time t, the forward variable αt(j) is defined as

αt(j) = P (O1,t, qt = j|θ) (2.6)

=

N∑
i=1

αt−1(i)ai,jbj,ot . (2.7)

It follows from (2.7) that forward variables can be computed iteratively in O(TN2)

time.

13

Likelihood

Given θ = (A,B, π), the likelihood of observing O is

P (O|θ) =
∑
Q

P (O|Q, θ)P (Q|θ) (2.8)

=
N∑
i=1

αT (i) (2.9)

Since the likelihood of observing O is a sum over the forward variables at time t, it

can be computed in O(TN2).

Baum-Welch Algorithm

Given the observation sequence O, the most likely model θML is

θML = argmax
θ

P (O|θ), (2.10)

which can be computed using an expectation maximization based algorithm known as

the Baum-Welch algorithm [23]. If the algorithm converges in M iterations, the total

runtime complexity will be O(MTN2).

2.1.2 Bayesian HMM

In Bayesian setting, instead of relying on one point estimate such as θML, we model the

uncertainty of the parameters using standard conjugate prior distributions; for multi-

nomial likelihood we choose Dirichlet priors, and for Gaussian likelihood we choose

Gaussian and Gamma priors for the sufficient statistics—mean and precision respec-

tively. In particular,

π ∼ Dirichlet(θπ) (2.11)

Ai,∗ ∼ Dirichlet(θAi), (2.12)

14

for discrete observations,

Bi,∗ ∼ Dirichlet(θBi), (2.13)

and for Gaussian observations,

µi|σi ∼ N (µ̃i, σ̃i) (2.14)

σ−2
i |µi ∼ Gamma(ai, bi), (2.15)

where µ̃i, σ̃i, ai, bi, θ
Ai , θBi , and θπ are the hyperparameters of the model. See [24]

and [21] for detail.

Forward-Backward Gibbs Sampling

As we are interested in computing the distribution P (Q|O), and a closed form solution

of the Bayesian integral
∫
θ P (Q, θ|O) dθ =

∫
θ P (Q|θ,O)P (θ|O) dθ is not feasible, the

use of MCMC techniques like Gibbs sampling or Metropolis-Hastings becomes manda-

tory [24,25].

In Gibbs sampling, we iteratively sample Q and θ from the conditional distribu-

tions P (θ|Q,O) and P (Q|θ,O), which creates a Markov chain with the desired distri-

bution P (Q, θ|O) as its stationary distribution. After an appropriate burn-in period,

performing a random walk on the state transition graph, the states of the chain can

be used as samples from the stationary distribution [25]. To successfully use Gibbs

sampling we need a way to generate samples from the above two conditional distribu-

tions. Due to the use of conjugate priors, the posterior probability of θ, P (θ|Q,O), has

the same distribution (with different hyper-parameters) as the prior distribution of θ

(see [24]). In contrast, sampling Q from P (Q|θ,O) requires a computational approach.

Scott [26] compares various techniques for sampling Q and strongly argues in favor of

using forward-backward recursions for it’s excellent convergence characteristics. Com-

binedly, we will call this approach forward-backward Gibbs sampling (FBG-sampling)

and briefly summarize it for a HMM ≡ (A,B, π) = θ in Alg. 1; see [26,27] for details.

15

Algorithm 2.1 FBG-Sampling(O)

1: Choose initial parameters θ0 = (A0, B0, π0).
2: Perform the following steps for 0 ≤ m < M .

1. Qm = StateSampler(O, θm) [See Alg. 2.2]

2. Sample HMM parameters,
θm+1 ∼ PriorDistribution(hyperparameters,O,Qm, θm)

3: return Q0, Q1, . . . , QM−1.

FBG-sampling starts with an initial choice of parameters θ0 and alternatively keeps

sampling state sequenceQm and parameters θm+1. See [27] for a proof thatQm returned

by Alg. 2.2 is indeed sampled from the marginal distribution P (Qm|O, θm).

Algorithm 2.2 StateSampler(O, θ)

1: Forward Variables:

• Compute α1(j) = P (o1, q1 = j|θ) = πjbj,o1 for all j.

• For 2 ≤ t ≤ T :

Compute αt(j) = P (O1,t, qt = j|θ) =
N∑
i=1

αt−1(i)ai,jbj,ot for all j.

2: Backward Sampling:

• Sample qT s.t. P (qT = i) ∝ αT (i).

• For T > t ≥ 1:
Sample qt s.t. P (qt = i) ∝ αt(i)ai,qt+1 .

3: return Q

Algorithm StateSampler uses O(TN2) space and runs in O(TN2) time; step 1 (for-

ward variables) runs in O(TN2) time and step 2 (backward sampling) in O(T logN).

It is obvious from the above algorithm that all the pre-computed forward variables are

not used for sampling the state sequence Qm. In the next chapter we will see that even

without computing all the forward variables Qm can be sampled accurately.

2.2 HTS Reads

High-throughput sequencing is an emerging technology. Currently, there are at least five

different biotechnology companies—454 Life Sciences, Ion Torrent, Pacific Bio, Solid,

16

and Illumina—marketing high-throughput sequencing machines. The bio-chemical pro-

cesses involved in these sequencers vary significantly. As a result, the characteristics of

the HTS reads also differ among the platforms; see [28,29] for a review. In this thesis, we

will restrict our discussion on HTS reads produced by Illumina or Illumina-like sequenc-

ing technologies. We choose Illumina because of widespread use and cost-efficiency.

2.2.1 Read Characteristics

Although, from computational point, it is convenient to think of reads as a set of

random substrings originating from a long genomic string, there are other factors that

also affect HTS read analysis. Here we discuss some of the relevant features.

Sequencing errors

Mapping reads back to a reference genome is affected by two sources of variation:

One, genomic difference—substitutions, indels, etc.—between the sample genome from

where HTS reads are sequenced and the reference; two, errors introduced during the

sequencing process. Although reads produced by Illumina has non-negligible amount

of errors—about 2% per base in HiSeq systems—, it is mostly substitution error rather

than indel errors. As a result, the dominant source of indel error in mapping Illumina

reads are genetic variants. The methods that we will introduce later in this thesis

utilizes this fact. Moreover, these reads have the characteristics that error rate is low

in the starting positions but gradually increases towards the end.

Quality score

One measure of the reliability of a base call is known as ’Phred quality score’, which is

reported by the sequencer as Qphred = −10 log10 e, where e is the estimated probability

of a wrong base call. This extra information about the reliability can be used by

methods working on these reads. Additionally, if the sequencer cannot unambiguously

resolve a base it reports that base with a special letter N .

17

Length

One fundamental characteristics of Illumina reads are their short lengths. Although

their most recent platform can produce reads of length 300 bp, reads from the most

popular platform HiSeq2500 are limited to 150 bp. Short reads present two difficulties

in read mapping: One, due to repetitiveness of complex genomes finding the optimal

mapping location of a short read is often very difficult; two, computational tools usually

cannot overcome the impact of sequencing errors in short reads. However, Illumina is

gradually increasing the maximum read length of their sequencers.

Coverage

To increase the probability of reliable mapping and, in general, the power of statistical

analysis, HTS reads are usually sequenced with coverage more than one. Here coverage

C means that any random base of the sample genome is expected to be covered by

C number of reads. Based on some parameters usually the sequencing process allows

one to vary C within a range. Along with other advantages, higher coverage allows

us to find genetic variants with more confidence. Unfortunately, it also means more

computation for downstream analysis tools.

Paired-end reads

So far we have discussed reads as a set of independent random samples from the sample

genome. The reads produced by this process are known as single-end reads. Illumina,

and others, also produce a different kind of reads known as paired-end reads. In this

process, instead of reading a genomic segment from one end, both ends are simultane-

ously read and reported as a pair. This pairing information can be exploited in read

mapping to overcome sequencing errors and ambiguity in mapping or alignment.

2.2.2 Genomic Characteristics

Previously, we have mentioned that microarray based arrayCGH technologies are lim-

ited to a few specific type of large variations between genomes. HTS reads expand

18

our capability to detect a wider range of small to large variations. In particular, one

base pair differences between genomes (known as SNPs), short indels and inversions

present considerable challenges to analysis, but ultimately can be detected using HTS

reads. Another factor that affects analysis is the complexity of organism’s genomes. A

genome is not a random set of nucleotides. It consists of many sub-structures such as

genes, non-coding regions, etc., which, due to evolutionary pressure and other biological

reasons, are maintained and sometimes repeated. Mapping reads back to a reference

genome is often complicated due to the nature of these structures; for example, for most

tasks, analyzing bacterial genomes are comparatively easy to human genome.

19

Chapter 3

Exploiting Repetition in Discrete Sequences

Although the number of bases in a DNA sequence significantly varies between species—

from thousands of bp in bacterial genomes to billions of bp in the human genome [8]—,it

consists of only four bases–guanine (G), adenine (A), thymine (T), and cytosine (C).

Due to the small finite alphabet size, as a consequence of the pigeon hole principle,

some combination of bases must be repeated in a long sequence. This observation has

led to identification of repeated contiguous sub-sequences in DNA and their utilization

for computational benefits. As a contribution of this thesis we show an application of

this observation to Bayesian HMMs in the context of DNA segmentation problem.

HMMs have been used extensively for biological sequence classification tasks such

as sequence alignment problems [14], gene finding [15], CpG island detection [16], DNA

segmentation [16–19], and promoter detection [20]. These application problems all lead

to the computational task of segmenting the input, an observation sequence, based

on the most likely assignment of hidden states. Specifically, in the context of DNA

segmentation problem [18,30–32], a segment is defined to be a contiguous region of DNA

sequence, where nucleic acid composition is assumed to follow the same distribution. For

example, isochore classes can be identified by solving the DNA segmentation problem

using HMMs [16]; see [30,31] for a fully Bayesian approach.

For simplicity and efficiency reasons, point estimates such as maximum likelihood

(ML) or maximum a posterior (MAP), computed with Baum-Welch [23] and variants,

have traditionally been used for learning HMM parameters. Based on these estimates

segmentations have been computed with the Viterbi path. This ignores uncertainty in

model parameters and consequently predictions based on ML or MAP trained models

often turn out to be inferior in practice. In contrast, a full Bayesian approach integrates

20

out model parameters and thus removes dependency on one parameter estimate to im-

prove HMM based prediction. As closed form solutions are not available for HMMs, one

frequently uses Markov Chain Monte Carlo (MCMC) sampling techniques like Gibbs

sampling or Metropolis-Hastings [24] instead of integration. Forward-backward Gibbs

sampling [26, 27], a particular form of Gibbs sampling for HMM (see section 2.1.2), is

popular in several communities [33–38] for its improved convergence rate through use

of forward and backward recursions. However, depending on the problem, forward-

backward Gibbs sampling can still take many iterations to converge. Careful choice

of prior distributions and corresponding hyper-parameters can sometimes increase the

convergence rate but it remains computationally inefficient compared to using point

estimates. In this chapter, we propose a method to speedup an iteration of MCMC

sampling by exploiting sequence repetitions.

This chapter is organized as follows. First, we discuss related work and then intro-

duce an extension of classical HMM where observations are time dependent. Then, in

Section 3.3 we discuss a simple compression technique known as Four Russian’s method

and show how compressed observations can be used in MCMC. In Section 3.4 we evalu-

ate our method and show the computational benefits achieved using repetitive discrete

observations in compressed form.

3.1 Related Work

Using text compression techniques (LZ78, byte pair encoding, four Russians, etc.),

Mozes et al. [10, 11] have exploited repetitions in long biological sequence to improve

the running time of the Viterbi algorithm which computes the most likely hidden state

sequence given the observation sequence as well as forward, backward algorithms. Their

main idea is to find contiguous repetitive sub-sequences and pre-compute all quantities

of interest for these sub-sequences so that these quantities can be used multiple times

without repeating the computation. Mozes et al. have shown that, despite being one

of the simplest compression techniques, the four Russians method yields a logarithmic

improvement over the traditional Viterbi algorithm. That the four Russians method

21

improves dynamic programming algorithms for other applications has been shown pre-

viously [39–42]. Moreover, Mozes et. al. have shown that for an HMM with few states

Baum-Welch training can be improved using partially computed forward and backward

variables.

While [10, 11] shows asymptotic speed up for the Viterbi algorithm and improved

Baum-Welch training, we focus on Bayesian analysis of HMM using MCMC simulations.

Following their idea, we pre-compute quantities of interest for all possible log T -sized

sub-sequences (Note: in the following we assume sub-sequences to be contiguous) and

use these quantities to compute O
(

T
log T

)
forward variables. While forward-backward

Gibbs sampling needs T forward variables, we show that, because of the conditional

dependency structure in an HMM, one can use the partially computed forward variables

to implement a modified, but exact, version of forward-backward Gibbs sampling. As

forward variable computations dominate the running time we achieve a O(log T) speed-

up.

3.2 Time Dependent HMMs

We will follow the definitions related to HMM from Section 2.1. Additionally, we

introduce some new definitions for time-dependent observations inspired by their ap-

plication in DNA segmentation problem [30, 31]. In particular, we define γ as the

order of the observation process and re-define the emission matrix as B = {bβi,j}, where

β ∈ [Σ ∪ Σ2 . . . ∪ Σγ], 1 ≤ i ≤ N, 1 ≤ j ≤ |Σ|. The hidden state sequence Q still follows

a first-order Markov chain but, in contrast to the usual literature, where emissions only

depend on the state, we consider the case of higher order emissions [43]. Specifically,

the probability of an observation sequence ot is described using the following equation

P (ot|Q1,t, O1,t−1) = P (ot|qt, Omax(1,t−γ),t−1) = b
o
′
t
qt,ot , (3.1)

where o
′
t = Omax{1,t−γ},t−1, in other words, o

′
t is the sequence of previous γ observations

before time t. Fig. 3.1 shows the dependency structure in HMM using graphical models

for regular (γ = 0) and first-order (γ = 1) emission HMMs.

22

qt-2 qt-1 qt qt+1

ot-2 ot-1 ot ot+1

qt-2 qt-1 qt qt+1

ot-2 ot-1 ot ot+1

Figure 3.1: Graphical model showing conditional dependency for HMM; γ = 0 (left)
and γ = 1 (right). An arrow from X to Y means Y is dependent on X.

3.3 Fast Sampling Using Four Russian’s Method

In this section we will present a modified version of algorithm 2.2 taking compressed

observations into account. We start with reformulating the forward variables α using

matrix notation following [10,11]. Let Mu(v), where u ∈ [Σ∪Σ2 ∪ . . .∪Σγ] and v ∈ Σ,

be a N × N matrix with elements Mu
i,j(v) = ai,jb

u
j,v. Forward variables at time t, αt,

can be rewritten as a row vector,

αt = π ·Mo
′
1(o1) ·Mo

′
2(o2) · · · · ·Mo

′
t−1(ot−1) ·Mo

′
t(ot) (3.2)

= αt−1 ·Mo
′
t(ot) . (3.3)

It is important to note that the matrix formulation does not change the running time

of the algorithm.

3.3.1 Compression and Forward Variables

We define the matrix Mo
′
i
(
Oi,j

)
as

Mo
′
i
(
Oi,j

)
= Mo

′
i(oi) ·Mo

′
i+1(oi+1) · · · · ·Mo

′
j−1(oj−1) ·Mo

′
j (oj) . (3.4)

We assume that the length of the observation sequence, T , is a multiple of k such that

d = T
k and create groups of fixed size from the observation sequenceO = O1,k . . . O(d−1)k+1,dk.

Pre-computing all possible matrices M(X), where |X| ≤ k, for future use is informally

23

known as the four Russians method. Now αlk can be expressed using (3.4) as

αlk = π ·Mo
′
1(O1,k) ·Mo

′
k+1(Ok+1,2k) · · · · ·M

o
′
(l−1)k+1(O(l−1)k+1,lk) (3.5)

= α(l−1)k ·M
o
′
(l−1)k+1(O(l−1)k+1,lk) . (3.6)

The compressed sequence allows us to skip computing forward variables inside a group,

which results in significant time savings. Note that we cannot directly use the backward

sampling in Alg. 2.2 in this setting. In the remaining part of this section we will explain

how we can overcome this problem.

3.3.2 Backward-forward State Sequence

Now we will modify the order of state sampling, turning backward sampling step of

Alg. 2.2 into backward-forward sampling, and express the distribution P (Q|O, θ) in a

way that helps us to sample Q accurately and efficiently. We write

P (Q|O, θ) = P (Q1,k−1|Qk,T , O, θ)︸ ︷︷ ︸
Part A

P (Qk,T |O, θ)︸ ︷︷ ︸
Part B

. (3.7)

By repeated application of Bayes theorem we can show that part B is proportional to

P (qT |O, θ)︸ ︷︷ ︸
Part B1

∏
d≥i≥2
s=(i−1)k
e=ik

(
P (qs|Qe,T , O, θ)︸ ︷︷ ︸

Part B2

e−1∏
j=s+1

P (qj |Qs,j−1, Qe,T , O, θ)︸ ︷︷ ︸
Part B3

)
. (3.8)

Part B1, B2, and B3 can be sampled using the following relations.

Sampling B1:

P (qT |O, θ) ∝ P (qT , O|θ)

∝ αT (qT) (3.9)

24

B2 : sampling qs in group i-1

oe

qe

oe-1

qe-1

os+1

qs+1

os

qs

os-1

qs-1

Figure 3.2: Conditional dependency shown for sampling qs using B2 for γ = 0. Lightly
shaded variables are either observed or already sampled. Dashed rectangle represents
a group of observations.

Sampling B2:

P (qs|Qe,T , O, θ)

= P (qs|Qe,T , O1,s, Os+1,T , θ)

∝ P (qs|O1,s, θ)P (Os+1,T , Qe,T |qs, O1,s, θ) (3.10)

= P (qs|O1,s, θ)P (Os+1,T , Qe,T |qs, o
′
s+1, θ) (3.11)

∝ P (qs, O1,s|θ)P (Os+1,e, Oe+1,T , qe, Qe+1,T |qs, o
′
s+1, θ) (3.12)

= αs(qs)P (Os+1,e, qe|qs, o
′
s+1, θ)P (Oe+1,T , Qe+1,T |qs, Os+1,e, qe, o

′
s+1, θ) (3.13)

= αs(qs)P (Os+1,e, qe|qs, o
′
s+1, θ)P (Oe+1,T , Qe+1,T |Os+1,e, qe, o

′
s+1, θ) (3.14)

∝ αs(qs)P (Os+1,e, qe|qs, o
′
s+1, θ) (3.15)

= αs(qs)M
o
′
s+1
qs,qe (Os+1,e) (3.16)

Equation (3.10), (3.12), and (3.13) are derived from Bayes theorem. The conditional

dependency structure of the HMM given Qe,T (see Fig. 3.2) is used in (3.11) and (3.14).

As the last term in (3.14) is independent of qs it is dropped in (3.15).

25

qj qj+1qj-1

oj-1 oj+1 oe

qe

oj

B3 : sampling qj in group i

group
(i-1)

group
(i+1)

Figure 3.3: Conditional dependency shown for sampling qj using B3 for γ = 0. Lightly
shaded variables are either observed or already sampled. Dashed rectangle represents
a group of observations.

Sampling B3:

P (qj |Qs,j−1, Qe,T , O, θ)

∝ P (qj , oj , Qe,T , Oj+1,T |Qs,j−1, O1,j−1, θ)

= P (qj , oj |Qs,j−1, O1,j−1, θ)P (Qe,T , Oj+1,T |Qs,j , O1,j , θ) (3.17)

= P (qj , oj |qj−1, o
′
j , θ)P (Qe,T , Oj+1,T |qj , o

′
j+1, θ) (3.18)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1,e, Qe+1,T , Oe+1,T |qj , o

′
j+1, θ)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1,e|qj , o

′
j+1, θ)P (Qe+1,T , Oe+1,T |qe, Oj+1,e, qj , o

′
j+1, θ)

(3.19)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1,e|qj , o

′
j+1, θ)P (Qe+1,T , Oe+1,T |qe, o

′
j+1, θ) (3.20)

∝ P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1,e|qj , o

′
j+1, θ) (3.21)

= M
o
′
j
qj−1,qj (oj)M

o
′
j+1
qj ,qe (Oj+1,e) (3.22)

Equation (3.17) and (3.19) are derived from Bayes theorem. The conditional depen-

dency structure of the HMM given Qs,j−1 and Qe,T (see Fig. 3.3) is used in (3.18)

and (3.20). As the last term in (3.20) is independent of qj it is dropped in (3.21).

26

3.3.3 Fast Sampling Algorithm

Now we formally describe the algorithm FastStateSampler (see Alg. 3.1) and analyze

its running time. Instead of using Alg. 2.2 (StateSampler) in step 2.a of Alg. 2.1

(FBG-sampling) now we can use Alg. 3.1 for fast MCMC simulations.

In the Precompute step of Alg. 3.1, Mβ(X) matrices, which are required in (3.16)

and (3.22), are computed at first. To sample qj using (3.22) (in Backward-forward Sam-

pling step) we need to compute M
o
′
j
qj−1,qj (oj)M

o
′
j+1
qj ,qe (Oj+1,e) for all possible values of qj ,

which is an O(N) operation. Considering these quantities as weights for possible states

we can select qj using weighted random sampling, which again takes O(N) time. Inter-

estingly, these quantities are already precomputed as intermediate parts of Mβ(Oj,e).

Instead of simply storing these weights, if we store the sum of these values from state

1 to c in Rβqj−1,qe,c(oj , Oj+1,e), we can use binary search to select qj in O(logN) time.

Similarly, we store the sum of intermediate parts of the variables α and δ to sample qs

using binary search.

Running Time:

As there are at most 2|Σ|k+γ matrices to be precomputed, the pre-computation step

takes O(2|Σ|k+γN3) time. Forward variables are computed in O(TkN
2) time. Using the

stored values in R and δ, the state sequence is sampled in O(T logN) time (the small

portion where Alg. 2.2 is used does not affect the order of the algorithm). The total

running time is O(2|Σ|k+γN3 + T
kN

2 + T logN). If k is chosen to be 1
2 log|Σ| T − γ, the

total running time becomes O(2
√
TN3 + 2TN2

log|Σ| T−γ
+T logN). Assuming N <

√
T

log|Σ| T−γ
,

FastStateSampler achieves a speed-up of Θ(log|Σ| T−γ) and uses O(T
log|Σ| T−γ

N2) space.

3.4 Experiments

In this section we apply our fast sampling technique to a Bayesian analysis of DNA

segmentation. We compare the performance of our method on the DNA segmentation

problem with standard FBG-sampling.

27

Algorithm 3.1 FastStateSampler(O, θ)

1: Precompute:

• Mβ(X) for all X ∈ ∪ki=1Σi and β ∈ ∪γi=1Σi.

• Rβ(x,X) for all β ∈ ∪γi=1Σi, x ∈ Σ, and X ∈ ∪k−1
i=1 Σi such that

– Rβi,j,1(x,X) = Mβ
i,1(x)M

(β2...|β|,x)

1,j (X).

– Rβi,j,c(x,X) = Rβi,j,c−1(x,X) +Mβ
i,c(x)M

(β2...|β|,x)

c,j (X) for 1 < c ≤ N .

2: Forward Variables:

• Compute αk = πM0′1(O1,k).

• For 1 < i ≤ m and 1 ≤ j ≤ N , compute αik and δik,j,∗ in the following way.

– δik,j,1 = α(i−1)k(1)M
o
′
(i−1)k+1

1,j (O(i−1)k+1,e).

– δik,j,c = δik,j,c−1 + α(i−1)k(c)M
o
′
(i−1)k+1

c,j (O(i−1)k+1,e) for 1 < c ≤ N .

– Set αik(j) = δik,j,N .

3: Backward-forward Sampling:

• Sample qT from (3.9).

• For m ≥ i ≥ 2:

– Let s = (i− 1)k and e = ik.

– Sample qs from (3.16) by applying binary search on the monotonically
increasing sequence δs,qe,1, δs,qe,2, . . . , δs,qe,N .

– For s < j < e, sample qj from (3.22) by applying binary

search on the monotonically increasing sequence R
o
′
j

qj−1,qe,1
(oj , Oj+1,e),

R
o
′
j

qj−1,qe,2
(oj , Oj+1,e), . . . , R

o
′
j

qj−1,qe,N
(oj , Oj+1,e).

• Given qk, sample Q1,k−1 (part A) using a slightly modified version of Alg. 2.2.

4: return Q

28

We measure the running time of forward-backward Gibbs sampling (Alg. 2.1) using

both Alg. 2.2 and Alg. 3.1 as the sampler in step 2.a. The running time of forward-

backward Gibbs sampling is proportional to the number of sampling iterations M (see

step 2 of Alg. 2.1). We set M = 10 and compare execution time of one run of the algo-

rithms. In [30] Boys et. al. used 500, 000 iterations to segment Bacteriophage lambda

DNA. They showed that 6 ≤ N ≤ 8 and 0 ≤ γ ≤ 2 produced the best segmentation

for Bacteriophage lambda. Unlike their model we keep γ and N fixed, but it can easily

be modified to variable model dimensions. Four bacterial genomes — Bacteriophage

lambda (genome size 0.05 Mbp), Mycoplasma leachii (1 Mbp), Planctomyces brasiliensis

(6 Mbp), and Sorangium cellulosum (13 Mbp) — are segmented and the running time

for different choices of N and γ are shown in Fig. 3.4. As both algorithms converge to

the same stationary distribution we do not report any segmentation error.

As expected, we see logarithmic speed-up for our method over standard FBG-

sampling (see Table 3.1). As the size of the dataset increases, so does the speed-up

we observe. For Sorangium cellulosum we achieve a speed-up of 5. For small values

of N , the state path sampling time is comparable to the pre-computation and forward

variable computation time. As a result there is no significant speed-up for small N . For

very large N >
√
T

log|Σ| T−γ
(often impractical) the algorithm gradually loses it’s advan-

tage over standard FBG-sampling. However, this bound and overall running time can

be improved by computing Mβ(X) matrices using fast matrix multiplication of order

o(N3).

We implemented the algorithms in C++ and tested in a Linux machine with a 2.2

GHz AMD Opteron processor. As there was very little variation between the running

time of two different runs of an algorithm, instead of averaging over multiple runs, we

report the running time of one single run in Fig. 3.4.

29

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
on

d)

Planctomyces Brasiliensis (6 Mbp)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45

Sorangium Cellulosum (13 Mbp)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
on

d)

Number of States

Bacteriophage Lambda (0.05 Mbp)

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

Number of States

Mycoplasma Leachii (1 Mbp)

Figure 3.4: Running time comparison on four datasets. Execution times for forward-
backward Gibbs (red, +) and four Russians method (γ = 0 with (green, ×), γ = 1 with
(blue, ∗), and γ = 2 with (pink, �)) are shown.

Table 3.1: Speed-up using fast sampling method for HMM with γ = 0, 1, 2.

Dataset Order (γ)
Number of States (N)

4 8 12 16 20 24 28 32 36 40 44

B. lambda (0.05 Mbp)
0 2.2 2.8 2.6 2.6 2.4 2.3 2.1 2.2 1.8 1.7 1.8
1 2.0 2.2 2.3 2.2 2.1 2.0 1.9 1.9 1.7 1.6 1.5
2 1.8 1.8 1.8 1.8 1.6 1.6 1.6 1.5 1.4 1.3 1.3

M. leachii (1 Mbp)
0 2.6 3.2 3.6 3.8 4.0 4.0 3.8 3.9 3.7 3.7 3.9
1 2.4 2.7 3.1 3.2 3.4 3.3 3.3 3.3 3.2 3.2 3.1
2 2.2 2.3 2.6 2.7 2.6 2.7 2.8 2.6 2.5 2.4 2.5

P. brasiliensis (6 Mbp)
0 2.6 3.4 3.8 4.2 4.4 4.5 4.5 4.5 4.1 4.5 4.8
1 2.4 2.9 3.3 3.6 3.9 4.0 4.0 3.9 4.0 4.0 3.8
2 2.3 2.5 2.8 3.1 3.1 3.3 3.4 3.0 3.2 3.2 3.3

S. cellulosum (13 Mbp)
0 2.7 3.0 4.1 4.4 4.5 5.0 4.9 4.7 4.6 5.1 5.4
1 2.5 3.0 3.5 3.8 4.2 4.3 4.3 4.0 4.0 4.3 4.1
2 2.3 2.5 2.9 3.3 3.4 3.6 3.8 3.2 3.5 3.4 3.7

30

Chapter 4

Compressed Gaussian Observations

Unlike DNA sequences, which can be represented as ordered sets of discrete values

over a finite sized alphabet, sequence data from microarray experiments are real-valued

observations which cannot be exploited for sequence repetition. These datasets usu-

ally contain noisy observations, and separation between different class of observations,

specially for one-dimensional arrayCGH and Single Neucleotide Polymorphism Array

(SNParray) data, are often low. Hence, discretization of continuous emissions, similar

to vector quantization used in speech recognition [22], is not viable. Moreover, maximal

compression is to be expected for small number of discrete symbols and, clearly, com-

pression ratio conflicts with fidelity in the analysis. As an important contribution of this

thesis, in this chapter, we propose a reduced representation of continuous observations

from microarray data in the context of CNV detection problem.

CNVs are chromosomal aberrations of the genome which results in gaining or losing

one or more copies of genomic segments of one kilobase or more. They have been shown

to be prevalent in the human genome [44, 45] and their roles in diseases and evolution

have been extensively studied [46–49]. Although microarray experiments can directly

compute absolute copy numbers, the ratio between a patient’s and control’s copy num-

ber, which are computed by arrayCGH and SNParray, is often more important. Given

the normalized log-ratio of copy numbers, one needs to determine the segments of sim-

ilar copy number; a loss or gain in a genomic location indicates an area of biological

interest; see Figure 4.1.

Segmentation problems, specially identifying segments from a biological sequence,

have been extensively studied in various settings including CNV detection from mi-

croarray data. In this chapter, our focus is on detecting CNVs using HMMs, which is a

31

-2

-1

 0

 1

 2

 0 5e+07 1e+08 1.5e+08 2e+08

lo
g2

ra
tio

G
ro

un
d

Tr
ut

h

HBL-2 chromosome 1 (bp)

-2

-1

 0

 1

 2

 0 5e+07 1e+08 1.5e+08 2e+08

lo
g2

ra
tio

Ex
ac

t S
am

pl
in

g

-2

-1

 0

 1

 2

 0 5e+07 1e+08 1.5e+08 2e+08

lo
g2

ra
tio

Ap
pr

ox
im

at
e

Sa
m

pl
in

g

Figure 4.1: Log ratio of sample vs. control copy number data. Comparative loss is
shown in red while gain is shown in green.

naturally suitable model for segmentation, and has been shown to be successful in CNV

detection [50–54]. Similar to discrete sequence segmentation in the previous chapter, in

practice, the parameters of a HMM are often estimated with ML and a segmentation

for CNV is obtained with the Viterbi algorithm. This introduces considerable uncer-

tainty in the segmentation, which can be avoided with Bayesian approaches integrating

out parameters using MCMC sampling. While the advantages of Bayesian approaches

have been clearly demonstrated, the likelihood based approaches are still preferred in

practice for their lower running times; datasets coming from high-density arrays and

high-throughput sequencing amplify these problems. We propose an approximate sam-

pling technique, inspired by compression of discrete sequences in the previous chapter

and by clusters leveraging spatial relations between data points in typical data sets, to

speedup the MCMC sampling [24].

This chapter is organized as follows. First, we discuss related work in Section 4.1.

Then in Section 4.3 we explain the approach behind compressing continuous observa-

tions into blocks and using those blocks for approximating MCMC. In Section 4.5 we

evaluate our method and show the computational benefits and qualitative results on

arrayCGH and SNParray datasets.

4.1 Related Work

A wide range of methods for CNV detection in arrayCGH data have been developed

in recent years, including change-point detection based methods [55, 56], smoothing

32

based methods [57,58], and hierarchical clustering [59]. Here, we concentrate on HMM-

based approaches which have been proposed for segmenting sequences of continuous-

valued observations and shown to match or improve upon the state-of-the-art [52–54].

Typically, these models are used to describe the log ratio of normal vs. control’s copy

number data (generated by arrayCGH experiments); HMM states represent segments of

such a sequence—normal, loss or gain in copy number w.r.t. the control—and, usually,

Gaussian distributions model observations in a particular state, see Figure 4.2 (right).

For a different task, arguments about spatial relations between groups of multi-

variate data points were used to achieve considerable speed-up. Moore and colleagues

used modified kd-trees, a data structure to efficiently execute spatial queries such as

determining the nearest neighbor of a given point, to accelerate k-means [60]. In the

reassignment step of k-means one has to find the nearest centroid for every data point.

Due to the kd-tree, there are groups of points contained in a node of the tree for which

this decision about the nearest centroid can be made simultaneously by a geometrical

argument about the vertices of the hyperrectangle defined by this node. A similar

kd-tree based approach was used in speech recognition [61,62] to quickly find the most

important components in a mixture of large number of Gaussians and thus approximate

the full observation density in one individual HMM state with multi-variate emissions.

At the core of our approach is a similar geometrical argument about several uni-

variate data points based on hierarchical clustering. We adaptively identify blocks of

observations, cf. Fig. 4.2 (left). For all observations in a block we now estimate, at

least conceptually, the most likely state simultaneously depending on the means of the

Gaussians in each state to gain a considerable speed-up proportional to the average

block length. Similarly, we can avoid sampling states for each individual observation in

a block if we can bound the posterior. Considerable care has to be taken for combining

blocks and to bound the errors introduced by the approximations based on geometric

arguments.

33

c

d
μ=

μ+

μ-

=

+

–
!
-

!
+

!
=

c

d
μ=

μ+

μ-

=

+

–
!
-

!
+

!
=

Figure 4.2: For a sequence (left) there is no overlap in y-direction and decisions about
the most likely state can be made per block considering the means of the Gaussians of
a three-state HMM (right), µ−, µ= and µ+.

4.2 Bayesian HMM for CNV

We follow the definitions related to Bayesian HMM with Gaussian emissions from Sec-

tion 2.1.2. Here, we restrict HMMs to at most four states—s1, s2, s3 and s4 correspond

to loss, normal, gain and multiple gain states respectively. We associate the loss state

s1 with one or more copy loss, gain state s3 with exactly one copy gain and state s4 with

multiple copy gain. In some cases we will combine state s3 and s4 into one state rep-

resenting one or more gain (such as in Figure 4.2 (right)), which will be clear from the

context. For prior distributions we use the conjugate priors mentioned in Section 2.1.2

in general. We also apply dataset specific domain knowledge in the form of truncated

distributions following [34,50] (explained in Section 4.5).

4.3 Approximate MCMC Sampling

At first, through application of a modified hierarchical clustering algorithm, we com-

press the observation sequenceO = o1, . . . , oT into T ′ number of blocks, O′ = o′1, . . . , o
′
T ′ ,

where T ′ � T , cf. Fig. 4.2 (left). For each block o′i, we precompute
∑
oj∈o′i

oj and
∑
oj∈o′i

o2
j ,

and store these statistics along with the size of the block |o′i| as part of an one time

compression process. In subsequent MCMC iterations, we assume that observations

compressed in a block o′i arise from the same underlying state. In other words, we

ignore the contribution of the state paths that do not go through the same state for

observations in o′i. By ignoring those state paths, we refer to them as weak state paths,

34

when computing forward variables, and by reusing the pre-computed statistics, we are

able to accelerate MCMC sampling.

4.3.1 Top-down Hierarchical Clustering

While a brute force compression algorithm only considers local information, a top-down

hierarchical clustering approach alternately looks at both dimensions of the data—

genome position and the corresponding log ratio of copy numbers—and utilizes global

information such as the density of data points to create better quality blocks. We use

a modified hierarchical clustering algorithm to find such blocks and discuss the details

below.

Given a starting width parameter w, we create a list of nodes from the observation

sequence O = o1, . . . , oT using the following steps.

1. Let O′ = φ be the starting list, δ = 1.25 (picked empirically), level L = 1, and

dimension d = 1.

2. If |max
oi∈O

(oi)−min
oi∈O

(oi)| < w
δL

or |O| = 1, create a node storing the first and second

raw moments of the observations in O append it to O′, and then go to the end

step. Otherwise, go to the next step.

3. If d = 1, find om, the median value of the observations in O. Partition O into

maximal sets of consecutive observations O1, . . . , Oi, . . . , Op such that ∀o∈Oi o ≤

om or ∀o∈Oi o ≥ om. For each such partition Oi, update level to L+ 1, set d = 0

and go to step 2 considering Oi as the input set O.

4. If d = 0, divide the input set O into two parts OL = o1, . . . , oi and OR =

oi+1, . . . , o|O| such that |oi − oi+1| ≥ max
j<|O|

|oj − oj+1|. Then for each set OL

and OR, go to step 2 keeping the level value L unchanged, and setting d = 1.

5. End step.

In the above recursive algorithm, w states the initial width, δ controls the rate of

width shrinking in successive levels of the iterations, and O′ accumulates the compressed

35

blocks of observations. The current iteration level L, the current dimension d, and the

current input set O are local variables in the recursive algorithm. Notice that we

start with an empty list O′ and at the end of the recursive procedure O′ contains an

ordered list of compressed observations. To gain further compression of the sequence, we

sequentially go through the blocks of O′ and combine consecutive blocks if the distance

between their means is less than w. We also combine three consecutive blocks if the

outer blocks satisfy this condition and the inner block has only one observation, which

is most likely a noisy observation. In step 3 of the above algorithm, the input set is

divided into two subsets and each subset contains half of the elements from the original

set. Consequently, the height of the recursion tree is at most 2 log T and the running

time of the above algorithm is O(T log T). This overhead is negligible compared to the

time that it takes to run M iterations of MCMC sampling.

Width Parameter Selection

For increasing values of w the average block size increases exponentially in the above

clustering scheme. As a result, the compression ratio γ = T
′

T plotted as a function of w,

has a knee which can inform the choice of w. Moreover, methods originally developed

to find the optimal numbers of clusters in clustering can be used to find the knee of such

a curve automatically. In particular, we use the L-method [63] which finds the knee as

the intersection of two straight lines fitted to the compression curve (more discussion

on this in Section 4.5.3).

4.3.2 Fast Approximate Sampling Algorithm

Given the compressed input sequence O′ = o′1, o
′
2, . . . , o

′
T ′ our goal is to adapt the FBG-

sampling algorithm 2.1. With the pre-computed statistics for each block, computing

forward variables and subsequent sampling in algorithm 2.2 is a straightforward modi-

fication of the uncompressed case. In particular, we make the following two changes to

algorithm 2.2.

36

• Approximate forward variable: For each time position t̄ =
t∑
i=1
|o′i|, instead of

computing αt̄(i), we compute an approximation α̂t̄(i) by ignoring the contribu-

tions from the non-self transition probabilities inside the block.

α̂t̄(i) = P (qt̄ = i, o′1, . . . , o
′
t|θ)

=
N∑
j=1

P (qt̄−|o′t| = j, o′1, . . . , o
′
t−1) aji a

|o′t|−1
ii

∏
ok∈o′t

P (ok|µi, σi)

=
N∑
j=1

α̂t̄−|o′t|(j) aji a
|o′t|−1
ii

∏
ok∈o′t

P (ok|µi, σi)

=

(
a
|o′t|−1
ii

∏
ok∈o′t

P (ok|µi, σi)
) N∑

j=1

α̂t̄−|o′t|(j) aji

= f

(
i, |o′t|,

∑
ok∈o′t

ok,
∑
ok∈o′t

o2
k

)
︸ ︷︷ ︸

constant time computation
using precomputed statistics

N∑
j=1

α̂t̄−|o′t|(j) aji.

Note that, since we assume that all observations in a block originates from the

same state, it is sufficient to compute the approximate forward variables only at

the end time points of the pre-computed blocks.

• Backward sampling: Starting with the last block, we can iteratively sample a

state for each block using the approximate forward variables.

Clearly, each iteration of approximate sampling takes O(T ′N2) resulting in T
T ′ times

speed up. Given the sampled state sequence, we count the total number of transitions

ci,j from state i to state j and sample the HMM parameters using the following posterior

37

distributions (for prior distributions see Section 2.1.2).

π ∼ Dirichlet(θπ1 +
N∑
i=1

ci,1, . . . , θ
π
N +

N∑
i=1

ci,N)

Ai,∗ ∼ Dirichlet(θAi1 + ci,1, . . . , θ
Ai
N + ci,N)

µi|σ2
i ∼ N

((
µ̃i

σ̃i
2 +

∑
qt̄=i

∑
ok∈o′t

ok

σ2
i

)/(
1

σ̃i
2 +

∑
qt̄=i
|o′t|

σ2
i

)
,

(
1

σ̃i
2 +

∑
qt̄=i
|o′t|

σ2
i

)−1)

σ−2
i |µi ∼ Gamma

(
ai +

∑
qt̄=i
|o′t|

2
, bi +

∑
qt̄=i

∑
ok∈o′t

(ok − µi)

2

))

Here µ̃i, σ̃i, ai, bi and θAi (for the state i), and θπ are the hyperparameters of the prior

distributions. Since µi and σi depend on each other, we work with the µi from the

previous iteration to compute σi. See [24], [21] and [34] for a detailed derivation of the

posterior hyperparameters.

4.4 Approximation Error in Symmetric HMMs

At first, ignoring weak state paths seems to be a very crude approximation for com-

puting forward variables. But in many applications, in particular for CNV data, this is

certainly not true. We demonstrate with a symmetric Gaussian HMM that the weak

state path assumption is a fairly realistic approximation and leads to faster sampling.

We define a symmetric HMM, θ = (A,B, π), with N states s1, . . . , sN , where we set

self-transition probability aii = t and non-self-transition probability aij = 1−t
N−1 for

1 ≤ i 6= j ≤ N , and B = {(µ1, σ
2), . . . , (µN , σ

2)}. Given a sequence of observations O

(assumed to be generated by θ) and its compressed form O′ we describe an important

lemma and some remarks below.

Lemma 1. Let O1,i−1 = Oi−1, Oi,i+n−1 = o′, min
ol∈o′

ol = o
′
min, max

ol∈o′
ol = o

′
max, d =

min
j 6=k
|µj − µk| and P (qi|Oi−1)

P (qi=sx|Oi−1) ≤ α. Assuming there exists a state sx s.t. τ =

min
(
o
′
min−

µsx−1+µsx
2 ,

µsx+µsx+1

2 −o′max
)
≥ 0, we can show that

∑
Qi,i+n−1∈Sn

P (Qi,i+n−1,o
′|Oi−1)∑

s∈S
P (Qi,i+n−1=s,o′|Oi−1) ≤

38

α((1 + rc)n−1 + (N − 1)c
2n
N (1 + r)n−1), where r = 1−t

t and c = e−
dτ

2σ2 .1

Proof. Using the assumption on τ , for any position i ≤ l ≤ i+n−1, we can argue that,

e−
1
2

(
ol−µql
σ

)2

e−
1
2

(
ol−µsx

σ

)2 ≤ e
−
|µql−µsx |τ

σ2 ≤


1 if ql = sx,

e−
dτ
σ2 otherwise.

(4.1)

For any partial state path Qi,i+n−1,

P (Qi,i+n−1, o
′|Oi−1) = P (qi|Oi−1)P (oi|qi, Oi−1)

i+n−2∏
k=i

aqkqk+1
P (ok+1|qk+1)

= P (qi|Oi−1)
e−

1
2

(
oi−µqi

σ

)2

√
2πσ2

i+n−2∏
k=i

aqkqk+1

e−
1
2

(ok+1−µqk+1
σ

)2

√
2πσ2

. (4.2)

We partition Sn, the set of all possible partial state paths of length n, into N subsets

Ss1 . . . SsN such that, Ssj = {S̃ ∈ Sn :
(
∀sl 6=sjC(S̃, sj) > C(S̃, sl)

)
∨
((
∀sl 6=sjC(S̃, sj) ≥

C(S̃, sl)
)
∧ S̃1 = sj

)
} for 1 ≤ j ≤ N , where C(S̃, s) =

∑
qk∈S̃

1(qk = s). We again

partition Ssj = ∪n−1
k=0S

sj
k such that, S

sj
k = {S̃ ∈ Ssj :

(
n−1∑
l=1

1(S̃l 6= S̃l+1)

)
= k}. The

size of Sn can be expressed in terms of total number of non-self-transitions present in

a path |Sn| = Nn = N
n−1∑
k=0

(
n−1
k

)
(N − 1)k.

As the sets Ssj are equal sized partitions of Sn, |Ssj | =
n−1∑
k=0

(
n−1
k

)
(N − 1)k. Also

notice that, by definition, the partial state paths in Sn with exactly k number of non-

self-transitions are equally distributed among the subsets Ssj . As a result, |Ssjk | =(
n−1
k

)
(N − 1)k.

Now we define S[s] = {Qi,i+n−1 : Qi,i+n−1 = s}. For the remaining part of the proof,

if Y is a set of partial state paths, we use P (Y, o′|Oi−1) in place of
∑

Qi,i+n−1∈Y
P (Qi,i+n−1, o

′|Oi−1)

1For simplicity of the notation, we follow the convention that µx0 = −∞ and µxN+1 = ∞ so that
the proof holds for x = 1 or x = N .

39

for clarity and rewrite

∑
Qi,i+n−1∈Sn

P (qi,··· ,qi+n−1,o
′|Oi−1)∑

s∈S
P (qi=···=qi+n−1=s,o′|Oi−1) as P (Sn,o′|Oi−1)∑

s∈S
P (S[s],o′|Oi−1)

.

P (Sn, o′|Oi−1)∑
s∈S

P (S[s], o′|Oi−1)
<

P (Sn, o′|Oi−1)

P (S[sx], o′|Oi−1)
=

N⋃
j=1

P (Ssj , o′|Oi−1)

P (S[sx], o′|Oi−1)
. (4.3)

Now we derive an upper bound of the contribution from state paths in Ssx . In the

following equations we make use of the fact that a state path with k non-self-transitions

goes through at least k
2 non-sx states.

P (Ssx , o′|Oi−1)

P (S[sx], o′|Oi−1)
=

n−1∑
k=0

∑
S̃∈Ssxk

P (S̃, o′|Oi−1)

P (S[sx], o′|Oi−1)

=
n−1∑
k=0

∑
S̃∈Ssxk

P (S̃, o′|Oi−1)

P (S[sx], o′|Oi−1)

=
n−1∑
k=0

∑
S̃∈Ssxk

S̃=Qi,i+n−1

P (qi|Oi−1)e
−
(
oi−µqi√

2σ

)2

P (sx|Oi−1)e
−
(
oi−µsx√

2σ

)2

i+n−2∏
j=i

aqjqj+1e
−
(oj+1−µqj+1√

2σ

)2

asxsxe
−
(
oj+1−µsx√

2σ

)2

=

n−1∑
k=0

∑
S̃∈Ssxk

S̃=Qi,i+n−1

P (qi|Oi−1)

P (sx|Oi−1)

i+n−2∏
j=i

aqjqj+1

asxsx

i+n−1∏
j=i

e
−
(oj−µqj√

2σ

)2

e
−
(
oj−µsx√

2σ

)2

≤
n−1∑
k=0

∑
S̃∈Ssxk

S̃=Qi,i+n−1

α

(
1− t

(N − 1)t

)k i+n−1∏
j=i

e
−
(oj−µqj√

2σ

)2

e
−
(
oj−µsx√

2σ

)2

≤
n−1∑
k=0

(
n− 1

k

)
(N − 1)kα

(
1− t

(N − 1)t

)k(
e−

dτ
σ2

) k
2

=

n−1∑
k=0

(
n− 1

k

)
α

(
1− t
t

)k(
e−

dτ
σ2

) k
2

=

n−1∑
k=0

α

(
n− 1

k

)(
1− t
t

)k(
e−

dτ
σ2

) k
2

=
n−1∑
k=0

α

(
n− 1

k

)
(rc)k

= α(1 + rc)n−1 . (4.4)

40

Similarly, we derive an upper bound of the contribution from state paths in Ssy , where

1 ≤ y 6= x ≤ N . Now we use the fact that, because of the pigeonhole principle any

state path in Ssy has to go through at least n
N non-sx states.

P (Ssy , o′|Oi−1)

P (S[sx], o′|Oi−1)
≤

n−1∑
k=0

∑
S̃∈Ssyk S̃=Qi,i+n−1

α

(
1− t

(N − 1)t

)k i+n−1∏
j=i

e−
1
2

(oj−µqj
σ

)2

e−
1
2

(
oj−µsx

σ

)2

≤
n−1∑
k=0

(
n− 1

k

)
(N − 1)kα

(
1− t

(N − 1)t

)k(
e−

dτ
σ2

) n
N

=
n−1∑
k=0

(
n− 1

k

)
(N − 1)kα

(
1− t

(N − 1)t

)k(
e−

dτ
σ2

) n
N

=

n−1∑
k=0

(
n− 1

k

)
α

(
1− t
t

)k(
e−

dτ
σ2

) n
N

=
n−1∑
k=0

α

(
n− 1

k

)(
1− t
t

)k(
e−

dτ
σ2

) n
N

=

n−1∑
k=0

αc
2n
N

(
n− 1

k

)
rk

= αc
2n
N (1 + r)n−1 . (4.5)

Applying (4.4) and (4.5) in (4.3) we get,

∑
Qi,i+n−1∈Sn

P (Qi,i+n−1, o
′|Oi−1)∑

s∈S
P (Qi,i+n−1 = s, o′|Oi−1)

≤ α((1 + rc)n−1 + (N − 1)c
2n
N (1 + r)n−1) .

Remark 1

For realistic values of τ, t, and n, the contribution from ignored weak state paths, which

we call ε, can be very small. If ε� 1, ignoring weak state paths will not introduce large

errors in the computation. For the 2-state example in Section 4.5.1, where t = 0.9,

d = 1, and σ2 = 0.1, ε is at most 1
3 for block length n ≤ 10 if we assume τ > 0.25 and

α = 1. If τ is much larger and consequently c
2n
N is much smaller, we can roughly say

that n can be as large as 1 + log1+rc(1 + ε) in a symmetric Gaussian HMM.

41

Remark 2

We often encounter situations where P (qi = sx|Oi−1)� P (qi 6= sx|Oi−1). Even though

it is not exploited in the lemma (α being greater than or equal to 1), as a consequence

of this, the observation sequence can be compressed into larger blocks keeping ε small

in practice.

4.5 Experiments

We evaluate FBG-sampling and approximate sampling in three different settings. First,

its effectiveness is verified for a simple two state model. Then, we test on simulated

ArrayCGH data which is the accepted standard for method evaluation [64]. Finally, we

report findings from an analysis of Mantle Cell Lymphoma (MCL) cell lines [65], Corriel

cell lines [66], GBM datasets [67], and high resolution SNP arrays [54,68]. For biological

data, if multiple chromosomes are present, we use pooling [50] across chromosomes,

which does not allow transition between different chromosomes but assumes model

parameters to be identical across chromosomes. Throughout this section we define

σD to be the standard deviation of all observations in the dataset. We compress the

dataset with increasing values of w = 0.25σD, 0.5σD, 0.75σD, For evaluation we

consider the experiments as two class problems: aberrant clones belong to the positive

class and normal clones belong to the negative class. When ground truth labels of a

dataset are available we report F1-measure, recall, and precision for the experiment.

With tp, fp, tn, fn we denote the number of true and false positives and true and false

negatives respectively. Recall is defined as tp
tp+fn , precision as tp

tp+fp , and F1-measure

as 2×recall×precision
recall+precision . Experiments were run with a Python implementation on a Linux

machine with 1.6 GHz Intel Core 2 Duo processor and 2 GB memory. For Expectation

Maximization (EM), we use the Baum-Welch algorithm from the GHMM package which

is implemented in C and considerably faster than a Python implementation.

42

4.5.1 Synthetic Data

2-State HMM

We define a HMM θ2ST = (A,B, π) withA = [[0.9, 0.1], [0.1, 0.9]], B = [(0, 0.1), (1, 0.1)], π =

[1
2 ,

1
2]. From θ2ST we sample an observation sequence O = o1, . . . , o10,000, and run

MCMC for M = 100 steps with hyperparameter values µ̃1:2 = 0, 1 for the prior mean

on µ, σ̃1:2 = 0.5, 0.5 for the prior variance on µ, a1:2 = 4, 4 for the shape of Gamma

prior on σ−2, b1:2 = 1, 1 for the rate of Gamma prior on σ−2, δπ = 1, 1 for the Dirichlet

prior on the initial distribution π, and δAi1:2 = 1, 1 for the Dirichlet prior on row i of

transition matrix A.

After M iterations, we compare the posterior probabilities P (qt = i|O, θMFBG) and

P (qt = i|O, θMA), where θMFBG and θMA are M -th parameter samples of FBG-sampling

and approximate sampling. Fig. 4.3 shows that the posterior probability of being in

state 1 for each position can be approximated fairly well even for large values of w. The

average posterior error P̃ = 1
2T

∑
t

∑
i |P (qt = i|θM , O) − P (qt = i|θtrue, O)| reflects

the same fact in Table 4.1. Similarly, we compute the Viterbi paths and report total

number of mismatches between them along with the likelihoods in Table 4.1.

Simulation from Genetic Template

We use 500 simulated datasets published in [64]. Each dataset has 20 chromosomes

and 100 clones per chromosome for a total of 2,000 clones per dataset. A four-state

HMM predicts the aberrant regions—loss defined as state S1 and gain defined as state

S3 or S4. The neutral region is modeled as state S2. We put an ordering constraint

on the means, µ1 < µ2 < µ3 < µ4, to prevent label switching of the states [26].

Hyperparameter choices follow [50] and are µ̃1:4 = −0.5, 0, 0.58, 1 for the prior mean on

µ, σ̃1:4 = 0.5, 0.001, 1.0, 1.0 for the prior variance on µ, a1:4 = 10, 100, 5, 5 for the shape

of gamma prior on σ−2, and b1:4 = δπ = δAi1:4 = 1, 1, 1, 1 for the rate of gamma prior

on σ−2, the Dirichlet prior on initial distribution π, and the Dirichlet prior on row i of

transition matrix A, respectively.

43

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P

P

 t t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P

P

 t t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P

P

 t t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P

P

 t t

Figure 4.3: Simulated data: approximate posterior We show the posterior probability
of state 1 (y-axis) for first fifty observations (x-axis) with w = 0.5σD (top left), 1.0σD
(top right), 1.5σD (bottom left), and 2.0σD(bottom right). The true posterior is shown
as a solid line, the approximate posterior as a dashed line, and their absolute difference
is shown in dashed vertical lines.

Table 4.2 shows the mean and standard deviation of F1-measure, recall, and preci-

sion over the 500 datasets for FBG-sampling, approximate sampling, and Expectation

Maximization (EM) with the ground truth provided by [64]. Even for this collection of

relatively small datasets we see a 10-fold speed up. For each dataset we run FBG and

approximate sampling for M = 100 steps (we have visually monitored the parameters

and noticed convergence within 50 steps, see Fig. 4.4 for a representative example).

The last 10 samples are used to compute 10 samples of the posteriors for each state

and for each position in the observation sequence. Subsequently, aberrant regions are

predicted based on the average of those distributions. We report the speed-up of ap-

proximate vs. FBG sampling based on the time it takes to compress the sequence and

run M steps of MCMC. For one individual dataset EM requires 58 seconds on average,

which allows for a total of 800-1000 repetitions from randomized points sampled from

the prior distributions in the time needed for FBG sampling. Each run continues until

the likelihood converges and the best model based on likelihood is selected. Aberrant

44

regions are predicted and compared against the ground truth based on the Viterbi path.

We report the mean and standard deviation of F1-measure, recall, and precision over

the results of EM on 500 datasets.

4.5.2 Biological Data

Mantle Cell Lymphoma (MCL)

De Leeuw and colleagues identified recurrent variations across cell lines using ArrayCGH

data of MCL cell lines [65]. Out of the eight cell lines [65] HBL-2 was fully annotated

with marked gain and loss regions in the autosomes. This dataset contains about 30,000

data points (combining all the autosomes). We have used a four-state HMM for pre-

dicting aberrant regions. State 1 represents copy number loss, state 2 represents normal

copy number, state 3 represents single copy gain, and state 4 multiple gain. For HBL-2

we report the F1-measure, recall, precision and speed-up. Similar to the synthetic case

we put an ordering constraint on the means, µ1 < µ2 < µ3 < µ4. Hyperparameter

choices follow [50] and are same as for the simulation from genetic template, except

for σ̃1:4 = 0.2, 0.1, 0.2, 0.2, the prior variance on µ, and a1:4 = 15, 20, 10, 10, the shape

of gamma prior on σ−2. Settings for FBG-sampling and approximate sampling are

identical to the simulated case with one exception; for each simulated dataset sampling

methods run once and we report the average and standard deviation over 500 datasets,

but for HBL-2 we let them run 10 times and report the average and standard devia-

tion of these 10 F1-measures, recalls, and precisions in Table 4.2. Each EM run starts

with the initial parameter values sampled either from the prior distributions, or from

uniform distributions, and continues until the likelihood value converges. We report

the performance of the most likely model (which is the preferred criteria to select a

model), the likelihood of the best model based on F1-measure, and the average and

standard deviation of F1-measures, recalls, and precisions of all the models generated

by EM. As representative examples, we also plot the segmentation of chromosome 1

and 9 computed by FBG-sampling and approximate sampling along with the ground

truth labels in Fig. 4.5.

45

FBG Sampling

 0.5

 0.75

 1

 0 20 40 60 80 100

Lo
ss

Iteration

 0.5

 0.75

 1

N
e
u
tr

a
l

 0.5

 0.75

 1

G
a
in

Approximate Sampling

 0.5

 0.75

 1

 0 20 40 60 80 100

Lo
ss

Iteration

 0.5

 0.75

 1

N
e
u
tr

a
l

 0.5

 0.75

 1

G
a
in

Figure 4.4: MCMC convergence The convergence of posterior probabilities for loss,
neutral, and gain of three representative probes—probe 1658, probe 1512, and probe
447 respectively—from the simulated dataset 63 are shown. For each probe, at first, the
posterior probability of the corresponding HMM state, given the sampled parameters
from the current MCMC iteration, is computed. The time-average of these posterior
probabilities, starting from the first iteration to the current iteration, approximates the
posterior of the HMM state given the data. The mean of the posterior probabilities
over 10 MCMC chains are shown with error bars (mean ± one standard deviation)—loss
probe in the bottom row, neutral probe in the middle, and the gain probe in the top
row. The top figures show the outcomes of FBG sampling and the bottom figures show
the outcomes of approximate sampling. Note that the reduction in standard deviation
suggests that approximate sampling converges quicker than FBG sampling for these
probes.

46

-1

 0

 1

 0 5e+07 1e+08 1.5e+08 2e+08

lo
g
2

ra
ti

o

G
ro

u
n
d
 T

ru
th

Chromosome 1 (bp)

-1

 0

 1

lo
g
2

ra
ti

o

FB
G

-1

 0

 1
lo

g
2

ra
ti

o

A
p
p
ro

x
im

a
te

-1

 0

 1

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

lo
g
2

ra
ti

o

G
ro

u
n
d
 T

ru
th

Chromosome 9 (bp)

-1

 0

 1

lo
g
2

ra
ti

o

FB
G

-1

 0

 1

lo
g
2

ra
ti

o

A
p
p
ro

x
im

a
te

Figure 4.5: HBL-2: chromosome 1 and 9 We contrast the ground truth and the
segmentations produced by FBG-sampling and approximate sampling. For approximate
sampling w was set to the value recommended by the L-method. Here, clones predicted
as loss are shown in red, normal clones in green, and gain in blue. The figure at the
top shows chromosome 1 and the bottom figure shows chromosome 9.

47

Corriel

Corriel cell lines were used by Snijders et al. [66] and are widely considered a gold

standard in ArrayCGH data analysis. This dataset is smaller and, in fact, fairly easy

compared to the MCL cell lines. For the Corriel cell line we use a 4-state HMM and re-

port the results for GM05296 and GM00143 in Table 4.2. Again, approximate sampling

performs competitively while achieving more than a 10-fold speed-up. Hyperparameter

choices follow [34].

GBM

The glioma data from Bredel et al. [67] has previously been used to analyze the per-

formance of CNV detection methods [58, 69]. According to [69], GBM datasets are

noisy but contains a mixture of aberrant regions with different width and amplitude.

In particular, chromosome 13 of GBM31 is reported to have low amplitude loss in p-

arm and chromosome 7 of GBM29 is reported to have high amplitude gains near the

EGFR locus by previous studies [58, 69]. The segmentation of these two chromosomes

are shown in Fig. 4.6. Although [69] reports that EM based HMM failed to detect

these aberrations we see that Bayesian HMM has successfully detected both the gain

in chromosome 7 and the loss in chromosome 13. For this dataset, we use a 3-state

HMM with non-informative hyperparameters, µ̃1:3 = −σD
2 , 0,

σD
2 for the prior mean

on µ, σ̃1:3 = 0.2, 0.1, 0.2 for the prior variance on µ, a1:3 = 1
σ2
D
, 1
σ2
D
, 1
σ2
D

for the shape of

gamma prior on σ−2, δπ = 1, 9, 1 for the Dirichlet prior on initial distribution π, and

b1:3 = δAi1:3 = 1, 1, 1 for the rate of gamma prior on σ−2 and the Dirichlet prior on row i

of transition matrix A, respectively, and at the recommended w value we see a 10 fold

speed-up.

SNP Array

High-resolution Single Nucleotide Polymorphism (SNP) arrays are capable of detecting

smaller CNVs than ArrayCGH. To demonstrate the computational advantage of ap-

proximate sampling on SNP arrays we have chosen publicly available Affymetrix 100k

48

-2

 0

 2

 4

 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08 1.1e+08

lo
g
2

ra
ti

o

FB
G

Chromosome 13 (bp)

-2

 0

 2

 4
lo

g
2

ra
ti

o

A
p
p
ro

x
im

a
te

-2

 0

 2

 4

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08

lo
g
2

ra
ti

o

FB
G

Chromosome 7 (bp)

-2

 0

 2

 4

lo
g
2

ra
ti

o

A
p
p
ro

x
im

a
te

Figure 4.6: GBM: chromosome 7 (GBM29) and chromosome 13 (GBM31) Loss (red),
normal (green), and gain (blue) clones are identified using FBG-sampling and approxi-
mate sampling. For approximate sampling w = 1.5σD is used, which was recommended
by the L-method.

49

pancreatic cancer datasets from [68] and Illumina HumanHap550 arrays of HapMap

individuals which are provided as examples in PennCNV [54]. An Affymetrix 100k

dataset consists of two different arrays each with ≈ 60, 000 SNP markers and, in total,

105 data points per sample. On the other hand, the Illumina HumanHap550 array has

around half a million SNP markers.

We have applied FBG-sampling and approximate sampling with w = 1.8σD, the

recommended value by the L-method, to the sample datasets from Harada et al. [68]

and found that the computational speed-up is 22-fold (100 runs of FBG-sampling takes

1844 seconds). Both sampling approaches mostly agree on their predictions but they,

specially FBG-sampling, detect several more CNVs than previously identified [68]. For

example, the high amplification in chromosome 11 (sample 33) is successfully identified

by all methods but in chromosome 18 (sample 16) the sampling algorithms find a few

normal regions previously predicted [68] as loss using the CNAG tool [70] (see Fig. 4.7).

One possible reason for these differences is that while we use 269 HapMap samples as

reference they use 12 unpublished normal samples as reference.

Similarly, we have tested our method with 2.0σD ≤ w ≤ 3.0σD against Illumina

HumanHap samples and observed 70 to 90 fold speed-up in computations (100 runs of

FBG-sampling takes 9693 seconds). These samples are taken from apparently healthy

individuals and contain very few CNVs. As expected, both sampling algorithms’ pre-

dictions are nearly identical and they seem to predict extreme outliers as aberrant

markers. In contrast, PennCNV [54] does not report CNVs which are covered by less

than 3 SNPs, thus suppressing the outliers as normal. We plot a typical region (from

1.4e+08bp to 1.7e+08bp) of chromosome 6 from sample 3 (ID 99HI0700A) in Fig. 4.8.

To set hyperparameters we follow the default parameters of the HMM used in Pen-

nCNV [54]. We have observed that HMMs for large arrays are particularly sensitive

to the self-transition probabilities (which is also reflected in the default parameter val-

ues of the HMM used in PennCNV). Hence, hyperparameters were set to reflect the

choice of high self-transition probability for each state —we set δAi1:3 = αi1l, αi2l, αi3l,

the Dirichlet prior on row i of transition matrix A, where l = 5000, αii is 0.99 for i = 2

, 0.95 for i 6= 2, αij = 1−αii
2 for i 6= j. Other hyperparameters for the 3-state HMM

50

were set such that the expected values of prior distributions match the default values

for PennCNV. In particular, they were µ̃1:3 = −0.66, 0, 0.54 for the prior mean on µ,

σ̃1:3 = 0.001, 0.001, 0.001 for the prior variance on µ, a1:3 = 12, 30, 25 for the shape of

gamma prior on σ−2, b1:3 = 1, 1, 1 for the rate of gamma prior on σ−2, and δπ = 1, 9, 1

for the Dirichlet prior on initial distribution π, respectively.

4.5.3 Discussion

EM vs. MCMC

As already a 4-state Gaussian HMM has 23 free parameters applying EM is often dif-

ficult due to the existence of multiple local optima and the local convergence of EM.

Consequently, the estimate has to be repeated many times with randomly initialized

parameter values to find the most likely model. It should also be noted that not neces-

sarily the model maximizing the likelihood exhibits the best performance in classifying

aberrations 4.2. Additionally, applying any constraint in an EM settings, i.e. order-

ing of the state means, is harder than in MCMC. EM also produces inferior results on

datasets exhibiting class imbalance, for example where one type of aberrations (observa-

tions for one HMM state) are rare or missing, while MCMC can overcome this problem

using informative priors. In Table 4.2 we see that MCMC sampling performs better

than EM on real biological data which is consistent with prior reports from Guha [34]

and Shah [50] who also report difficulties with EM and better MCMC performances. In

particular, for HBL-2 we observe that the best model in terms of F1-measure—which

is not available in de novo analysis—is not the most likely model and the most likely

model has very low precision and, consequently, worse F1-measure than MCMC sam-

pling. On the simulated datasets, EM performs poorly if the dataset is imbalanced.

As a result we observe slightly worse standard deviation for the precisions and F1-

measures computed by EM in Table 4.2. We also notice from the confusion matrix

of three classes—loss, neutral, and gain—that even though the mean F1-measure, re-

call, and precision (defined on two classes, neutral and aberrant) are high, due to label

switching [26], EM does not distinguish gain from loss, and vice versa, very well (see

51

-1

 0

 1

 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

lo
g
2

ra
ti

o

FB
G

Chromosome 18 (bp)

-1

 0

 1

lo
g
2

ra
ti

o

A
p
p
ro

x
im

a
te

-1

 0

 1

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

lo
g
2

ra
ti

o

FB
G

Chromosome 11 (bp)

-1

 0

 1

lo
g
2

ra
ti

o

A
p
p
ro

x
im

a
te

Figure 4.7: Affymetrix 100k SNP array: chromosome 18 of sample 16 and chromosome
11 of sample 33 Loss (red), normal (green), and gain (blue) clones are identified using
FBG-sampling and approximate sampling. For approximate sampling w = 1.8σD is
used, which was recommended by the L-method.

52

-1

 0

 1

 1.4e+08 1.45e+08 1.5e+08 1.55e+08 1.6e+08 1.65e+08 1.7e+08

lo
g

2
ra

ti
o

FB
G

Chromosome 6 (bp)

-1

 0

 1

lo
g

2
ra

ti
o

A
p

p
ro

x
im

a
te

Figure 4.8: Illumina HumanMap550 array: chromosome 6 of sample 3 Loss (red), nor-
mal (green), and gain (blue) clones are identified using FBG-sampling and approximate
sampling. For approximate sampling w = 1.6σD is used, which was recommended by
the L-method.

Table 4.3). By re-ordering the already learned state means the label switching problem

can be addressed, but that increases misclassification rate due to state collapsing as

the parameter values, specially means of the Gaussians, become almost identical [26].

In contrast, Bayesian methods cope with class imbalance problem by applying order

constraints. Moreover, using McNemar’s test [71] on the combined result of the 500

datasets we have verified that the predictions based on EM are significantly different

from the predictions made by Bayesian methods with p-values being less than 0.001 in

both cases.

FBG vs. Approximate Sampling

In an ideal setting, like the 2-state HMM example, approximate sampling closely mimics

the performance of FBG sampling up to moderate compression level. For the simulated

and real dataset approximate sampling’s performance is comparable to FBG’s while

achieving a speed-up of 10 or larger. We also observe that for higher compression levels

approximate sampling reports small number of aberrant clones, which results in small

tp and fp values, but large fn value. As a result, we see low recall and high precision

53

rate when the compression level is too high for a particular dataset (see the rows with

w ≥ 4.0σD for HBL-2 in Table 4.2).

From Figs. 4.5, 4.6, 4.7, and 4.8 we observe that segmentations by both sampling

methods are almost identical at the recommended width w value. In case of HBL-

2, they differ from the ground truth in some places. They predict a few extra gain

regions and outliers are generally predicted as gains. We, as well as Shah et. al. [50],

have noticed that the HBL-2 dataset has many outliers, and the variance of emission

distribution of gain state 4 converges to a high value which tries to explain the outliers.

In contrast, GBM has fewer outliers (see Fig. 4.6) and approximate sampling seems

robust to those outliers. As the compression algorithm forces possible outliers to be

included in a compressed block, it is robust to moderate frequencies of outliers.

Width Parameter

By varying the width parameter w we can control the compression ratio γ and the

speed-up achieved by approximate sampling. But from Table 4.1 and 4.2, and Lemma

1 it is also clear that by setting a large value one can get unfavorable results. We have

analyzed the effect of different w values using a synthetic dataset with a controlled level

of noise following [72]. Each dataset has three chromosomes with total probe counts

500, 750, and 1000. Ten aberrant regions of size 11-20 probes, randomly assigned gain

or loss, are inserted in random positions of the 500 probe chromosome. Similarly, 15

aberrant regions of size 11-25 probes, randomly assigned gain or loss, are inserted into

larger chromosomes. A noise component N(0, σ) is added to the theoretical log-ratios

−1, 0, 0.58 (loss, neutral, and gain respectively) to model the data. For a set of noise

levels, σ ranging from 0.1 to 0.5, 50 synthetic datasets are generated. We use a 3-state

HMM with width parameter values in the range 0σD, . . . , 4σD (where σD is the standard

deviation of the dataset). Signal-to-noise ratio (SNR) is defined as 0.58
σ . In Fig. 4.9

we plot the mean compression ratio, F1-measure, recall, and precision for 50 synthetic

datasets and the real biological data HBL-2. For all noise levels the compression ratio

drops exponentially with increasing values of w. Ideally, one would like to compress as

much as possible without affecting the quality of the predictions. We visually identified

54

a best value for width as the point after which the F1-measure drops substantially.

Comparing the knee of the curve with the best value, we notice that while using the

knee computed by L-method [63] is a conservative choice for width, in most cases we

can still obtain a considerable speed-up.

Outliers

Gaussian HMMs are known to be sensitive to outliers which is evident from our results

of HBL-2 and SNP arrays. Traditionally, outliers have been handled either by using

a mixture distribution as the emission distribution or by preprocessing the data to

remove possible outliers or impute more appropriate values. We have observed that a

simple local median approach works very well to identify the outliers in a time series

of log2-ratio values. Although using a mixture distribution or a distribution with fat

tails, i.e. Student’s-t distribution, is a better choice we lose a significant computational

advantage in approximate sampling. For a block of observations o′ = oi, . . . , ok we can

compute
k∏
j=i

P (oj |q′, θ) in constant time using precomputed values
k∑
j=i

oj and
k∑
j=i

o2
j if

the emission distribution is Gaussian. But it is not obvious how we can accomplish this

for a more complicated distribution. Another approach, which we prefer in this context,

is to use a HMM state with a very wide Gaussian and low self-transition probability to

model the outliers. We have observed very good performance in this way. However, as

our primary focus is to compare FBG-sampling with approximate sampling we choose

to use a simple Gaussian model at the end.

55

Figure 4.9: Effect of width parameter F1-measure (red, circle), recall (violet, square),
and precision (black, triangle) of approximate sampling over HBL-2 and five synthetic
datasets of varying noise levels are shown. For comparison, F1-measure (green, solid),
recall (cyan, dashed dot), and precision (olive, dotted) of FBG-sampling are also shown
as horizontal lines. For width values 0.0σD, . . . , 4.0σD compression ratio γ = T ′

T is shown
as blue line with stars. Knee is predicted using L-method and shown as a vertical line
(blue, dashed dot). Vertical line (green, dashed dot) showing best width is selected by
visual inspection.

56

Table 4.1: We show the average posterior error P̃ = 1
2T

∑
t

∑
i |P (qt = i|θM , O) −

P (qt = i|θtrue, O)| and total number of mismatches between the two Viterbi paths Ṽ ,
generated by models with parameters θtrue and θM .

Method w (in σD) P̃ Ṽ Likelihood Time(in sec) Speed up

Approx

0.25 0.001 3 -5470 74 1.2
0.50 0.001 3 -5475 61 1.4
0.75 0.002 6 -5469 35 2.4
1.00 0.004 22 -5478 21 4.2
1.25 0.012 81 -5588 13 6.5
1.50 0.054 410 -6576 8 10.4
1.75 0.219 2345 -8230 4 20.1
2.00 0.248 2857 -8492 3 34.1

FBG ... 0.003 12 -5471 87 1.0

True -5470 ...

57

Table 4.2: EM, FBG-sampling, and approximate sampling results for simulated, HBL-
2, and Corriel dataset are shown here. Approximate sampling results are reported for
different choices of w. The w value which is closest to the one estimated by the L-
method is shown in italic. Width w is reported in σD of the corresponding dataset,
time is reported in seconds, and compression is defined as T ′

T . For HBL-2, the initial
parameter values for EM are sampled from the prior or uniform distributions, and the
average (mean), most likely (ML), and best (in terms of F1-measure) performances
along with likelihoods are reported.

Dataset Method w F1 Recall Precision Time Compr. Speed-up Likelihood

Simulated
Approx

0.50 0.97±0.04 0.96±0.07 0.98±0.02 27 0.387 2.2
0.75 0.97±0.04 0.96±0.06 0.98±0.03 16 0.195 3.7
1.00 0.97±0.05 0.95±0.07 0.98±0.03 10 0.097 5.9
1 .25 0.96±0.06 0.94±0.09 0.98±0.03 7 0.050 8.8
1.50 0.94±0.09 0.92±0.12 0.97±0.07 5 0.031 11.3
1.75 0.91±0.15 0.89±0.18 0.96±0.12 5 0.023 12.2
2.00 0.86±0.19 0.85±0.21 0.92±0.19 5 0.018 12.2

FBG ... 0.97±0.04 0.96±0.05 0.98±0.03 58 ... 1.0
EM prior, ML ... 0.96±0.09 0.97±0.04 0.96±0.11 58

HBL-2

Approx

1 .0 0.85±0.00 0.83±0.00 0.88±0.00 72 0.078 11.3
2.0 0.87±0.00 0.83±0.00 0.91±0.00 21 0.018 39.3
3.0 0.89±0.00 0.83±0.00 0.95±0.00 13 0.006 61.8
4.0 0.84±0.08 0.77±0.11 0.95±0.01 13 0.003 61.9
5.0 0.71±0.17 0.60±0.22 0.95±0.01 13 0.002 64.8
6.0 0.79±0.07 0.69±0.10 0.96±0.01 14 0.002 59.3
7.0 0.76±0.08 0.64±0.11 0.93±0.01 13 0.001 61.4

FBG ... 0.82±0.00 0.84±0.00 0.80±0.00 810 ... 1.0
EM prior, ML ... 0.65 0.90 0.50 810 15158
EM prior, best ... 0.85 0.84 0.86 810 9616
EM prior, mean ... 0.76±0.09 0.86±0.03 0.68±0.12 810 13744
EM unif, ML ... 0.64 0.90 0.50 810 15159
EM unif, best ... 0.86 0.84 0.88 810 9136
EM unif, mean ... 0.54±0.24 0.77±0.21 0.46±0.27 810 13457

GM05296
Approx 2.0 0.96±0.00 1.00±0.00 0.93±0.01 3 0.027 13.0
FBG ... 0.89±0.01 1.00±0.00 0.81±0.01 40 ... 1.0

GM00143
Approx 2.0 0.98±0.00 1.00±0.00 0.96±0.00 3 0.027 13.8
FBG ... 0.89±0.24 1.00±0.00 0.86±0.26 40 ... 1.0

58

Table 4.3: Confusion matrices showing the proportion of accurate predictions based on
EM, FBG-sampling, and approximate sampling methods on 500 simulated datasets.

Truth
Loss Neutral Gain

EM
Loss 0.855 0.071 0.074

Neutral 0.001 0.996 0.003
Gain 0.190 0.087 0.723

FBG
Loss 0.980 0.020 0.000

Neutral 0.002 0.995 0.003
Gain 0.002 0.020 0.973

Loss 0.981 0.019 0.000
Approx. Neutral 0.002 0.993 0.005

(w = 1.25σD) Gain 0.009 0.022 0.969

59

Chapter 5

Geometric Embeddings for HTS Reads

Although microarray experiments such as arrayCGH have been effectively used for many

applications including CNV detection, the resolution of such datasets are typically in

the kilobase range. As a result, these datasets are not suitable for detecting mutations

and small loss or gain (1-100 bp)—jointly known as insertion and deletion (indel)—

in a sample genome. HTS experiments alleviates this problem by rapidly and cost-

efficiently generating millions of short reads from a sample genome at single base-

pair level resolution. In the last decade, HTS reads have revolutionized the field of

computational biology; From discovery of SNPs to indels, from de-novo assembly to gene

expression analysis, almost all area related to genomic analysis have made tremendous

progress through the use of HTS datasets. Starting from this chapter, we will focus

on HTS reads and discuss some of the challenges, and our contributions, related to

analyzing these datasets.

In resequencing experiments, the first step is mapping HTS reads to a reference

genome–the process is known as read mapping. Approximate string matching, the

theoretical problem underlying read mapping, is arguably one of the most fundamental

problems in bioinformatics, and a very well-studied area in data mining; for surveys

see [73, 74]. Mapping reads from sequencing experiments requires solving approximate

string matching problems for billions of short DNA sequences of length 50–500bp against

entire genomes. Out of the variety of different approaches (see [75] for a detailed

taxonomy) proposed for approximate string matching, current read mappers rely on

only three different paradigms [76]: seed-and-extend (encompassing hash tables and

q-gram filtering), prefix/suffix tries (using the Burrows-Wheeler transform [77] and FM

index [78]), and one approach based on merge sort [79]. Their computational efficiency

60

Pattern

Text
putative match

exact q-gram matches Pattern

Textputative match

(c(P)AAA, c(P)AAC,...,c(P)TTT)

Pos. i Pos. j Pos. k

(c(j)AAA, c(j)AAC,...,c(j)TTT) (c(k)AAA, c(k)AAC,...,c(k)TTT)(c(i)AAA, c(i)AAC,...,c(i)TTT)

L1(P,i) L1(P,j) L1(P,k)

Figure 5.1: Most approaches to approximate string matching using Ukkonen’s q-gram
lemma rely on the existence of reasonably large q-grams which are exact matches be-
tween pattern and text. These can be found efficiently with a number of techniques and
yield putative hits which are then evaluated using an alignment algorithm. For each
pattern and each putative hit the number of shared q-grams is evaluated de novo (left).
We map both reads and genome locations to vectors of 3-gram frequencies and identify
approximate matches finding nearest neighbors (right). This is accelerated by the use
of a spatial index structure, e.g. a kd-tree which is created by recursively partitioning
the input space around the median value of a dimension.

depends on the existence of exact matches between the read and the genome. As

one of the contributions of this thesis, we introduce a new strategy for read mapping

and present a new readmapper named TreQ, following ideas first proposed for protein

sequences [80] and generally referred to as vector space frequency distance methods [74],

embedding strings as q-gram frequency vectors.

This chapter is organized as follows. We start with a discussion on related work. In

Section 5.2, we show how L1 distance serves as a lower bound for affine gap costs. In

Section 5.3, we introduce our methodology and implementation details. We provide a

detailed analysis on both real and simulated data to show the advantages and drawbacks

of geometric embeddings in Section 5.4.

5.1 Related Work

Intuitively, there cannot be an approximate match of small edit distance between a read

and the genome if not one or several exact matches of length q exist. The relationship

between the presence of such matching q-grams (sequence of length q) and the edit

distance was revealed in a paper by Ukkonnen [81]: a lower bound for the edit distance

between two strings is given by the L1 distance between their count vectors of q-grams

(for q = 3 these are the trinucleotide frequency vectors). This provides the basis for

61

a seed-extend strategy of using efficient algorithms for finding one initial exact q-gram

match, exploring whether additional exact q-gram matches support the existence of an

approximate match, see Fig. 5.1 (left), and then use an efficient alignment algorithm,

such as Myers’ bit-vector algorithm [82], to verify and assess the quality of the match.

Existing methods either implement this idea of q-gram filtering [83] directly [84–86], or

implicitly rely on it through suffix trie based data structures [87–89].

The running times depend on the maximal edit distance permitted: smaller maxi-

mal edit distance allows to chose larger q, thus there will be fewer exact q-gram matches

and putative approximate matches to explore; indeed their probability decreases expo-

nentially. If we think of patterns being derived from a match in the text through edit

operations of technical nature (sequencing errors), or biological nature (genetic vari-

ants), the probability of hitting all q-grams and thus rendering q-gram filtering useless

increases with the number of edits [90]. Spaced seeds [91] and gapped q-grams [92],

requiring exact matches in a fixed pattern of q out of q′ > q positions, are one way of

addressing this. Most popular approaches however strictly limit the maximal edit dis-

tance and use heuristics to keep running time in check at the potential cost of missing

best matches.

In particular the detection of indels suffers from the limits on edit distance of

matches. Many of the existing methods have problems in mapping 100bp reads with

indels to the reference genome; longer reads improve the situation for some approaches.

Consequently, the state-of-the-art in the detection of structural variants is the use of

paired-end read libraries and advanced methods for performing downstream analysis

after mapping the paired-end read libraries to reference genomes [93–97]. Nevertheless,

Alkan et al. [98] noted that, in particular, detection of small, 5–50bp indels is a largely

open problem, although our analysis reveals that one recent approach, Stampy [99],

provides excellent sensitivity. In the detection of such short indels the deviations from

mean insert length are measured and thus the sequencing coverage required to arrive

at statistical significance is inversely proportional to the indel length. Our results will

show that the detection of 1–16bp indels from single reads is possible using L1 distance.

We choose q = 3 and consider vectors of all trinucleotide frequencies, by embedding

62

reads of length between 100–1000bp as vectors in R64. The problem of finding a minimal

edit distance approximate match now becomes the problem of finding a nearest neighbor

in a data set of vectors derived from a genome by sliding a window over the genome and

mapping the sequence to a frequency vector, see Fig. 5.1 (right). Finding (approximate)

nearest neighbors however has been well studied and a large range of spatial index data

structures have been proposed [100–103] generally leading to O(n log n) complexity for

construction of the spatial index and O(log n) complexity for nearest neighbor queries,

where n denotes the number of points in the index. Empirical running times however

vary widely based on the detailed structure of the problem instance and thus algorithm

engineering is important for achieving competitive running times.

The vector space frequency distance method introduced in [80] was not further

pursued except in a small scale study focusing on different ways to map strings to

vectors [104,105]. In recent years, researchers in databases, both multi-media and text,

investigated indices in high-dimensional spaces [106–110], but the small alphabet size

of DNA which leads to non-sparse frequency vectors preclude their use here. Boytsov et

al. [74] implemented and evaluated a range of different approaches in approximate string

matching also on DNA datasets which are of small bacterial genome size (3.2Mbp). We

found that his findings do not translate when the genome size increases by a factor of

1,000. For instance, the effects of cache or page misses, which motivate cache-oblivious

data structures that guarantee minimum number of cache misses irrespective of cache

size and memory hierarchy, are simply not observable on small data sets. During the

development of the method we used state-of-the-art kd-tree libraries [111, 112], but

found them to be lacking in performance once the index contained more than a few

million points. Indeed, on genome-size problems, the ability to effectively implement

data structures in a cache-oblivious manner is more important than computational

complexity.

5.2 The q-gram Lemma revisited

We use the usual notation, following [113]: A finite set of characters Σ = {a, b, c, . . .} an

alphabet and a sequence s of characters from Σ a string. We denote by |s| its length, by

63

si its i-th character, i > 0, and by s[i, j] the continuous sub-string starting at position

i and ending in position j.

We associate strings with vectors by computing the frequencies of all q-grams,

cq(s) := (|{i ∈ {1, . . . , |s| − q + 1} : s[i, i+ q − 1] = w}|)w∈Σq (5.1)

which define a map from Σ? → R|Σ|q through s 7→ cq(s). We assume that the q-words

are in lexicographic order. We obtain a distance from the q-spectrum by considering

the L1 distance of the count vectors in R|Σ|q , L1(s, t) := |cq(s)− cq(t)| .

Edit distance. The edit distance ED(s, t) between two strings s and t is determined

by the minimal number of edit operations—substitutions, insertions and deletions—

necessary to transform one into another. We can notate the edit operations as rewriting

rules, a→ ε is a deletion, ε→ a an insertion and a→ b a substitution. Here, a, b ∈ Σ,

a 6= b and ε is the empty string. What is usually referred to as the edit distance is indeed

the Levenshtein distance which assigns unit costs to the three possible operation. This

of course generalizes to arbitrary costs cs, ci and cd for substitutions, insertions and

deletions respectively.

For s, t ∈ Σq, Ukkonen’s lemma [81] states that L1 ≤ 2qED(s, t)1, but this bound

is dominated by the mismatches. It is worthwhile to consider the effects of mismatches

and indels separately. Consider two strings S1, S2, where S2 is derived by a single

deletion of size d from S1, or by insertion. Then the L1 distance is comprised of two

components. First, the number of q-grams spanning the gap in S2 is q− 1. Second, for

S1, the first character in the deletion accounts for q deletions of q-grams, however, every

consecutive character only accounts for one, since the other q−1 are already accounted

for by deleting the left neighbor. Hence, the L1 distance is bounded by L1 ≤ 2q+d−2.

As a single mismatch can affect at most 2q number of different q-grams, it follows that

1Note that this bound can become arbitrarily bad, for example when t is a rotation or transposition
of s, see [81].

64

for m mismatches and g gaps of size di, 1 ≤ i ≤ g,

L1 ≤
g∑
i=1

(2q + di − 2) + 2qm. (5.2)

Since
g∑
i=1

di +m = ED, we obtain

L1 ≤ ED +(2q − 2)g + (2q − 1)m (5.3)

This shows that the number g of contiguous gaps (not the total number of gapped

positions!), provides a sharper bound than the number of mismatched positions. For

example, if ED = 4 and q = 3, then L1 ≤ 8 for a single indel of size 4, but L1 ≤ 24 for

4 mismatches. Any algorithm based on nearest neighbors under the L1 distance is thus

very well suited for mapping reads with large indels.

A preference for large indels in alignments is biologically more meaningful than align-

ments with many small indels, and generally addressed by using affine gap costs. The

above formula naturally implies a scoring scheme for an affine edit distance AED(s, t).

Since

L1 ≤ (2q − 1)g +

(
g∑
i=1

di − g

)
+ 2qm, (5.4)

we obtain

L1 ≤ AED := cog + ce

(
g∑
i=1

di − g

)
+ csm (5.5)

for gap opening cost co := 2q − 1, gap extension cost ce := 1 and substitution cost

cs := 2q.

5.3 Read mapping with cache-oblivious kd-trees

Efficient searches for exact or inexact nearest neighbors in high dimensions generally

involve creating a tree-like index structure that recursively partitions the space. Their

efficiency depends on the quality of the index and the geometric distributions of points.

A comparative study [114] showed that in a wide range of practical instances kd -trees

outperform more advanced methods [100–103].

65

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
mismatch probability

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(a) 125bp, substitutions (S1)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
mismatch probability

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(b) 200bp, substitutions (S1)

0 5 10 15 20 25
indel size

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(c) 125bp, random indels (S2)

0 5 10 15 20 25
indel size

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(d) 200bp, random indels (S2)

0.00 0.02 0.04 0.06 0.08 0.10
indel frequency

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(e) 125bp, indel frequencies (S3)

0.00 0.02 0.04 0.06 0.08 0.10
indel frequency

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(f) 200bp, indel frequencies (S3)

0 2 4 6 8 10 12 14 16
indel size [%]

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(g) 125bp, single indel (S4)

0 2 4 6 8 10 12 14 16
indel size [%]

0

20

40

60

80

100

%
 o

f
co

rr
e
ct

 m
a
p
p
in

g
s

(h) 200bp, single indel (S4)

Bowtie --best -v 3
BWA -n 50 -g 10 -e 50
BWA -n 50 -o 10 -e 50 -M 1 -O 3 -E 1
LAST -j 6
LAST -j 6 -d 108 -e 120
mrFAST --best
mrFAST -e 6
Novoalign -l 0 -e 1 -r Random
SOAP -r 1 -g 10 -v 50
SSAHA2 -best -1
Stampy
Stampy/BWA
TreQ
TreQ with SOAP

Figure 5.2: Comparison of popular read mappers with TreQ. Accuracy is defined
as the percentage of single best reads that are mapped to the exact genomic location
they were drawn from in the simulation. Notice that TreQ outperforms most popular
read mappers except Stampy, and is mostly on par with LAST.

66

In the index generation step, for each sub-tree of the kd -tree, a dimension—usually

the one with the highest variance—is chosen. Then the set of points under the sub-tree

is partitioned using the median value of the chosen dimension as pivot. This process

continues recursively and eventually completes in O(dn log n) time for n d-dimensional

points. During the search step, a query point’s corresponding coordinate is compared

to the pivot and a decision to search the left or right sub-tree is made. If there is no

exact match to be found, the search procedure backtracks.

As the index size gets larger the effect of cache misses becomes very prominent

and the running time increases substantially. As a result, over the last decade many

important data structures including kd -trees were made cache-oblivious [115,116]. Our

cache-oblivious kd -tree implementation stores the tree in sequential memory using the

van Emde Boas layout [117,118] which guarantees an optimal number of cache misses.

We have implemented the following modification to the usual kd -tree construction.

During index generation we use pre-selected dimensions based on the entropy of the di-

mensions over the full dataset, which makes the index building step O(n log n) instead of

finding the dimension with highest variance. The minimal axis-parallel hyper-rectangle

containing all the points in the subtree defines a bounding box per subtree. These

bounding boxes help to reduce the search space at the cost of increasing the index

generation to O(dn log n). In the search step we compute lower bounds for the L1

distance between the query point and all the points inside the bounding box of the

left and right sub-tree in O(d) time at every subtree. We proceed with the sub-tree

giving the best lower bound and store a pointer to the other sub-tree in a min-heap

for future consideration (note that, since there is small finite number of possible lower

bounds, we implement min-heap using a simple array indexed by the lower bounds). If

no exact match is found the search process becomes expensive. We bound the number

of alternate paths searched per query with the parameter β, which bounds the running

time per query to O(βd log n).

In the bottom levels, the running time overhead to find lower bounds using the

bounding boxes is comparable to directly computing the L1 distances. Thus, for the

last τ levels we do not create bounding boxes, and in the search step we simply compute

67

the L1 distances between the query point and the points in the sub-tree (we use fast

hardware accelerated L1 distance computation). This also decreases memory require-

ment to store the tree by 2τ times.

Verification by Myers’ Bitvector Algorithm

Using Myers’ bit-vector algorithm [82] we compute the edit distance and the exact loca-

tion for each read based on putative locations identified as nearest neighbors, adding a

slack of 14bp on each boundary. The best position is reported, breaking ties arbitrarily.

Parameter Choices

Parameter β, the maximum number of different paths explored in the search, controls

the running time and sensitivity of TreQ. However, this does not restrict the maximal

edit distance of matches in contrast to trie-based methods which avoid exponential

blow-up with such restrictions. A second parameter, τ influences the memory footprint

and running times, as the lowest τ levels of the cache-oblivious kd-tree are not stored

and rather direct L1 distance computations are performed. To further reduce memory

requirements, the genomic window is shifted by g base pairs to create d-dimensional

(d = 4q) frequency vectors (final match positions are based on Myers’ alignment). A

third parameter α determines number of vectors for which we only store the changes

from a nearby point as they can be constructed with minimal overhead from their

differences in few dimensions from the (2α+1)-th point which is actually stored. In our

experiments we have found g = 3, α = 2, β = 3000 and τ = 3 to be a good choice for

the human genome, and unless otherwise stated these are the default parameter values

for TreQ. Note that for a wide range of parameter choices TreQ’s accuracy remains

effectively the same (cf. Fig. 5.3).

68

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.04 0.08 0.12

A
cc

u
ra

cy
 (

%
)

S1: Accuracy

τ=1, α=0, β=5000
τ=2, α=0, β=4500
τ=3, α=0, β=4000
τ=4, α=0, β=3500
τ=3, α=2, β=3000
τ=4, α=2, β=2000

 100
 200
 300
 400
 500
 600
 700
 800

 0 0.04 0.08 0.12

Ti
m

e
 (

se
c)

S1: Time

 0

 20

 40

 60

 80

 100

 120

 140

M
e
m

o
ry

 (
G

B
)

S1: Memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
cc

u
ra

cy
 (

%
)

S2: Accuracy

τ=1, α=0, β=5000
τ=2, α=0, β=4500
τ=3, α=0, β=4000
τ=4, α=0, β=3500
τ=3, α=2, β=3000
τ=4, α=2, β=2000

 100
 200
 300
 400
 500
 600
 700
 800

 0 5 10 15 20 25

Ti
m

e
 (

se
c)

S2: Time

 0

 20

 40

 60

 80

 100

 120

 140

M
e
m

o
ry

 (
G

B
)

S2: Memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.03 0.06 0.09

A
cc

u
ra

cy
 (

%
)

S3: Accuracy

τ=1, α=0, β=5000
τ=2, α=0, β=4500
τ=3, α=0, β=4000
τ=4, α=0, β=3500
τ=3, α=2, β=3000
τ=4, α=2, β=2000

 100
 200
 300
 400
 500
 600
 700
 800

 0 0.03 0.06 0.09

Ti
m

e
 (

se
c)

S3: Time

 0

 20

 40

 60

 80

 100

 120

 140

M
e
m

o
ry

 (
G

B
)

S3: Memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 3 6 9 12 15

A
cc

u
ra

cy
 (

%
)

S4: Accuracy

τ=1, α=0, β=5000
τ=2, α=0, β=4500
τ=3, α=0, β=4000
τ=4, α=0, β=3500
τ=3, α=2, β=3000
τ=4, α=2, β=2000

 100
 200
 300
 400
 500
 600
 700
 800

 0 3 6 9 12 15

Ti
m

e
 (

se
c)

S4: Time

 0

 20

 40

 60

 80

 100

 120

 140

M
e
m

o
ry

 (
G

B
)

S4: Memory

Figure 5.3: Effect of different parameters on TreQ. Simulated datasets S1, S2, S3, and
S4 (for details see Section: Discussion) of read length 100bp are tested with different
parameter choices for TreQ. The memory requirement for TreQ comes down from 150GB
(τ = 1, α = 0) to 40GB (τ = 4, α = 2) while a careful selection of β achieves equivalent
mapping accuracy in similar amount of time.

69

Table 5.1: Running times for read mappers used for evaluating simulated data.

Read mapper
S1 S2 S3 S4

125 200 125 200 125 200 125 200

Bowtie (-v 3) 0:05 0:03 0:03 0:03 0:04 0:04 0:03 0:06
BWA 0:07 0:04 0:11 0:07 0:08 0:10 0:13 0:29
BWA (-n 50 -o 10 -e 50 -M 1 -O 3 -E 1) 1:30 2:34 4:30 5:55 3:14 4:42 3:44 4:57
SOAP2 (-r 1 -g 10 -v 50) 0:06 0:03 0:05 0:05 0:06 0:05 0:03 0:08
mrFAST (–best) 0:52 0:46 0:56 0:48 1:19 1:20 0:48 1:08
mrFAST (-e 6) 1:54 1:28 1:41 1:37 2:47 2:28 1:49 2:10
Novoalign (-l 0 -e 1 -r Random) 0:08 0:12 0:14 0:23 0:10 0:17 0:16 0:23
SSAHA2 (–best -1) 4:30 8:42 5:16 9:23 8:21 16:43 6:50 14:38
TreQ (τ = 1, β = 10000, α = 0) 2:29 2:55 2:37 3:01 2:33 3:03 2:40 2:31
LAST w/ LAMA 0:43 1:51 0:33 1:18 0:57 2:32 0:40 1:46
LAST w/ LAMA (-d108 -e120) 1:07 2:29 0:52 1:52 1:27 3:25 0:59 2:25
Stampy 0:18 0:31 0:37 1:13 0:40 1:16 0:36 1:05
Stampy w/ BWA 0:10 0:19 0:41 1:18 0:30 1:00 0:40 1:12

5.4 Experiments

To evaluate TreQ and compare its performance, we ran a number of read mappers–

Bowtie [119] (version 0.12.7), BWA [87] (version 0.5.9), SOAP2 [120] (version 2.21), mr-

FAST [121] (version 2.1.0.0), Novoalign (http://www.novocraft.com) (version 2.07.13),

SSAHA2 [122] (version 2.5.5), LAST [123,124], Stampy [99] (version 1.0.19) and Raz-

erS [85]–on simulated and real read datasets (see Table 5.1 for version numbers). These

read mappers were evaluated with their default and, in some cases, customized param-

eters for allowing maximal permissible edit distance. We also forced them to report one

single best hit. For TreQ, parameters q = 3, d = 64 (= 4q), g = 3, and k = 200 were

fixed throughout the experiments. Currently, quality scores are ignored in the match

evaluation phase of TreQ. For simulated data we define accuracy as the percentage of

reads mapped to the actual genomic locations from where they were sampled (Fig. 5.2).

We use human genome HG18 build 36 as the reference for all the experiments.

5.4.1 Simulated Data

We simulated four different read datasets, comprising a set of different model param-

eters, each by sampling 10,000 reads from the human reference genome. Given read

length `, we have:

• S1 0 to 15`% single nucleotide substitutions at random positions

70

• S2 Indels of size 0 to 25 at 2`% random locations in the read

• S3 Indels of size 2 at 0 to 10`% random locations in the read

• S4 A single indel of size 0 to 17`% at a random location

On top of that, we simulated sequencing error by estimating and interpolating an Illu-

mina error profile. We estimated a first-order Markov chain of Phred score transitions

from 1 million reads of length 101 from a Yoruba African individual (NA18507) for each

of those 101 positions. In order to remove noise and simulate reads of lengths other than

101bp, we used univariate spline interpolation to estimate the evolution of each entry

of the matrix over the read sequence. These functions were then stretched or skewed

for other read lengths, and new transition probabilities were derived by evaluating the

spline function at the appropriate positions and rescale the rows so that the matrix

becomes stochastic. The resulting Phred score distributions of the reads simulated by

iterating the new Markov chains were then verified to correspond to those of real data.

Since Phred scores correspond to actual error rates [125], we used them to simulate

position-dependent sequencing errors.

Our evaluation shows that Stampy outperforms all other methods in terms of accu-

racy (Fig. 5.2). Its running time however depends on the type of read. For instance,

mapping all S1 reads of 200bp length takes 0h31m, whereas mapping S2 takes 1h13m

(Table 5.1). TreQ’s running time ranges consistently at about 3 hours. Stampy’s run-

ning time also increases with read length, although it is mostly better than TreQ’s.

LAST performs in about the same accuracy range as TreQ, but is not always competi-

tive in running time.

In terms of accuracy, geometric embedding outperforms all suffix trie and seed-

extend-based read mappers other than Stampy and LAST on almost all instances.

The authors of both these programs argue that their accuracy is mainly due to the

elaborate downstream analysis they perform after finding candidates. Our results are

thus preliminary, since in essence we are comparing statistical alignment models of

Stampy and LAST to a simple filter based on Levenshtein distance in our case. BWA

can be customized to be competitive on S1 for shorter reads, at the cost of higher

71

running times, but this improvement does not translate to S2-S4. Similarly, LAST

outperforms TreQ on S1, but its performance is similar or worse than TreQ’s on other

conditions. Trie-based read mappers (Bowtie, BWA, and SOAP2) are very fast but

do not perform well in general. Using a hybrid approach–in which SOAP’s unmapped

reads are mapped by TreQ–increases the accuracy for lower distances at the expense

of slightly lower accuracy for higher distances, while drastically reducing the running

time.

5.4.2 Biological Data

Following the evaluation in [126], we compared TreQ to popular read mappers on

a set of 1 million randomly selected 101bp reads from Yoruba African individual

(NA18507) [127]. The running time and the percentage of reads mapped to the refer-

ence human genome HG18 build 36 within 3, 6, 12, and 18 edit distances are reported

in Table 5.2. Times are for a single thread on a single core of a 2.2 GHZ AMD Opteron

processor.

We have found suffix-trie based read mappers, implemented using Burrows-Wheeler

transform, to be very fast on the real dataset, but, unsurprisingly, limited in their ability

to map reads with higher edit distances. Seed-extend-based techniques in contrast

usually map more reads at large edit distances but require more CPU time. Except

LAST, Stampy, and TreQ, none of the other read mappers that we have evaluated

successfully maps reads at high edit distances, possibly containing indels, in a reasonable

amount of time. TreQ does so at competitive running time compared to mrFAST,

RazerS, SSAHA2 and BWA with customized parameters (BWA’s default parameters

are not competitive with respect to accuracy). The hybrid SOAP/TreQ approach,

taking advantage of suffix-trie based read mappers’ efficiency on low edit distances and

TreQ’s sensitivity at higher edit distances, uses less time and maps more reads within

all edit distances considered.

Although TreQ outperforms other read mappers on many mismatches or with large

indels, it’s performance start to degrade gradually. As a result, TreQ’s specificity should

drop at large edit distances. We have indirectly tested TreQ and other read mappers’

72

 2
 4

 8

 16

 24

 32

 40

 45

 2 4 8 16 24 32 40 45

S
pe

ed
 u

p

Number of Threads

Theoretical Max
TreQ (τ=1, α=0, β=5000)

Figure 5.4: Speed up achieved by the multi-threaded version of TreQ on the task of
mapping a randomly selected 0.1 million 101bp single end reads from Yoruba African
individual (NA18507).

specificity by combining the genome of human and chicken (a distant organism from

human) and mapping the same one million real reads to this combined genome. We

have found that BWA, BWA (customized), SOAP2, Novoalign, mrFAST, and TreQ

(within edit distance 18) map 87, 191, 65, 149, 189, and 187 reads respectively to the

chicken genome. This experiment shows that TreQ’s specificity is comparable to the

other read mappers. For greater control over specificity, an optional maximum edit

distance threshold m can be set in TreQ to discard any alignment with edit distance

greater than m (default value l
4 , for read length l).

5.4.3 Discussion

Multi-threading

We have developed a multi-threaded version of TreQ and tested its performance by

mapping 0.1 million randomly selected Illumina single end reads (Yoruba African in-

dividual, NA18507) on a 48-core AMD Opteron 2.2 GHz server with 256GB memory.

The performance of TreQ scales very well in the number of threads, within 84% of the

achievable maximum up to 40 cores (see Figure 5.4).

73

Table 5.2: One million randomly selected Illumina single end reads mapped to HG18
build 36. The percentages of reads mapped within a fixed edit distance (ED) by various
read mappers are reported. As expected, trie-based read mappers are very fast, but
mostly fail to map reads with higher errors. BWA with customized parameters performs
well, but with significantly increased running time. Seed-extend based methods have
varied outcomes; mrFAST, RazerS, and SSAHA2 take significantly more running time
than others, Novoalign is comparably fast but fails to map reads with higher edit
distances, while LAST (without LAMA option) and Stampy map almost similar amount
of reads as TreQ. In contrast to most read mappers, TreQ is not restricted to few
mismatches, small indels or few number of indels, and maps either an almost similar
percentage of reads or more with various different parameter settings. TreQ’s running
time is significantly lower than mrFAST, RazerS and SSAHA2, and comparable to
customized BWA; we stopped SSAHA2 after it did not finish running in 45 hours.
Additionally, Hybrid TreQ/SOAP outperforms most read mappers while significantly
reducing the required running time. Note that Bowtie only allows mismatches and is
restricted to at most 3. All running times are based on running the read mappers
single-threaded on a single core of a 2.2 GHZ AMD Opteron processor.

Technique Algorithm Parameters Time (h:m)
Mapped percentage ≤ ED
≤ 3 ≤ 6 ≤ 12 ≤ 18

Suffix trie

Bowtie∗
--best 0:04 85.22 – – –
--best -v 3 0:04 86.85 – – –

BWA
default 0:14 87.31 89.35 – –
-n 50 -o 10 -e 50

5:53 87.35 90.08 92.39 93.03
-M 1 -O 3 -E 1

SOAP2 -v 50 -g 10 -r 1 0:03 84.87 – – –

Seed-extend

mrFAST --best -e 6 19:50 87.54 90.59 – –
Novoalign -l 0 -e 1 -r Random 0:27 83.68 84.80 85.18 85.19
SSAHA2 --best -1 45:36+ – – – –
RazerS --unique 14:45 66.67 79.41 – –

Stampy
default 1:57 85.73 88.32 90.90 92.15
--bwa-options 0:38 90.37 92.05 93.81 94.84

LAST

default 1:32 84.76 87.66 90.23 90.78
-d108 -e120 1:35 84.85 87.77 90.69 91.69
default, LAMA 4:36 68.74 71.12 73.26 73.72
-d108 -e120, LAMA 4:39 39.26 40.60 41.95 42.42

Geometric
embedding

TreQ

τ = 1, β = 5000, α = 0 7:00 87.34 90.12 93.06 94.67
τ = 2, β = 4500, α = 0 6:28 87.27 90.06 93.01 94.61
τ = 3, β = 4000, α = 0 6:36 87.22 90.04 93.02 94.62
τ = 1, β = 5000, α = 2 8:15 87.32 90.11 93.04 94.66
τ = 2, β = 4000, α = 2 7:44 87.16 89.93 92.87 94.50
τ = 3, β = 3000, α = 2 8:50 86.90 89.69 92.66 94.30

Hybrid SOAP2 + TreQ τ = 3, β = 3000, α = 2 2:06 87.89 90.50 93.26 94.83

74

Memory Requirements

The memory requirement for the cache-oblivious kd-tree and the d-dimensional vectors

are d 2
dlog G

g
e−τ

and G
g(2α+1)(d + 2gα(α + 1)), respectively. As a result, TreQ requires

about O
(
dG
g

(
1
2τ + 1

α

))
bytes of memory, given that 2gα(α + 1) ≤ d. Here G is the

genome size, g is the offset by which the genomic windows are shifted, see Fig. 5.1

(right), while creating d-dimensional q-gram vectors, 2α is the number of vectors for

which we only store the changes from a nearby point, and τ is the number of ignored

lowest levels in the kd -tree. If we set τ = 4, α = 2 and g = 3, for d = 64 TreQ’s memory

requirement is around 40GB (which is equivalent to using less than 1GB per core in a

48-core machine with the multi-threaded TreQ). Interestingly, these parameters have

minor effects on accuracy and running time; for a detailed analysis see Figure 5.3. In

addition, memory requirement can be further reduced by creating separate kd-trees for

each chromosome and loading one kd-tree at a time in the memory.

Memory reduction:

We create d-dimensional q-gram frequency vectors by shifting a window of size l (read

length) over a genome of size G. This naive approach uses O(Gd) amount of memory.

To reduce this large memory requirement for storing count vectors, we apply two tech-

niques. First, we only consider every g-th genomic window for computing frequency

vector, which brings down the memory requirement to O(Gdg). Second, we observe that

consecutive g-th windows can have at most 2g differences in their frequency vectors. We

exploit this observation by not storing the left α vectors and right α vectors of a par-

ticular vector V . Instead we define these 2α vectors by their differences from V . When

we need these vectors in later stages we compute them on-the-fly. After applying these

two ideas, the total memory requirement for storing count vectors is Gd
g(2α+1) + 2Gα(α+1)

2α+1 .

75

Chapter 6

Reduced Representation through Clustering

The sheer amount of data produced by current high-throughput DNA sequencing ma-

chines, over 100Gb/day for a Illumina HiSeq 2500 for example, demands enormous

computational power for primary analysis tasks such as read mapping. Although a

vast, varied body of work is concerned with read mapping [3, 87, 119, 120, 128–134],

from computational point of view, readmappers can be roughly categorized into two

groups. Fast mappers such as BWA which severely restrict the maximal edit distance

between read and reference genome, and more sensitive tools such as TreQ and Stampy.

Stampy is an order of magnitude slower than BWA but provides a much higher sensi-

tivity in the presence of a high degree of variation. Although there is a clear incentive

to use highly sensitive readmappers their use have been rather limited so far due to the

enormous time requirement for mapping large HTS datasets.

As one of the major contributions to this thesis, here we propose a method for

computing clusters from HTS reads and, instead of individually mapping one read at

a time, map reads based on their cluster assignment. Our idea originates from one

crucial observation about a computational aspect of the readmappers: to the best of

our knowledge, most readmappers map one read at a time. In high coverage libraries

reads originating from the same genomic locus share many bases among them, which,

if processed together, can significantly reduce computational demand. The first step in

exploiting the redundancy among reads originating from the same genomic locus is to

identify them through clustering. To compute clusters, we use an incremental greedy

approach ensuring stringent criteria for cluster membership in terms of overlap length

and similarity to the anchor read representing the cluster (see Figure 6.1). Prior works

on clustering HTS reads were concerned with detection of clusters in which cluster

76

members either completely or almost fully overlap with a high degree of similarity be-

tween them [135–137]. Relaxing this criteria makes clustering computationally feasible,

and it is not detrimental to further analysis as the clusters are not per se focus of the

investigation. Assuming that the clusters contain reads sequenced from the same ge-

nomic locus, we only map clusters, that is, we map one anchor read per cluster and align

other cluster members using a local alignment algorithm. Mapping clusters, instead of

individual reads, speeds up computation irrespective of the readmapper used.

This chapter is organized as follows. We start with a discussion on related work.

In Section 6.2, we explain the clustering process in detail. In Section 6.3, we show

how information about cluster membership can be exploited for mapping reads. We

perform experiments on both simulated and biological datasets, and report results on

the performance of clustering and the readmapping process in Section 6.4.

6.1 Related Work

Since clustering large datasets, as a pre-processing step, is a fundamental statistical

technique it has been extensively used for many HTS related problems. For example,

in read compression, some tools exploit redundancy among reads to achieve higher

compression rate without using a reference genome; i.e., Coil [138] and ReCoil [139]

use an approach similar to us for grouping similar reads together before compression,

and a recent tool SCALCE [140] gains impressive compression rate by finding reads

that share a large substring among them. Similar ideas have also been applied to error

correction problem. Multiple sequence alignment (MSA) based error correction tools

such as Coral [141] and ECHO [142] creates MSAs using highly similar overlaps among

reads, which can be considered as clustering reads. Redundancy removal is another

application based on clustering; i.e., SEED [135] shows that removing redundant reads

through clustering can improve running time, reduce memory requirement and improve

de-novo assembly quality. Similarly, for RAD-Seq data, Rainbow [143] shows improved

de-novo assembly after clustering.

77

Although many HTS tools exploit sequence redundancy through clustering in vari-

ous settings there are very few tools that use clustering as a pre-processing step before

read mapping. One such tool, FreeClu [144], creates an interesting parent-child tree

structure based on read frequency and hamming distance between reads. They report

increased read alignment rate by utilizing the relationship represented as a tree. Un-

fortunately, their algorithm is not scalable to large datasets, and, in their definition,

overlap between two reads must start from the same position and the hamming distance

can be at most one, which severely restricts the full potential of a clustering approach.

Another tool, Oculus [145], combines redundancy check and read mapping together as

a package. In a streaming settings, they process one read at a time, align a previously

unseen read using Bowtie and store results in a hash table. This allows them to skip ex-

pensive alignment step for redundant reads. Like FreClu, they need full overlap (same

starting position) and, unlike FreClu, require complete match between reads to consider

them redundant. This approach can achieve moderate speed-up for very high coverage

data, for example RNAseq, but unlikely to be useful for low to moderate coverage whole

genome sequencing data in presence of sequencing errors. In contrast, we process up to

a billion read in one batch, allow reads to partially overlap and contain mismatches in

the overlap (in spirit, similar to MSA based error correction approaches), which leads

to significant speed-up in read mapping.

6.2 Clustering

By R= {r1, . . . , rN} we denote the read library. For all reads we assume a fixed length

L. We also assume R is produced by an Illumina-like sequencing experiment where

substitution errors are dominant compared to insertion and deletion (indel) errors. In

the following we discuss how we efficiently cluster R and use these clusters to accelerate

read mapping.

78

Cluster

 Genome
 Sequencing reads

 Anchor read

Clustering

Deletion
Sample

Reference

 Genetic variation
 Sequencing errors

Figure 6.1: Schematic view of clustering. Genetic variations do not contribute
to the edit distance between reads from the same genomic location. Thus, the only
source of difference in an overlap is sequencing error. Since the sequencing error rate
is small for Illumina-like datasets, in most cases, the clustering process can overcome
the differences in the overlap between reads and group them together in a cluster.
Moreover, to reduce the probability of assigning reads from different genomic locations
to the same cluster, the overlap length has to be sufficiently large.

6.2.1 Clustering billions of reads for mapping

Our two main design goals for the clustering are computational efficiency and strin-

gency with respect to only assigning reads from the same genomic locus to one cluster.

Stringency and the size of the data imply large number of clusters, which precludes the

use of iterative clustering methods. Note that the clusters themselves are not the focus

of investigation, but rather a computational aid. Consequently, we allow reads from

the same locus to be assigned to distinct clusters. We propose the following greedy

approach based on shared k-mers for clustering reads.

Clustering single-end reads

Given two reads ri and rj with a prefix-suffix overlap of length l, where l′ number of

bases match, we say that they have an overlap of length l with similarity s = l′

l . If

l ≥ αL and s ≥ β (α and β are constants), we assume ri and rj are sufficiently similar

to be member of the same cluster. Clusters are represented by their anchor reads (in

contrast to centroids in k-means clusters’ anchors remain fixed) and reads, which are

sufficiently similar to the anchors, are greedily assigned to the clusters (Figure 6.1).

If a read of sufficient quality—i.e., not a bad read as defined in the following—fails to

find a sufficiently similar anchor it becomes an anchor read itself and thus forms a new

79

cluster.

Specifically, we create a set of anchor reads AR and an array of 4k lists AL =

{AL0, . . . , Am, . . . ,AL4k−1}, where Am stores pointers to the anchor reads that con-

tain the k-mer m (note that there is a one-to-one relation between k-mers and 2k bit

numbers), and perform the following steps for each read ri in the library.

1. A base ri,j is defined as a bad base if it is ambiguous (represented by ’N’) or it

has Phred score below the threshold f . If there are too many bad bases uniformly

distributed in ri we call ri a bad read and discard it from clustering. In particular,

we discard ri if

• ri,s and ri,e are the first and last non-bad bases respectively, and e−s+1 < 2k,

or

• the maximum length of a contiguous sub-sequence containing no bad base is

less than k
2 .

2. For each k-mer in ri, we

(a) compute the corresponding 2k-bit integer representation m and get the list

of anchor reads that share the same k-mer from ALm.

(b) For each anchor read rj in ALm, whose content is already stored in AR, if

ri and rj has a prefix-suffix overlap of at least l ≥ αL bases respecting the

position of the shared k-mer, we compute similarity between ri and rj in the

overlapped region.

(c) If at least βl number of bases match in the overlapped region, we declare

ri as a member of the cluster formed around the anchor read rj and halt

further computation for ri.

(d) Otherwise, we proceed with the next k-mer.

3. If ri fails to be assigned to any cluster, it qualifies to be an anchor read and forms

it’s own cluster. We store ri in the set of anchor reads AR and for every k-mer

m present in ri’s αL-length prefix and suffix we insert a record in ALm.

80

Clustering paired-end reads

Although clustering a paired-end read library in single-end mode is acceptable for many

applications, for paired-end read mapping it is necessary to take pairing information

into account. Unlike single-end clustering, where we consider one read at a time, in

paired-end clustering, we process a pair of reads simultaneously and do not allow one

end of a pair to be anchor read and the other end to be non-anchor read. This constraint

lets us map anchor reads in paired-end mode using a traditional readmapper. If the

constraint is violated for a pair ri1 and ri2 , where, lets say, ri1 is an anchor read but ri2

is not, we resolve it in the following order.

1. If ri2 is a bad read, we force it to be an anchor read and form a new cluster.

2. If ri2 is a member of the cluster formed by anchor read rj2 , whose other end is

another anchor read rj1 , we try to find a prefix-suffix overlap of length l ≥ αL
2

between ri1 and rj1 where βl bases match (since ri2 already provides some evidence

for this choice we relax the overlap length restriction from ≤ αL to ≤ αL
2). If

such an overlap is found we force ri1 to be a member of rj1 .

3. Otherwise, ri2 is forced to be an anchor read and form a new cluster.

Optimal cluster assignment

The above procedure partitions the read library into three sets; bad reads, anchor reads

and member reads. Since not all anchor reads were known before the completion of

the first phase, we defer final cluster assignment to the second phase of the algorithm.

In particular, for each member read ri with an overlap of length l with it’s current

cluster’s anchor read, we try to change the assigned cluster by finding another anchor

read with an overlap l′ > l. We perform this by running only step 2 from the single-end

algorithm and modifying 2.c to find the best possible cluster assignment.

81

M
1

M
2

 .

M
i

 .

 .
 .
 .
 .
 .
 .

A
1

A
2

A
4

A
3

A
5

A
6

Figure 6.2: Sub-optimal cluster choices. Here Mi is a member read of the cluster
formed by anchor read A3 (relationship shown with a solid red arrow). In addition
to A3, Mi also has at least αL length overlap with A2 and A4, where at least (β′ ×
overlap length) number of bases match (shown with dotted red arrow). Similarly, some
of the anchor reads also have significant overlap among them (shown with dotted green
arrow). These sub-optimal choices are considered in the read mapping step to increase
the probability of accurately mapping non-unique, repetitive reads.

Sub-optimal cluster assignment for repeat resolution

Another crucial aspect to take into consideration is the complexity of the underlying

genome from which sequencing reads originate. Because of the non-uniformity and

repetitiveness present in the genome, sub-optimal cluster assignments are sometimes

preferred. Towards this goal, in the second phase, along with the cluster with highest

overlap, we also store at most SM number of sub-optimal (allowing β′ < β) cluster

assignments for each member read (red dotted arrows in Figure 6.2). We take this idea

further and, for an anchor read, store at most SA number of similar anchor reads by

modifying the first phase of the algorithm (green dotted arrows in Figure 6.2). Storing

these two kinds of sub-optimal choices can be very useful in resolving ambiguity and

repeats in read mapping.

Practical Considerations

Even our greedy two stage clustering strategy can become infeasible already for one bil-

lion reads. We have carefully taken some decisions and made some parameter choices to

keep the clustering process feasible. In particular, smaller values of k increase sensitivity

82

but require more computational resources due to more frequent k-mer hits. Since our

cluster definition is comparatively relaxed, a large k, in this case 15, is suitable for read

libraries with few sequencing errors such as Illumina’s. Additionally, we have made the

following choices: One, we perform a Hamming distance computation on the overlap,

thus ignoring indels introduced by sequencing, between two reads only if they share at

least two k-mers, which decreases the probability of spurious hits due to the choice of

k and the presence of sequencing errors; two, since overlapping k-mers in a read are

not independent and, hence, considering all k-mers increases computational demand

without significant improvement in optimal cluster assignment, in the second phase, we

abandon the search for best cluster assignment after considering L−k+1
4 equally spaced

k-mers from the read; three, since frequent k-mers are less informative the size of a

list ALm, storing the anchor reads containing m, is restricted to 256; four, we restrict

the number of sub-optimal choices SM to 16 and SA to 256 and store them in external

memory; finally, we set β = 0.95, β′ = 0.8 and α = max{0.5, 31
L }, which restricts the

allowed read length to be at least 31 and guarantees that the clustering algorithm can

overcome at least one error (2 ∗ 15 + 1 = 31) in the overlap.

6.2.2 Running time and memory usage

For each of the N reads of length L in the library, the clustering process computes

Hamming distance between the read and potential anchor reads found using shared

k-mers. Consequently, the running time complexity of the algorithm is O(NL2). Due

to the practical choices from the previous section, in practice, the total running time

is not quadratic in L, and the average running time is approximately O(NL). For

space complexity, lets assume the clustering algorithm finds τN clusters, where 0 ≤

τ ≤ 1. In that case, the set of 2-bit encoded anchor reads AR needs O(τNL) bytes,

the array of lists AL needs O(τNL + N) bytes and cluster membership information

takes O(N) bytes. Thus, the total amount of space required by these three objects

is O(τNL). Including other overhead, specially for multi-threading support, a 100-bp

1.5 billion human read dataset, where τ = 0.08 (τ = 0.11) for single-end (paired-end),

requires 76GB (91GB) memory. If the read sequences were error free, we would need

83

significantly less amount of memory since τ would be O
(
G
L

)
. But, unfortunately, HTS

libraries contain frequent sequencing errors, and hence, this large space requirement is

unavoidable for de-novo clustering.

6.2.3 Additional points

Coverage and read length

Statistically significant findings in the downstream analysis require high coverage se-

quencing. For example, Illumina’s cancer pipeline recommends 40x coverage for normal

and 80x coverage for cancer tissues. The higher the coverage of the library the more ad-

vantageous the clustering becomes, as we expect the average cluster size to increase. We

tested read libraries with reads of 36–100bp and we expect results to improve for even

longer reads. For significantly shorter reads read mapping based on clusters will likely

fail to achieve any significant speed-up or the loss of sensitivity will be non-negligible.

Bias of 15-mer

An overlap of length at least 15 ∗ (E + 1) + E is guaranteed to overcome E errors in

our algorithm. Since we use a fixed value for α, some reads will not be detected as

members and possibly create singleton clusters. Smaller k will lessen this problem, but

to keep the algorithm efficient for large datasets we do not want to lower k. Instead, if

a read library is suspected to contain many reads with large number of errors α can be

increased to deal with the issue.

Parameter choices

If the sequencing error rate ε (typically, less than 0.02 for Illumina experiments) can be

determined a priori, we suggest using a similarity cutoff β ≤ (1−2ε). Too large a value

for β makes it difficult to assign a read to clusters, thus creating too many clusters,

while a value too low might assign reads to wrong clusters.

For α, if we choose a smaller value, we will get fewer clusters, which will in turn

decrease running time, but unfortunately read mapping sensitivity will drop. On the

84

other hand, a value too large leads to more clusters. This increases running time of

both clustering and mapping, but it also increases mapping sensitivity. The values we

used, α = max{0.5, 31
L } and β = 0.95, worked well for three genomes of very different

sizes and we expect that the choice will work well for experiments with similar coverage,

read length and genome size and structure. Should the parameters of the experiment

change drastically the choices might have to be re-evaluated in a preliminary study.

Automatic choice of parameters

It is possible to design a scheme to automatically select the necessary parameters α and

β. A small, randomly selected set of reads can be mapped to the reference genome to

compute the error rate ε from the uniquely mapped reads. Given ε, we can perform a

grid search over the possible values of α and β. A chosen set of parameters should fulfill

two criteria: One, a valid overlap, defined by α and β, between two reads from different

genomic locus should only occur with very low probability, and two, the amount of

required memory, which is primarily determined by the number of clusters, should be

less than the available system memory. Next, we show an analysis of the expected

number of clusters produced by a set of parameters.

Number of clusters:

We will assume that the reads are numbered in the order they are processed. Let

r′i 6= r′j means that read ri has an overlap with read rj of length at least αL and their

overlapped portion r′i and r′j has similarity less than β. Let the number of sequencing

errors in r′i be s(r′i). Assuming s(r′i) is binomially distributed with rate ε, Pr[s(r′i) =

k] =
(|r′i|
k

)
εk(1 − ε)|r′i|−k. Let Ci ⊆ {r1, r2, · · · , ri−1} be the set of anchor reads with

at least αL overlap with ri. Given Ci, the probabity of read ri becoming an anchor

read and forming it’s own cluster is Pi = Pr
[⋂
rj∈Ci

r′i 6= r′j
]
. We simplify the analysis

by assuming that all the reads in Ci has overlap of length l′ = (1+α)
2 L, which is the

expected length of a valid overlap. The updated probability is P ∗i ≈ Pi. Since the

85

number of mismatches allowed is at most m = (1− β)l′, P ∗i is upper bounded by

l′∑
x=0

(
Pr[s(r′i) = x]

∏
rj∈Ci

Pr[s(r′j) ≥ m− x]

)

=

l′∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]|Ci|

=
m−1∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]|Ci| + Pr[s(r′i) ≥ m].

Let Ti−1 be the number of clusters formed after processing i − 1 reads. Assuming the

reads were sequenced uniform randomly from the genome, E[|Ci|] =
i−1∑
j=0

2(1−α)L
G Pj =

2(1−α)L
G Ti−1. Now, if we replace |Ci| with E[|Ci|], P ∗i is approximately equal to

≈
m−1∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]
2(1−α)L

G
Ti−1 + Pr[s(r′i) ≥ m]

=
m−1∑
x=0

(
l′

x

)
εx(1− ε)l′−x

(
l′∑

y=m−x

(
l′

y

)
εy(1− ε)l′−y

) 2(1−α)L
G

Ti−1

+
l′∑

y=m

(
l′

y

)
εy(1− ε)l′−y.

We numerically evaluate the approximate upper bound for the number of clusters

TN ≈ TN−1 + P ∗N . See Figure 6.3 for an application of this analysis.

6.3 Read Mapping

In resequencing experiments the first step in the analysis typically is mapping reads

to a reference genome. The choice of a tool depends on the biological question under

investigation, the expected genetic variation between sample and reference genome and

the computational resources available. The tools roughly fall into two categories: fast

read-mappers which trade losses in mapping reads for speed such as SOAP2 [120],

Bowtie 2 [146] or BWA [87] or highly-sensitive, but much slower tools such as mrFAST

[121], RazerS [85], LAST [123], Novoalign (http://www.novocraft.com) or Stampy

[131]. We will show how we accelerate read mapping based on the clustering irrespective

of the readmapper used.

Our clustering algorithm works under the assumption that members of a cluster

http://www.novocraft.com

86

0

20

40

60

80

100

%
of

cl
us

te
rs

(c
ov

er
ag

e
25

)

β = 0.95

True
Prediction

0

20

40

60

80

100
β = 0.90

0

20

40

60

80

100

%
of

cl
us

te
rs

(c
ov

er
ag

e
50

)

0

20

40

60

80

100

0.01 0.02 0.03 0.04
Sequencing Error Rate, ε

0

20

40

60

80

100

%
of

cl
us

te
rs

(c
ov

er
ag

e
10

0)

0.01 0.03 0.05 0.07 0.09
Sequencing Error Rate, ε

0

20

40

60

80

100

Figure 6.3: Expected number of clusters. From an artificially generated sample
genome, an i.i.d. sequence of 1 million bases, we sequence 100bp single-end reads with
coverage 25, 50, and 100, and insert sequencing error at a rate ranging from 0.005 to
0.09. We compare the true number of clusters computed using the clustering algorithm
to the numerically evaluated ones for β = 0.95 and β = 0.9. The total number of cluster
is computed very accurately except for small values of ε. It is evident that β ≤ (1− 2ε)
keeps the total number of clusters small.

87

Reference genome

ClusterIndividual Reads

Sequencing reads
Sequencing errors
Anchor Read
Mapped position
Genetic variation

Figure 6.4: Schematic view of clustered read mapping. Read mappers map
all reads in input individually to the reference genome (ignoring savings achieved us-
ing index structures). In contrast, in clustered read mapping only the anchor read is
mapped to the reference genome. The mapping positions of individual cluster members
are recovered w.r.t. to the position of the anchor read.

originate from the same genomic locus in the sample genome. We exploit this assump-

tion by mapping the anchors in single-end or paired-end mode to a reference genome

and subsequently use the information about the mapped position of the anchor read

to find good mappings for member reads. As a result the runtime complexity of read

mapping reduces to the proportion of clusters found; in practice we need more time

as the cost of mapping a single read varies considerably. Although we can find more

than one location for non-unique, repetitive reads using multiple hits for the anchor

reads and utilizing sub-optimal cluster choices, in this study, for a suitable compari-

son between clustered vs. individual read mapping, we only report single best hits for

reads. Specifically, given the read library R we perform the following steps to compute

the read alignments assuming fixed costs 3, −3, −40, and −3 for nucleotide match,

mismatch, gap open, and gap extension.

1. Identify the anchor reads and map them in single best mode using a readmapper.

Report the alignments in a SAM file S.

2. Extract mapping information of the anchor reads from S.

3. For each read r in R,

(a) if r is an anchor read, do nothing.

88

(b) If r is a bad read, report the read as unmapped in S.

(c) If r is a member read,

• we use the overlap information between anchor read and member read

to identify the genomic position from where the member read may have

originated, and compute hamming distance.

• If the total cost of mismatches from previous step is greater than a single

gap opening cost (for the tested datasets it happens for approximately

30% of the reads) we run the Smith-Waterman algorithm [147] to find

the best local alignment between the read and the mapped position of

the anchor in the genome (±L bases). We use a modified version of a

SSE based library form [148] for Smith-Waterman computation.

• We repeat the above two steps for the sub-optimal cluster choices (Fig-

ure 6.2). In particular, we increase the search space by following a path,

through the dotted red and green links, of length at most two, from the

member read to the anchor reads.

• If the best alignment has score less than min score (default L
3) we report

the read as unmapped. Otherwise, we append the alignment information

at the end of file S.

For paired-end reads, we modify the above process in the following way. As in

paired-end clustering anchor reads are stored in pairs, we use a traditional readmapper

in paired-end mode. After extracting the mapping information of anchor reads from

the SAM file, we align member reads one pair at a time. If one or both reads in a

pair are bad reads, we do not do anything different from the above process. For the

remaining member read pairs, we do the following.

• For each end of a pair, we compute a list of alignment positions in the genome

where alignment score is ≥ min score. We use optimal and sub-optimal cluster

information to generate the list following the single-end process.

• From the two lists of potential positions, if there is a concordant location for the

pair we report that location.

89

• Otherwise, for each potential position of one end in the list, we compute alignment

score between the other end and the potential genomic location where the other

end could be present (based on insert length and standard deviation). If the

alignment score is above min score we report this location.

• If no concordant location is found using the above steps, we report the best

location for each end separately.

Since readmappers often use different kind of alignments — choice varies among

local, global, and semi-global alignment, score values, heuristics, and strategies to im-

prove paired-end mapping, it is difficult to select an universal set of criteria which is

good for all. The differences in choices and heuristics used give them distinguishing

characteristics which is often desirable by downstream analysis tools. We believe that

the choices we have made here are not necessarily the best for every readmapper, and

it makes sense to have different clustered mapper for different readmappers. However,

we do not pursue that direction here.

6.4 Experiments

We have selected four datasets to analyze our method.

• SIM: 2 million simulated 100bp paired-end reads (mean insert length 300 and

standard deviation 30) simulated with a coverage of 50x obtained with the pop-

ular read simulator ART [149] from human chromosome 17 (from the 10Mbp to

14Mbp region) after artificially introducing SNPs (SIM-SNP) and inserting indels

(SIM-INDEL).

• ECOL: 21 million 36bp paired-end E. coli reads (SRX000429) with a coverage of

160x at a genome size of 5Mb. We estimated the insert length to be 215bp with

a standard deviation of 10bp.

• DROS: 48 million 76bp paired-end Drosophila reads (SRR097732) [150] with a

coverage of 29x at a genome size of 120Mb. We estimated the insert length to be

320bp with a standard deviation of 18bp.

90

• YOR: 1.46 billion 100bp paired-end Illumina reads of a Yoruba individual (ERA015743)

(HapMap: NA18507) with a coverage of 46x at a genome size of 3.2Gb. We esti-

mated the insert length to be 310bp with a standard deviation of 20bp.

For all datasets we use α = max{0.5, 31
L } and β = 0.95. All the experiments

are performed on a Linux machine with 48 AMD Opteron cores clocked at 2.2 GHz

and 256GB memory. Whenever possible, in particular for multi-threaded tools, 22-24

cores were assigned, and for both multithreaded and non-multi-threaded programs total

system time is reported.

In the following, we will show the effectiveness of our clustering algorithm and the

benefits of using clusters in read mapping. We will also discuss how the characteristics

of the read library affect performance and parameter choices.

6.4.1 Clustering performance

Since clustering is a fundamental technique for large data analysis, many tools have been

developed in the past for biological data; i.e. for protein clustering [151–153], meta-

genomics [154–157], and expressed sequence tags (ESTs) [158–161]. Recently, there

is a trend of developing alignment based (for alignment-free clustering see [162]) fast

clustering tools for very large HTS data sets; among these, CD-HIT [163], DNACLUST

[164], UCLUST [137] and SEED [135] are prominent. These four tools use greedy

incremental approaches and apply heuristics to accelerate clustering (our clustering

algorithm also belongs to this group). Except DNACLUST, which uses a suffix array,

these tools also use some kind of hash/seed based data structure. Among them, SEED

[135] has been identified as the state-of-the-art in read clustering. Although it can

cluster up to tens of millions of reads given enough time and memory, SEED, and

other tools, are still not very attractive as a pre-processing step before read mapping.

There are two reasons behind this: First, they require highly overlapping reads, usually

α > 0.90, and, in some cases, high similarity in the overlap, which results in a large

number of clusters; Second, their algorithms and data structures are not designed to

process billions of reads. While large overlap is absolutely necessary for very short

91

reads (say < 50bp), for moderate to large sized reads (say > 50bp), α = 0.5 is sufficient

for declaring two reads similar for read mapping purpose since per base error rate for

Illumina reads are small. To overcome these difficulties, and to support particular

requirements of read mapping, such as paired-end support and sub-optimal cluster

choices, we have designed our own clustering algorithm TreQ-CG. As a representative

of the fast clustering tools (see [165] for a set of examples) we have selected UCLUST

and SEED, and compared their performance with TreQ-CG (Table 6.1). We indirectly

measure the quality of the produced clusters by using them for read mapping in a later

step. Among the two tools in consideration, only SEED allows non-overlapping bases

(at most 6 bases can be excluded), and it allows at most 3 mismatches in an overlap

which corresponds to parameters (α = 0.83, β = 0.90), (α = 0.92, β = 0.96) and

(α = 0.94, β = 0.97) for ECOL, DROS and YOR respectively. On the other hand, UCLUST

allows a flexible β but it does not allow users to select α. Compared to them, TreQ-CG

allows both parameters to be modified. Taking these differences into consideration we

have selected three set of parameters for comparison: C1 allows UCLUST to run with

smallest possible β allowed by SEED, C2 allows smallest possible α and β allowed by

SEED, and C3 is the parameter set used by TreQ-CG for subsequent analysis.

Along with memory requirement and running time, our primary criteria for eval-

uating clustering tools is the number of clusters produced, which is normalized as

% of clusters =
of anchor reads

of reads
. Since SEED depends on large overlap between

reads, it produces 37.79% clusters for DROS in 7.56 hours and does not complete on the

YOR dataset. On the other hand, UCLUST’s use of full overlap and gapped alignment

makes it very slow on large datasets. It takes 52 hours on the ECOL dataset but on the

larger datasets it did not complete in one week. In comparison, TreQ-CG works with

a wide range of parameter choices in both single-end and paired-end mode, produces

fewer clusters, and runs faster than SEED. Additionally, for parameter set C3, TreQ-

CG discards 0.3%, 1.6%, and 5.2% reads as bad reads in single-end mode, and 0.2%,

1.3%, and 4.8% reads in paired-end mode. From the remaining reads, ones with large

number of sequencing errors usually form clusters with very few member reads, which is

evident in the singleton clusters generated from the datasets. The clusters produced by

92

SEED and other clustering tools on smaller datasets such as ECOL are useful for other

applications, for example in meta-genomics. But unless they support smaller overlap

length, which is difficult for their particular choice of data structures and algorithms,

they will not be attractive choices for pre-processing reads before read mapping. We

do not consider them for subsequent analysis in the following section.

6.4.2 Read mapping performance

On biological datasets there is no ground truth available for deciding whether a read is

mapped correctly. There are also differences—in particular for low-quality reads and in

presence of genetic variations—in mapping performance between individual readmap-

pers, and likewise we expect some differences between clustered mapping and individual

mapping even with the same readmapper.

We compare clustered and individual mapping for Bowtie 2 [146] version 2.1.10,

BWA [87] version 0.5.9, Novoalign (http://www.novocraft.com/) version 2.07.13 and

Stampy [131] version 1.0.19. All mappers, chosen because they are widely used and

implement different algorithmic approaches, were run with default parameters except

forcing reporting of a single best hit. We expect other readmappers, specially highly

sensitive computationally intensive ones, to benefit from clustered approach and their

overall performance to follow the performance of the readmappers chosen for compari-

son.

Including clustering time, clustered read mapping achieves a speed-up compared

to the time of mapping individual reads for all readmappers tested, see Table 6.2 for

single-end reads and supplementary Table 6.3 for paired-end reads. The speed-up ranges

from 8.9 using Stampy on YOR to 1.4 using Novoalign on ECOL. One would expect that

the time needed for mapping anchor reads should be proportional to the number of

anchors. But in practice, reads with high sequencing errors form singleton clusters

(that is a cluster without any member except the anchor read) and read mappers take

more time to map these reads. As a result the speed-up is not exactly proportional

to the number of clusters. Still, due to the achieved speed-up, the use of sensitive

readmappers like Stampy becomes computationally as feasible as running BWA.

http://www.novocraft.com/

93

Table 6.1: Comparison of clustering tools. The performance of three clus-
tering tools, UCLUST, SEED, and TreQ-CG, on three biological datasets ECOL,
DROS, and YOR is shown. Three different parameter configurations are used for
comparison. SEED was run with parameters --shift X --mismatch Y --fast

--reverse, where X and Y corresponds to α and β respectively in TreQ-CG. Addi-
tionally, C1, C2 and C3 are respectively (1.00, 0.90), (0.83, 0.90), (0.86, 0.95), for ECOL,
(1.00, 0.96), (0.92, 0.96), (0.50, 0.95), for DROS and (1.00, 0.97), (0.94, 0.97), (0.50, 0.95)
for YOR.

Dataset
Param.
(α, β)

Program
Single-end Paired-end

Time Memory Clusters Time Memory Clusters
(h:mm) (GB) (%) (h:mm) (GB) (%)

ECOL

21 mil.

36 bp

C1

UCLUST 52:07 2 17.47 — — —
SEED 0:32 12 38.97 — — —
TreQ-CG 0:24 17 23.86 0:30 17 31.21

C2

UCLUST — — — — — —
SEED 0:27 11 5.71 — — —
TreQ-CG 0:12 16 4.07 0:13 16 5.14

C3

UCLUST — — — — — —
SEED 0:30 11 7:30 — — —
TreQ-CG 0:14 16 7.30 0:15 16 8.57

DROS

48 mil.

76 bp

C1

UCLUST — — — — — —
SEED 3:22 25 75.97 — — —
TreQ-CG 3:36 34 70.34 4:02 35 76.73

C2

UCLUST — — — — — —
SEED 7:56 25 37.79 — — —
TreQ-CG 2:00 23 24.50 2:30 24 30.09

C3

UCLUST — — — — — —
SEED — — — — — —
TreQ-CG 1:09 20 7.29 1:18 20 9.18

YOR

1.5 bil.

100 bp

C1 UCLUST — — — — — —
SEED — — — — — —
TreQ-CG — — — — — —

C2

UCLUST — — — — — —
SEED — — — — — —
TreQ-CG 197:35 196 29.45 — — —

C3

UCLUST — — — — — —
SEED — — — — — —
TreQ-CG 107:52 76 7.48 133:22 91 10.90

94

For qualitative assessment of clustered read mapping we use the following three

metrics.

• Accuracy. Since the true originating position of a read is known for simulated

data, we define accuracy as the proportion of reads that map within ±L bases of

the true position [132]. We do not require a strict match because there can be

ambiguity in the starting position of the optimal alignment due to the presence

of gaps and exact alignment parameters.

• Alternate mapping rate. Since the ground truth is not known for biological

data, we compute alternate mapping rate between individual mapping and clus-

tered mapping. Alternate mapping rate is defined as the percentage of reads for

which either both approaches report mapping positions not within ±L bases of

each other, or one approach maps the read while the other fails. This essentially

measures how well the clustered read mapping recreates the exact output of the

individual read mapping.

• Concordance. For biological data, another important measure is concordance

of read pairs. We define it as the proportion of read pairs for which the estimated

insert size is within the mean insert length of the library, allowing for ±5 standard

deviation. It has been argued in the literature [131] that the concordance of

paired-end reads mapped in single-end mode provides an indirect measure of

mapping accuracy.

Simulated Data

We have tested the effect of SNPs and indels on single-end and paired-end clustered

mapping; the results are reported in Figure 6.5. For SIM-SNP we have modified the

sample genome with substitution rate ranging from 0.001 to 0.15 while allowing no

indels. For SIM-Indel we have inserted indels of a particular size I ∈ [1, 20] with an

indel rate of 0.01 per base. For each SNP and indel size configuration we have sequenced

2 million reads using the read simulator ART, which applies Illumina-specific sequencing

errors on top of the genetic variations present in the artificial sample genome. Since

95

0

20

40

60

80

100

A
cc

u
ra

cy

SIM-SNP (single-end) SIM-INDEL (single-end)

0.05 0.10 0.15
Substitution Rate (%)

0

20

40

60

80

100

A
cc

u
ra

cy

SIM-SNP (paired-end)

0 5 10 15 20
Indel Sizes (bp)

SIM-INDEL (paired-end)

BWA, Ind.

BWA, Clust.

Stampy, Ind.

Stampy, Clust.

Bowtie 2, Ind.

Bowtie2, Clust.

Novo., Ind.

Novo., Clust.

Figure 6.5: Quality improvements in detecting SNPs and structural variants.
Accuracy of mapping single-end simulated reads between individual and clustered ap-
proach is shown. As expected, BWA and Bowtie 2 do not perform very well in presence
of large variations. Clustered read mapping performs significantly better than individ-
ual BWA and Bowtie 2, and generally agrees with the individual version of the sensitive
readmappers.

96

0

20

40

60

80

100
A

lt
e
rn

a
te

 M
a
p
p
in

g
 R

a
te

ECOL (single-end)

0

20

40

60

80

100
ECOL (paired-end)

Bwa
Bowtie 2
Novoalign
Stampy

0

20

40

60

80

100

A
lt

e
rn

a
te

 M
a
p
p
in

g
 R

a
te

DROS (single-end)

0

20

40

60

80

100
DROS (paired-end)

0 20 40 60 80 100 120 140 160
MAPQ Threshold

0

20

40

60

80

100

A
lt

e
rn

a
te

 M
a
p
p
in

g
 R

a
te

YOR (single-end)

0 20 40 60 80 100 120 140 160
MAPQ Threshold

0

20

40

60

80

100
YOR (paired-end)

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

Figure 6.6: Alternate mapping rate between clustered and individual single-
end read mapping. Alternate mapping rate is shown as a function of MAPQ thresh-
old. Maximum reported MAPQ value varies between readmappers; for BWA, Bowtie 2,
Novoalign and Stampy maximum reported MAPQ for single-end reads are respectively
37, 42, 150 and 96. The cutoffs used to report alternate mapping rate in Table 6.2 are
shown with diamond signs in the inset figures.

97

indels are randomly placed in the sample genome before sequencing, approximately

40% reads in the SIM-Indel dataset do not contain any indel. As expected, Stampy’s

performance stays excellent for the range of variations tested but others do not perform

well in presence of high genetic variation. In case of Stampy, clustered mapping closely

follows individual mapping. On the other hand, clustered mapping performs better

than individual BWA, Bowtie 2, and Novoalign. To gain efficiency these readmappers

limit their mapping process through limited edit distance or score cutoff. In contrast,

clustered mapping is more permissive due to low score cutoff (default L
3).

Biological Data

It is reasonable to expect that the reads mapped with low alignment quality are those

which should cause the most differences between clustered and individual mapping, and

consequently influence the accuracy measures. We use the MAPQ value reported in

the SAM file, where higher value indicates higher confidence in a particular alignment,

as thresholds to limit the read alignments considered to compute alternate mapping

rate. In practice, along with unmapped reads (reported with default MAPQ value

0), low quality alignments are frequently excluded from downstream analysis. Follow-

ing [87], we select MAPQ value of 1 and 2 for BWA and Bowtie 2 respectively, and 4 for

Novoalign and Stampy, as a cutoff to report alternate mapping rate in Table 6.2 and

Table 6.3. Alternate mapping rates computed using different values of MAPQ threshold

are reported in Fig. 6.6. We also report concordance of reads mapped in Table 6.2 and

Table 6.3.

From Figure 6.6 we observe that the alternate mapping rate among all reads above a

MAPQ threshold strictly decreases as a function of the threshold and eventually drops

below 1%. At the selected MAPQ thresholds, depending on the readmapper used,

clustered mapping reports alternate mapping for about 0–1%, 1–3%, and 2–4% reads

for ECOL, DROS and YOR datasets respectively. Compared to single-end reads, there

is an 1-2% increase in alternate mapping rate for paired-end mode (see Table 6.3).

As for concordance of single-end reads in clustered approach, there is a small gain in

concordance for ECOL and DROS, and a small loss in concordance for YOR (Table 6.2).

98

Table 6.2: Running time and memory requirement of individual and clustered read
mapping on single-end datasets are reported. As expected, clustered read mapping
achieves significant speed-up for all datasets. Although running Stampy on YOR dataset
in individual mapping mode is prohibitively expensive, clustered approach makes run-
ning Stampy as feasible as running BWA.

Dataset
(single-
end)

Mapper
Memory (GB) Time (hh:mm)

Speed-up
Mapping quality

Individual
mapping

TreQ-CG Individual
mapping

TreQ-CG Alternate
map. rate

Concordance

Clust. Map. Clust. Map. Ind. Clust.

ECOL

BWA 0.1

16

0.9 0:49

0:14

0:12 1.9 0.06 92.93 93.44
Bowtie 2 0.3 0.9 0:43 0:13 1.6 0.06 93.41 93.64
Novoalign 0.0 1.0 0:38 0:14 1.4 0.10 96.59 96.80
Stampy 0.0 1.0 4:17 0:28 6.1 0.08 96.23 96.19

DROS

BWA 0.3

20

1.4 3:29

1:09

0:49 1.8 0.88 71.02 72.07
Bowtie 2 0.4 1.4 2:53 0:39 1.6 1.41 74.82 73.87
Novoalign 0.6 1.4 6:19 1:09 2.8 0.85 71.20 73.87
Stampy 0.3 1.4 28:08 2:59 6.8 1.68 74.06 74.31

YOR

BWA 5.0

76

8.3 477:30

107:52

157:29 1.8 2.43 78.43 77.54
Bowtie 2 3.5 8.2 307:45 75:04 1.7 3.47 82.38 79.75
Novoalign 7.8 8.3 714:07 230:47 2.1 2.55 79.40 78.24
Stampy 2.7 8.2 3203:39 251:40 8.9 3.43 80.51 78.87

On the other hand, for paired-end reads, except for ECOL dataset, there is always a gain

in concordance, which is mostly due to altering mapping locations based on pairing

information (see Table 6.2). Increase in alternate mapping rate and gain in concordance

for paired-end reads indicates that our paired-end mapping might be too permissive

compared to what is allowed by an individual readmapper.

99

Table 6.3: Running time and memory requirement of paired-end clustered read map-
ping.

Dataset
(paired-
end)

Mapper
Memory (GB) Time (hh:mm)

Speed-up
Mapping quality

Individual
mapping

TreQ-CG Individual
mapping

TreQ-CG Alternate
map. rate

Concordance

Clust. Map. Clust. Map. Ind. Clust.

ECOL

BWA 0.2

16

0.9 1:01

0:15

0:13 2.2 0.27 98.77 98.62
Bowtie 2 0.3 0.9 0:49 0:12 1.8 0.28 98.39 98.36
Novoalign 0.0 1.0 0:57 0:15 1.9 0.33 99.57 99.28
Stampy 0.0 1.0 4:08 0:31 5.4 0.33 99.41 99.18

DROS

BWA 0.4

20

1.4 3:57

1:18

1:09 1.6 2.25 84.17 85.62
Bowtie 2 0.5 1.4 5:33 1:05 2.3 2.71 84.56 85.51
Novoalign 0.6 1.4 11:25 1:35 4.0 2.53 82.82 85.24
Stampy 0.3 1.4 38:51 4:17 7.0 3.05 82.52 86.08

YOR

BWA 5.0

91

11.0 533:38

133:22

171:31 1.8 2.82 89.24 90.56
Bowtie 2 3.7 10.9 352:49 89:11 1.6 3.50 90.48 91.46
Novoalign 8.0 10.9 969:19 368:39 1.9 2.98 87.52 90.41
Stampy 2.7 10.9 3397:02 453:59 5.8 3.48 88.38 91.18

100

Chapter 7

Discussion

The scale and characteristics of the dataset are crucial aspects of genomic data analy-

sis that lead to different algorithmic and statistical approaches for different problems.

For finding homogeneous segments in DNA sequences and CNV detection from array-

CGH data, we rely on HMMs, which are natural statistical models for segmentation

problems. We argue in favor of superior Bayesian HMMs and show that, by utilizing

short repeated sequences and, in case of continuous observations, grouping together

similar consecutive observations, MCMC sampling can be made faster, thereby making

Bayesian HMMs much more practical for these problems than before. For HTS read

mapping, we present a q-gram frequency based readmapper, which shows competitive

results in detecting genetic variants and brings new ideas to the well studied read map-

ping problem. However, high-throughput nature of these datasets prohibits the use of

computationally demanding sensitive read mappers. We show that these datasets can

be effectively reduced through clustering, and applications, such as read mapping, can

directly work on those reduced representations to gain significant advantage in overall

running time.

In the following, we present the final remarks and future directions for each contri-

bution of this thesis.

Exploiting Repetition in Discrete Sequences

In chapter 3, we present a modified version of the forward-backward Gibbs sampling

algorithm for Bayesian analysis with a logarithmic improvement in running time. We

use the four Russians method to pre-compute all possible quantities of interest and show

that exact sampling can work with fewer forward variables by using the pre-computed

101

quantities. We demonstrate the advantage of our method on the DNA segmentation

problem. As biological sequences are often long and the alphabet size is small, our

approach can be adopted to make Bayesian computations faster in other biological

applications. A natural extension to our approach would be applying other compression

schemes. In some cases, when observations in a sequence are less uniform in nature,

other schemes may outperform the four Russians method.

Compressed Gaussian Observations

In chapter 4, we propose a method to accelerate MCMC for Bayesian HMMs modeling

CNVs in arrayCGH and SNParray data. Our method constitutes of ideas from spatial

index structures for several consecutive observations and approximate computations

based on geometric arguments for HMM. We are able to achieve significant speed-ups

on these biological datasets, which measure chromosomal aberrations and copy number

variations, while maintaining competitive prediction accuracy compared to the state-

of-the-art. As datasets with even higher resolution, both from higher density DNA

microarrays and next generation sequencing, become available, we believe that the

need for precise and efficient MCMC techniques will increase.

Applying approximate sampling to multi-dimensional observations—to jointly an-

alyze data sets for recurrent CNVs [166] instead of analyzing individuals and post-

processing results—and considering more complicated HMM topologies and observation

densities are directions for our future work.

Geometric Embeddings for HTS Reads

In chapter 5, we address the problem of mapping HTS reads in an indel-tolerant manner

by establishing geometric embedding as a promising paradigm, allowing identification

of structural variants: We map reads and genomic locations to trinucleotide frequency

vectors, embedding them in R64. The L1 distance between q-gram frequency vectors

provides a lower bound for an edit distance with affine gap costs in which even long

indels have small distance, improving the sensitivity of their detection. The problem

102

of approximate matching is thus transformed into one of computing nearest neighbors

using a spatial index.

An obvious area of future investigation is a parallel distributed index which will

allow our readmapper to run on clusters. Generally, we expect further improvements

in running times, and consequently in accuracy, from an spatial index tailored specif-

ically to the high-dimensional, integer coordinate problem setting, e.g. an adaptation

of X-trees [102] or through the use of locality-sensitive hashing [167]. Additional im-

provements in terms of both memory and running time can be made by using batch

processing for queries. The simplistic evaluation of putative matches using Levensthein

distance can be replaced by a statistical, quality-score aware analysis following the lead

of Stampy [99] and LAST [123, 124], which attribute their success to a large degree to

the quality of their putative hit filtering. In our geometric embedding, quality scores

can be used while searching for putative hits by using floating-point or fixed-point

arithmetic and fractional count contributions for low-quality nucleotides.

Reduced Representation through Clustering

In chapter 6, we propose to cluster HTS reads as a first step in the analysis and show that

our greedy clustering algorithm accelerates read mapping. We observe speed-ups for all

readmappers tested ranging from 1.4 to 8.9 with very little alternate mapping between

individual and clustered mapping for high-quality reads, and low level of alternate

mapping rate for all reads with a small loss in concordance for some datasets. We do

expect even more favorable results for read mapping if there is a lot of genetic variation

in the sample genome, such as in cancer datasets, or the evolutionary distance between

sample and reference genome is large.

There are several areas in which the method can be improved, the most important

ones being cluster quality and size, as running time is inversely proportional to the total

number of clusters. It seems reasonable that the singleton clusters (that is a cluster with

cardinality one, which arises either due to high sequencing error or very low coverage)

can be reduced by additional passes, possibly with a smaller value of k for k-mers.

103

The additional effort in clustering is very likely to be made up in mapping, by net

savings in running time. So far read mapping is performed with anchor reads without

any post-processing. An obvious improvement can be made by considering clusters

as an instance of multiple sequence alignment problem, and correcting errors using

the alignment information. Moreover, computing an elongated consensus sequence and

using it instead of the anchor read is also desirable. However, one has to judiciously

choose, based on coverage and within cluster sequence variation, the actual fragment

of the consensus to use for mapping to see further improvements.

Appendices

104

105

Appendix A

Notations

All chapters

A The transition probability matrix.

B The observation probability matrix.

O The observation sequence.

Oi,j The consecutive observation sequence.

Q The state sequence.

QML Viterbi path, the most likely state path of a HMM given an observation sequence.

Qi,j The consecutive state sequence.

S The set of states.

T The length of the observation sequence.

αt(j) The forward variable for state j at time t.

π The initial probability over states.

θ The HMM with parameters A,B and π.

θAi The hyperparameter for the multinomial distribution over transitions from state i.

θBi The hyperparameter for the multinomial distribution over discrete observations in

state i.

θπ The hyperparameter for the multinomial distribution over initial probability over

states.

106

θML The most likely parameters of a HMM.

µ̃i One of the hyperparameters for the mean of the Gaussian distribution for state i.

σ̃i One of the hyperparameters for the mean of the Gaussian distribution for state i.

ai One of the hyperparameters for the variance of the Gaussian distribution for state

i.

ai,j The probability of making a transition from state i ot state j.

bi One of the hyperparameters for the variance of the Gaussian distribution for state i.

bi,o The probability of observing o in state i.

Chapter 3

γ The order of the observation process.

Chapter 4

T ′ The total number of blocks after compression.

Chapter 5

L1 The L1 distance between two vectors.

α The number of consecutive frequency vectors which are represented by their differ-

ences from a reference vector.

β Maximum number of alternate path searched in a kd-tree.

τ Lowest number of levels ignored in a kd-tree.

d The length of a frequency vector.

107

n Total number of reads in the dataset in consideration.

q The length of individual q-grams.

Chapter 6

L Read length.

R The read library.

α Ratio between required minimum overlap length and the read length.

β Minimum required similarity between reads in an overlap.

ε The sequencing error rate.

l Overlap length between two reads.

ri i-th read in the library.

108

Appendix B

Abbreviations

arrayCGH Array comparative genomic hybridization.

CNV Copy number variation.

DNA Deoxyribonucleic acid.

HMM Statistical model.

HTS High throughput sequencing.

MAP Maximum a posterior.

MCMC Markov Chain Monte Carlo.

ML Maximum likelihood.

RNA Ribonucleic acid.

SNP Single neucleotide polymorphism.

SNParray Single neucleotide polymorphism array.

109

References

[1] Md Pavel Mahmud and Alexander Schliep. Speeding up bayesian HMM by the
four russians method. In TeresaM. Przytycka and Marie-France Sagot, editors,
Algorithms in Bioinformatics, volume 6833 of Lecture Notes in Computer Science,
pages 188–200. Springer Berlin Heidelberg, 2011.

[2] Md Pavel Mahmud and Alexander Schliep. Fast MCMC sampling for hidden
markov models to determine copy number variations. BMC Bioinformatics,
12:428, 2011.

[3] Md Pavel Mahmud, John Wiedenhoeft, and Alexander Schliep. Indel-tolerant
read mapping with trinucleotide frequencies using cache-oblivious kd-trees. Bioin-
formatics, 28(18):i325–i332, September 2012.

[4] Md Pavel Mahmud and Alexander Schliep. TreQ-CG: Clustering accelerates high-
throughput sequencing read mapping. arXiv preprint arXiv:1404.2872, 2014.

[5] A M Maxam and W Gilbert. A new method for sequencing dna. Proceedings of
the National Academy of Sciences, 74(2):560–564, 1977.

[6] F. Sanger and A.R. Coulson. A rapid method for determining sequences in
{DNA} by primed synthesis with {DNA} polymerase. Journal of Molecular Bi-
ology, 94(3):441 – 448, 1975.

[7] F. Sanger, S. Nicklen, and A. R. Coulson. Dna sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences, 74(12):5463–5467,
1977.

[8] E S Lander, L M Linton, B Birren, C Nusbaum, M C Zody, J Baldwin, K Devon,
K Dewar, M Doyle, W FitzHugh, R Funke, D Gage, K Harris, A Heaford, J How-
land, L Kann, J Lehoczky, R LeVine, P McEwan, K McKernan, J Meldrim,
J P Mesirov, C Miranda, W Morris, J Naylor, M Rosetti, R Santos, A Sheri-
dan, C Sougnez, N Stange-Thomann, N Stojanovic, A Subramanian, D Wyman,
J Rogers, J Sulston, R Ainscough, S Beck, D Bentley, J Burton, C Clee, N Carter,
A Coulson, R Deadman, P Deloukas, A Dunham, I Dunham, R Durbin, L French,
D Grafham, S Gregory, T Hubbard, S Humphray, A Hunt, M Jones, C Lloyd,
A McMurray, L Matthews, S Mercer, S Milne, J C Mullikin, A Mungall, R Plumb,
M Ross, R Shownkeen, S Sims, R H Waterston, R K Wilson, L W Hillier, J D
McPherson, M A Marra, E R Mardis, L A Fulton, A T Chinwalla, K H Pepin, W R
Gish, S L Chissoe, M C Wendl, K D Delehaunty, T L Miner, A Delehaunty, J B
Kramer, L L Cook, R S Fulton, D L Johnson, P J Minx, S W Clifton, T Hawkins,
E Branscomb, P Predki, P Richardson, S Wenning, T Slezak, N Doggett, J F
Cheng, A Olsen, S Lucas, C Elkin, E Uberbacher, M Frazier, R A Gibbs, D M
Muzny, S E Scherer, J B Bouck, E J Sodergren, K C Worley, C M Rives, J H

110

Gorrell, M L Metzker, S L Naylor, R S Kucherlapati, D L Nelson, G M Wein-
stock, Y Sakaki, A Fujiyama, M Hattori, T Yada, A Toyoda, T Itoh, C Kawagoe,
H Watanabe, Y Totoki, T Taylor, J Weissenbach, R Heilig, W Saurin, F Ar-
tiguenave, P Brottier, T Bruls, E Pelletier, C Robert, P Wincker, D R Smith,
L Doucette-Stamm, M Rubenfield, K Weinstock, H M Lee, J Dubois, A Rosenthal,
M Platzer, G Nyakatura, S Taudien, A Rump, H Yang, J Yu, J Wang, G Huang,
J Gu, L Hood, L Rowen, A Madan, S Qin, R W Davis, N A Federspiel, A P Abola,
M J Proctor, R M Myers, J Schmutz, M Dickson, J Grimwood, D R Cox, M V
Olson, R Kaul, C Raymond, N Shimizu, K Kawasaki, S Minoshima, G A Evans,
M Athanasiou, R Schultz, B A Roe, F Chen, H Pan, J Ramser, H Lehrach, R Rein-
hardt, W R McCombie, M de la Bastide, N Dedhia, H Blöcker, K Hornischer,
G Nordsiek, R Agarwala, L Aravind, J A Bailey, A Bateman, S Batzoglou, E Bir-
ney, P Bork, D G Brown, C B Burge, L Cerutti, H C Chen, D Church, M Clamp,
R R Copley, T Doerks, S R Eddy, E E Eichler, T S Furey, J Galagan, J G Gilbert,
C Harmon, Y Hayashizaki, D Haussler, H Hermjakob, K Hokamp, W Jang, L S
Johnson, T A Jones, S Kasif, A Kaspryzk, S Kennedy, W J Kent, P Kitts, E V
Koonin, I Korf, D Kulp, D Lancet, T M Lowe, A McLysaght, T Mikkelsen, J V
Moran, N Mulder, V J Pollara, C P Ponting, G Schuler, J Schultz, G Slater, A F
Smit, E Stupka, J Szustakowski, D Thierry-Mieg, J Thierry-Mieg, L Wagner,
J Wallis, R Wheeler, A Williams, Y I Wolf, K H Wolfe, S P Yang, R F Yeh,
F Collins, M S Guyer, J Peterson, A Felsenfeld, K A Wetterstrand, A Patrinos,
M J Morgan, P de Jong, J J Catanese, K Osoegawa, H Shizuya, S Choi, Y J Chen,
J Szustakowki, and International Human Genome Sequencing Consortium. Ini-
tial sequencing and analysis of the human genome. Nature, 409(6822):860–921,
Feb 2001.

[9] Eleanor Raffan and Robert K. Semple. Next generation sequencingimplications
for clinical practice. British Medical Bulletin, 99(1):53–71, 2011.

[10] Yury Lifshits, Shay Mozes, Oren Weimann, and Michal Ziv-Ukelson. Speeding
up HMM decoding and training by exploiting sequence repetitions. Algorithmica,
54(3):379–399, 2009.

[11] Shay Mozes, Oren Weimann, and Michal Ziv-ukelson. Speeding up HMM de-
coding and training by exploiting sequence repetitions. In In Proc. 18th Annual
Symposium On Combinatorial Pattern Matching (CPM), LNCS 4580, pages 4–15.
Springer-Verlag, 2007.

[12] Adam L. Buchsbaum and Raffaele Giancarlo. Algorithmic aspects in speech
recognition: an introduction. J. Exp. Algorithmics, 2, January 1997.

[13] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT Press, Cambridge, MA, USA, 1999.

[14] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Bi-
ological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

[15] Chris Burge and Samuel Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268(1):78 – 94, 1997.

111

[16] Gary A. Churchill. Hidden Markov chains and the analysis of genome structure.
Computers and Chemistry, 16(2):107 – 115, 1992.

[17] Gary Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of
Mathematical Biology, 51:79–94, 1989. 10.1007/BF02458837.

[18] J S Liu and C E Lawrence. Bayesian inference on biopolymer models. Bioinfor-
matics, 15(1):38–52, 1999.

[19] Pierre Nicolas, Laurent Bize, Florence Muri, Mark Hoebeke, Franois Rodolphe,
S. Dusko Ehrlich, Bernard Prum, and Philippe Bessires. Mining bacillus sub-
tilis chromosome heterogeneities using Hidden Markov Models. Nucleic Acids
Research, 30(6):1418–1426, 2002.

[20] Uwe Ohler, Heinrich Niemann, Guo-chun Liao, and Gerald M. Rubin. Joint mod-
eling of DNA sequence and physical properties to improve eukaryotic promoter
recognition. Bioinformatics, 17(suppl 1):S199–S206, 2001.

[21] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective (Adaptive Com-
putation and Machine Learning series). The MIT Press, August 2012.

[22] L.R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[23] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-
tion technique occurring in the statistical analysis of probabilistic functions of
markov chains. The Annals of Mathematical Statistics, 41(1):164–171, 1970.

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[25] W.R. Gilks, W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov chain
Monte Carlo in practice. Interdisciplinary statistics. Chapman & Hall, 1996.

[26] Steven Scott. Bayesian methods for hidden markov models: Recursive computing
in the 21st century. Journal of the American Statistical Association, pages 337–
351, Mar 2002.

[27] Siddhartha Chib. Calculating posterior distributions and modal estimates in
markov mixture models. Journal of Econometrics, 75(1):79–97, November 1996.

[28] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,
and Maggie Law. Comparison of next-generation sequencing systems. J Biomed
Biotechnol, 2012:251364, 2012.

[29] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris,
Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of
three next generation sequencing platforms: comparison of ion torrent, pacific
biosciences and illumina miseq sequencers. BMC Genomics, 13:341, 2012.

[30] Richard J. Boys and Daniel A. Henderson. A Bayesian approach to DNA sequence
segmentation. Biometrics, 60(3):573–581, 2004.

112

[31] Richard J. Boys, Daniel A. Henderson, and Darren J. Wilkinson. Detecting ho-
mogeneous segments in DNA sequences by using Hidden Markov Models. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 49(2):pp. 269–285,
2000.

[32] Jerome V. Braun and Hans-Georg Muller. Statistical methods for DNA sequence
segmentation. Statistical Science, 13(2):pp. 142–162, 1998.

[33] Michael Andrec, Ronald M. Levy, and David S. Talaga. Direct determination of
kinetic rates from single-molecule photon arrival trajectories using Hidden Markov
Models. The Journal of Physical Chemistry A, 107(38):7454–7464, 2003. PMID:
19626138.

[34] Subharup Guha, Yi Li, and Donna Neuberg. Bayesian hidden markov modeling
of array cgh data. Journal of the American Statistical Association, 103:485–497,
June 2008.

[35] Toby A. Patterson, Len Thomas, Chris Wilcox, Otso Ovaskainen, and Jason
Matthiopoulos. State-space models of individual animal movement. Trends in
Ecology and Evolution, 23(2):87 – 94, 2008.

[36] Benjamin D. Redelings and Marc A. Suchard. Joint Bayesian estimation of align-
ment and phylogeny. Systematic Biology, 54(3):401–418, 2005.

[37] Steven L. Scott. A Bayesian paradigm for designing intrusion detection systems.
Computational Statistics and Data Analysis, 45(1):69 – 83, 2004. Computer Se-
curity and Statistics.

[38] Christopher A. Sims and Tao Zha. Were there regime switches in U.S. monetary
policy? The American Economic Review, 96(1):pp. 54–81, 2006.

[39] Yelena Frid and Dan Gusfield. A simple, practical and complete O(n3̂/log n)-
time algorithm for RNA folding using the Four-Russians speedup. In Proceedings
of the 9th international conference on Algorithms in bioinformatics, WABI’09,
pages 97–107, Berlin, Heidelberg, 2009. Springer-Verlag.

[40] William J. Masek and Michael S. Paterson. A faster algorithm computing string
edit distances. Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[41] Eugene Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1:251–266, 1986. 10.1007/BF01840446.

[42] Gene Myers. A Four Russians algorithm for regular expression pattern matching.
J. ACM, 39:432–448, April 1992.

[43] Anders Krogh. Two methods for improving performance of a HMM and their
application for gene finding. In Proceedings of the 5th International Conference
on Intelligent Systems for Molecular Biology, pages 179–186. AAAI Press, 1997.

[44] Jonathan Sebat, B Lakshmi, Jennifer Troge, Joan Alexander, Janet Young, Pär
Lundin, Susanne Månér, Hillary Massa, Megan Walker, Maoyen Chi, Nicholas
Navin, Robert Lucito, John Healy, James Hicks, Kenny Ye, Andrew Reiner,

113

T Conrad Gilliam, Barbara Trask, Nick Patterson, Anders Zetterberg, and
Michael Wigler. Large-scale copy number polymorphism in the human genome.
Science, 305(5683):525–8, Jul 2004.

[45] A. John Iafrate, Lars Feuk, Miguel N Rivera, Marc L Listewnik, Patricia K
Donahoe, Ying Qi, Stephen W Scherer, and Charles Lee. Detection of large-scale
variation in the human genome. Nat Genet, 36(9):949–951, Sep 2004.

[46] Pawe Stankiewicz and James R Lupski. Structural variation in the human genome
and its role in disease. Annu Rev Med, 61:437–455, 2010.

[47] Edwin H Cook and Stephen W Scherer. Copy-number variations associated with
neuropsychiatric conditions. Nature, 455(7215):919–923, Oct 2008.

[48] Dalila Pinto, Alistair T Pagnamenta, Lambertus Klei, Richard Anney, Daniele
Merico, Regina Regan, Judith Conroy, Tiago R Magalhaes, Catarina Correia,
Brett S Abrahams, Joana Almeida, Elena Bacchelli, Gary D Bader, Anthony J
Bailey, Gillian Baird, Agatino Battaglia, Tom Berney, Nadia Bolshakova, Sven
Blte, Patrick F Bolton, Thomas Bourgeron, Sean Brennan, Jessica Brian, Su-
san E Bryson, Andrew R Carson, Guillermo Casallo, Jillian Casey, Brian H Y
Chung, Lynne Cochrane, Christina Corsello, Emily L Crawford, Andrew Cros-
sett, Cheryl Cytrynbaum, Geraldine Dawson, Maretha de Jonge, Richard De-
lorme, Irene Drmic, Eftichia Duketis, Frederico Duque, Annette Estes, Penny
Farrar, Bridget A Fernandez, Susan E Folstein, Eric Fombonne, Christine M Fre-
itag, John Gilbert, Christopher Gillberg, Joseph T Glessner, Jeremy Goldberg,
Andrew Green, Jonathan Green, Stephen J Guter, Hakon Hakonarson, Eliza-
beth A Heron, Matthew Hill, Richard Holt, Jennifer L Howe, Gillian Hughes,
Vanessa Hus, Roberta Igliozzi, Cecilia Kim, Sabine M Klauck, Alexander Kolev-
zon, Olena Korvatska, Vlad Kustanovich, Clara M Lajonchere, Janine A Lamb,
Magdalena Laskawiec, Marion Leboyer, Ann Le Couteur, Bennett L Leventhal,
Anath C Lionel, Xiao-Qing Liu, Catherine Lord, Linda Lotspeich, Sabata C Lund,
Elena Maestrini, William Mahoney, Carine Mantoulan, Christian R Marshall,
Helen McConachie, Christopher J McDougle, Jane McGrath, William M McMa-
hon, Alison Merikangas, Ohsuke Migita, Nancy J Minshew, Ghazala K Mirza,
Jeff Munson, Stanley F Nelson, Carolyn Noakes, Abdul Noor, Gudrun Nygren,
Guiomar Oliveira, Katerina Papanikolaou, Jeremy R Parr, Barbara Parrini, Tara
Paton, Andrew Pickles, Marion Pilorge, Joseph Piven, Chris P Ponting, David J
Posey, Annemarie Poustka, Fritz Poustka, Aparna Prasad, Jiannis Ragoussis,
Katy Renshaw, Jessica Rickaby, Wendy Roberts, Kathryn Roeder, Bernadette
Roge, Michael L Rutter, Laura J Bierut, John P Rice, Jeff Salt, Katherine San-
som, Daisuke Sato, Ricardo Segurado, Ana F Sequeira, Lili Senman, Naisha
Shah, Val C Sheffield, Latha Soorya, Ins Sousa, Olaf Stein, Nuala Sykes, Vera
Stoppioni, Christina Strawbridge, Raffaella Tancredi, Katherine Tansey, Bhooma
Thiruvahindrapduram, Ann P Thompson, Susanne Thomson, Ana Tryfon, John
Tsiantis, Herman Van Engeland, John B Vincent, Fred Volkmar, Simon Wallace,
Kai Wang, Zhouzhi Wang, Thomas H Wassink, Caleb Webber, Rosanna Weks-
berg, Kirsty Wing, Kerstin Wittemeyer, Shawn Wood, Jing Wu, Brian L Yaspan,
Danielle Zurawiecki, Lonnie Zwaigenbaum, Joseph D Buxbaum, Rita M Can-
tor, Edwin H Cook, Hilary Coon, Michael L Cuccaro, Bernie Devlin, Sean Ennis,

114

Louise Gallagher, Daniel H Geschwind, Michael Gill, Jonathan L Haines, Joachim
Hallmayer, Judith Miller, Anthony P Monaco, John I Nurnberger, Andrew D
Paterson, Margaret A Pericak-Vance, Gerard D Schellenberg, Peter Szatmari,
Astrid M Vicente, Veronica J Vieland, Ellen M Wijsman, Stephen W Scherer,
James S Sutcliffe, and Catalina Betancur. Functional impact of global rare copy
number variation in autism spectrum disorders. Nature, 466(7304):368–372, Jul
2010.

[49] David St Clair. Copy number variation and schizophrenia. Schizophr Bull,
35(1):9–12, Jan 2009.

[50] Sohrab P Shah, Xiang Xuan, Ron J DeLeeuw, Mehrnoush Khojasteh, Wan L Lam,
Raymond Ng, and Kevin P Murphy. Integrating copy number polymorphisms
into array cgh analysis using a robust hmm. Bioinformatics, 22(14):e431–e439,
Jul 2006.

[51] Subharup Guha, Yi Li, and Donna Neuberg. Bayesian hidden markov modeling
of array cgh data. Journal of the American Statistical Association, 103(482):485–
497, Dec 2008.

[52] Robin Andersson, Carl E. G. Bruder, Arkadiusz Piotrowski, Uwe Menzel, Helena
Nord, Johanna Sandgren, Torgeir R. Hvidsten, Teresita Diaz de Sthl, Jan P.
Dumanski, and Jan Komorowski. A segmental maximum a posteriori approach
to genome-wide copy number profiling. Bioinformatics, 24(6):751–758, 2008.

[53] J Fridlyand, AM Snijders, D Pinkel, DG Albertson, and AN Jain. Hidden markov
models approach to the analysis of array cgh data. J Multivariate Anal, 90(1):132–
153, Dec 2004.

[54] Kai Wang, Mingyao Li, Dexter Hadley, Rui Liu, Joseph Glessner, Struan F A
Grant, Hakon Hakonarson, and Maja Bucan. Penncnv: an integrated hidden
markov model designed for high-resolution copy number variation detection in
whole-genome snp genotyping data. Genome Research, 17(11):1665–74, Nov 2007.

[55] Adam B Olshen, E S Venkatraman, Robert Lucito, and Michael Wigler. Circular
binary segmentation for the analysis of array-based DNA copy number data.
Biostatistics (Oxford, England), 5(4):557–72, Sep 2004.

[56] F Picard, S Robin, E Lebarbier, and J-J Daudin. A segmentation/clustering
model for the analysis of array cgh data. Biometrics, 63(3):758–66, Aug 2007.

[57] Paul H C Eilers and Renée X de Menezes. Quantile smoothing of array CGH
data. Bioinformatics, 21(7):1146–53, Mar 2005.

[58] Robert Tibshirani and Pei Wang. Spatial smoothing and hot spot detection for
cgh data using the fused lasso. Biostatistics, 9(1):18–29, 2008.

[59] Pei Wang, Young Kim, Jonathan Pollack, Balasubramanian Narasimhan, and
Robert Tibshirani. A method for calling gains and losses in array cgh data.
Biostatistics (Oxford, England), 6(1):45–58, Dec 2005.

115

[60] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with
geometric reasoning. In KDD ’99: Proceedings of the fifth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 277–281,
New York, NY, USA, 1999. ACM.

[61] J. Fritsch and I. Rogina. The bucket box intersection (bbi) algorithm for fast
approximative evaluation of diagonal mixture gaussians. In In Proc. ICASSP,
pages 837–840, 1996.

[62] S. Srivastava. Fast gaussian evaluations in large vocabulary continuous speech
recognition. M.S. Thesis, Department of Electrical and Computer Engineering,
Mississippi State University, Oct. 2002.

[63] Stan Salvador and Philip Chan. Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms. In Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI ’04, pages
576–584, Washington, DC, USA, 2004. IEEE Computer Society.

[64] Hanni Willenbrock and Jane Fridlyand. A comparison study: applying segmen-
tation to array cgh data for downstream analyses. Bioinformatics, 21(22):4084–
4091, Nov 2005.

[65] Ronald J. De Leeuw, Jonathan J. Davies, Andreas Rosenwald, Gwyn Bebb, Y D.
Gascoyne, Martin J. S. Dyer, Louis M. Staudt, Jose A. Martinez-climent, and
Wan L. Lam. Comprehensive whole genome array cgh profiling of mantle cell
lymphoma model genomes. Hum. Mol. Genet, 13:1827–1837, 2004.

[66] Antoine M. Snijders, Norma Nowak, Richard Segraves, Stephanie Blackwood,
Nils Brown, Jeffrey Conroy, Greg Hamilton, Anna Katherine Hindle, Bing
Huey, Karen Kimura, Sindy Law, Ken Myambo, Joel Palmer, Bauke Ylstra,
Jingzhu Pearl Yue, Joe W. Gray, Ajay N. Jain, Daniel Pinkel, and Donna G.
Albertson. Assembly of microarrays for genome-wide measurement of dna copy
number. Nat Genet, 29(3):263–264, Nov 2001.

[67] Markus Bredel, Claudia Bredel, Dejan Juric, Griffith R. Harsh, Hannes Vogel,
Lawrence D. Recht, and Branimir I. Sikic. High-resolution genome-wide mapping
of genetic alterations in human glial brain tumors. Cancer Research, 65(10):4088–
4096, 2005.

[68] T. Harada, C. Chelala, V. Bhakta, T. Chaplin, K. Caulee, P. Baril, B. D.
Young, and N. R. Lemoine. Genome-wide dna copy number analysis in pancre-
atic cancer using high-density single nucleotide polymorphism arrays. Oncogene,
27(13):1951–1960, Oct 2007.

[69] Weil R Lai, Mark D Johnson, Raju Kucherlapati, and Peter J Park. Comparative
analysis of algorithms for identifying amplifications and deletions in array cgh
data. Bioinformatics, 21(19):3763–70, Sep 2005.

[70] Yasuhito Nannya, Masashi Sanada, Kumi Nakazaki, Noriko Hosoya, Lili Wang,
Akira Hangaishi, Mineo Kurokawa, Shigeru Chiba, Dione K Bailey, Giulia C
Kennedy, and Seishi Ogawa. A robust algorithm for copy number detection using

116

high-density oligonucleotide single nucleotide polymorphism genotyping arrays.
Cancer Res, 65(14):6071–6079, Jul 2005.

[71] Quinn McNemar. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika, 12:153–157, 1947.
10.1007/BF02295996.

[72] Sandro Morganella, Luigi Cerulo, Giuseppe Viglietto, and Michele Ceccarelli.
VEGA: variational segmentation for copy number detection. Bioinformatics,
26(24):3020–3027, 2010.

[73] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, 2001.

[74] Leonid Boytsov. Indexing methods for approximate dictionary searching: Com-
parative analysis. J. Exp. Algorithmics, 16:1.1:1.1–1.1:1.91, May 2011.

[75] Leonid Boytsov. Indexing methods for approximate dictionary searching. Journal
of Experimental Algorithmics, 16(1):1, May 2011.

[76] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinformatics, 11(5):473–83, September
2010.

[77] M. Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical report, 1994.

[78] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-
plications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[79] Nawar Malhis and Steven J M Jones. High quality SNP calling using Illumina
data at shallow coverage. Bioinformatics (Oxford, England), 26(8):1029–35, April
2010.

[80] E. Bugnion, T. Roos, F. Shi, P. Widmayer, and F. Widmer. A spatial index for
approximate multiple string matching. Journal of the Brazilian Chemical Society,
1(3):28–35, 1995.

[81] Esko Ukkonen. Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci., 92(1):191–211, 1992.

[82] Gene Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. J. ACM, 46(3):395–415, 1999.

[83] Gonzalo Navarro, Erkki Sutinen, and Jorma Tarhio. Indexing text with approxi-
mate q-grams. J. Discrete Algorithms, 3(2-4):157–175, 2005.

[84] H Li, J Ruan, and R Durbin. Mapping short DNA sequencing reads and call-
ing variants using mapping quality scores. Genome Research, 18(11):1851–1858,
November 2008.

117

[85] David Weese, Anne-Katrin Emde, Tobias Rausch, Andreas Dring, and Knut
Reinert. Razers fast read mapping with sensitivity control. Genome Research,
19(9):1646–1654, 2009.

[86] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow,
and Michael Brudno. Shrimp: accurate mapping of short color-space reads. PLoS
Computational Biology, 5(5):e1000386, May 2009.

[87] Heng Li and Richard Durbin. Fast and accurate short read alignment with bur-
rowswheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[88] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast
and memory-efficient alignment of short dna sequences to the human genome.
Genome Biology, 10(3):R25, Jan 2009.

[89] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short
oligonucleotide alignment program. Bioinformatics, 24(5):713–4, Feb 2008.

[90] Erkki Sutinen and Wojciech Szpankowski. On the Collapse of q-Gram Filtration.
In FUN with Algorithms, pages 178–193, 1998.

[91] Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive
homology search. Bioinformatics, 18(3):440–445, Mar 2002.

[92] Stefan Burkhardt and Juha Kärkkäinen. Better filtering with gapped q-grams.
Fundam. Inf., 56(1,2):51–70, 2002.

[93] Ken Chen, John W Wallis, Michael D McLellan, David E Larson, Joelle M Kalicki,
Craig S Pohl, Sean D McGrath, Michael C Wendl, Qunyuan Zhang, Devin P
Locke, and et al. Breakdancer: an algorithm for high-resolution mapping of
genomic structural variation. Nature Methods, 6(9):677–681, 2009.

[94] Fereydoun Hormozdiari, Can Alkan, Evan E. Eichler, and S. Cenk Sahinalp.
Combinatorial algorithms for structural variation detection in high-throughput
sequenced genomes. Genome Research, 19(7):1270–1278, 2009.

[95] Fereydoun Hormozdiari, Iman Hajirasouliha, Phuong Dao, Faraz Hach, Deniz
Yorukoglu, Can Alkan, Evan E Eichler, and S Cenk Sahinalp. Next-generation
variationhunter: combinatorial algorithms for transposon insertion discovery.
Bioinformatics, 26(12):i350–i357, 2010.

[96] Jan O Korbel, Alexej Abyzov, Xinmeng Jasmine Mu, Nicholas Carriero, Philip
Cayting, Zhengdong Zhang, Michael Snyder, and Mark B Gerstein. Pemer: a
computational framework with simulation-based error models for inferring ge-
nomic structural variants from massive paired-end sequencing data. Genome
Biology, 10(2):R23, 2009.

[97] Seunghak Lee, Fereydoun Hormozdiari, Can Alkan, and Michael Brudno. Modil:
detecting small indels from clone-end sequencing with mixtures of distributions.
Nature Methods, 6(7):473–474, 2009.

[98] Can Alkan, Bradley P. Coe, and Evan E. Eichler. Genome structural variation
discovery and genotyping. Nat Rev Genet, 12(5):363–376, May 2011.

118

[99] Gerton Lunter and Martin Goodson. Stampy: A statistical algorithm for sensitive
and fast mapping of illumina sequence reads. Genome Research, 21(6):936–939,
2011.

[100] Marshall Bern. Approximate closest-point queries in high dimensions. Inf. Pro-
cess. Lett., 45:95–99, February 1993.

[101] Norio Katayama and Shin’ichi Satoh. Sr-tree: An index structure for nearest-
neighbor searching of high-dimensional point data. Systems and Computers in
Japan, 29(6):59–73, 1998.

[102] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree : An
index structure for high-dimensional data. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, pages 28–39. Morgan Kaufmann, 1996.

[103] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A
dynamic index for multi-dimensional objects. In Proceedings of the 13th Inter-
national Conference on Very Large Data Bases, VLDB ’87, pages 507–518, San
Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

[104] Ozgur Ozturk and Hakan Ferhatosmanoglu. Effective indexing and filtering for
similarity search in large biosequence databases. In BIBE, pages 359–366. IEEE
Computer Society, 2003.

[105] Ozgur Ozturk and Hakan Ferhatosmanoglu. Vector space indexing for biose-
quence similarity searches. International Journal on Artificial Intelligence Tools,
14(5):811–826, 2005.

[106] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of multi-
media databases. ACM Comput. Surv., 33(3):322–373, 2001.

[107] Michael E. Houle and Jun Sakuma. Fast approximate similarity search in ex-
tremely high-dimensional data sets. In ICDE, pages 619–630. IEEE Computer
Society, 2005.

[108] Bin Yao, Feifei Li, Marios Hadjieleftheriou, and Kun Hou. Approximate string
search in spatial databases. In Feifei Li, Mirella M. Moro, Shahram Ghande-
harizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J. Carey, Fabio Casati,
Edward Y. Chang, Ioana Manolescu, Sharad Mehrotra, Umeshwar Dayal, and
Vassilis J. Tsotras, editors, ICDE, pages 545–556. IEEE, 2010.

[109] Benjamin Bustos and Gonzalo Navarro. Improving the space cost of k -nn search
in metric spaces by using distance estimators. Multimedia Tools Appl., 41(2):215–
233, 2009.

[110] Gonzalo Navarro and Edgar Chávez. A metric index for approximate string
matching. Theor. Comput. Sci., 352(1-3):266–279, 2006.

[111] David M. Mount and Sunil Arya. Ann: A library for approximate nearest neigh-
bor searching, 2010. http://www.ncbi.nlm.nih.gov/pubmed/19668202.

119

[112] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In International Conference on Computer Vision
Theory and Application VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[113] Dan Gusfield. Algorithms on strings, trees, and sequences. Cambridge University
Press, Cambridge, 1997. Computer science and computational biology.

[114] Ashraf Kibriya and Eibe Frank. An empirical comparison of exact nearest neigh-
bour algorithms. In Joost Kok, Jacek Koronacki, Ramon Lopez de Mantaras,
Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors, Knowledge Dis-
covery in Databases: PKDD 2007, volume 4702 of Lecture Notes in Computer
Science, pages 140–151. Springer Berlin / Heidelberg, 2007.

[115] Pankaj K. Agarwal, Lars Arge, Andrew Danner, and Bryan Holland-Minkley.
Cache-oblivious data structures for orthogonal range searching. In Proceedings
of the nineteenth annual symposium on Computational geometry, SCG ’03, pages
237–245, New York, NY, USA, 2003. ACM.

[116] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, pages 285–, Washington, DC, USA,
1999. IEEE Computer Society.

[117] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Proceedings of the 16th Annual Symposium on Foundations of Computer Science,
pages 75–84, Washington, DC, USA, 1975. IEEE Computer Society.

[118] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of
an efficient priority queue. Theory of Computing Systems, 10:99–127, 1976.
10.1007/BF01683268.

[119] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast
and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009.

[120] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kris-
tiansen, and Jun Wang. Soap2: an improved ultrafast tool for short read align-
ment. Bioinformatics, 25(15):1966–1967, 2009.

[121] Can Alkan, Jeffrey M. Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca An-
tonacci, Fereydoun Hormozdiari, Jacob O. Kitzman, Carl Baker, Maika Malig,
Onur Mutlu, S. Cenk Sahinalp, Richard A. Gibbs, and Evan E. Eichler. Per-
sonalized copy number and segmental duplication maps using next-generation
sequencing. Nat Genet, 41(10):1061–1067, October 2009.

[122] Zemin Ning, Anthony J. Cox, and James C. Mullikin. Ssaha: A fast search
method for large dna databases. Genome Research, 11(10):1725–1729, 2001.

[123] Martin C. Frith, Raymond Wan, and Paul Horton. Incorporating sequence qual-
ity data into alignment improves dna read mapping. Nucleic Acids Research,
38(7):e100, 2010.

120

[124] Michiaki Hamada, Edward Wijaya, Martin C. Frith, and Kiyoshi Asai. Prob-
abilistic alignments with quality scores: an application to short-read mapping
toward accurate snp/indel detection. Bioinformatics, 27(22):3085–3092, 2011.

[125] Brent Ewing and Phil Green. Base-Calling of Automated Sequencer Traces Using
Phred. II. Error Probabilities. Genome Res., 8(3):186–194, 1998.

[126] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc
Birol, Evan E. Eichler, and S Cenk Sahinalp. mrsfast: a cache-oblivious algo-
rithm for short-read mapping. Nat Methods, 7(8):576–577, Aug 2010.

[127] The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, October 2010.

[128] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow,
and Michael Brudno. SHRiMP: accurate mapping of short color-space reads.
PLoS Computational Biology, 5(5):e1000386, May 2009.

[129] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M Sharma, Philipp
Khaitovich, Jörg Vogel, Peter F Stadler, and Jörg Hackermüller. Fast mapping of
short sequences with mismatches, insertions and deletions using index structures.
PLoS Computational Biology, 5(9):e1000502, September 2009.

[130] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc
Birol, Evan E Eichler, and S Cenk Sahinalp. mrsFAST: a cache-oblivious al-
gorithm for short-read mapping. Nature Methods, 7(8):576–577, August 2010.

[131] Gerton Lunter and Martin Goodson. Stampy: a statistical algorithm for sensitive
and fast mapping of Illumina sequence reads. Genome Res, 21(6):936–939, Jun
2011.

[132] Michiaki Hamada, Edward Wijaya, Martin C Frith, and Kiyoshi Asai. Prob-
abilistic alignments with quality scores: an application to short-read mapping
toward accurate SNP/indel detection. Bioinformatics, 27(22):3085–3092, Novem-
ber 2011.

[133] David Weese, Manuel Holtgrewe, and Knut Reinert. RazerS 3: faster, fully sen-
sitive read mapping. Bioinformatics, 28(20):2592–2599, October 2012.

[134] Athena Ahmadi, Alexander Behm, Nagesh Honnalli, Chen Li, Lingjie Weng, and
Xiaohui Xie. Hobbes: optimized gram-based methods for efficient read alignment.
Nucleic Acids Research, 40(6):e41, 2012.

[135] Ergude Bao, Tao Jiang, Isgouhi Kaloshian, and Thomas Girke. SEED: effi-
cient clustering of next-generation sequences. Bioinformatics, 27(18):2502–2509,
September 2011.

[136] Kana Shimizu and Koji Tsuda. SlideSort: all pairs similarity search for short
reads. Bioinformatics, 27(4):464–470, February 2011.

[137] Robert C. Edgar. Search and clustering orders of magnitude faster than blast.
Bioinformatics, 26(19):2460–2461, 2010.

121

[138] W Timothy White and Michael Hendy. Compressing dna sequence databases
with coil. BMC Bioinformatics, 9(1):242, 2008.

[139] Vladimir Yanovsky. Recoil - an algorithm for compression of extremely large
datasets of dna data. Algorithms for Molecular Biology, 6(1):23, 2011.

[140] Faraz Hach, Ibrahim Numanagic, Can Alkan, and S Cenk Sahinalp. SCALCE:
boosting sequence compression algorithms using locally consistent encoding.
Bioinformatics, 28(23):3051–3057, December 2012.

[141] Leena Salmela and Jan Schröder. Correcting errors in short reads by multiple
alignments. Bioinformatics, 27(11):1455–1461, June 2011.

[142] Wei-Chun Kao, Andrew H. Chan, and Yun S. Song. ECHO: A reference-free
short-read error correction algorithm. Genome Research, 21(7):1181–1192, July
2011.

[143] Zechen Chong, Jue Ruan, and Chung-I. Wu. Rainbow: an integrated tool for
efficient clustering and assembling rad-seq reads. Bioinformatics, 28(21):2732–
2737, 2012.

[144] Wei Qu, Shin-ichi Hashimoto, and Shinichi Morishita. Efficient frequency-based
de novo short-read clustering for error trimming in next-generation sequencing.
Genome Research, 19(7):1309–1315, 2009.

[145] Brendan Veeneman, Matthew Iyer, and Arul Chinnaiyan. Oculus: faster sequence
alignment by streaming read compression. BMC Bioinformatics, 13(1):297, 2012.

[146] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie
2. Nat Methods, 9(4):357–359, Apr 2012.

[147] T.F. Smith and M.S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[148] Mengyao Zhao, Wan-Ping Lee, Erik Garrison, and Gabor T. Marth. SSW Li-
brary: An SIMD Smith-Waterman C/C++ Library for Use in Genomic Applica-
tions. CoRR, abs/1208.6350v2, 2013.

[149] Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. Art: a next-
generation sequencing read simulator. Bioinformatics, 28(4):593–594, 2012.

[150] Charles H. Langley, Marc Crepeau, Charis Cardeno, Russell Corbett-Detig,
and Kristian Stevens. Circumventing heterozygosity: Sequencing the ampli-
fied genome of a single haploid drosophila melanogaster embryo. Genetics,
188(2):239–246, 2011.

[151] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schnhuth, D. Schomburg, and
R. Schrader. Proclust: improved clustering of protein sequences with an extended
graph-based approach. Bioinformatics, 18(suppl 2):S182–S191, 2002.

[152] Yaniv Loewenstein, Elon Portugaly, Menachem Fromer, and Michal Linial. Ef-
ficient algorithms for accurate hierarchical clustering of huge datasets: tackling
the entire protein space. Bioinformatics, 24(13):i41–i49, 2008.

122

[153] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–
1659, 2006.

[154] Beifang Niu, Limin Fu, Shulei Sun, and Weizhong Li. Artificial and natural
duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics,
11(1):187, 2010.

[155] Jack A. Gilbert, Dawn Field, Ying Huang, Rob Edwards, Weizhong Li, Paul
Gilna, and Ian Joint. Detection of large numbers of novel sequences in the
metatranscriptomes of complex marine microbial communities. PLoS ONE,
3(8):e3042, 08 2008.

[156] Shibu Yooseph, Granger Sutton, Douglas B Rusch, Aaron L Halpern, Shannon J
Williamson, Karin Remington, Jonathan A Eisen, Karla B Heidelberg, Gerard
Manning, Weizhong Li, Lukasz Jaroszewski, Piotr Cieplak, Christopher S Miller,
Huiying Li, Susan T Mashiyama, Marcin P Joachimiak, Christopher van Belle,
John-Marc Chandonia, David A Soergel, Yufeng Zhai, Kannan Natarajan, Shaun
Lee, Benjamin J Raphael, Vineet Bafna, Robert Friedman, Steven E Brenner,
Adam Godzik, David Eisenberg, Jack E Dixon, Susan S Taylor, Robert L Straus-
berg, Marvin Frazier, and J. Craig Venter. The ¡italic¿sorcerer ii¡/italic¿ global
ocean sampling expedition: Expanding the universe of protein families. PLoS
Biol, 5(3):e16, 03 2007.

[157] Weizhong Li, John C. Wooley, and Adam Godzik. Probing metagenomics by
rapid cluster analysis of very large datasets. PLoS ONE, 3(10):e3375, 10 2008.

[158] Geo Pertea, Xiaoqiu Huang, Feng Liang, Valentin Antonescu, Razvan Sultana,
Svetlana Karamycheva, Yuandan Lee, Joseph White, Foo Cheung, Babak Parvizi,
Jennifer Tsai, and John Quackenbush. Tigr gene indices clustering tools (tg-
icl): a software system for fast clustering of large est datasets. Bioinformatics,
19(5):651–652, 2003.

[159] John Burke, Dan Davison, and Winston Hide. d2 cluster: A validated method for
clustering est and full-length cdna sequences. Genome Research, 9(11):1135–1142,
1999.

[160] Andrey Ptitsyn and Winston Hide. Clu: A new algorithm for est clustering.
BMC Bioinformatics, 6(Suppl 2):S3, 2005.

[161] Scott Hazelhurst and Zsuzsanna Liptk. Kaboom! a new suffix array based algo-
rithm for clustering expression data. Bioinformatics, 27(24):3348–3355, 2011.

[162] Alexander Solovyov and W Lipkin. Centroid based clustering of high throughput
sequencing reads based on n-mer counts. BMC Bioinformatics, 14(1):268, 2013.

[163] Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. Cd-hit:
accelerated for clustering the next-generation sequencing data. Bioinformatics,
28(23):3150–3152, 2012.

[164] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. Dnaclust: accurate and efficient
clustering of phylogenetic marker genes. BMC Bioinformatics, 12(1):271, 2011.

123

[165] Weizhong Li, Limin Fu, Beifang Niu, Sitao Wu, and John Wooley. Ultrafast clus-
tering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics,
13(6):656–668, November 2012.

[166] Sohrab P Shah, Wan L Lam, Raymond T Ng, and Kevin P Murphy. Model-
ing recurrent dna copy number alterations in array cgh data. Bioinformatics,
23(13):i450–i458, Jul 2007.

[167] Löıc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: a
comparison of hash function types and querying mechanisms. Pattern Recognition
Letters, 31(11):1348–1358, August 2010. QUAERO.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	DNA
	Microarray Experiments
	High Throughput Sequencing (HTS) Experiments
	Thesis Overview

	Hidden Markov Models and HTS Reads
	Hidden Markov Model
	Inference in HMM
	Bayesian HMM

	HTS Reads
	Read Characteristics
	Genomic Characteristics

	Exploiting Repetition in Discrete Sequences
	Related Work
	Time Dependent HMMs
	Fast Sampling Using Four Russian's Method
	Compression and Forward Variables
	Backward-forward State Sequence
	Fast Sampling Algorithm

	Experiments

	Compressed Gaussian Observations
	Related Work
	Bayesian HMM for CNV
	Approximate MCMC Sampling
	Top-down Hierarchical Clustering
	Fast Approximate Sampling Algorithm

	Approximation Error in Symmetric HMMs
	Experiments
	Synthetic Data
	Biological Data
	Discussion

	Geometric Embeddings for HTS Reads
	Related Work
	The q-gram Lemma revisited
	Read mapping with cache-oblivious kd-trees
	Experiments
	Simulated Data
	Biological Data
	Discussion

	Reduced Representation through Clustering
	Related Work
	Clustering
	Clustering billions of reads for mapping
	Running time and memory usage
	Additional points

	Read Mapping
	Experiments
	Clustering performance
	Read mapping performance

	Discussion
	Appendices
	Notations
	Abbreviations
	References

