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Abstract— Advanced driver assistance systems (ADAS) are
standard features in many vehicles today and they have been
proven to significantly increase the traffic safety. This paved
way for development of autonomous driving (AD). To enable
this, the vehicles are equipped with many sensors such as
cameras and radars in order to scan the surrounding envi-
ronment. The sensor outputs are used to implement decision
and control modules. Verification of AD is a challenging task
and requires collecting data from at least hundreds of millions
of autonomously driven miles. We are therefore interested
in virtual verification methods that simulate interesting and
relevant situations, so that many scenarios can be tested in
parallel. Realistic simulations require accurate sensor models,
and in this paper we propose a probabilistic model based on the
hidden Markov model (HMM) for modelling the sequential data
produced by the sensors used in ADAS and AD. Moreover, we
propose an efficient way to estimate parameters that scales well
to big data sets. The results show that extending the HMM to
use autoregression and input dependent transition probabilities
is important in order to model the sensor characteristics and
substantially improves the performance.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) and au-
tonomous driving (AD) include a lot of different assistive
technologies that increase car and road safety. Features such
as emergency braking, lane keeping assist, collision warning,
and blind spot detection are already being offered by many
car manufactures and have been proven beneficial for safety
of people inside and outside of the cars. A significant
increase in safety and reduction of road injuries is foreseen
when autonomous cars are brought into real traffic. Different
types of sensors such as cameras, radars and lidars are
used to monitor the 360 degree environment surrounding
the self-driving vehicle. These sensors are used for example
to detect surrounding moving objects (cars, pedestrians,
cyclists), localise them and estimate their speed and heading
together with stationary objects (lane markings, traffic signs,
barriers), which are then used to plan safe driving to reach
the destination.

Effective and efficient verification and performance anal-
ysis is crucial for successful realisation of ADAS and AD
technologies. The verification of ADAS systems is usually
done by collecting a lot of data from test tracks or real
traffic and expeditions. The collected data is then analysed
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to compute statistics showing that the performance of the
chosen functions fulfils the requirements. The estimated
number of miles that are needed to be driven in order
to ensure the safety of autonomous vehicles range from
hundreds of millions of miles to hundreds of billions of
miles, taking extremely long time to finish even when
using large fleets of autonomous vehicles [1]. Therefore,
the verification is usually based on a combination of virtual
testing and testing in real traffic. Interesting scenarios with
a lot of diverse realisations are simulated in parallel with
virtual verification methods, resulting in significant amount
of virtual-driven miles in short time. This is then combined
with testing in real traffic in order to validate the safety of
the end product. Realistic sensor models are very important
for getting representative and useful simulations.

One class of sensor models is a statistical model that uses
the ideal sensor data as input and adds noise and error to
yield realistic sensor data. This could be done on raw sensor
data level such as radar detections and camera images, or on a
higher level such as object lists. While the first one is useful
for perception, sensor fusion or whole system verification,
the latter is more useful in sensor fusion and verification of
functions.

Recently there have been some work on sensor modelling
for the purpose of virtual testing [2], [3], [4], [5] which is
mostly based on parametric methods. In [2] a non-parametric
data-driven statistical model was developed from which one
could draw samples in order to generate sensor position
output. In [4] a radar model is proposed where first noise
is added to the raw signals, and then filtering is performed
to model sensor output. Further, [5] propose a variational
autoencoder (VAE) approach in order to model the radar
sensor output given some input vector, using object lists and
spatial rasters. While these models are interesting, the time
domain is often left out when modelling the sensor output.
Further, a lot of domain knowledge is typically used for
modelling the sensors, which makes the models very sensor
dependent.

In this paper, we focus on sensor modelling on object level
and propose sensor independent time series models based on
a hidden Markov model (HMM) to effectively model sensor
errors. We specifically consider our observations that sensor
errors change slowly over time and that the errors are usually
correlated with parameters describing the environment or
ego-vehicle motion. To achieve a model that delivers these
properties, we propose using an autoregressive input-output
HMM (AIOHMM) to learn the sensor output Yt at time
t by conditioning on an input vector Xt and the previous
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output Yt−1. Large amounts of collected data from real
traffic on country roads and highways in Europe is used and
we perform simulations to show that the proposed methods
can satisfactorily capture the sensor behaviours. Our main
contributions in this paper are modelling temporal sensor
characteristics with the AIOHMM. We can generate time
series data describing the errors in the production sensors by
sampling from the model. This synthetic data can be used
in a virtual environment in order to describe realistic sensor
outputs instead of using ideal sensors. Further, we enable 30
times faster training of the AIOHMM while still maintaining
just as good results by using the Adam optimiser instead of
line search.

II. PROBLEM OVERVIEW AND DATA SET

Production sensors used in real driving may have errors
expressed as noise and inaccuracies. Our main goal is to
implement a generative model for these sensor characteristics
in order to have an as realistic model as possible which
can be used in virtual testing before the end product is
released. In particular it is of interest to model the error
of various sensor outputs over time of tracked objects from
a host car, such as lateral and longitudinal position, velocity,
acceleration and heading. The generated data can then be
used in Computer Aided Engineering (CAE) tools to perform
many parallel virtual tests. We use data collected in real
traffics to train a generative model in order to learn the
probability distribution of the sensor errors.

We consider an off-the-shelf sensor setup from Volvo Cars
which is based on fusion of radar and camera sensors. The
vehicle is also equipped with a Velodyne lidar HDL-64E that
is used as the ground truth. The lidar detections are processed
to detect objects and estimate their properties, and thus the
goal is to model the difference between the production sensor
and the ground truth readings for every detected object over
time. For a given variable y that we want to model, the error
over time t is defined as

yerror(t) = ysensor(t)− ygroundtruth(t). (1)

Before the actual time series from the production sensor
and the ground truth can be compared in order to calculate
the error, we need to perform an association between all
detected objects from both sensors. For this purpose, we have
used an offline matching algorithm [6], where the detected
objects are described by a dynamic state vector representing
their position, speed, and the width and the length of the
object. The output from the matching is a table consisting of
object detections. In the table we find various different sensor
outputs represented as time series, both from the ground truth
and the production sensors. In total there are around 12,000
multivariate time series of different lengths in the training set,
each describing a unique tracked object. 30 samples of the
sensor error in estimating the the longitudinal position of an
object are shown in Figure 1. Note that the vertical axis has
been re-scaled due to sensitive information. For evaluation,
a validation data set containing around 2,000 time series is
used.

Fig. 1: 30 samples of longitudinal position error from the
training data set. Each time series represent a unique tracked
object. The vertical axis has been re-scaled.

III. PROPOSED SENSOR MODELS

We focus on modelling the sensor error in estimating the
longitudinal position of the objects error over time. The same
method can be used to model other similar parameters such
as error in estimating lateral position, heading and velocity
of the objects, making the model sensor independent. For
this purpose we propose to use hidden Markov models and
extensions thereof to better capture the properties of the de-
sired sensor error and noise signals. We start from a standard
HMM and then implement and extend the autoregressive
input/output hidden Markov model [7] which is inspired by
the input/output HMM by [8].

HMMs have been extensively used in many different sig-
nal processing fields such as the fields of speech recognition
[9], speech synthesis [10], in biology for the analysis of DNA
and protein sequences [11], continuous-valued time courses
[12] and inertial measurement unit (IMU) outputs [13]. The
HMM can be summarised with the following parameters.
The initial state probability vector π, the transition matrix
A ∈ Rn×n and the probability density functions f i over
the observations for each state i. HMMs have proven to
be very effective in modelling both discrete and continuous
time series data. The standard HMM has however two main
drawbacks which are described below.

Firstly, when modelling signals using an HMM it is
assumed that the observations are conditionally independent
given the hidden states, making it not suited for modelling
highly autoregressive data. The AIOHMM extends the hid-
den Markov model by relaxing the conditional independence
assumption between the outputs.

Secondly, the transition matrix A of the HMM is time
homogeneous, making it harder to model data with long-term
temporal dependencies. In order to solve this problem, the
state transitions in the AIOHMM are parameterised and made
time inhomogeneous with a log-linear function. This is done
by conditioning the state transition probabilities on an input
vector at each time step, using relevant information of the
ego-vehicle and the surrounding environment that correlates
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with the output. Note that relaxing homogeneity of transi-
tions has been previously explored in other domains and
using other approaches [14]. Further, the output probabilities
are conditioned on the same input vector.

Let Xt be the input at time step t, Zt be the hidden state
and Yt be the output. Further, we define S = {1, 2, . . . , N}
as the set containing all states. The AIOHMM is described
as follows.

The transition probability between state i and j is param-
eterised with a log-linear function. We thus get a transition
matrix ψi,j(t) with a time dependency modelled as

p(Zt = j|Zt−1 = i,Xt;wij) =
exp (wijXt)∑
`∈S exp (wi`Xt)

. (2)

The output probabilities are parameterised with a normal
distribution in each state i as

p(Yt|Zt = i,Xt, Zt−1;µit,Σi) ∼ N (Yt|µit,Σi). (3)

In order to capture the autoregressiveness of the data and to
model the temporal dependencies, the mean of the Gaussian
is further modelled with a time dependency as

µit = µi(1 + aiXt + biYt−1), (4)

where ai and bi are learnt parameters for all states. Thus
we can summarise the learning parameters of the AIOHMM
as θi = {µi,ai, bi,Σi,wij |j ∈ S}.

Fig. 2: A graphical representation of the AIOHMM.

We use the expectation-maximisation (EM) algorithm in
order to learn the parameters in the AIOHMM, as described
in [7]. The EM algorithm is an algorithm used for optimisa-
tion of the likelihood function for models that are described
probabilistically in terms of observed and an unobserved
components. This makes the algorithm suitable for training
HMMs. The algorithm estimates a lower bound of the log-
likelihood function and then finds a local optima to that
estimate, ensuring monotonic increase in log-likelihood as
well as convergence [15].

We implement the model in Python 3.5, and all parameters
except for wij are optimised by deriving their closed form
updates. In the original paper [7] the transition parameter
wij is updated with line search. Although yielding good
results, this slows down the training time heavily. Therefore,
in this paper we propose to use the Adam algorithm [16]
and implement a stochastic gradient descent based parameter
estimation instead of the line search in order to learn wij .

This reduces the computational time needed in the M step.
We parallelise the code over the states, performing gradient
descent with Adam on independent cores.

A graphical representation of the model is shown in
Figure 2. A time homogeneous AIOHMM (h-AIOHMM)
is achieved when the link between Xt and Zt is removed.
For both the AIOHMM and the h-AIOHMM the same input
features X ∈ R5 were chosen from a combination between
feature importance analysis using random forests with the
scikit-learn library [17] and intuition. All features come from
the ground truth readings from the lidar and include for
example length of the tracked object, host speed and the
angle between the host car and the object. Since the models
are only guaranteed to converge to a local optima, a number
of different models of each type were randomly initialised
and trained.

A. Model evaluation

Evaluating a generative model is not an easy task to do.
Especially, quantifying the quality of the generated time
series is difficult and is mostly an application dependent task.
The problem is hard since usually we only have one single
realisation of an underlying stochastic model, and only using
this sample makes it hard to draw conclusions of the model
quality. Our validation set include around 2,000 sequences,
all of which correspond to unique traffic scenarios.

We will thus compare our generated samples using a
validation set by using log-likelihood and root mean squared
error (RMSE), which should be able to capture the temporal
dependencies. The log-likelihood is one of the most used
measures for evaluations of generative models and the RMSE
will be used since it is suitable for time series comparison.
To compare models from a different perspective, namely the
closeness of the distributions between the generated samples
with the real samples, one should use a metric comparing
distributions. It is of interest to see if different parts of the
signals, such as large errors, are represented with the right
density in the generated samples. Comparing two probability
distributions P and Q can be done in a lot of different
ways and extensive work has been done in this field [18].
A common way to do this is using the Kullback-Leibler
divergence defined as K(P‖Q) =

∑
x log

(
p(x)
q(x)

)
p(x) [19].

However, it is important to note that it is not a true metric
as it is not symmetric, K(P‖Q) 6= K(Q‖P ), and as the
triangle inequality does not hold. Further, the distribution P
could generate samples that have zero probability for the
Q distribution, which results in an infinite KL divergence.
For this reason we will use the smoothed and symmetrised
version of the KL divergence, namely the Jensen-Shannon
divergence [20]. Let M = 1

2 (P + Q). The Jensen-Shannon
divergence is then defined as

J(P‖Q) =
1

2
K(P‖M) +

1

2
K(Q‖M). (5)

It is symmetric and is guaranteed to be finite. Further,
its square root is a true metric called the Jensen-Shannon
distance (JSd).
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The JSd together with the log-likelihood and RMSE will
be used in order to evaluate models in a quantitative way.
Note that in computing the JSd, the order of the samples
is not important since a histogram is invariant under per-
mutation. Therefore, both log-likelihood and JSd have to
be taken into account and analysed in order to draw a
conclusion. To further evaluate the temporal aspects of the
model we will look at the JSd between the first difference
distributions of the validation set and the generated samples,
i.e. the distribution of yt−yt−1. We will further qualitatively
evaluate the models by performing visual inspection of the
generated data.

IV. RESULTS AND DISCUSSION

Three different types of models were trained and evaluated
on the training and validation set. We compare standard
HMMs with Gaussian mixture emissions (GMM-HMM)
to AIOHMMs with and without a homogeneous transition
matrix for modelling the longitudinal position error.

There is no simple way of optimally choosing the number
of states in an HMM. Using the traditional model selection
methods, as the Akaike information criterion or the Bayesian
information criterion, has drawbacks when choosing the
number of states for an HMM, since they often prefer too
complex models [21]. In this paper the number of states
were chosen by training on a different, smaller training set
and evaluating the models with the log-likelihood and JSd
as well as visual inspection. By empirical analysis, we in
general observe that 3-5 states usually are sufficient for this
particular problem, capturing the characteristics of the data
while at the same time keeping the model complexity low.
All models used in this paper are based on four states.

In Figures 4 and 5 we see the results from all the models.
The black trajectories were chosen from the validation set
to illustrate different behaviour seen in the data. The same
input features X were used from these trajectories to gen-
erate 1,000 sample trajectories from each model for each
validation trajectory. The mean of these samples are plotted
in dashed purple. The blue area spans the interval between
the 0.05th and 0.95th quantile of the simulated trajectories.
Note that the vertical axis is re-scaled.

Figures 4a and 5a show sample trajectories from the
GMM-HMM and Figure 3a shows that it is able to cap-
ture the underlying distribution as a whole, with a Jensen-
Shannon distance of 0.14 as shown in Table I. However,
a low log-likelihood and visual inspection shows that the
GMM-HMM does not capture the temporal dependencies.
For example, it does not capture the autoregressiveness of the
data due to the independence assumptions between outputs.
This is also reflected in Table I which shows that we have a
relative high JSd of 0.27 for the first difference of the sample
trajectories generated by the GMM-HMM as compared to the
other models.

(a) GMM-HMM histogram

(b) h-AIOHMM histogram

(c) AIOHMM histogram

Fig. 3: Histogram of observations in all sequences from
the validation set and samples from the models. Orange is
generated data and blue is validation data. The horizontal
axis has been re-scaled.
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(a) GMM-HMM

(b) h-AIOHMM

(c) AIOHMM

Fig. 4: Trajectory 1 of the longitudinal position error from
the validation set (black) together with sampled trajectories
from the three different models. The vertical axis has been
re-scaled.

TABLE I: A summary of all the models.

Model JSd 1st diff. JSd Loglik. (104)
GMM-HMM 0.14 0.27 5.8
h-AIOHMM 0.24 0.11 11.3
AIOHMM 0.13 0.15 10.3

(a) GMM-HMM

(b) h-AIOHMM

(c) AIOHMM

Fig. 5: Trajectory 2 of the longitudinal position error from
the validation set (black) together with sampled trajectories
from the three different models. The vertical axis has been
re-scaled.

TABLE II: Root mean squared error for the different models.

Model Trajectory 1 Trajectory 2 Avg. of all trajectories
GMM-HMM 0.87 0.68 0.86
h-AIOHMM 0.53 0.93 0.71
AIOHMM 0.65 0.42 0.67
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In Figures 4b and 5b we see that the temporal dependen-
cies are captured more smoothly for the h-AIOHMM relative
the GMM-HMM. Meanwhile, compared to the AIOHMM
in Figures 4c and 5c it is noted that the uncertainty is
higher for the h-AIOHMM. Figure 3b further shows that
the overall distribution is not captured as good as for the
AIOHMM, shown in Figure 3c. This suggests that con-
ditioning the output on the previous output together with
inputs, although very important, is not enough to capture the
overall nature of the data. We notice that conditioning the
transition probabilities on the inputs and enabling the model
to have time inhomogeneous transitions is important in order
to capture the temporal dependencies. Table I shows that both
the AIOHMM and the h-AIOHMM manage to capture the
distribution of the first difference quite well and both models
have high log-likelihood relative the GMM-HMM.

Further, from the 1,000 sample trajectories root mean
square errors between the real trajectory and the sample
trajectories were calculated. In Table II the mean of these
1,000 RMSEs for the two chosen trajectories are shown, and
in the fourth column we report the RMSE values where 100
sample trajectories were drawn for each one of the 2,000 real
trajectories. We observe that the AIOHMM outperforms the
other two models.

V. CONCLUSIONS

In this paper we developed statistical sensor models for
autonomous driving, which are able to generate time series
describing sensor outputs such as longitudinal and lateral
position, velocity and acceleration. These models are sen-
sor independent and can be used in automotive simulation
environments in order to efficiently and effectively model
realistic sensor outputs. The proposed data-driven models are
evaluated and compared both qualitatively and quantitatively
to collected data from real test drives. Our evaluations show
that the AIOHMM is the best model, able to capture the
temporal aspects of the sensor characteristics better than the
other two models. The AIOHMM is through autoregression
and the time inhomogeneous transition probabilities able
to capture the temporal structures of the sequences and
the dependency of the error to other parameters describing
the scenario. Future work will include implementing these
models in virtual environments, where the models can be
tested on system level. This will enable testing of ADAS
and AD functions and we will be able to evaluate the models
further from the results of these tests.
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