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Chapter 1

Introduction

This thesis is concerned with the analysis of biological data by statistical clustering ap-
proaches. In this chapter we give an introduction into the general properties of modern
biological data sets, the challenges they pose for data analysis and describe in some more
detail the specific data sets we are concerned with. Finally,the content and main scientific
contributions of this thesis will be summarized.

1.1 Biological Mass data

The advent of modern, high-throughput experimental techniques has lead to new wealth of
data for all aspects of molecular biology. While the nature of these data sets is extremely
diverse, there are certain properties which are shared by many of these types of data.

• The data is high-dimensional and only a subset of the features can be expected to be
informative for the purpose of an analysis.

• The values of the data points are distorted by noise and the data set contains a non-
negligible number of missing values. Also, many biologicaldata sets will include
outliers due to experimental artifacts.

• The data set incorporates multiple sources of data from different domains (e.g dif-
ferent experimental methods, geno- and phenotypic data, etc.), where the relative
relevance for the biological question to be addressed, as well as potential dependen-
cies between the different sources are unknown.

These properties make the analysis of such data a challenging task. The presence of many
uninformative features increases the difficulty of pickingup on the regularities of inter-
est, as trends in the data are overshadowed by the cumulativeeffect of the uninformative
features. The presence of noise as well as missing values require to be dealt with in a
principled manner. Finally, the possibility of integrating several, heterogeneous sources of
data in a single analysis is of increasing importance.

In the following sections we are going to give short, fairly general introductions into the
types of biological data this work is concerned with. For more details, refer to any mo-
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Chapter 1 Introduction

lecular biology textbook (e.g [181]). More detailed information on the specific biological
backgrounds of the data sets we analyzed will be given in the respective chapters.

Genomic Sequences

Figure 1.1: DNA double helix. The helix is formed by the complementary pairing of A–T
and G–C pairs of nucleotides. (Image courtesy of the US National Library of Medicine)

The building plan of any living organism, its genetic information, is stored and passed on
in form of deoxyribonucleic acid (DNA) molecules. In the cell the DNA is organized as
two polynucleotide chains, or strands, which are intertwined in the famous double helix
structure (shown in Fig. 1.1). In genomic DNA there are four nucleotides, or bases, which
form the consistent parts of the DNA chain. These four bases are adenine (A), cytosine (C),
guanine (G),and thymine (T). The double helix is formed by the complementary pairing of
the two strands by hydrogen bonds of A–C and G–T pairs of nucleotides.

Much of the progress in modern genetics has been driven by theprogress of DNA se-
quencing technologies and the ever increasing number of completely sequenced genomes.
The availability of such genomic sequences allows the studyof questions such as the pre-
diction of gene positions (gene prediction[92, 94]), evolutionary relatedness of different
organisms and species (phylogenetics[27]) and the common genetic basis of closely and
distantly related organisms (comparative genomics[80]).

Protein Sequences

Whereas DNA is the medium in which genetic information is stored in the living cell,
proteins are how this information is expressed. Proteins fulfill specific functions in the cell
and the interplay of many (i.e. on the order of hundreds of thousand for humans) proteins
form the whole organism. On the DNA level information how to build each protein is
stored in specific stretches of the nucleotide chain, the genes.

2



1.1 Biological Mass data

The information in the genes is turned into proteins by the two processestranscriptionand
translation. In thetranscriptionstep, the sequence of a gene is copied into themessenger
ribonucleic acid (mRNA). The mRNA is needed to carry the genetic information out of
the nucleus, where the DNA resides, into the cell plasma. There, the mRNA is read by
molecular factories, the ribosomes, which actually build the proteins. Each protein is a
polypeptide chain of twenty different amino acids (see appendix C). The order of amino
acids in a protein is determined by the order of nucleotide inthe respective gene (via the
mRNA) according to thegenetic code.

In vivo, proteins exist in a three dimensional fold of the linear amino acid sequence, the pro-
tein structure. This structure is typically considered on three levels. The first and simplest,
the primary structure, is simply the amino acid sequence itself. Thesecondarystructure
is the folding of the amino acid chain into typical local structures, theα–helices andβ–
sheets, which are connected by loops. Finally, thetertiary structure is the complete three
dimensional fold of the whole chain. Fig. 1.2 shows an example protein structure. The
secondary structure elements are shown in red (α–helices) and yellow (β–sheets). Loop
regions are depicted green. The fold each protein takes, determines which amino acids, in
which configurations, are presented to the outside medium and thereby also which func-
tion it performs in the organism. In this work we focus on the analysis ofprimarystructure
data, i.e. amino acid sequences.

Figure 1.2: Example protein structure. Secondary structure elements are depicted in red
(α–helices), yellow (β–sheets) and green (loops).

By analyzing protein sequences one can study questions suchas the prediction of protein
function based on the similarity of the amino acid sequences(protein homology, e.g. [182]),
discovery of subsequences with a specific function which occur in many proteins (protein
domain discovery, e.g. [34, 35]) and prediction of the three dimensional foldof a protein
(structure prediction, e.g. [23, 134]).

3



Chapter 1 Introduction

Complex Disease Phenotypes

A different kind of data set arises from the study of complex genetic diseases. The analysis
of genetic diseases has classically been directed towards establishing direct links between
cause, a genetic variation, and effect, the observable deviation of phenotype. For complex
diseases which are caused by multiple factors and which showa wide spread of variations
in the phenotypes this is unlikely to succeed. Recently, vast efforts are being undertaken
to collect data sets which allow the study and, potentially,elucidation of the various ge-
netic factors contributing to a diseases’ mode of inheritance and course in an individual
(e.g. [69, 83]). Often these data bases contain both genotypic and phenotypic information.
The genotypic features of such a data set either are given by genomic regions which have
been linked to the disease in prior studies or, increasinglyoften, by whole–genome geno-
typing based on next generation sequencing techniques. Thephenotypes consist of clinical
features relevant to the disease. These can be as diverse as questionnaire scores for psy-
chological disorders and morphological abnormalities forphysically manifested diseases.
In this work we focus on the analysis of disease phenotypes. Due to the high variability of
complex phenotypes a structuring of distinctive phenotypepatterns is often a crucial first
step in the analysis.

Important questions with regards to the study of such diseases are for instance the identi-
fication of candidate genes and genomic regions using linkage analysis (e.g. [73, 100]) or
candidate gene approaches [181].

1.2 Thesis Overview

The main focus of this thesis is the detection of meaningful subgroups in biological data
sets where noise and the presence of uninformative featuresconfound the regularities given
by biological subgroupings. That is, we are concerned with clustering and cluster analysis
of biological data. Clustering techniques attempt to find subgroups of similar samples in
the data. It is both exploratory andunsupervised, i.e. the biological interpretation of the
discovered groups is not necessarily clear and assignmentsof samples to known categories
are not givena priori.

A classical statistical framework for performing clustering are mixture models (see chap-
ter 2). Mixture models have attractive properties for analyzing biological data. Namely
that due to their probabilistic nature, mixtures acknowledge the inherent ambiguity of any
group assignment in exploratory biological data analysis,in a structured and theoretically
sound way. In chapter 2 we also describe the parameter learning by expectation maximiza-
tion (EM) and give a practical introduction for using mixtures for clustering. The chapter
is concluded by a description of the Bayesian formulation ofmixture models. Chapter 2 is
a review of established research on conventional mixture models and lays the foundation
of the extensions described in chapter 3.

4



1.2 Thesis Overview

In chapter 3 thecontext-specific independence(CSI) extension to the mixture framework
is introduced and we give a novel formulation of CSI in mixture models which conveys
additional attractive properties for practical data analysis. This is followed by an update of
the Bayesian formulation for CSI mixtures. Also, we describe the structural EM algorithm
necessary to learn CSI mixtures from data and derive the parameter estimators. In the last
section of the chapter we discuss some practical advantagesof CSI mixtures for cluster
analysis. Chapter 3 draws from prior work on CSI mixtures which employed a less rich
CSI formulation and updates the established structural EM algorithm for this new CSI
formulation.

Chapter 4 deals with practical aspects of learning CSI mixtures from data. The complex-
ity of the structure learning problem is discussed and various strategies for reducing the
complexity in practice are introduced and evaluated. This chapter also gives results on an
approach for reducing the running time of the structure learning.

In this thesis CSI mixture based clustering was applied to three biological applications. In
chapter 5 we present the first application of CSI mixtures forthe modeling of transcription
factor binding sites (TFBS). We show that CSI is more suited to the problem than the
conventional mixtures previously applied and examine the biological implications of the
subgroups found.

In chapter 6 we describe the application of CSI mixture for clustering of protein subfamilies
with simultaneous prediction of functional residues. We also examine some challenges
posed by protein sequence data and present a model extensionin form of a novel Dirichlet
mixture prior to address them.

The third application deals with the clustering of heart disease phenotypes (chapter 7).
The aim of this analysis being to detect groups of patients which are characterized by
different phenotype patterns. These groups then also mightshare some causal variant on
the genomic level. That means in this setup the clustering amounts to detection of disease
subgroups.

Finally, in chapter 8 the results and implications of this work will be discussed.

5



6



Chapter 2

Finite Mixture Models

Mixture models are a powerful and versatile class of probabilistic models for density esti-
mation and data analysis. The central paradigm of the mixture framework is that the ob-
served data is generated by a number of different and unobservable underlying processes.
Each of these processes is represented by a distribution (ordensity in case of continuous
data) and the combination of thesecomponentdistributions by a convex combination then
forms the mixture distribution. Mixtures are not only theoretically capable of representing
arbitrary distributions [129], in practice they are also anefficient alternative for more com-
plex models such as Bayesian networks [117]. One of the first papers introducing mixtures
was the 1898 Pearson paper [141] which dealt with the modeling of the size distribution
of a heterogeneous population of crabs. Since then mixture models have been applied in
numerous fields and settings, including sociology (in form of latent classmodels [106]) or
as building blocks of neural networks [19].

In this chapter we are going to introduce finite mixture models, the parameter learning
algorithm, describe how mixtures can be used for clusteringand the extension of mixtures
to the Bayesian framework.

2.1 Mixture Models

Let X = X1, ..., Xp denote random variables (RVs) representing the features ofap dimen-
sional data setD with N samplesxi, i = 1, ..., N where eachxi consists of a realization
(xi1, ..., xip) of (X1, ..., Xp). A K component mixture distribution is given by

P (xi|Θ) =

K
∑

k=1

πkP (xi|θk), (2.1)

where theπk ≥ 0 are the mixture coefficients with
∑K

k=1 πk = 1. For our purpose each
component distributionP (xi|θk) is defined as a product distribution overX1, ..., Xp pa-

7
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Figure 2.1: a) Example data set from a Gaussian mixture with three components over
two-dimensional data (X1,X2). b) Corresponding mixture density heat map with three
normal components.

rameterized by parametersθk = (θk1, ..., θkp),

P (xi|θk) =

p
∏

j=1

P (xij |θkj). (2.2)

Then each of theP (xij |θkj) is a distribution over aXj, conditional on a mixture com-
ponentk. The form the parametersθkj take depends how featureXj is distributed (see
section 2.1.1 for examples). We denote the collection of allθkj and the weight vector
π = (π1, ..., πK) asΘ = (π, θ1, ..., θk). ThenΘ completely parameterizes the mixture.

Fig. 2.1 shows an example data set and corresponding mixturedensity for two continuous,
normally distributed features and a three component mixture. Fig. 2.1a) shows a plot of an
example data set where different colors denote samples arising from different components.
Fig. 2.1b) shows a heat map of the mixture density the data wasgenerated with. Each of
the three normal components can be seen as modes of the density and it can be seen that
the components overlap.

The likelihoodP (D|Θ) for data setD with N samples is simply the product over the
mixture density at each sample

P (D|Θ) =

N
∏

i=1

P (xi|Θ). (2.3)

In order to illuminate the model properties it is instructive to examineΘ more closely. In
addition to the mixture weightsπ, the model parameterization includes one set of parame-
tersθkj for each component in the model and featureXj in the data. This can be visualized
as shown in Fig. 2.2a). The example shows the parameter matrix for a mixture with 5 com-
ponentsC1, ..., C5 and 4 featuresX1, ..., X4. It can be seen that the model parameters are
arranged in a matrix spanned by the mixture components and the features of the data set. A

8



2.1 Mixture Models

more abstract representation of the same model can be obtained by omitting the parameter
variable names from the parameterization matrix. This yields themodel structure matrix
(Fig. 2.2b)). For conventional mixture models, the model structure does not look particu-
larly interesting as every component has a separate set of parametersθkj for each feature.
This will change with the introduction of context-specific independence in chapter 3.

a)

X1 X2 X3 X4

C1 π1 θ11 θ12 θ13 θ14

C2 π1 θ21 θ22 θ23 θ24

C3 π1 θ31 θ32 θ33 θ34

C4 π1 θ41 θ42 θ43 θ44

C5 π1 θ51 θ52 θ53 θ54

b)

X1 X2 X3 X4

C1

C2

C3

C4

C5

Figure 2.2: a) Model parameterization matrix for a five component mixture over four
features.b) Corresponding model structure matrix.

The assumption of independence between elements ofX which yields the convenient de-
composition in Eq. (2.2) is a rather strong one and bears further discussion. The compo-
nent product distributionsP (xi|θk) are also known as naı̈ve Bayes models. These models
have been successfully used on a large variety of applications on areas as diverse as emo-
tion recognition [133], credit scoring [40], diagnosis of acute abdominal pain [42] or text
mining [147, 162]). It has been found that despite its simplicity naı̈ve Bayes performs sur-
prisingly well for a broad range of applications. This is true even in situations where the
independence assumption is not necessarily met by the data [58, 76, 137, 143, 154, 186].
Also, naı̈ve Bayes is a competitive and efficient alternative to Bayesian networks for gen-
eral density estimation [117]. Finally, the optimality of the naı̈ve Bayes classifier has been
shown for specific problem settings [47, 98]. That being the case, it should be stressed
that there has been considerable progress for classification problems and state-of-the-art
methods such assupport vector machines[36] can be expected to outperform naı̈ve Bayes.
However, since this work is primarily concerned with clustering problems, this has no
direct relevance.

It is important to realize that the independence assumptions for X are conditional on the
mixture componentsk. In other words, the assumption is that the strongest dependencies
between features are captured by theK mixture components and that,givena specific com-
ponent the features can be treated as independent. This kindof independence assumption,
while still a simplification, has proved to be very useful in many applications.

One advantage of adopting naı̈ve Bayes models as component distributions is that it con-
veys great flexibility in modeling different distributionsin X. For instance continuous
and discrete RVs can be seamlessly integrated into the same model. This flexibility has
been extensively made use of by researchers to design mixture models for a wide vari-
ety of applications, including distributions such as multinomial [65, 67, 153], Gaussians
[74, 136, 138, 149], exponential [11], Poisson [108], uniform [43] and Dirichlet [170]. In
this work we are going to focus on the multinomial and normal distributions due to the
nature of the data under consideration. It should be noted however, that all that is required

9



Chapter 2 Finite Mixture Models

to build mixtures for any distribution from the exponentialfamily [5], is to plug in the ap-
propriate density functions and parameter estimators intothe framework we are about to
describe.

2.1.1 Atomic Distributions

TheK distributionsP (xij|θkj) over featureXj in a mixture with naı̈ve Bayes components
can be specified freely from the exponential family to match the data domain of featureXj.
It should be noted however, that these distributions are only atomicin the sense that each
one models feature a single featureXj. Each of theXj could be vector–valued in itself and
conceptually each of theθkj can be multivariate or even a mixture distribution overXj in
itself. In other words it is possible to have both univariateand multivariate distributions as
parts of a naı̈ve Bayes component model.

In the following we focus on normally distributed and discrete valued data. For the Gaus-
sian data we haveθkj = (µkj, σ

2
kj) whereµkj andσ2

kj parameterize the Gaussian density
function

P (xij |θkj) =
1

σkj

√
2π

exp

(

−(xij − µkj)
2

2σ2
kj

)

. (2.4)

If all Xj are distributed as Gaussians, the product over univariate Gaussians in the com-
ponent distributionP (xi|θk) is equivalent to a multivariate Gaussian with diagonal co-
variance matrix. The assumption of diagonality for the covariance is often made to avoid
serious numerical problems with estimating full covariance matrices on limited amounts
of data [127]. The Gaussian distribution is often used to model continuous measurements
of biological quantities. One important example for such quantities are the various experi-
mental techniques for measuring gene expression [46, 140, 160].

In the case of discrete data we haveθkj = (φkj), whereφkj = (φkj1, ..., φkjM) is a stochas-
tic vector of lengthM defining a distribution over an alphabetΣ with M symbols. Then
φkj parameterizes the discrete probability mass function given simply by the element of
φkj corresponding to the symbolxij i.e.

P (xij |θkj) = P (xij = Σs|φkj) = φkjs, (2.5)

whereΣs denotes thes’th symbol in the alphabet.

In bioinformatics the most important source of discrete data is inarguably the vast body
of known biological sequences. This includes DNA and protein sequences. As mentioned
earlier, later chapters will give example applications forDNA and protein data (chapters 5
and 6).

10



2.1 Mixture Models

2.1.2 Mixture Models from Different Perspectives

In mathematics the same or similar concepts often arise in different subfields in a process
reminiscent of convergent evolution. Considering how mixture models are expressed from
the perspective of different subfields, is instructive to gain deeper understanding of the
constraints and flexibilities inherent to the model formulation used.

Mixtures as Bayesian Networks

A Bayesian network (BN) [81] defines the joint distribution of a number of RVsXj by
encoding the conditional independence between RVs in a directed acyclic graph. The cen-
tral assumption of the BN formalism is that RVs are only dependent on their parents in
the graph. This allows for factorization of the joint likelihood and efficient inference. As
described in section 2.1, in the mixture framework all RVsXj are conditionally indepen-
dent given the component. In order to represent the example given in Fig. 2.2b) as a BN,
we introduce the component indicator variableC. C is a discrete RV which takes val-
ues in the set of component indices1, ..., K. The resulting BN graph structure is shown
in Fig. 2.3a). The conditional distributions with arise from the conditional independence
statements encoded in the graph structure are usually expressed in so calledconditional
probability tables(CPTs). Fig. 2.3b) shows the CPT for featureX2 for the example graph
in a). SinceX2 is only dependent onC, there exists a separate conditional distribution
θk2, k = (1, ..., 5) for each possible value ofC.

a) b)

C X2

1 θ12

2 θ22

3 θ32

4 θ42

5 θ52

Figure 2.3: a) Bayesian network graph for a mixture distribution with four features.
X1 − X4 are conditionally independent given the component indicator C. b) CPT for
featureX2. The conditional distributions ofX2 given the value ofC are listed.

Mixtures as Hidden Markov Models

Hidden Markov models (HMMs) are time discrete stochastic processes which have been
used extensively for such applications as analysis of time courses [150, 161] and biological
sequences [94, 97]. An HMM consists of a number of hidden states, each of which has
an emission distribution, describing the observed data anda transition distribution which
describes the dynamics within the state space. For more details on HMMs refer to [150].
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Chapter 2 Finite Mixture Models

The HMM topology which defines a model equivalent to the five component mixture in-
troduced in Fig. 2.2b) is shown in Fig. 2.4. There, each of thefive linear chains of four
states corresponds to a mixture component over four features. The transitions distribution
from the START state to any of the chains is just the mixture weightsπ. From the HMM

Figure 2.4: HMM topology equivalent to the five component mixture from Fig. 2.2b) The
dashed arrows denote transitions with probability one.

perspective, a mixture is an HMM withK parallel linear state paths and a fixed observa-
tion lengthp. This relation between mixtures and HMMs means that it is straightforward
to adopt HMMs as component distributions of a mixture [160].

2.1.3 Sampling from a Mixture

Since mixtures aregenerativemodels, it is straightforward to sample observations from a
given model. For each samplex = (x1, ..., xp) first a componentk ∈ (1, .., K) is chosen
by sampling from the mixture weight distributionπ, i.e.

k ∼ π.

In the next step the elements ofx are sampled from the component distributionθk,

x ∼ θk

s.t. xj ∼ θkj for each j =1, ..., p. The straightforward generation of artificial data from
a given mixture is very useful for tasks such as the validation of the parameter estimation
procedures and assessment of clustering performance. One typical setup for the latter
would be to sample a data set from a given mixture while recording the true component
labels of each sample. Then, a new model is learned from that data set and the clustering
performance can be assessed by comparing to the true labels.

2.2 Expectation Maximization (EM) Algorithm

The central learning task that needs to be addressed for a data setD is inferring the values
of the parametersΘ. The reason that one cannot straightforwardly calculate maximum
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2.2 Expectation Maximization (EM) Algorithm

likelihood (ML) estimates forΘ is that the assignment of samples to components in the
mixture is unknown. This is referred to as anunsupervisedlearning problem. Classically,
this situation is also often referred to as an incomplete data problem in which the observed
dataD is joined by the unknown component assignmentsH to form the complete data
Dc = (D, H). In the case of complete data (i.e. thesupervisedcase), obtaining maximum
likelihood estimateŝΘ for the parameters of a mixture is straightforward. In the incomplete
data case however,̂Θ cannot be calculated analytically. The standard techniqueto arrive at
parameter estimateŝΘ in the incomplete data case is theExpectation Maximization(EM)
algorithm [44].

2.2.1 General Formulation

The principle idea of the EM algorithm is to replace the unknown, hidden values with
their conditional expectations based on the current parameters and the data. Once these
expectations have been computed, new parametersΘ̂ can be analytically computed by
substituting the hidden values by their conditional expectations and treating the problem as
the complete data case. Iterations of these two steps will converge to a local maximum of
the likelihood function [44].

Formally, the aim is to find the parametersΘ̂ which maximize the probability of the ob-
served dataP (D| Θ), i.e. the ML estimates

Θ̂ = argmax
Θ

P (D| Θ).

In order to achieve this, an auxiliaryQ function is defined. TheQ function is the condi-
tional expectation of the likelihood of the complete dataDc = (D, H) given the observed
dataD and a parameterizationΘt−1. This yields theQ function as

Q(Θ, Θt−1) = E[log P (D, H|Θ)|D, Θt−1], (2.6)

where the observed dataD and the current model parametersΘt−1 can be considered con-
stant. The missing dataH is unknown. Finally, the new parametersΘ are the target of
the maximization. TheQ function can be rewritten by summing over the unknown hid-
den datah ∈ H (assuming the hidden dataH is discrete, otherwise integration overH is
required).

E[log P (D, H|Θ)|D, Θt−1] =
∑

h∈H

log P (D, h|Θ)P (h|D, Θt−1) dh (2.7)

whereP (h|D, Θt−1) is the distribution of the hidden valuesH conditioned on the current
parametersΘt−1 and the dataD. By integrating over the hidden valuesH, theQ function
becomes a deterministic function inΘ, which can be maximized analytically for distribu-
tions from the exponential family.
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Chapter 2 Finite Mixture Models

In the following we are going to show one of the central results of EM algorithm the-
ory [44]. Namely that that maximizing Eq. (2.6) with respectto Θ, i.e setting

Θt = argmax
Θ

Q(Θ, Θt−1) (2.8)

also increases the likelihoodP (D|Θ), i.e.

log P (D|Θ) ≥ log P (D|Θt−1).

This can be shown as follows: From thelog-ratio of the two likelihoods

log P (D|Θ) = log P (D, H|Θ)− log P (H|D, Θ)

the following is obtained by taking the conditional expectation of H with respect toD and
the current parametersΘ

log P (D|Θ) =
∑

h∈H

log P (D, h|Θ)P (h|D, Θt−1) −
∑

h∈H

log P (h|D, Θ)P (h|D, Θt−1).

(2.9)
In terms of the definition in Eq. (2.6) this can be rephrased as

log P (D|Θ) = Q(Θ, Θt−1) −
∑

h∈H

log P (h|D, Θ)P (h|D, Θt−1). (2.10)

By applying the same transformation tolog P (D|Θt−1) it follows that

log P (D|Θ)− log P (D|Θt−1) = Q(Θ, Θt−1) − Q(Θt−1, Θt−1)

+
∑

H∈H

P (h|D, Θt−1) log
P (h|D, Θt−1)

P (h|D, Θ)
(2.11)

The terms in the sum just form the relative entropy (also known as the Kullback-Leibler
divergence) [96] between the two distributionsP (H|D, Θt−1) andP (H|D, Θ). Since the
relative entropy is always nonnegative, it follows that

log P (D|Θ)− log P (D|Θt−1) ≥ Q(Θ, Θt−1) − Q(Θt−1, Θt−1). (2.12)

Substituting the optimal parametersΘt from Eq. (2.8) into Eq. (2.12) yields

log P (D|Θt) − log P (D|Θt−1) ≥ Q(Θt, Θt−1) − Q(Θt−1, Θt−1)

≥ Q(Θ, Θt−1) − Q(Θt−1, Θt−1)

≥ 0

which also implies
log P (D|Θt) > log P (D|Θt−1).
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2.2 Expectation Maximization (EM) Algorithm

This means that by maximizing the conditional expectation of the full likelihood (Eq. (2.6))
given some arbitrary parametersΘt−1 and the data with respect to new parametersΘt, we
can obtain an improved likelihoodlog P (D|Θt). This immediately suggests an iterative
procedure in whichΘt from the previous step becomesΘt−1 for the next. It can be shown
that these iterations converge to a local optimum of the likelihood function [44].

Note that the condition ofΘt maximizingQ(Θt, Θ) in Eq. (2.8) can be relaxed to re-
quiring Θt only to increaseQ(Θt, Θ). This is referred to asgeneralizedEM algorithm
(e.g. [45, 52, 146]) and is useful in situations were maximization ofQ if difficult.

In summary, the EM procedure for finding ML estimators forΘ consists of iterations over
two steps:
EM Algorithm :

1. Expectation Step: EvaluateQ(Θt, Θt−1) by substituting the conditional expecta-
tions ofH.

2. Maximization Step: MaximizeQ with respect toΘt, i.e.Θt = argmaxΘ Q(Θ, Θt−1)

2.2.2 EM for Mixture Models

In the following we are going to derive the EM for mixture models based on the general
formulation of in the previous section. Given the mixture

P (xi|Θ) =

K
∑

k=1

πkP (xi|θk) (2.13)

thelog–likelihood function for a data setD = x1, ..., xN is

log L(Θ|D) =
N
∑

i=1

log

[

K
∑

k=1

πk P (xi|θk)

]

, (2.14)

which, as mentioned previously, cannot be maximized directly due to the sum within the
logarithm. To get around this issue we consider the hidden data H, which is given by the
assignments of samplesx1, ..., xN to components(1, ..., K). One way to formalize this is
to define the space of hidden dataH as the set ofK × N binary matrices with exactly one
element equal 1 in each column. For one configuration of the hidden datah ∈ H, a value
of hki = 1 then indicates thatxi was generated by componentk. Then the joint distribution
of the observed and hidden data is given by the complete datalog–likelihood

log L(Θ|D, H) = P (D, H|Θ) =

K
∑

k=1

N
∑

i=1

hki(log πk + log P (xi|θk)), (2.15)
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Chapter 2 Finite Mixture Models

i.e. simply the sum over the likelihoods of samplesxi, wherehki indicates which compo-
nent contributed each sample. Again the EMQ function is

Q(Θ, Θt−1) = E[log P (D, H|Θ)|D, Θt−1] =
∑

h∈H

log P (D, h|Θ)P (h|D, Θt−1) (2.16)

whereh is a possible configuration of the component assignment indicator matrixH,
P (D, H|Θ) is the complete data distribution and

P (H|D, Θt−1) =
N
∏

i=1

K
∏

k=1

P (hki = 1|xi, Θ
t−1)hki

is the distribution of the hidden data givenD and Θt−1. The terms in the product are
the posteriors of component membership for each sample. By applying Bayes’ rule, this
posterior is given by

τki = P (hki = 1|D, Θt−1) =
P (hki = 1)P (xi|hki = 1, Θt−1)

P (xi|Θt−1)

=
πkP (xi|θk)

∑K

k=1 πkP (xi|θk)
. (2.17)

This posterior is crucial for both the parameter estimationin the EM framework as well
as using mixture models for clustering (see section 2.3).P (hki = 1|D, Θt−1) gives the
probability that a samplexi was generated by componentk. For ease of notation in the
following we will refer toP (hki = 1|D, Θt−1) asτki.

2.2.3 Parameter Estimators

The EM objective function for the mixture case Eq. (2.16) canbe formulated as

Q(Θ, Θi−1) =
K
∑

k=1

N
∑

i=1

τki (log πk + log P (xi|θk)) (2.18)

by expanding the sum overh ∈ H and rearranging terms [17, 129].

Based on Eq. (2.18) ML estimators for the parameters inΘ can be derived by analytical
maximization of theQ function under appropriate side constraints with respect to the model
parameters inΘt [17].

As an example we give details for the derivation of the estimators for π. First note that
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2.2 Expectation Maximization (EM) Algorithm

Eq. (2.18) can be written as

Q(Θ, Θi−1) =

K
∑

k=1

N
∑

i=1

τki log πk +

K
∑

k=1

N
∑

i=1

τki log P (xi|θk), (2.19)

and that there are no terms containing bothπk andθk. Thereforeπk andθk can be maxi-
mized separately. In order to ensure stochasticity we introduce the side condition

∑K

k=1 πk =

1 into the first sum on the right-hand side of Eq. (2.19) which leads to partial derivatives of
the Lagrangian (e.g. [101]) with respect toπk(k = 1, ..., K) andλ

δQ

δπk

[

K
∑

k=1

N
∑

i=1

τki log πk + λ(
K
∑

k=1

πk − 1)

]

=

N
∑

i=1

1

πk

τki + λ = 0, (2.20)

δQ

δλ
=

[

K
∑

k=1

πk − 1

]

= 0. (2.21)

Solving Eq. (2.20) forπk and substituting into Eq. (2.21) yieldsλ = −N . Resubstitution
into Eq. (2.20) yields the estimators for the mixture weightsπ in each time step as

π̂k =

∑N

i=1 τki

N
(k = 1, ..., K). (2.22)

Estimation of the component parametersθk requires taking derivatives with respect toθk

for the second sum in Eq. (2.19). For the naı̈ve Bayes component distributions this sum
further simplifies to

K
∑

k=1

N
∑

i=1

τki log P (xi1|θk1) + ... + τki log P (xip|θkp),

which means that the derivatives for the individualθkj also can be taken separately. For
atomic distributionsθkj from the exponential family there are closed form solutionsfor the
ML estimators. For the univariate Gaussian distributionθkj = (µkj, σ

2
kj) the ML estimators

for parametersµkj and varianceσ2
kj [129] are

µ̂kj =

∑N

i=1 τkixij
∑N

i=1 τki

(2.23)

and

σ̂2
kj =

∑N

i=1 τki(xij − µ̂kj)
2

∑N

i=1 τki

. (2.24)
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In case of discrete distributionsθkj = φkj estimates for parametersφkj = (φkj1, ..., φkjM)

over someM–symbol alphabetΣ are given by

φ̂kjs =

∑N
i=1,

xij=Σs

τki

∑N

i=1 τki

(s = 1, ..., M). (2.25)

2.2.4 Drawbacks of the EM Algorithm

While the EM algorithm allows efficient parameter estimation, the algorithm also has a
number of drawbacks. The first and foremost concern being that convergence is only guar-
anteed locally. The quality of such a local maximum relativeto the global maximum can
still be arbitrarily poor. The standard approach to addressthis issue is to run the EM pro-
cedure many times from different initial parameter sets, thereby exploring the likelihood
surface and in the end retaining the best parameters found. An simplified example of such
a likelihood surface is shown in Fig. 2.5a). The x-axis represents the model parametersΘ,
the y-axis shows the corresponding likelihood function. From different starting valuesΘ0,
the EM procedure converges (dashed arrows) to different local maxima shown in red and
blue. Therefore, some care has to be taken with the choice thedifferent initial parameter-
izationsΘ0. One possible approach which works well in practice is to randomly assign
samples to components and then perform an M-Step update to obtainΘ0.

Another issue is EM’s sensitivity to outliers in the data. A small number of uncharac-
teristic data points can cause the EM procedure to get trapped in spurious local maxima
at the edges of the parameter space. One example of that wouldbe a Gaussian mixture
density containing one or several components with very small varianceσ2. An example
of such a density is shown in Fig. 2.5b). The peaked componentto the right, contributes
disproportionately to the whole likelihood by overfitting afew outlying data points.

a) b)

Figure 2.5: a) Simplified likelihood surface with two maxima. Dependingon the initial
parametersΘ0 the EM procedure converges to a different maximum. b) Example of a
Gaussian mixture which attains a spurious maximum by overfitting an outlier.

This problem can be addressed by adding a dedicated noise component to reduce the impact
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of outliers (see section 2.3.4) or by a regularization of theparameter estimates in a Bayesian
setting (see section 2.4).

2.3 Mixture Models for Clustering

One major application of mixture models is clustering. Clustering gives a decomposition
of theN samples of a given data set intoK subgroups. Among the classical approaches
to clustering are the k-means algorithm [119], self-organizing maps [156] and hierarchi-
cal clustering approaches [99]. One important feature of the mixture framework is that
due to its probabilistic nature, it naturally represents overlapping clusters. In the mixture
framework, each cluster is identified with one of theK components and the components
parametersθk capture the regularities which characterize the cluster. The assignment of
samples to components is done by a maximum likelihood approach over the component
posterior. That is, a samplexi is assigned to componentk∗ such that

k∗ = argmax
k

τki. (2.26)

The component posteriorτki (Eq. (2.17)) captures the uncertainty of assignment of a given
samplexi [160]. If τik∗ is close to one, there is little ambiguity. One the other hand, a uni-
form component posterior means maximum uncertainty. This quantification of uncertainty
in the cluster assignment can be visualized by computing theShannon entropy [169] of
the component posterior. Fig. 2.6 shows an example mixture density (2.6a) and the corre-
sponding entropy of the component posterior (2.6b). It can be seen that the entropy is high
in areas where clusters overlap and low towards the cluster centers. The highest entropy
can be observed when all three clusters overlap.

One important consequence of the cluster assignment rule Eq. (2.26) is that it is invariant
against deviations of the posterior which do not changek∗. In other words, for the cluster
assignment of a sample to be correct it is sufficient that the true component obtains the
highest posterior. This is one reason why the model to a certain degree is robust against the
independence assumption not being met by the data.

2.3.1 Model Selection

One important aspect of clustering with mixture models is the choice of the number of
componentsK. Classically this has been addressed by training mixtures with a range of
components and then applying some model selection criterion to select the optimal number
of components. Generally speaking, these criteria select models based on the principle of
maximum parsimony, also known asOccam’s Razor[6]. This principle stipulates that the
simplest model which models the data sufficiently well should be used.

Criteria such as theBayesian information criterion(BIC) [166] and theAkaike information
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Figure 2.6: a) Example mixture density plot.b) Entropy of the component posterior. The
red dots mark the mode of the three components.

criterion (AIC) [3] have been applied in this manner. BIC and AIC are penalized likelihood
scores which contrast the likelihood of a model with its complexity. The BIC score for a
maximum likelihood estimateŝΘ is given by

BIC(Θ̂, D) = −2 log L(Θ̂|D) + |Θ̂| log(N), (2.27)

whereL(Θ|D) again is the likelihood function Eq. (2.14),|Θ| the number of free parame-
ters inΘ andN the number of samples. Similarly, the AIC is defined as

AIC(Θ̂, D) = −2 log L(Θ̂|D) + 2|Θ̂|. (2.28)

It can be seen that the penalization for model complexity is stronger in theBIC aslog(N) >

2 for N ≥ 8, which will be the case for most real world data sets. Therefore it can be said
that the BIC is more conservative in the penalization of model complexity thanAIC . In
fact, in practice it is often observed that theBIC tends to underestimate the number of
components, whereas theAIC tends to overestimate [61].

An alternative approach to model selection is taken by theNormalized Entropy criterion
(NEC) [14, 61]. While the penalized likelihood scores are very general in concept, the NEC
has been designed specifically for the choice of the number ofcomponents in a mixture.
The NEC scores models by their ability to provide well-separated groupings of the data.
The NEC arises from the decomposition of thelog–likelihood log L(Θ̂|D) in Eq. (2.14)
into a log-likelihood term and an entropy term. Since for the model selection problem we
are only interested in the number of componentsK, we letLk = log L(Θ̂K |D) whereΘ̂K

is a mixture withK components.

Then it can be shown that
LK = CK − EK , (2.29)
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where

CK =

K
∑

k=1

N
∑

i=1

τki log[πk P (xi|θk)] (2.30)

and

EK = −
K
∑

k=1

N
∑

i=1

τki log(τki). (2.31)

CK is a classification likelihood term andEK measures the overlap between the differ-
ent components.τki again denotes the component posterior as introduced in equation
Eq. (2.17).

Based on Eq. (2.29) the NEC is defined as

NEC(Θ, K) =
EK

LK − L1

. (2.32)

A small value for NEC(Θ, K) is obtained for models which capture strong groupings in
the data and the clusters are well separated. Since the NEC has been specifically designed
for mixture model selection in clustering, in the followingit is used as the model selection
criterion of choice.

Alternative approaches for model selection include stability-based measures (e.g. [12, 103]),
methods based on the classification likelihood [16], integrated complete likelihood [15,
16], Fisher information matrices [197] or methods based on random projections [50]. Re-
cently Bayesian approaches for selecting the number of components have received some
attention. These methods incorporate changes inK as an integral part of the parame-
ter estimation, either as part of a MCMC procedure [152] or bymodeling the prior over
the mixture weightsP (π) as an stochastic process, in particular the Dirichlet process
prior [48, 49, 126].

2.3.2 Clustering Evaluation

One possible setup for the validation of a clustering methodis to compute the clustering
in an unsupervised manner, and then contrast the cluster labels with the true, known class
labels of a given data set. A clustering is given by a vectorc = (c1, ..., cN) and analogously
the true labelst = (t1, ..., tN), with ci, ti ∈ 1, ..., K . Since the mapping of clusters to
classes is unknown, we cannot comparec andt directly. Instead, we consider all ordered
pairs of samplesxi, xl, i > l and count whether the clustering correctly assigns the same
or different labels. This leads to the number of true positives (TP) as

TP =

N
∑

i=1

N
∑

l=i+1

δ(ti = tl)δ(ci = cl),

21



Chapter 2 Finite Mixture Models

i.e. all pairs of samples where both the true labels and the cluster labels are the same forxi

andxl. By the same reasoning we obtain the false positives (FP)

FP =
N
∑

i=1

N
∑

l=i+1

δ(ti = tl)δ(ci 6= cl),

the true negatives (TN)

TN =

N
∑

i=1

N
∑

l=i+1

δ(ti 6= tl)δ(ci 6= cl)

and the false negatives (FN)

FN =

N
∑

i=1

N
∑

l=i+1

δ(ti 6= tl)δ(ci = cl).

Based on these quantities we can now compute the standard sensitivity, specificity and
accuracy measures as

Sensitivity=
TP

TP + FN
,

Specificity=
TN

TN + FP
,

and

Accuracy=
TP + TN

TP + FP + TN + FN

The sensitivity measures the fraction of comparisons wherethe clustering correctly as-
signed the same label, the specificity give the same for the correct assignment of unequal
labels. The accuracy combines the two measures by given the total fraction of comparisons
where the clustering matches the true labels.

2.3.3 Handling of Missing Data

Missing values are an issue which needs to be addressed for many real world data sets.
If there are samples where a majority of the values are missing a drastic approach would
be to excise them from the data set. However, even samples with many missing values
may still retain some useful information and particularly in the case that there is little
data, simply discarding samples might be wasteful. Anotherapproach are so calleddata
imputationtechniques (e.g [88, 112, 144, 173]) where the missing values are replaced with
values computed from the observed data and subsequently thedata set is treated as being
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2.3 Mixture Models for Clustering

complete. This however can introduce unwanted biases into the results, if an unsuitable
imputation method is chosen [4]. In context of probabilistic models for clustering, this
problem can be circumvented by explicitly accounting for missing data in the distributions
used [161]. For discrete distributions this amounts to simply introducing a dedicated noise
symbolm into the alphabet, i. e.Σ = Σ ∪ m For normally distributed, continuous data,
handling of missing data is equivalent by re-defining the data range asR ∪ m. Then each
atomic distribution inP (xi|θk) is modified to assign some fixed probabilityP (m) to the
missing symbol, i.e.

P (xij |θkj) =

{

P (xij |θkj) if xij 6= m

P (m) otherwise.

The probability of the missing symbolm has to be specifieda priori and does not change
during the parameter estimation. This scheme has the effectthat the missing values will
yield the exact same probability under all components and therefore the contributions to
the clustering will cancel out.

2.3.4 Dealing with Noisy Data Sets
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Figure 2.7: Data set with two clusters and 20% noisy samples.

Noise in the data is another common problem when dealing withreal word data sets es-
pecially in bioinformatics. An example of a data set with twoclusters (red and blue) and
uniform noise (green dots) is shown in Fig. 2.7 for two–dimensional data(X1, X2). When
attempting to fit a two component normal mixture to this data set, the noise will have a
detrimental effect on the learned parameters. This can be seen in the density plot in the
left part of Fig. 2.8. Here both components were basically merged due to the influence of
the noise. One technique which is often useful in addressingthis problem, is to explicitly
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Chapter 2 Finite Mixture Models

account for noise samples in form of dedicated, uniform noise components. This leads to
the mixture

K−1
∑

k=1

πkP (xi|θk) + πKU(xi),

where theK ’th component is a naı̈ve Bayes uniform distribution overX. The boundaries
of each uniform distribution, as well as the fixed weightπK are specifieda priori.

In the example, the addition of a noise component over the range of values observed in
the data leads to the model on the right in Fig. 2.8. Here both clusters have been captured
correctly. It should be noted that for this example the true distribution of the noise was
indeed uniform and therefore the noise component provided aperfect fit. However uniform
noise component retain their usefulness also for the situation where the true distribution of
the noise is unknown [8, 84].
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Figure 2.8: Left: Mixture estimates on the noisy data set for a two component mixture.
Right: Mixture estimates on the same data set with the addition of uniform noise compo-
nent.

Another technique to reduce the impact of noise in the data isdeterministic annealing[157].
In deterministic annealingthe assignment of samples to components by the component
posterior Eq. (2.17) during the EM procedure is shifted toward the uniform distribution.
The shift is reduced gradually over successive iterations until the algorithm continues nor-
mally. This has the effect of potentially avoiding poor local maxima in the likelihood. The
procedure can be seen as special case of asimulated annealingsetup [91].

2.4 Bayesian Mixture Models

Bayesian statistics deal with the integration of prior knowledge into the process of inference
over a data set [63]. This prior knowledge decreases uncertainty about the model param-
eters and causes a regularization of the parameter estimates. The inclusion of prior expert
knowledge for a specific application can also help to achievemore meaningful results. The
former is realized in the Bayesian framework by new parameter estimators which take prior
knowledge into account. An example for the latter will be described in chapter 6.
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2.4 Bayesian Mixture Models

This prior knowledge comes in form of prior distributionsP (Θ|M) over the model param-
eters whereM is the model class, i.e. the number of components of the mixture. The joint
likelihood ofD andΘ is given by

P (D, Θ|M) = P (D|Θ, M)P (Θ|M) (2.33)

with the mixture likelihood again given by

P (D|Θ, M) =

N
∏

i=1

K
∑

k=1

πk

p
∏

j=1

P (xij|θkj) (2.34)

and the parameter prior

P (Θ|M) = P (π)
K
∏

k=1

p
∏

j=1

P (θkj). (2.35)

This means that due to the independence between parameters,the prior for the whole mix-
ture decomposes into the product of prior terms for each individual parameter inΘ. Details
for the individual priors will be given in the following section.

The parameter estimation task is then to find theΘ which maximizes the joint likelihood.
Thesemaximum a posteriori(MAP) parameterŝΘ are given by

Θ̂ = argmax
Θ

P (D, Θ|M).

That is,Θ is estimated with the value in the mode of the joint likelihood of D andΘ. A
distinct advantage of MAP estimation is that it can be straightforwardly integrated into the
EM framework and that all convergence results mentioned in section 2.2 still apply. The
objective function of the MAP EM is obtained by substitutingEq. (2.33) into Eq. (2.18)
(see section 2.4.2).

It must be stressed that the approach taken here is not fully Bayesian in that we do not
evaluate the marginal probability of the data. Rather the approach taken is equivalent to a
penalized maximum likelihood estimation.

One problem with the full Bayesian approach is that the marginal cannot be computed ana-
lytically due to the incomplete data setting, although approximations exist [31]. Alternative
approaches for the evaluation of the marginal likelihood are Markov chain Monte Carlo
(MCMC) sampling techniques [155] which sample directly from the posterior. This class
of methods includes techniques such as Gibbs and importancesampling [30, 71, 135, 151].
While properly applied these methods are fairly accurate, the lack of efficiency often limits
their practical usability for real world data sets. Also, variational methods [131, 190] can
be applied. These types of approaches define tractable bounds on the likelihood function
and operate by maximizing these bounds rather than the likelihood directly.

One important advantage of the MAP approach is that it allowsthe calculation of the
posterior distribution of a modelM and the corresponding MAP parametersP (M, Θ̂|D),
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Chapter 2 Finite Mixture Models

i.e. the distribution over different modelsM, Θ̂ given data setD. The model posterior is
obtained byBayes ruleas

P (Θ̂, M |D) =
P (D|Θ̂, M)P (Θ̂, M)

P (D)
=

P (D|Θ̂, M)P (Θ̂|M)P (M)

P (D)
, (2.36)

where the model priorP (M) is a penalizing factor for model complexity (see chapter 3 for
more details). Eq. (2.36) can be simplified to

P (Θ̂, M |D) ∝ P (D|Θ̂, M)P (Θ̂|M)P (M). (2.37)

This is an important simplification as it allows us to score differentM without having to
evaluate the termP (D) which would require integration over all possible models. The
parameter estimation task can then be stated to find the modelM which maximizes the
model posterior for a given data setD.

2.4.1 Conjugate Priors

The standard choices for parameter priorsP (θkj) are the respective conjugate priors for
the distributions inΘ. A prior overθkj defines a distribution over the parameter space of
θkj . The prior distributions are parameterized by hyperparameters. A conjugate prior has
the property that the posteriorP (θkj|D) has the same distribution as the prior, but with
hyperparameters updated according to the data.

The conjugate prior for discrete distributions is the Dirichlet distribution. The Dirichlet
distribution defines a density over the space of stochastic vectorsφ with dimensionM . The
distribution is parameterized by a vector of hyper-parametersα = (α1, ..., αM), αs > 0.
The density function is given by

P (φ|α) =
Γ(
∑M

s=1 αs)
∑M

s=1 Γ(αs)

M
∏

s=1

φαs−1
s , (2.38)

whereΓ is the Gamma function [1]. Fig. 2.9a) shows an example Dirichlet density for the
three-dimensional simplex with parametersα = (1.5, 1.5, 1.5). The mode of the density is
achieved for uniform discrete distributions. For an example of modeling prior knowledge
using the Dirichlet distribution, refer to chapter 6.2.

The conjugate prior for the univariate normal distributionN(µ, σ2) is given by the Normal-
Inverse-Gamma prior. This prior takes the form

P (µ, σ2|µp, κp, ςp, ν
2
p) = P (µ|µp, σ

2/κp)P (σ2|ςp, ν2
p), (2.39)

where the first term on the right side is the normal density (Eq. 2.4) for meanµp and
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Figure 2.9: a) Density plot for the Dirichlet distribution withM = 3 and α =
(1.5, 1.5, 1.5) b) Normal-Inverse-Gamma density plot forµ and σ2 with parameters
µp = 2, κp = 0.5, ςp = 2, νp = 2

varianceσ2/κp and the second term is the Inverse-Gamma distribution givenby

P (σ2|ςp, ν2
p) =

ν2
p

ςp

Γ(ςp)
(σ2)−ςp+1 exp

(

− ν

σ2

)

. (2.40)

An example for the prior density overµ andσ2 defined by this prior is shown in Fig. 2.9b).
It can be seen that the density is zero for very small values ofσ2. This helps alleviate the
problem of vanishing variances during the EM parameter estimation (see section 2.2.4).

2.4.2 Parameter Estimators

The MAP estimators differ from the ML estimators given in section 2.2.3 by the contri-
bution of the parameter priors. Substituting the joint likelihood Eq. (2.33) into the EMQ
function Eq. (2.18) leads to partial derivatives of the Lagrangian for the MAP estimators
for π for the conjugate Dirichlet prior

δQ

δπk

[

K
∑

k=1

N
∑

i=1

τki log πk + log
Γ(
∑K

k=1 αk)
∑K

k=1 Γ(αk)

K
∑

k=1

(αk − 1) log πk + λ(

K
∑

k=1

πk − 1)

]

=

1

πk

(
N
∑

i=1

τki + (αk − 1)) + λ = 0,

δQ

δλ

[

K
∑

k=1

πk − 1

]

= 0.
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Similarly to the derivation of the MLE case (section 2.2.3),solving forλ yields

λ = −(N + |α| − K)

and consequently the MAP estimator forπ under the Dirichlet prior as

π̂k =

∑N

i=1 τki + αk − 1

N + |α| − K
(k = 1, ..., K). (2.41)

Thus, the estimator for a discrete distributionθkj = φkj with φ = (φkj1, ..., φkjM) over
someM symbol alphabetΣ is given by

φ̂kjs =

∑N
i=1,

xij=Σs

τki + αk − 1

∑N

i=1 τki + |α| − M
, (s = 1, ..., M). (2.42)

Mathematically, the Dirichlet MAP estimators are equivalent to adding|α| observations to
the data set, where each symbol is observed with frequencyαr. This gives a direct intuition
on how the prior knowledge expressed by the prior influences the parameter estimation in
the MAP setting.

For a normal distributionθkj = (µkj, σ
2
kj) under the Normal-Inverse-Gamma prior, the

MAP estimates for the meanµkj parameter are given by

µ̂kj =

∑N

i=1 τkixij + κpµp
∑N

i=1 τki + κp

, (2.43)

that is the prior contribution addsκp observations with valueµp.

For the varianceσ2
kj MAP estimates are obtained as

σ̂2
kj =

∑N

i=1 τki(xi − µ̄kj)
2 + ς2

p + κpnk

κp+nk
(µ̄kj − µp)

2

∑N

i=1 τki + νp + 3
. (2.44)

with nk =
∑N

i=1 τki andµ̄kj given by the ML estimator forµkj in Eq. (2.23). See [53] for
details on the derivation.
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2.5 Partially-supervised learning

2.5 Partially-supervised learning

Clustering is performed in anunsupervisedsetup. This means that the assignment of sam-
ples to clusters is unknowna priori. A variant of this problem is the case where for a
subset of samples there is information about the cluster memberships. A biological exam-
ple for such a situation would be a set of protein sequences some of which have functional
annotations. This is referred to as apartially-supervised(or alsosemi-supervised) learn-
ing [29, 160] problem. This information usually takes the form of positive (must-link) or
negative (must-not-link) constraints for pairs of samples.

Figure 2.10: Example of constraints arising from labeled samples. The data is two–
dimensional with features x and y. Red edges between points indicate positivemust-link
constraints, blue edges negativemust-not-linkconstraints.

Fig. 2.10 shows an example for the constraints implicit in the labeling of data samples.
Red edges between points representmust-linkconstraints, where each red edge stands for
a different label, blue dashed edgesmust-not-linkconstraints. Each positive constraint
implies negative constraints to all data points constrained to different clusters.

A simple way to implement positive constraints in the mixture case is to fix the assignment
of samples with positive constraints to the same component in the component posterior
(Eq. (2.17)). That is, for a labeled samplexi with label l this meansτki = 1 for k = l

and0 for all otherk. This binds the contribution of the sample to parameter estimation
to a specific component. This setup can also be thought of as a point in the continuum
between complete data and incomplete data learning tasks. For the former, the assignment
of samples to components is known (i.e. the posterior takes the form given above). For the
latter, the assignment of samples to components is unknown and the EM algorithm needs
to be used to arrive at estimates forΘ.

This simple modification described above gives rise to the partially-supervised EM algo-
rithm for estimation ofΘ with hard positive constraints. More complex variants of the
partially-supervised setup have been explored in the literature, including negative con-
straints and soft constraints [38, 102, 167].
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Chapter 3

Context-specific Independence Mixture
Models

The concept ofcontext-specificindependence (CSI) arose in the setting of Bayesian net-
works. It should be kept in mind that finite mixture models canbe seen as a special case of
a Bayesian network with constrained graph topology (see section 2.1.2).

Bayesian networks define a structured decomposition of the joint distribution of a col-
lection of RVs. Such a decomposition is required, since the full-conditional distribution
(where each RV is dependent on all the others) has a number of parameters exponential in
the number of RVs and in general cannot be estimated from finite samples. It is therefore
crucial to limit the model complexity (loosely the number offree parameters) by mak-
ing assumptions about structural regularities in the jointdistribution. In case of Bayesian
networks one such assumption would be the Markov property, i.e. that each RV is only
dependent on its parents in the network structure. In a finitedata setting, attempting to
learn too complex a model will lead to overfitted parameters and spurious results. A good
model can then be characterized as being simple enough to allow robust inference while at
the same time capturing the most relevant trends in the data.

The central idea of the CSI formalism is to increase robustness by making use of regular-
ities in the parameters of a model to reduce and adapt model complexity to the degree of
variability observed in the data.

3.1 Prior Work

This notion of reducing model complexity and enhancing inference by capturing additional
structure in the model parameters has received considerable attention in the Bayesian net-
works community. In addition to CSI [22, 32, 57] this includes approaches such assimi-
larity networks[82], multinets[62], asymmetric representations for decision making [172],
decision trees [21, 70] and the application of probabilistic Horn rules [145].

The first application of CSI in the context of mixture models was using Bayesian CSI
mixture models for clustering gene expression data [10]. The main difference between [10]
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and the model we are going to introduce in this chapter lies inthe formulation of CSI used.
[10] used the so calleddefault tables[57], which allows for far less flexibility in the CSI
structure than our formulation (see section 3.3 for details). This new CSI formulation has
profound impacts on the usefulness of the model for practical data analysis.

We previously applied our CSI mixtures for the analysis of attention deficit hyperactivity
disorder patient data [64]. However, this work did not take advantage of the Bayesian
framework and the structure learning was done by a fairly simplistic AIC-based clustering
of model parameters following the EM estimation.

3.2 Context-specific Independence (CSI)

Formally,statistical independencefor two RVsXj andC is defined as

P (Xj|C) = P (Xj). (3.1)

In the mixture framework, each of theX1, ..., Xp is dependent on the component RVC
which takes valuesk in the set of component indices(1, ..., K). The dependency onC
is then expressed by the component-specific parametersθkj . This leads to the mixture
distribution familiar from Eq. (2.1) and (2.2)

P (xi|Θ) =
K
∑

k=1

πkP (xi1|θk1)P (xi2|θk2)...P (xip|θkp), (3.2)

where the sum goes over the possible values ofC, i.e. (1, ..., K). Intuitively, this depen-
dence on the component variableC follows the assumption that a feature carries regular-
ities which help to characterize and discriminate the components. Conversely, a feature
which does not contain such information isuninformativefor the purpose of characterizing
the components and thereforeindependentof C. This is not an uncommon situation espe-
cially for exploratory data analysis where the relevance ofeach feature for the clustering is
not knowna priori. If we assume without loss of generality that featureX1 is independent
of C, i.e. P (xi1|θk1) = P (xi1) for all k ∈ (1, ..., K) we have

P (xi|Θ) = P (xi1)

K
∑

k=1

πkP (xi2|θk2)...P (xip|θkp). (3.3)

The kind of model in Eq. (3.3), where one or several features have been set to be indepen-
dent of the component variable, has been referred to asselective naive Bayesmixtures [10].
Essentially, featureX1 equally contributes to the likelihood of each component andthere-
fore has no impact on the component membership posterior (Eq. (2.17)) or the cluster
assignments.

In between the two extremes of full in– or dependence onC is the case where some feature,
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3.3 CSI for Mixture Models

sayX1, is informative for characterizing and discriminating subsets of components. For
instance a feature may discriminate two rather broad categories of clusters whereas other
features contain information for division into further subcategories. In such a case, the
natural parameterization is to identify a separate set of parameters with each subset of
components, i.e. thecontextthe feature discriminates.

This notion ofcontext-specificindependence is formalized as an extension to the conven-
tional mixture framework in the next section.

3.3 CSI for Mixture Models

In case of conventional mixture models theconditional independenceassumption between
components means that for each value of the component variable C, a separate set of
parametersθkj needs to be specified. In the CSI case, several components mayshare
parameters in a feature, depending on different contexts, i.e. subsets ofC.

a)

X1 X2 X3 X4

C1

C2

C3

C4

C5

b)

X1 X2 X3 X4

C1

C2

C3

C4

C5

Figure 3.1: a) Model structure for a conventional mixture with 5 components and four
RVs. Each cell of the matrix represents a distribution in themixture and every RV has an
unique distribution in each component.b) CSI model structure. Multiple components may
share the same distribution for a RV as indicated by the matrix cells spanning multiple
rows. In exampleC2, C3 andC4 share the same distribution forX2.

From the structure matrix for a conventional mixture shown in Fig. 3.1a) this leads to a
CSI structure shown in Fig. 3.1b). Again, each cell of the matrix represents an uniquely
parameterized distribution but several components may share parameters for certain fea-
tures. This means that for exampleC1 andC2 are represented by the same distribution for
X1 and all components share the same distribution forX4. It should be noted that the vi-
sual structure matrix representation used here is a simplification since it can only represent
groups which are contiguous in a column. However, for the sake of the example this is
sufficient and if full generality is required, the differentgroups in the matrix can be color
coded (see section 3.6.1).

In addition to the reduction in model complexity, the structure matrix also helps to facilitate
a cluster analysis by giving an explicit, high-level overview of the regularities in the data
which characterize the different components (i.e. clusters). For instance, in the example
one can see that for featureX1 components(C1, C2) and(C4, C5) share characteristics and
are represented by one set of parameters. On the other hand componentC3 does not share
its parameterization forX1. Moreover, if components share the same group in the CSI
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structure for all positions, they can be merged thus reducing the number of components in
the model. Therefore learning of a CSI structure can amount to an automatic reduction of
the number of components as an integral part of model training.

We will further discuss the practical implications of the CSI structure for cluster analysis
in section 3.6.1.

The default tablerepresentation of CSI used in [10] assumes that for each column there
is only a single group in the CSI matrix with size larger than one. In the example, this
means that the structures ofX2, X3 andX4 can be represented asdefault tables, whereas
X1 cannot. As the number of components increases, so does the restrictions on structure
space imposed by thedefault tablerepresentation.

The more general formulation of CSI structures used in this work allows for the capture of
more and richer regularities in the data, which enhances theusefulness of CSI for facilitat-
ing data analysis. This will become apparent when applying the model to biological data
sets (esp. chapter 7.

X1 X2 X3 X4

C1 θX1|g11

θX2|g21
θX3|g31

C2 θX3|g32

C3 θX1|g12
θX2|g22

θX3|g33
θX4|g41

C4 θX1|g13

θX3|g34

C5 θX2|g23
θX3|g35

Figure 3.2: CSI parameter matrix for the structure shown in Fig. 3.1a).

Formally, we define the CSI mixture model as follows: For the set of component indexes
C = {1, .., K} and variablesX1, ..., Xp, let G = {gj}(j=1,...,p) be the CSI structure of the
modelM . Thengj = (gj1, ...gjZj

) whereZj is the number of subgroups forXj and each
gjr, r = 1, ..., Zj is a subset of component indexes fromC. That is, eachgj is a partition
of C into distinct subsets where eachgjr represents a subgroup of components which share
the same distribution forXj . The CSI mixture distribution is then obtained by replacing
P (xij |θkj) with P (xij|θXj |gj(k)) in (2.1) wheregj(k) = gjr such thatk ∈ gjr.

This yields the mixture distribution as

P (xi|Θ) =

K
∑

k=1

πk

p
∏

j=1

P (xij |θXj |gj(k)), (3.4)

where accordinglyΘ = (π, θX1|g1
, ..., θX1|gZ1

, ..., θXp|g1
, ..., θXp|gZp

) is the model parame-
terization.
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3.3.1 CSI from Different Perspectives

In this section we revisit the two different perspectives onmixture models described in
section 2.1.2 (Bayesian networks and HMMs and examine how the adoption of the CSI
formalism is reflected in these models.

CSI in Bayesian Networks

While the finer-grained statements of CSI cannot be represented in the canonical Bayesian
network graph [22], they become apparent by regularities inthe CPT tables. Fig. 3.3 shows
again the example network graph and the CSI CPT for featureX1.

a) b)

C X2

1 θX1|g11

2 θX1|g11

3 θX1|g12

4 θX1|g13

5 θX1|g13

Figure 3.3: a) Bayesian network graph for a mixture distribution with four features.X1−
X4 are conditionally independent given the component indicator C. b) CPT for feature
X1. The table contains parameters according to the CSI structure shown in Fig. 3.1a).

It can be seen that for contextsc ∈ ((1, 2), (3), (4, 5)) X1 has a specific distribution . Also,
the relation to the corresponding CSI mixture parameter matrix Fig. 3.2b) is obvious.

CSI in Hidden Markov Models

From the perspective of an HMM, the CSI structure amounts to atying of state emission
and transition distribution parameters. The ideas of reducing model complexity in HMMs
by representing several states with the same distribution [159, 183], and of adapting the
model complexity by topology learning [178], have receivedsome attention in the litera-
ture.

The HMM topology for the CSI structure matrix in Fig. 3.1b) isshown in Fig. 3.4. Here
boxes around states imply a tying of the corresponding emission and transition parame-
ters.
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Figure 3.4: HMM topology with state parameter tying equivalent to the five component
CSI mixture from Fig. 3.1.

3.4 Bayesian CSI Mixtures

To extend the model posterior (Eq. (2.37)) to the CSI case, the model priorP (M) is set as
a prior term over the CSI structure. Again we have the model posterior Eq. (2.37)

P (Θ̂, M |D) ∝ P (D|Θ̂, M)P (Θ̂|M)P (M)

with P (D|Θ̂, M) given by adaptation of Eq. (2.34) for CSI mixtures. The priorover the
CSI structureP (M) serves as a regularizer for the structure learning similar to the pa-
rameter priors when computing parameter estimates. Any prior knowledge about the CSI
structure of a given model can be encoded in this prior. In general though, there exists no
such prior knowledge and the prior only captures a general preference for a less complex
model. For such a priorP (M) we adopted the factored form

P (M) ∝ P (K)P (G), (3.5)

where theP (K) is the prior over the number of components andP (G) is the model struc-
ture prior defined as

P (K) = γK , P (G) =

p
∏

j=1

ωZj (3.6)

whereγ, ω < 1 are hyperparameters,p is the number of dimensions, K is the number of
components andZj is the number of groups in the CSI structure of featureXj. That is,
both prior terms will decrease for largerK andZj (due toγ, ω < 1) and thereby penalize
complex models. Therefore by means of the prior a bias towards smaller models and
simpler structures is introduced into the model posterior.The values ofγ andω need to
be chosen a priori and can be considered to adapt the strengthof the preference for a less
complex structure. It should be noted that, of the two,ω is the more important hyper-
parameter as it drives the feature-wise structure learning, whereasγ only contributes to the
posterior for structures where entire components are merged together in the structure. In

36



3.5 Structural EM Algorithm

section 4.3.1, we give a simple data-driven heuristic to choose the hyper-parameters for a
given data set.

3.5 Structural EM Algorithm

In the previous sections, we introduced the CSI formalism, and motivated it by describ-
ing both its desirable properties for robustness in parameter estimation and facilitation of
cluster analysis. In order to harness these advantages in practice, a reliable way to learn
such a CSI structure from data is required. Our structure learning method of choice is the
structural EM algorithm (sEM) [55, 56]. The sEM framework isan extension of the classic
parametric EM (section 2.2) in which the unknown CSI structure is inferred based on the
expected sufficient statistics of the data given the structure.

3.5.1 General Formulation

Before describing the structure learning for CSI mixtures in detail, we give the extensions
to the parametric EM which give rise to sEM generically. Thisentails adapting the EMQ
function (Eq. (2.6)) for the CSI case. In addition to the parametersΘ, the structure learning
requires assessment of a structureG as part of a modelM . We consider cases where the
objective scoring metric takes the form

S(Θ, M) = log P (D|Θ, M) − Pen(Θ, M), (3.7)

where Pen(Θ, M) is a penalty function based on the current parametersΘ and the model
M . This formulation includes classic model selection criteria such as BIC(Eq. (2.27)) or
AIC (Eq. (2.28)) as well as the Bayesian mixture model posterior Eq. (2.37).

In analogy to the parametric EM, the sEM objectiveQ-function is the expectation of the
scoring metric

Q(Θ, M ; Θt−1, M t−1) = E[log P (D, H|Θ, M)− Pen(Θ, M)|D, Θt−1, M t−1]. (3.8)

The expectation can be computed by taking the integral over all possible values of the
hidden datah ∈ H andP (h|D, Θi−1, M i−1) is the distribution of the hidden data.

E[log P (D, H|Θ, M)− Pen(Θ, M)|D, Θt−1, M t−1] =
∫

h∈H

log(P (D, h|Θ, M) − Pen(Θ, M)) P (h|D, Θt−1, M t−1) dh. (3.9)

In analogy to the parametric EM procedure [128], it can be shown [55] that, by choosing
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model and parameters which maximize theQ function

(Θt, M t) = argmax
Θ,M

Q(Θ, M ; Θt−1, M t−1),

the increase in theQ function in each step, i.e.

Q(Θt, M t; Θt−1, M t−1) > Q(Θ, M ; Θt−1, M t−1)

also guarantees that the score itself increases

S(Θt, M t) > S(Θt−1, M t−1).

This holds until convergence is reached [55] and there is no more change in the score, i.e.
S(Θt+1, M t+1) = S(Θt, M t).

3.5.2 Structural EM for Bayesian CSI Mixture Models

The task of learning a CSI model from data consists of assigning values to the group struc-
ture variablesgj and estimating parametersΘ for the induced distributions.

We adopt the Bayesian approach described in section 3.4 for the scoring function, that is
different models are scored by the model posterior distribution (Eq. (2.37))

P (Θ̂, M |D) ∝ P (D|Θ̂, M)P (Θ̂, M) = P (D|Θ̂, M)P (Θ̂|M)P (M)

where againP (D|Θ̂, M) is the likelihood based on the dataD (Eq. (2.34)),P (Θ̂|M) is the
parameter prior (Eq. (2.35)),P (M) is the prior over the model structure (Eq. (3.5)) and the
Θ̂ are the MAP parameter estimates (Eq. (2.4)).

From Eq. (3.7) the sEMQ function for the mixture case is given by

Q(Θt, M t; Θt−1, M t−1) = E[log P (D|Θ, M) − log P (Θ, M)|Θt−1, M t−1]. (3.10)

In the next section the parameter estimators for the sEM algorithm will be derived by taking
derivatives of Eq. (3.10) with respect to the model parameters.

3.5.3 Structure Parameter Estimators

Using Eq. (2.18) and Eq. (3.4) we can write the CSIQ function Eq. (3.10) as

Q(Θ, M ; Θi−1, M i−1) =

K
∑

k=1

N
∑

i=1

τki

(

log πk +

p
∑

j=1

log P (xij|θXj |gj(k))

)

+ log P (Θ|M) + log P (M). (3.11)
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The estimators forπ remain unchanged from Eq. (2.41). When taking derivatives with
respect to someθXj |gjr

, the difference to the conventional MAP case is that in the sum
overK there are contributions from allk ∈ gjr. After substituting the priorlog P (Θ|M)

(Eq. (2.35)), taking the derivative with respect to a givenθXj |gjr
and setting to zero we

have

δQ

δθXj |gjr

[

K
∑

k=1

N
∑

i=1

τki

(

log πk +

p
∑

j=1

log P (xij |θXj |gj(k))

)

+

log P (π) +
K
∑

k=1

p
∑

j=1

log P (θXj |gj(k)) + log P (M)

]

= 0.

This can be simplified by dropping terms independent of feature j to

δQ

δθXj |gjr

[

K
∑

k=1

N
∑

i=1

τki log P (xij|θXj |gj(k)) +

K
∑

k=1

log P (θXj |gj(k))

]

= 0. (3.12)

The general formulation in Eq. (3.12) can be adapted for specific atomic distributions
θXj |gjr

by substituting the density functionP (xij|θXj |gj(k)) and the conjugate prior den-
sity P (θXj |gj(k)). For instance, letθXj |gjr

be a discrete distribution, i.e.θXj |gjr
= φgjr

=

(φgjr1, ..., φgjrM) with φgjr
being stochastic. For ease of reading, in the following we drop

the indexgjr from φgjr
, i.e. φgjr

= φ. Then the derivative of the Lagrangian with respect
to the elements ofφ andλ are

δQ

δφs

[

K
∑

k=1

N
∑

i=1

τki log φxij
+ log

K
∑

k=1

Γ(
∑M

s=1 αs)
∑M

s=1 Γ(αs)

M
∏

s=1

φαs−1
s + λ(

M
∑

s=1

φs − 1)

]

=

1

φs









∑

k∈gj(r)

N
∑

i=1,
xij=Σs

τki + (αs − 1)









+ λ = 0, (3.13)

δQ

δλ

[

M
∑

s=1

φs − 1

]

= 0. (3.14)

Analogously to the derivation of the ML (section (2.2.3)) and MAP (section (2.4.2)) es-
timators, the CSI mixture MAP estimators are obtained by solving the Lagrangian forφ
andλ. In this case we obtainλ = −(

∑

k∈gj(r)

∑N

i=1 τki + Zj(αs − M)) whereZj again
is the size of the current group structuregjr. Note that, due to the summation overM in
Eq. (3.14), the conditioning on a specific symbolΣs in Eq. (3.13) drops out of the sum over
N .

For discrete distributionsφ, the parameter estimators forφs and structuregjr is then given
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by

φ̂s =

(

∑

k∈gj(r)

∑N
i=1,

xij=Σs

τki

)

+ Zj(αs − 1)

∑

k∈gj(r)

∑N

i=1 τki + Zj(|α| − M)
(s = 1, ..., M). (3.15)

When contrasting Eq. (3.15) with the results for the MAP estimators in Eq. (2.42), it can be
seen that the estimator for a given CSI structure is obtainedby pooling, i.e. adding up, the
component posterior and prior contributions of all components in the group. This makes
intuitive sense when thinking of the model posteriorτki as the relative contribution of sam-
ple xi to the parameters of componentk. In order to obtain the parameters for the case
where components share the same distribution for a featureXj, we pool the contributions
of the components. This pooling of the posterior gives rise to theexpected sufficient statis-
tics of the data given the structure in the estimators. One important consequence of this
result is that once we have computed the model posterior for each componentk separately,
we can get estimates for all possible groupings in the CSI structure in an efficient manner
by pooling the posterior over subsets of components.

The estimators for a GaussianθXj |gjr
= (µgjr

, σ2
gjr

) = (µ, σ2) (again we drop the indices)
are obtained by a straightforward extension of the derivation given in [53]. First, we sub-
stitute the Gaussian (Eq. (2.4)) and and Normal-Inverse-Gamma prior Eq. (2.39) densities
into Eq. (3.12) to obtain

K
∑

k=1

N
∑

i=1

τki

[

log
1

σ
√

2π
exp

(

−(xij − µ)2

2σ2

)]

+

K
∑

k=1

log

[

1
√

(σ2/κp)2π
exp

(

− κp

2σ2
(µ − µp)

2
)

][

ν2
p

ςp

Γ(ςp)
(σ2)−ςp+1 exp

(

− ν

σ2

)

]

= 0.

(3.16)

Taking the derivative with respect toµ of Eq. (3.16) yields
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δQ

δµ
=
∑

k∈gj(r)

N
∑

i=1

τki

−2(xij − µ)

2σ2
+
∑

k∈gj(r)

κp2(µ − µp)

2σ2
= 0

�
2

σ2



−
∑

k∈gj(r)

N
∑

i=1

τkixij − τkiµ
∑

k∈gj(r)

κpµ − κpµp



 = 0

� −
∑

k∈gj(r)

N
∑

i=1

τkixij + µ
∑

k∈gj(r)

N
∑

i=1

τki + Zjκpµ − Zjκpµp = 0 (3.17)

Solving Eq. (3.17) forµ yields the MAP estimator

µ̂ =

∑

k∈gj(r)

∑N

i=1 τkixij + Zj(κpµp)
∑

k∈gj(r)

∑N

i=1 τki + Zjκp

. (3.18)

The estimator forσ2 is obtained analogously. From [53] the derivative with respect toσ

can be written as

δQ

δσ
=

∑

k∈gj(r)

∑N

i=1 τki + Zj(νp + 3)

σ
−

1

σ3





∑

k∈gj(r)

N
∑

i=1

τki(xij − µ̂)2 + Zj(ς
2
p +

κpnk

κp + nk

(µ̂ − µp)
2



 = 0

Solving forσ2 yields the estimator

σ̂2 =

∑

k∈gj(r)

∑N

i=1 τki(xij − µ̄)2 + Zj(ς
2
p + κpnk

κp+nk
(µ̄ − µp)

2)
∑

k∈gj(r)

∑N

i=1 τki + Zj(νp + 3)
, (3.19)

again withnk =
∑N

i=1 τki andµ̄kj given by the ML estimator forµ Eq. (2.23) for structure
gjr.

3.6 CSI Mixtures and Clustering

Now that the MAP estimators for CSI mixtures have been derived, we will discuss some
implications of the CSI formalism for practical data analysis and clustering.
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3.6.1 Interpretation of the CSI Structure

One advantage of the CSI extension for practical data analysis is the high-level overview of
the regularities found in the data. In order to illustrate this, consider the example structure
in Fig. 3.5. In this figure the structure is color coded. Within each column of the matrix
the same color indicates membership in the same group of the CSI structure. There are a

X1 X2 X3 X4 X5 X6 X7 X8

C1

C2

C3

C4

Figure 3.5: Example of a color coded CSI matrix for four components and eight features.

number of observations about the regularities which characterize the different components
in this model which can read directly from this structure matrix

• FeaturesX3, X6 andX8 are not informative for the clustering.

• The four components fall into two general categories (C1, C2) and (C3, C4). Features
X1 andX4 discriminate these general categories.

• C1 andC2 are subdivided into separate components by featureX5 and the same is
true for featuresX2 andX7 for componentsC3 andC4.

It should be stressed that this information is a direct outcome of the unsupervised learning
procedure (see section 3.5) and does not require any human intervention. This kind of
overview over the characteristics of the model is especially useful for data sets with many
features. There the detailed analysis of the regularities characterizing a cluster requires
considerable effort.

3.6.2 Feature Ranking

One typical problem during data analysis is to find which features contribute the most to
the discrimination of the components for a given model. While the CSI structure explicitly
captures features with do not contribute at all, a finer, quantitative ordering of the most
informative features is often useful. Such an ordering can be obtained by ranking the
features with an entropy-based score on the model parameters.

Probably the most common form of ranking would be to assign low ranks to features which
capture a high degree of variability between components. One way to formalize that would
be by the weighted symmetric Kullback-Leibler divergence KL of the parameters for a
given feature, i.e.

Score(j) =
K
∑

k1=1

K
∑

k2=k1+1

(πk1
+ πk2

)KL(θXj |gj(k1), θXj |gj(k2)). (3.20)
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This score will assign large values to features which strongly discriminate the components.
A ranking of features based on these scores in descending order will identify the most
informative features.

An alternative, more refined form of ranking would be to find features which characterize
a component (or a subset of components) against all other components. Such a ranking can
be obtained as follows. In order to quantify the relevance ofa featureXj for component
subgroupL, we assume a CSI structure in whichXj is discriminative for componentsL
versus the other components, i.e.Zj = 2 with gj1 = L andgj2 = {1, ..., K} \ L. Based
on this structure a component-specific parameter setθL and a parameter set for all other
componentsθother are constructed by doing a single sEM update (see section 3.5.3).

The score for featureXj and component inL is then given by

ScoreL,j = KL(θL, θother), (3.21)

where KL is again the symmetric relative entropy.
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Chapter 4

Structure Learning Algorithm

In order to make practical use the advantages of the CSI formalism for data analysis, a reli-
able way to estimate CSI structures from data is required. Inthis section we give details for
the CSI structure learning algorithm, discuss the combinatorial complexity and give results
for several strategies for running time improvement.

4.1 Algorithm Overview

The basic outline of the CSI structure learning algorithm for a given data setD is as fol-
lows

Step 1 Run parametric EM (section 2.2) to obtain modelM .

Step 2 Perform structural EM onM to obtain CSI structure.

The second step involves the scoring of possible CSI structures by their model posterior.
Several exhaustive and greedy strategies for searching thestructure space are discussed in
section 4.3.

4.2 Combinatorial Complexity

A naı̈ve approach to the CSI structure learning problem would require the scoring of each
possible structure by its model posterior. The space of possible structures for a single
feature is identical to all possible partitions of the component indices set1, ..., K and in-
creases exponentially withK. The exact number of possible structures can be computed
by the Bell numbersBK [2]. As an example for a single feature and ten components the
number of possible structures to be evaluated is given byB10 = 115, 975. For several
features the number of possible combinations is then also exponential in the number of
featuresp. For a given component numberK and number of featuresp this meansBp

K

possible structures in total.
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Therefore, exhaustive enumeration of all possible structures is infeasible in for most real-
world data sets and non-exhaustive search strategies over the structure space are required.

4.3 Structure Space Search Strategies

We considered the following search strategies over the space of possible CSI structures:

Full enumeration of all possible structures. This is only feasible for very small data
sets but it yields an useful benchmark for the performance ofthe other strategies. As
mentioned, the number of structures isBp

K , exponential in bothK andp.

Feature-wise enumeration of the possible structures. The structure is learned for each
featureXj separately and in each feature all possible structures are considered. The
number of structures isBKp, only exponential inK

Greedy, top down search For each feature the search is initialized with the full structure
matrix (i.e. all components have a unique distribution). Inan iterative fashion all
pairwise merges of groups in the current structure are scored and the one which yields
the best model posterior is retained for the next iteration.The maximal number of
structures the greedy procedure will score isO(K3p), i.e. cubic inK.

Greedy, bottom up search Similarly to the top down procedure, except that the initial
structure is the case where all components are in the same group. All possible splits
are scored to find the structure for the next iteration. The complexity of the search
space isO(K2p), i.e. quadratic inK.

The feature-wise, greedy learning of the CSI structure willconverge to the global optimum
of the model posterior in those cases where the optimal localstructuregj is identical to
the structure of the feature on the globally optimal structure. To put it differently, if the
globally best structure includes a locally suboptimal structure, the feature-wise procedures
will not return the global optimum.

Exhaustive structure enumeration will be infeasible for most real world data sets. This
means one of the greedy strategies will have to be applied. Therefore it is important to
evaluate and quantify the difference in performance with respect to the global optimum of
the model posterior as obtained by the complete enumeration(see section 4.3.2).

4.3.1 Choosing the Structure Prior

The first step of the structure learning procedure for a givendata set is the choice of the
hyperparametersγ andω in the structure priorP (M) (Eq. (3.5))

P (M) ∝ P (K)P (G).

In generalP (M) encodes the preference for a simpler model. This is contrasted in the
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model posteriorP (Θ, M |D) with the data likelihoodP (D|Θ, M) (Eq. (2.34)), which in-
creases with model complexity. One way of thinking about therelation between prior and
likelihood is that the prior acts as a regularizer of the likelihood to prevent overfitting by
including too many parameters in the model. From the perspective of the CSI structure
learning task, the choice of the hyper parameterω of the structure priorP (G) expresses
the preference for a simpler, less complex structure. One way of looking at this, is that
ω puts a threshold on the decrease in likelihood that is acceptable in exchange for a less
complex structure. Since the likelihood of a data set is dependent on the sample sizeN
the same must be true forω. To make this explicit, consider the decision rule between a
modelM0 with MAP parameterŝΘ0 and a candidate modelM, Θ̂ during an iteration of
the learning algorithm. Assume thatM0 andM are identical except for a single merge in
agj. This merge is accepted if

P (Θ̂0, M0|D)

P (Θ̂, M |D)
=

P (D|Θ̂0, M0)P (Θ̂0, M0)

P (D|Θ̂, M)P (Θ̂, M)
≤ 1.

Under the assumption of uniform parameter priors, by substituting Eq. (2.34) and Eq. (3.5)
and canceling terms this equals

N
∏

i=1

P (xi|Θ̂0)

P (xi|Θ̂)
ω ≤ 1.

Each of theN fractions gives the decrease in likelihood of axi for moving fromM0 to the
less complex modelM . That is, we can think of each fraction as(1 + δi) whereδi is the
relative decrease in likelihood forxi. Under the simplifying assumption that all of theδi

are equal, i.e.δi = δ, we can now choose aδ as themaximal relative decreasein likelihood
we are willing to accept in exchange for a less complex model.Thenω is given by

ω = ω(δ, N) =
1

(1 + δ)N
. (4.1)

It is important to stress that at this point all we have done isto replace the choice ofω with
the choice ofδ. However this is advantageous for two reasons: First, the formula given
above explicitly shows the impact of the data set sizeN . Secondly,δ has a straightforward
interpretation based on the difference in likelihood between two models. As such it is
easier to make an informed choice forδ based on the specific application.

The choice ofγ is less crucial for the learning procedure.γ parameterizes the prior over
the number of componentsP (K). This prior has an impact on the posterior of models with
different numbers of components. The effective number of components in a model changes
if two or more components are in the same group for all features. The value ofγ can be
seen as an additional bias for a smaller number of componentsin the model posterior. This
is useful for applications where the number of resulting clusters should be more strictly
penalized. Otherwiseγ can be chosen as the neutral, uniform prior withγ = 1.
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4.3.2 Search Strategy Evaluation

In order to assess the performance of the different strategies, we randomly created models
of different sizes and compositions. We considered models with Gaussian, discrete and
both Gaussian and discrete features. The number of components varied byK ∈ (2, 3, 4)

and the number of features byp ∈ (2, 3, 4, 5). For each model a CSI structure was chosen
uniformly and model parameters were sampled according to the structure (see appendix D
for details on random model generation). A data set of size 3000 was sampled from each
generating model and MAP estimation of a conventional mixture of the appropriate size
was performed to obtain the root model. The experiment was repeated 4800 times for each
of the three data types (discrete, Gaussian, discrete & Gaussian). The different structure
learning approaches were applied on different copies of this root model and the quality of
the resulting structures was assessed. Here, the model posterior obtained with the exhaus-
tive enumeration was used as benchmark, as this procedure yields the global maximum of
P (M |D) for a given data set and root model.

All Gauss discrete Gauss & discrete

Feature-wise enum. 99.29 % 99.75 % 99.01 % 99.08 %
Top down 99.26 % 99.75 % 98.99 % 99.02 %
Bottom Up 65.57 % 58.52 % 72.85 % 65.88 %

Table 4.1: Global optimum obtained for non-exhaustive search strategies. It can be seen
that the feature-wise enumeration and top-down local searches perform as well as the full
enumeration in most cases.

The results of the comparison with the full structure enumeration for the different types
of generating models are shown in Tab 4.1. It can be seen that for all data types both the
feature-wise enumeration as well as the top down procedure attained the globally optimal
structure in almost all cases. These results indicate that the vast reduction in problem
complexity that is obtained by fixing the feature order during structure learning does not
carry too heavy a price with regards to the quality of the learned structures. The results
for the different types of generating models are fairly consistent, with the exception of
the bottom-up procedure which performed better for Gaussian than for discrete generating
models. As one would expect, the results for heterogeneous generating models with both
discrete and Gaussian features were in between the two pure settings.

While generally the local search strategies perform well inthe experiments, the cases where
the local procedures did not return the globally optimal structure warrant closer examina-
tion. The question being which factors are common to those models where the local search
strategies did not return the global optimum. Two factors were identified which jointly
characterize the cases where the local searches diverged from the global optimum. The
first was the observation that most of the problematic generating models had redundant
components in their structure, i.e. there were several components which shared the same
group in all features. Fig. 4.1 shows an example of such a structure where componentsC2
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andC3 share parameters in all features and could therefore be merged into a single compo-
nent with weight(π2 +π3). Such a structure introduces dependencies between the features

X1 X2 X3 X4

C1

C2

C3

C4

Figure 4.1: Example CSI matrix with redundant components. ComponentsC2 and C3

share parameters for all features.

in the sense that the two components can only be merged to formthe optimal structure, if
all feature-wise structure searches also find this grouping. It does make sense then, that in
such a situation the exhaustive enumeration of all possiblestructures will find the optimal
structure, where a local search might miss it due to deviations of the trained parameters
even for a single feature. The latter aspect leads us to the second characteristic of the
problematic cases. It could be seen that component redundancy alone was not sufficient to
cause divergent results, rather the parameter estimates ofthe parametric EM runs (Step 1
in section 4.1) had to be to some extent divergent from the true generating parameters. A
typical case of such estimates would be that some component obtained a very small weight
in the trained model whereas no such component existed in thegenerating model. In such
a case one can say the parametric EM failed to sufficiently capture the generating model.

In summary, there seem to be two constellations were the local search is sub-optimal

• The generating model has redundant components and the parameter EM failed.

• The parametric EM failed by a wide margin.

The second case is fairly rare in comparison to the first. Whatboth cases have in common
is that they arise from the parametric EM taking a, relatively speaking, bad local maximum
of the likelihood. This is a well known drawback of the EM procedure and it highlights the
importance of using the algorithm in a manner which minimizes occurrence of such bad
parameters (see section 2.2.4 for details). It also shows, that the exhaustive enumeration is
able to compensate to some degree for an suboptimal parametric EM run by the sampling
of the parameter space inherent to the structure search.

The next question was how the three local search strategies performed in comparison with
each other. Tab. 4.2 shows the counts of experiments where one local search outperformed
another, as measured by the model posterior. Each entry in the table gives the number
of cases where the search strategy in the row outperformed the strategy for the column.
In example, there were 4777 out of the 14400 cases where the feature-wise enumeration
outperformed the bottom up approach.

It can be seen that the feature-wise enumeration and the top down search perform strongly
consistent with only 8 cases where different structures were obtained (6 where the feature-
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Feature-wise enum. Top down Bottom up

Feature-wise enum. - 6 4777
Top down 2 - 4778
Bottom Up 5 4 -

Table 4.2: Performance comparison for the local search strategies. Each entry is the
number of cases where the strategy in a row outperformed the strategy in a column.

wise numeration was better, 2 where top down was). The bottomup procedure is com-
monly outperformed by the two other approaches. The main reason for that is probably the
overly restricted search space of the split-based search, which only covers structures which
fall in the default table representation. This problem could of course be addressed by an
improved version of the bottom-up approach which includes both split and merge moves in
the structure. However, considering the favorable resultsof the top down approach when
compared to full local enumeration (which is optimal for fixed feature order), there is no
need for a more complicated greedy search. Another interesting aspect to consider is the
case where a locally suboptimal choice of structure leads toa better global structure. This
situation is the only case where either the top-down or bottom-up search can outperform
the feature-wise enumeration. By taking the sum over the feature-wise enumeration col-
umn in Tab.4.2 we get the total number of occurrences of such models. Out of the 14400
experiments run, only 7 such cases were observed. In these 7 cases the restriction of the
structure search space inherent to the greedy procedures bychance led to a local structure
which resulted in a global structure which was better than the feature-wise enumeration.
Fortunately this this problematic constellation seems to occurs rather rarely.

Given all these results, the greedy top-down procedure stands out as the search strategy of
choice. It combines computational efficiency with a strong performance in the structure
learning. The results presented in the application chapters 5, 6 and 7 are based on the
application of the top-down greedy search.

4.4 Running Time Optimization

In order to make structure learning feasible for larger datasets in acceptable running time,
an efficient formulation of the learning algorithm and the top-down structure search is cru-
cial. This includes caching strategies to avoid re-computation of certain terms and bounds
on the model posterior to speed up the model posterior evaluation.
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4.4.1 Feature-wise Caching

One useful consequence of the restriction to feature-wise search strategies is that the de-
composition of the mixture likelihood can be used to speed upcomputations. From Eq. (2.1)
and Eq. (2.2) we have the mixture likelihood

P (xi|Θ) =
K
∑

k=1

πk

p
∏

j=1

P (xij|θkj).

Assuming that we are currently learning the structure for featureXj∗ this can be written
as

P (xi|Θ) =
K
∑

k=1

πk









P (xij∗|θkj∗)

p
∏

j=1,
j 6=j∗

P (xij |θkj)









.

Now, all the terms in the product are equal for all structuresof featureXj∗ and need only
be computed once. This straightforward caching already decreases the running time of the
structure learning by a factor ofO(p).

4.4.2 Candidate Structure Graph

The top-down search strategy considers in each step all pairwise merges of groups in the
current structure and accepts the merge which yields the highest model posterior. An ex-
ample of this is shown in Fig. 4.2a). For clarity we denoteθXj |gjr

with the simplified
notationθgjr

in the example. Each of the four nodes in the figure representsa component
of the mixture and each pair of components gives rise to a merge parameterθgjr

based on
the expected sufficient statistics of the merge (see section3.5.3), which in turn allows the
evaluation of the model posteriorP (Θ̂, M |D).

a) b)

Figure 4.2: a) Pair-wise merges to be evaluated in the first step of the greedy structure
learning for a four component mixture.b) Second step afterθ1,3 has been accepted in a).
Only the parameters corresponding to the red edges need to berecomputed.

This means that in each stepO(Z2
j ) candidate merges have to be computed, whereZj is the

current number of groups, starting withZj = K in the first step. An important observation
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that can be made, is that the merge parametersθgjr
of disjunct merges are independent in the

sense that the respective computations have no terms in common. This is because the merge
parameters are computed from the element-wise addition of the component membership
posteriorsτk = {τki}i=1,...,N of the components that are part of the merge (see Eq. (3.15)).
An example would beθ1,3 andθ2,4 in Fig. 4.2a). The former is based onτ1,3 = τ1 + τ3,
whereas the latter arises fromτ2,4 = τ2 + τ4. If we were to accept the merge of1 and3 in
the first step, the second step (shown in Fig. 4.2b)) would necessitate the re-computation of
only the merge parametersθ1,2,3 andθ1,3,4 (edges shown in red), whereasθ2,4 would remain
unchanged from the previous step and need not be computed again. Therefore, by caching
the merge parameters in each step, the complexity of merge parameters to be re-evaluated
in each step after the first drops fromO(Z2

j ) to O(Zj). This greatly increases the speed of
the structure learning, especially for models with a large number of components.

4.4.3 Posterior bounds

Another approach for speeding up the evaluation of candidate structure model posteriors
is to derive upper and lower bounds on the candidate structure decision function. This
decision function is simply the fraction of model posteriors for the current modelM0 and
the candidate modelM1, i.e.

Dec=
P (Θ̂0, M0|D)

P (Θ̂1, M1|D)
< 1.

Given analytical lower bounds Declow and upper bounds Decup on Dec which can be com-
puted efficiently we could make use of Decup < 1 ⇒ Dec< 1 and Declow > 1 ⇒ Dec> 1

to obtain a faster decision for a given candidate merge. The significant caveat to this is that
the bounds need to be sharp with respect to Dec, in order for a decision to be possible.
Since Decup > 1 ; Dec > 1 (and respectively for Declow) an insufficiently sharp bound
will not resolve the decision and Dec has to be evaluated exactly. Note also that Decup is
the more useful bound as it allows for the quick identification of structures which can be
discarded. The developments in this section are independent of the CSI extension. There-
fore the somewhat easier formulation ofΘ from the conventional mixtures will be used in
the remainder of the section.

In the following we give examples for possible definitions ofDeclow and Decup. The first
is a simplistic example, which illustrates the principle. The second can be seen on an
extension of the first making use of properties of the logarithm.

Substituting Eq. (2.34) into Dec yields

Dec=

∏N

i=1 P (xi|Θ0)P (Θ̂0, M0)
∏N

i=1 P (xi|Θ1)P (Θ̂1, M1)
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=

N
∏

i=1

∑K

k=1

∏p

j=1 πkP (xij|θ0
ij)

∑K

k=1

∏p

j=1 πkP (xij|θ1
ij)

P (M0)

P (M1)
.

Assumingj∗ is currently being learned we letLik =
∏p

j=1,j 6=j∗ πkP (xij|θij) and lik =

πkP (xij∗|θij∗) which yields

Dec=

N
∏

i=1

∑K

k=1 L0
ikl

0
ik

∑K

k=1 L1
ikl

1
ik

P (Θ̂0, M0)

P (Θ̂1, M1)
.

Now definel0i = (l0i1, ..., l
0
iK) and analogouslyl0i . It should be noted that in fraction of the

two priors, almost all terms cancel and it is therefore trivially to evaluate.

Simplistic bounds

Given that all elements inl0i , l1i and Lik are positive, and that theLik are identical in
numerator and denominator, bounds Declow and Decup can be obtained as

Declow =

N
∏

i=1

min(li)

max(li)

P (Θ̂0, M0)

P (Θ̂1, M1)

and

Decup =
N
∏

i=1

max(li)

min(li)

P (Θ̂0, M0)

P (Θ̂1, M1)

These bounds illustrate the principle. In practice howeverthey are rarely sharp enough to
allow a decision based on Declow and Decup alone.

Logarithmic bounds

Since numerator in Dec is the model posteriorP (Θ̂0, M0|D) of the currently best structure
found, we can consider it to be constant and known. In this case we only need bounds for
the likelihood function of the candidate structureP (D|Θ̂1, M1) (as the prior is unproblem-
atic). This likelihood is given by

P (D|Θ̂1, M1) =

N
∏

i=1

P (xi|Θ1),

often it is more convenient to use thelog–scale, which is also consistent with the actual
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implementation due to underflow avoidance. Thelog–likelihood is

log P (D|Θ̂1, M1) =

N
∑

i=1

log

K
∑

k=1

Liklik,
1

as the function to be bounded. Now, thelog–scale computations yield thelog values of
Lklk, k = 1, ..., K, which means that thelog of the inner sum cannot be straightforwardly
evaluated. We apply the standard solution in form of thesumlogs function [121] to com-
putelog

∑K

k=1 Liklik based onlog Liklik, k = 1, ..., K. One property of thesumlogs func-
tion is that is requires the maximum over thelog Liklik as an input. This implies that
first all log Liklik have to be computed beforesumlogs can be applied. The evaluation of
log
∑K

k=1 Liklik requires then twoO(NK) passes over the data and mixture components.

The bounds we are about to propose are based on the observation that the structure learn-
ing operates on the MAP parametersΘ̂, this implies that for most data points typically
one componentk∗ will yield a much higher value than the others. The exceptionhere are
only data points which lie at the boundary of component densities or within strongly over-
lapping components. It is a property of the logarithm that thenLik∗lik∗ will dominate in
log
∑K

k=1 Liklik. This fact can be made use of to define a lower boundP low(D|M1) as

P low(D|Θ̂1, M1) =
N
∑

i=1

max
k=1,...,K

log Liklik.

That is, all but the largest element of the inner sum are omitted. Since we are dealing with
non-negative values, this yields a lower bound on the sum andthe logarithmic properties
ensure that the bound will be sharp in many cases. For the upper bound we need to define
the functionscdmax which simple returns the second largest element of a vector.Then

P up(D|Θ̂1, M1) =
N
∑

i=1

max
k=1,...,K

log Liklik + ((K − 1) scdmax
k=1,...,K

log Liklik)

gives the upper bound. Here each of the non-maximal summandshas been replaced by the
second largestlog Liklik. Since typically the maximal term in the sum is much larger than
the second largest, this will give a tight upper bound oflog P (D|Θ̂1, M1).

The computational advantage of these bounds lie in that the largest and second largest
value oflog Liklik can be propagated with very little effort while they are computed. If the
bounds allow for a quick rejection of a structure, the evaluation of sumlogs is omitted.It
should be noted that these bounds do not reduce the big-O complexity of the algorithm but
can yield improved running times in practice (see followingsection).

1Note that theL1

ik
l1
ik

= Liklik for the rest of this section
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4.4.4 Structure Learning Running Time

We compared running times of the basic structure learning, structure learning with cached
candidate history as described in section 4.4.2 and candidate history plus logarithmic
bounds (see previous section) for three different model types. The types were Gaussian
mixtures, discrete mixtures and mixtures with both discrete and continuous features. The
data set sizesN used were 1000, 3000 and 10000. The number of components wereK

10, 15, 20 and 25. Each model had 40 features with randomly selected parameters and
CSI structure (see appendix D for details of random model generation). Boxplots for the
running times of 100 repetitions of the experiment for the discrete and Gaussian variants
are given in Fig. 4.3 and Fig. 4.4 respectively.

First consider the results for Gaussian mixtures in Fig. 4.3. It can be seen that for ten com-
ponents all variants perform similarly for all values ofN . For higher component numbers,
the structure history yielded a smaller improvement in running time, while the improve-
ment conveyed by the bounds increases. For the discrete mixtures (Fig. 4.4) we find consis-
tently that the structure history considerably improves the running time behavior, whereas
the addition of bounds actually has a detrimental effect. The results for the setup with both
discrete and Gaussian features again produced results in between the two pure cases (not
shown).

The reason that the learning history did not yield a great improvement for the Gaussian
models when compared to the discrete mixtures lies in the different numbers of degrees
of freedom for these distributions. The learning history reduces the number of necessary
computations of MAP parameter estimates (section 2.4.2). While the Gaussian distribution
only required estimates for the mean and variance parameters, the discrete distribution used
were defined over an alphabet of size eight, making the MAP estimates more expensive,
and conversely the learning history more useful.

Another interesting aspect of these results is that the bounds actually had a detrimental
effect on running time for the discrete models. The reason for that is due to an inherent
property of the distributions, namely how clearly the component parameters of a model
are separated. One typical way to quantify this separation is the relative entropy. For
discrete distribution the relative entropy is bounded bylog2 M whereas for continuous
distributions the entropy is unbounded. Since the sharpness of the bounds increases with
the separation of the components, the bounding scheme is more likely to bear fruit for
Gaussian distributions.

Based on these results the use of the bounds should be reserved for the use on continuous
data, whereas the learning history is of general use.
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Figure 4.3: Running time comparison plots for Gauss models withG ∈ (10, 15, 20, 25),
N ∈ (1000, 3000, 10000) and p = 40
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Figure 4.4: Running time comparison plots for discrete models withG ∈ (10, 15, 20, 25),
N ∈ (1000, 3000, 10000) and p = 40
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Chapter 5

Mixture Modeling for Transcription
Factor Binding Sites

In this chapter we describe the application of CSI mixtures for the modeling of transcription
factor binding sites (TFBS). In the following section 5.1 the we provide some biological
background on the problem setting. In section 5.3 we evaluate the performance of the CSI
mixtures on both simulated and biological data.

5.1 Introduction

Figure 5.1: A transcription factor binds to a specific stretch of DNA in the genome.

The binding of transcription factors (TF) to specific stretches of genomic DNA is one
of the major mechanism of gene regulation. Fig. 5.1 shows a cartoon of such a bind-
ing event. Through chemical interactions of the TF and the genomic DNA, TFs bind to
specific stretches on the genome, the binding sites. These binding sites are specific for
each factor and the study of the binding behavior of TFs is a problem of considerable
importance for understanding gene regulation. The accepted approach is to formulate a
mathematical representation of the binding pattern of a given factor based on collections
of confirmed binding site sequences. This representation issubsequently used to score
candidate sequences for occurrences of said pattern. The effectiveness of this approach
depends on the models ability to accurately formalize the regularities found in the con-
firmed sites. The most commonly taken approach is the positional weight matrix (PWM)
model [175, 176, 179, 180, 194]. PWMs are a statistical approach to modeling the factor-
specific binding site composition. A PWM is derived from a multiple alignment of con-
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Chapter 5 Mixture Modeling for Transcription Factor Binding Sites

firmed binding sites. For each position in the alignment a distribution over the four bases
is estimated from the corresponding alignment column. Assuming independence between
positions, this gives a probabilistic model of the binding site of a specific factor which
subsequently can be used to score whether a DNA sequence contains a binding site for
this factor [85, 107]. From the perspective of mixture models, a PWM is simply a single
component naı̈ve Bayes model (Eq. (2.1)).
However, the PWM approach relies on two strong assumptions,namely thatall positions

Figure 5.2: WebLogos (http://weblogo.berkeley.edu) for the two subgroups of Leu3 bind-
ing sites. It can be seen that sequence variability is limited to positions 1, 4, 5 and 6
(indicated by arrows).

within the site are independent and, more importantly, thatall binding sites of a factor are
slight variations of thesamesequence. The former has been shown to be a simplification
of biological reality for such examples as the Zinc finger motive [199] or the Mnt repres-
sor [120]. For the latter there is ample biological evidenceto make it at least doubtful:
It is well known that TFBS occur in clusters of functionally interacting TFs in promotor
regions, so called transcriptional modules [20, 118, 185].A single factor may have many
different interaction partners for different genes and it has been shown that the topology of
these modules has an impact on the binding site sequences found for about nine thousand
sites inS. cerevisiae[18]. Also, it is known that a single change in a binding site can have
profound effects on both the interaction behavior of a factor [148] or the level of induced
gene expression [196]. Moreover, in [93] the authors find increased levels of conservation
for non-consensus binding site positions for 16 factors in 10 bacterial genomes, concluding
that these sites are subject to evolutionary pressure. Finally, in [188] the authors confirmed
the presence of position dependencies within a set of binding sites taken from the JASPAR
data base [158]. This gives further evidence for a level of biological complexity of binding
site sequences beyond the “single site” hypothesis and motivates the development of more
sophisticated methods.

This issue has received some attention in recent years. In [9] the authors successfully
used subclasses of Bayesian networks forde novomotive discovery, among them mixtures
of PWMs. More recently, in [79] binding sites have also been described as mixtures of
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PWMs. There it was shown, that a two component mixture model yielded improved con-
servation scores and higher expression coherence when compared to using a single PWM
for a collection of 64 PWMs taken from the JASPAR.

However, there are several drawbacks of the conventional mixture approach as it was intro-
duced in chapter 2. Namely, the essentially unsolved problem of choosing an appropriate
number of mixture components, in particular if data is sparse and the classical model selec-
tion techniques (see section 2.3.1) will not perform well. In general too few components
lead to suboptimal performance due to insufficient generalization, while, more severely,
too many components will cause overfitting. To circumvent this issue the number of com-
ponents was fixed to two in [79]. Moreover, it seems plausiblethat for most factors which
have several types of binding sites (and can thus be modeled more precisely by a mixture),
the different subgroups will not consists of distinct, dissimilar sequences. Rather, the vari-
ability between sites will be concentrated on specific positions. Estimating a full PWM for
each mixture component will then introduce unnecessary parameters into the model. This
increases model complexity unnecessarily and leads to lessrobust parameter estimates.

These issues are addressed in the automatic adaptation of model complexity inherent to the
CSI framework. Therefore CSI mixtures are a natural choice of model to capture the full
biological signal of TFs with complex binding behavior.

In this context the CSI principle introduced in section 3.3 amounts to representing binding
site positions with little variability in the different components by the same distribution.
A biological example for such a situation is the TF Leu3. In [79] the authors showed
that a two component mixture naturally separated the known binding sites [113] into one
high and one low binding-energy subgroup. Now, consider Fig. 5.2. The figure shows
the sequence logos [163] for these subgroups. It can be seen that sequence variability
is only present in position 1, 4, 5 and 6 (indicated by arrows)while the other sites are
highly conserved. Another example is the factor Reb1. Reb1 binds with different affinities
to motives TTACCCGand TTACCCT[191], that is the two subgroups differ in a single
position only.

As described in previous sections, the advantage of the CSI model in settings such as
the Leu3 and Reb1 data is that in a conventional mixture random sequence deviations will
cause the parameters in the different components for the same position to vary slightly, even
if there is no biologically meaningful variability on the sequence level. This overfitting
introduces a distortion in the scores produced by the model that may result in a decrease in
performance. Therefore, learning a CSI structure does not only yield a more parsimonious
model, as less parameters are required, but also increases robustness for noisy data.

In the following sections we will evaluate the performance of the CSI method for TFBS
data based on both simulated and real biological data.

61



Chapter 5 Mixture Modeling for Transcription Factor Binding Sites

5.2 TFBS Modeling

Modeling Choices

Since transcription factor data consists of DNA sequences,the models are mixtures of
discrete distributions over the four bases, i.e.Σ = (A, C, G, T ). The parameter prior
is a product of conjugate Dirichlet priors (see section 2.4.1). The prior over the mixture
weightsπ was uniform, the priors over theθXj |gjr

were chosen to be almost uniform with a
small bias towards uniformθ (i.e., all hyperparameters of the Dirichlets were set to 1.02).
This was done to guard against overfitting by setting zero probabilities in the parameter
estimation.

For this application it seemed reasonable to use a strong prior, such that the structure only
introduced additional complexity into the model if clearlywarranted by the data. In the
following we choose hyperparameters for the prior according to the heuristic Eq. (4.1)
with ω(0.18, N) (unless noted otherwise). As an example for 20 sequences we obtain
ω(0.18, 20) = 0.036.

Sequence Scoring

One practical advantage of the CSI model extensions is that it refines the models ability to
represent TF binding patterns without abandoning the framework of probabilistic models.
This means that the CSI model can be seamlessly and easily combined with established
techniques for finding hits with significant scores in genomic sequences [86, 107]. Here,
as in [79], the score of a mixture was defined as the maximum score over all components.
This means that the score of a sequence was given by the strongest signal found among the
components. Similar scoring schemes have been used for instance in the field of speech
recognition.

5.3 Results

5.3.1 Simulation Studies

In order to examine the difference in performance between conventional mixture and CSI
models we generated artificial data sets from mixtures with differing numbers of compo-
nents and structures.

In the first experiment the generating model was a two component CSI mixture withp = 10

and random weightsπ. The CSI structure was set up as follows: Out of the ten positions,
six were represented by single distributions in both components and four had a unique
distribution in each component. The parameters of the distributionsθXj |gjr

were chosen
randomly.
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5.3 Results

Generating model Best trained model avg.∆BIC
G1 M1 32.36
G2 M2 70.28

GCSI MCSI 232.16
G4 M4 149.31

Table 5.1: Optimal model for the four data sets according to the averagedifference in BIC
to the BIC of the generating model over 30 repetitions.

First we evaluated the ability of our method to adapt to the structure in the data and thus
to avoid overfitting. We trained one conventional and one CSImixture model, both us-
ing three components on a training data set with 40 samples. The first result was that the
structure learning algorithm recovered the generating models two component CSI struc-
ture with high accuracy (not shown). In order to quantify theadvantage of the CSI model
for sequence scoring we generated test data sets with 500 samples. We used a uniform
background model to obtain the scores for each sample and thescores were then converted
to p-values based on a score distribution on 1Mb of random sequence. We repeated the
simulation for 30 different randomly generated data sets and observed that the CSI mixture
yielded better (lower) p-values than the conventional mixture. The one-sided Wilcoxon test
for paired samples assigned a significance of 0.02 to this result. Repeating the experiment
with only 25 training samples confirmed these results with a Wilcoxon test significance of
0.04.
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Figure 5.3: Distributions of the difference in BIC to the generating model for the four
simulated data sets on 30 repetitions.

The next question we addressed was how the CSI model performed for different data sets
in a classical model selection setup. We generated data setsof size 3000 withp = 12 from
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Chapter 5 Mixture Modeling for Transcription Factor Binding Sites

four different models: a single PWM modelG1, a conventional two component mixture
G2, a CSI mixture with four componentsGCSI and a conventional four component mixture
G4. The parameters of the discrete distributions inΘ were chosen such that one baseβ was
assigned a random probability sampled uniformly from [0.6,0.8] and the remaining mass
split randomly over the other bases. In each caseβ was chosen such that it adhered to the
CSI structure of the respective model, that is components that did not share a group for a
Xj also had a dissimilarβ. The structure inGCSI consisted of 4 positions with four groups,
four positions with two groups and four positions with one group each. This means that
the CSI model matchedG1, G2 andG4 in complexity for four features each.

Subsequently, we trained 30 modelsM of each of the four types (i.e.M1, M2, MCSI and
M4) on each of the four generating model types. Model fit was assessed by BIC (see 2.27).
As a base value the BIC of the generating model on the test dataset was computed.

Table 5.1 shows the average difference in BIC of the best trained model (M1, M2, MCSI or
M4) when compared to the BIC score of the true model. As one wouldexpect, the model
type that best matches the respective generating model yields the optimal BIC. A more
interesting point to consider was the distributions of the differences of the BIC scores of
the different models to the BIC obtained under the generating model shown in Fig. 5.3. It
can be seen that over the range of generating modelsMCSI achieves model selection scores
comparable to those models which match the generating type.These results illustrate the
inherent ability of CSI models to adapt to different data settings. This makes CSI a prefer-
able choice of model for practical applications where the true number of components is
unknown.

5.3.2 Analysis of TF LEU3

1 2 3 4 5 6 7 8 9 10
C1

C2

Figure 5.4: Two component CSI mixture structure for known Leu3 binding sites. Each cell
represents a discrete distribution, where cells spanning both rows identify positions with
high conservation in both subgroups.

It was shown that 46 known binding sites of the TF Leu3 [113] can be separated into a
high and low binding-energy subgroup using a two component mixture with highly signif-
icant p-value [79]. We repeated this analysis by training a two component CSI mixture.
Since we were using the model in a clustering context a weak prior of ω(0.05, 46) = 0.11

was used. Fig. 5.4 shows the resulting CSI structure. Note the correspondence between
the fully parameterized positions (1, 4, 5, 6) and the group specific sequence variability as
visualized in Fig. 5.2. The CSI mixture yielded a subgroup division of the Leu3 sites that
was practically identical to the one previously reported. However there are two important
differences between the two models: First, the conventional mixture requires the estima-
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5.3 Results

tion of 61 free parameters while due to the tying expressed inthe CSI structure our model
only needs 43 parameters. This means that CSI gave equivalent results using about 30%
less parameters. Secondly, the CSI structure makes information about the subgroup and
position specific sequence variability an explicit part of the model. Having this informa-
tion readily available will facilitate further investigations, especially for large-scale studies
where hundreds or more factors are involved.

5.3.3 Conservation Statistics

The validation of predicted binding sites with respect to their biological functionality is a
difficult problem as functionality cannot be assessed directly. One surrogate for function-
ality found in the literature is the degree of conservation in genomic sequences between
related species [184]. For the sake of comparability with the results reported in [79] we
follow the same evaluation approach taken there and evaluate the different models by the
fraction of conserved predicted binding sites.

In the following we are going to evaluate the performance of asingle PWMM1, a two
component mixtureM2 and a two component CSI mixtureMCSI based on human-mouse
conservation. We used the same 64 JASPAR TFs as in [79]. We downloaded the 1kb up-
stream regions of thehg17assembly (May 2004) from the UCSC genome data base [87].
The mouse conservation data (mm7) was extracted from the axtNet data set [165] (also
UCSC). For each of the 64 TFs and each of the three models underconsideration, we then
computed the 1000 best scoring hits in the 1kb upstream regions. The overall base com-
position of the sequences was used as the background model. For the mixtures the hits
were chosen proportionally to the mixing weights. This means that for aπ = (0.6, 0.4) we
would chose the 600 best hits from the first component and the 400 best from the second.
The fraction of hits that was conserved in mouse was then computed based on a 80% se-
quence identity cutoff.

Evaluation: In order to decrease the impact of random variation on the analysis we
considered TFs with very similar fractions of conserved hits for two model types as not
giving conclusive preference to any of the two. That is, if the difference in the conserved
fraction was less than ten percent of the maximal conserved fraction observed for any
of the three model types, the scores were considered to be ”equal” for the purposes of
this analysis. This has the effect of making the results moreconservative in the sense
that the impact of factors with very small differences in theconservation statistics was
suppressed.

Fig. 5.5 shows the comparison of conserved fraction for the three model types. To illustrate
the impact of the available number of training samplesN for a factor on performance, we
depict TFs differently based on the number of associated sequences. TFs with less than
18 sequences are shown as red diamonds, TFs with 19 - 31 sequences are shown as blue
rectangles and TFs with more than 31 sequences are shown as green dots. The numbers
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Figure 5.5: a) Conserved fractions of hits forM1 and M2. The mixtureM2 is as good
or better for 67% (43) of the TFs. b)
Conserved fractions forMCSI and M1. For 70% (45) of the TFs the conservation of
MCSI was as good or better than forM1. Outliers with strong preference forM1 model
had very few known sequences. If we only consider TFs with at least 20 sequences, the
CSI yields as good or better conservation in 85% (34/40) of the cases.c) Comparison of
conservation statistics ofM2 andMCSI . For 89% (57) of the TFsMCSI yields higher or
equal conservation.
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5.3 Results

M2 ≥ M1 (43) M1 > M2 (21)

MCSI ≥ M2 84% (36) 100% (21)
MCSI > M2 47% (20) 81% (17)
MCSI ≥ M1 89% (38) 33% (7)
MCSI > M1 37% (16) 10% (2)

Table 5.2: Comparison of the conserved fraction of the 1000 best scoring hits forMCSI ,
M1 and M2 in the two subsets of the TF data given the conditions(M2 ≥ M1) and
(M1 > M2) respectively.

were chosen as to split the 64 TFs into three roughly equally sized groups.

In the following we compare and contrast the results for the three different model types
M1, M2 andMCSI .

M1 vs M2: In 5.5a) you can see the conserved fraction ofM1 andM2 for the 64 TFs in
the data set. The mixture modelM2 was as good or better thanM1 in 67% (43) of the
cases. For 33% (21) of the TFs the mixture was strictly better. This means that the perfor-
mance of the two component mixture was somewhat weaker in ouranalysis than reported
in [79] . Recall, that our data set differed from the one in [79] as it was based on a later
genome freeze and, more importantly, it did not contain any downstream sequences. To
the best of our knowledge the rest of our analysis was identical to the one conducted in [79].

MCSI vs M1: The comparison between the fraction of conserved hits of the CSI mixture
MCSI and the single PWM modelM1 can be seen in Fig. 5.5b). In 70% (45) of the TFs
under considerationMCSI showed a conserved fraction as good or better thanM1, with
28% (18) being strictly better. One important observation is that in most instances where
M1 had a strong advantage in conserved hits, the factor had onlya small number of known
binding sites. This can be seen by the large number of diamonds below the diagonal. For
instance the rightmost point in Fig. 5.5b) at (0.53, 0.43) corresponds to MA0062 which
has 7 known sites. In such a situation a little random variation in the sequences can have
a strong impact on the trained model and lead to spurious structures. This is supported by
the correlation between the number of available sequences for a factor and the increase in
conservation for the CSI model. If we only considered TFs with 15 or more sequences,
MCSI is as good or better in 74% (40/54) of the cases, for 20 or more sequences in 85%
(34/40) and for 40 or more in 94% (15/16). The fraction of TFs whereMCSI is strictly
better remained in the range of 30% independent of the numberof sequences.

MCSI vs M2: In Fig. 5.5c) we show the fraction of conserved hits forMCSI and the con-
ventional two component mixtureM2. For 89% (57) of the TFs the CSI model yields
higher or equal conservation, 58% (37) being strictly greater.
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Chapter 5 Mixture Modeling for Transcription Factor Binding Sites

Performance ofMCSI : Applying the two conditions(M2 ≥ M1) and(M1 > M2) on the
conserved fractions of hits split the 64 TFs in two subsets ofsize 43 and 21. We can think of
the first subset as those TFs where a mixture model is appropriate and the second subset as
being better represented by a single PWM. In the following weexamined the performance
of our CSI models within these two subsets. The results are summarized in Table 5.2.
For the subset induced by(M2 ≥ M1) MCSI was as good or better thenM1 or M2 for
a strong majority of 84% (36) and 89% (38) of the TFs respectively. MCSI was strictly
better for 47% and 37% respectively. This means that for TFs where a two component
mixture improves performance as compared to a single PWM, the CSI model will in most
cases outperform both of the other models.M2 due to the reduction in overfitting and the
more robust parameter estimates,M1 because of the improved description of the binding
pattern.

For the subset where a single PWM yielded a larger conserved fraction than the two com-
ponent mixture (given by the condition(M1 > M2)) MCSI was as good or better thanM2

for all the TFs in the subset (100% (19)) and strictly better for 81% (17). This illustrates
the property of the CSI model to adapt to the number of subgroups supported by the data
(one in this case) by means of the structure learning.MCSI is equivalent or better thanM1

in 33% (7) of the TFs in the subset. This rather low number again shows the impact of
spurious structures for TFs with few known binding sites. Ifwe only consider the 11 TFs
in the subset with 20 or more annotated binding sites, the value for(MCSI ≥ M1) goes up
to 64% (7/11). Finally,MCSI is strictly better thanM1 for a negligible 10% (2). This is not
surprising as we would not expect CSI to outperformM1 in situation where a single PWM
is the appropriate model. Rather a successful application of the structure learning in such
a case makesMCSI equivalent toM1. This corresponds to the points which lie directly on
the diagonal (i.e. the conserved fractions are equal) in Fig. 5.5b).

5.3.4 Examples of Binding Site Subgroups

Out of the 64 TF under consideration 41 showed two groups in the CSI structure, for the
remaining 23 the structure was completely merged into the single PWM case. In Fig. 5.7
we show the sequence logos of four examples of subgroup specific binding patterns and
the corresponding CSI structure. The factors are Foxd3 (MA0041), HLF (MA0043), Foxa2
(MA0047) and CEBP (MA0102). The double arrows mark the positions where two distri-
butions were taken in the learned CSI structure.

As one would expect, it can be seen that these positions correspond to the most strongly
discriminatory positions between the two sequence logos. It is also interesting to note
that the discriminatory positions are unevenly distributed in the examples. For Foxd3, for
instance, these positions are concentrated at the beginning of the binding site whereas for
Foxa2, they are evenly spread along the length of the bindingsite. Another aspect is the
question whether there is a global preference for the occurrence of discriminatory positions
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Figure 5.6: Relative positions along the binding sites of positions which discriminate the
two subgroups for 41 TFs.

along the binding sites. To examine this, we considered the relative positions within the
binding site of all positions which are discriminatory. Fig. 5.6 shows the distribution of
relative positions for the 41 TFs with CSI structure. As can be seen the discriminatory
positions show no clear preference in their positioning along the binding sites.

While these pictures and observations seem to hint at potentially very interesting biological
findings, it would require a experimental validation to determine whether these binding
motive subgroups are of direct biological relevance. Unfortunately, this kind of validation
is beyond the scope of this work.

For a more detailed discussion of all the results refer to section 8.2.
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Figure 5.7: Example sequence logos of binding site subgroups for four TFs from the
JASPAR data set.
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Chapter 6

Clustering of Protein Families Using
Mixtures

In this chapter we describe the application of CSI mixture based clustering on protein
subfamily discovery and simultaneous prediction of functional residues.

6.1 Introduction

Proteins within the same family commonly fall into sub categories which differ by func-
tional specificity. The categorization and analysis of these subgroups is one of the central
challenges in the study of these families. In particular it is of interest which residues deter-
mine functional specificity of a subgroup. These functionalresidues are characterized by a
strong signal of subgroup specific conservation.

Figure 6.1: Top: The input to the method is a MSA of protein sequences.Bottom: The
output is a clustering into sub-families (C1, C2) and annotation of putative functional
residues (colored columns)

The general problem addressed in this chapter is visualizedin Fig.6.1. Given a multiple se-
quence alignment (MSA) of protein sequences (top), we discover sub-families of sequences
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with different functional specificities (C1, C2) and simultaneously predict residue posi-
tions which are causal for these functional differences. This is indicated by the differently
colored columns (bottom). Generally speaking, there is an increased sub-family-specific
sequence conservation at positions which are relevant withrespect to the distinct functions
of the sub-families. These positions are highly informative for the characterization of the
clusters. Conversely, positions which are not relevant forthe functional characterization
of the sub-families may show very little variability between sub-families. Such positions
are very weakly informative for the clustering and subfamily separation. This situation is a
natural fit for the sort of fine grained regularities that can be captured in the CSI structure.

A number of studies have focused on the question how to detectresidues which determine
functional specificity based on prior knowledge of subtype membership. A review of these
methods can be found in [90]. Among the approaches taken wererelative entropy based
scores [78], classification based on similarity to a data base of functional residue templates
[28] and contrasting position specific conservation in orthologues and paralogues to predict
functional residues [132]. In [200] the authors use known reference protein 3D structures
to find conserved discriminatory surface residues. One major limitation of thesesupervised
approaches is the requirement of biological expert annotation of the number of subtypes
and subtype assignments for each sequence. This limits the usefulness of these methods
to cases where prior biological knowledge is abundant. In the absence of such knowledge
the inference of the subgroups becomes one central aspect ofthe prediction of functional
residues. In many cases the subgroup structure of a given family is a direct consequence of
evolutionary divergence of homologue sequences. As such itis not surprising that methods
based on the phylogenetic tree of a family have been extensively and successfully used to
study protein family subgroups [105, 110, 142, 195]. However, the performance of these
methods does degrade in cases where the evolutionary divergence between subgroups is
large. Moreover phylogeny does not account for situations where functional relatedness of
proteins arose from a process of convergent evolution. As such there is a need for additional
methods for detection and analysis of the subgroups inherent in a set of related sequences.
CSI mixture models are well suited to this application for a number of reasons. First, the
probabilistic setup provides a good fit for the noisiness to be expected for MSAs, especially
from rather divergent sequences. Second, as mentioned above, the data can be expected to
contain many weakly or even uninformative features. In sucha situation the CSI structure
can greatly increase the robustness of the clustering. Third, the combination of the CSI
structure and feature ranking schemes provides a structured and principled way to assess
the importance of each residue. This allows to make predictions for function positions in
the MSA.

One of the challenges of clustering protein families into subgroups based on the sequence
is that the discriminating features one attempts to learn are a property of the structure rather
than the sequence. As an example, consider three subgroups with perfect conservation of
amino acids Leucine, Isoleucine and Tryptophan respectively at one position. A naı̈ve ap-
plication of a clustering would consider said position to behighly discriminative for all
three groups. Of course, this would be misleading due to the great similarity in chemical
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properties between Leucine and Isoleucine which makes them, to some extent, synony-
mous as far as structure is concerned. To adapt the CSI mixture model for this situation
we apply a parameter prior in form of a mixture of Dirichlet distributions (see section 6.2).
These Dirichlet mixture priors have been successfully usedto improve generalization prop-
erties of parameter estimates for probabilistic models forsmall sample sizes [170]. In the
CSI framework a suitably chosen prior additionally acts to guide the structure learning
towards distributions indicative of structural differences between the subgroups.

6.2 Dirichlet Mixture Priors

As described in section 3.4, the fit of different models to thedata is assessed by the model
posteriorP (M |D) given by

P (Θ̂, M |D) ∝ P (D|Θ̂, M)P (Θ̂|M)P (M)

againP (D|Θ̂, M) is the Bayesian likelihood based on the dataD (Eq. (2.34)),P (Θ̂|M) is
the parameter prior (Eq. (2.35)),P (M) is the prior over the model structure (Eq. (3.5)) and
theΘ̂ are the MAP parameter estimates (Eq. (2.4)).

Recall that

P (Θ|M) = P (π)

K
∏

k=1

p
∏

j=1

P (θkj)

.

Assuming all theθkj are discrete, a possible choice of parameter priorP (θkj) is a mixture
of Dirichlet distributions. A Dirichlet mixture prior (DMP) over a discrete distribution
θkj = (θkj1, ..., θkjM) is given by

P (θkj) =

G
∑

g=1

qg Dg(θkj |αg), (6.1)

whereDg is the Dirichlet density Eq. (2.38) parameterized byαg = (αg1, ..., αgM), αgs > 0

andqg are the mixture weights. The DMP has a number of attractive properties for the
modeling of protein families. Not only does the DMP retain conjugacy to the discrete
distribution which guarantees closed form solutions for the parameter estimates, it also
allows for a great degree of flexibility in the induced density over the parameter space. This
allows for the integration of amino acid similarities in thestructure learning procedure.

The parameter estimators derivation for the DMP case is an straightforward extension of
the single Dirichlet prior case [67].
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6.3 Prior Parameter Derivation

In order to apply the DMP framework on the problem of regularizing the structure learning
for protein families we have to specify the parameterization of P (θkj). This includes the
choice ofG, theqg and theαg.

We considered three different approaches to arrive at choices for these parameters,

1. choice of parameters based on a PAM series amino acid substitution probability ma-
trix,

2. use of previously published DMP regularizers [170] basedon machine learning tech-
niques and

3. heuristic parameter derivation based on basic chemical properties of the amino acids.

The first approach based on PAM matrices [41] proved problematic in that the PAM matri-
ces are stochastic, whereas the parameters of a Dirichlet are only constrained in that they
are positive. This means that the information in a PAM matrix(i.e. the parameter values)
is on a different scale and cannot be straightforwardly inserted into a DMP. In practice this
makes PAM matrices unsuitable for our application.

As for the second approach, the DMPs in [170] were trained to provide suitable regular-
ization to compensate for small sample sizes. While this is certainly related, it is not quite
the same as the kind of regularization we require for the CSI structure learning. Clearly
a machine learning approach for specifying the prior parameters would be desirable. This
however is not straightforward for two reasons: First, it isnot clear how the training data
for learning a DMP for this application would have to be assembled and secondly the opti-
mization of DMPs is a difficult problem as many local minima exist [170].

Therefore it seemed prudent to consider an additional prior, which was constructed based
on the chemical properties of the twenty amino acids. This prior is appealing as it is based
on a rather simple heuristic and therefore the values of the parameters lend themselves to
straightforward interpretation. The derivation of the third prior will be described in more
detail below.
The impact of an amino acid substitution on the fold of a protein depends on the similarity

of the chemical properties of the two amino acids. The more dissimilar the amino acids
are, the more pronounced the effect on protein structure will be. The relevant chemical
properties can be arranged into a hierarchy of more general and specific properties [116].
The nine properties we consider and the assignment of amino acids is summarized in Table
6.1. The amino acid are denoted by the single letter codes (see appendix C) Table entries
’x’ and ’ ·’ denote presence and absence of a property respectively. Note that the gap symbol
’-’ is negative for all properties.

Based on this characterization of the amino acids by their basic chemical properties we
construct a DMP as follows: To each of the properties in Table6.1 we assign a component
Dg in the DMP. The parametersαg are chosen such thatαgs is larger if amino acids
has the property. This means we construct nine Dirichlet distributions which give high
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A R N D C Q E G H I L K M F P S T W Y V -
Hydrophobic x · · · x · · x x x x x x x · · x x x x ·
Polar · x x x · x x · x · · x · · · x x x x · ·
Small x · x x x · · x · · · · · · x x x · · x ·
Tiny x · · · · · · x · · · · · · · x · · · · ·
Aliphatic · · · · · · · · · x x · · · · · · · · x ·
Aromatic · · · · · · · · x · · · · x · · · x x · ·
Positive · x · · · · · · x · · x · · · · · · · · ·
Negative · · · x · · x · · · · · · · · · · · · · ·
Charged · x · x · · x · x · · x · · · · · · · · ·

Table 6.1: The twenty amino acids can be characterized by nine chemicalproperties. A x
in the table denotes the presence, a· the absence of a trait.

density to distributions with strong prevalence of amino acids with a certain property. The
combination of all property specificDg in the DMP then yields a density which allows the
quantification of similarity between amino acids in the probabilistic framework. In order
to arrive at a scheme to choose the parameters of the DMP the following constraints were
taken into consideration:

• The strength of a Dirichlet distribution priorDg is determined by the sum of its
parameters|αg|. The size of|αg| is also anti-proportional to the variance ofDg.
To assign equal strength to all property specific DirichletsDg, all |αg| are set to be
identical.

• More general properties should receive greater weightsqg in the DMP.

• The strength of the prior, i.e.|αg| should depend on the size of the data setN .

This leads to the following heuristics for choosing the DMP parameters: Let the strength
of eachDg be one tenth of the data set size; i.e.|αg| = N

10
andb = 0.75 |αg|

21
the base value

for the parametersαg. Thenαgs = b, for all amino acids were the property is absent and

αgs = b +
0.25 |αg|

Bg

,

for all amino acids where the property is present, whereBg denotes the number amino acid
which have the property. Finally, the weightsqg are set to

qg =
Bg

∑G

g=1 Bg

which means that more general properties receive proportionally higher weight in the prior.
Thus, the priors in the model introduce two types of bias’ into the structure learning. An
unspecific preference for a less complex model given byP (M) and a specific preference
for parametersθXj |gjr

that match the amino acid properties encoded in the priorP (θ|M).
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Chapter 6 Clustering of Protein Families Using Mixtures

6.4 Feature Ranking

To predict which features are functional residues for a given subgroup, it is necessary to re-
fine the information in the CSI structure matrix by ranking the informative features. Since
these features are distinguished by subgroup specific sequence conservation, the relative
entropy is a natural choice to score for putative functionalresidues. Therefore the score
Eq. (3.21) defined in section 3.6.2 was used. Note that the ranking scheme is somewhat
similar to the setup used in [78]. The major difference beingthat in [78] subgroup assign-
ments were assumed to be known and in this work the scoring is based on the posterior
distribution of component membership and parameter estimates induced by the expected
sufficient statistics in the sEM framework.

6.5 Results

We evaluated the performance of CSI mixture models for protein subfamilies on a number
of data set of different sizes from families with known subtype assignments and structural
information. This allows for a validation of the clusteringresults. Any column in the
alignment with more than 33% gaps was removed prior to the clustering. Model selection
was carried out using the NEC (2.32). The strength of the structure prior was chosen by
δ = 0.1 (see section 4.3.1). The position of predicted functional residues in the three
dimensional structure can be evaluated from known structures obtained from theProtein
Data Bank(PDB) [13].

To assess the impact of our DMP on model performance the Accuracy (see section 2.3.2) of
the clusterings with DMP were compared to mixtures with the same number of components
but a simple uninformative single Dirichlet prior and the UCSC-DMP ’up9’ obtained from
the supplementary materials of [170].

6.5.1 L-lactate Dehydrogenase Family

This data set consisted of members of the L-lactate dehydrogenase family with differing
substrate specificities. The two subfamilies under consideration were the malate and lac-
tate dehydrogenases. In this family, despite substantial variance within and between the
subfamilies, a single position is responsible for defining substrate specificity. Taking PDB
1IB6 as reference sequence, an R in position 81 confers specificity for lactate whereas a Q
in the same position would switch substrate specificity to malate. Clusterings were com-
puted for the 29 sequences in the PFAM [51] seed alignment of that domain (PF00056).
The alignment contained 16 lactate dehydrogenases (LDH) and 13 malate dehydrogenases
(MDH).

As shown in Fig. 6.2, the NEC model selection clearly indicated 2 components to provide
the best fit for the data.
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Figure 6.2: NEC model selection plot for the malate and lactate dehydrogenase data set.
The optimal model was given obtained forK = 2.

The two components separated the MDH/LDH groups without error for our DMP mix-
ture.When using the uninformative prior, considerably lower accuracies of around 75%
were achieved. To assess the robustness of this result we repeatedly trained two compo-
nent models with DMP, uninformative and UCSC priors. Averaged over 10 models our
DMP achieved accuracy 94% (SD 2.1%). The results of the UCSC-DMP were compa-
rable accuracy-wise although there was no model which provided perfect separation of
MDH/LDH. The uninformative prior yielded an accuracy of 76%(SD 8.3).
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Figure 6.3: Feature ranking scores for the Malate/Lactate dehydrogenase data set.

Thus, the CSI mixtures successfully identified the two subfamilies correctly without any
prior biological knowledge. The position identified as mostinformative for distinguishing
the groups by the feature ranking shown in Fig. 6.3 was indeedthe one responsible for
substrate specificity. Many of the other highly ranked residues were arranged around the
NAD interaction site of the domain, which suggests they may play a role in malate / lactate
recognition.

Fig. 6.4 shows the structure of 1IB6 with the true specificitydetermining residue (red),
other putative functional residues (orange) and the ligandinteracting sites (white).
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Chapter 6 Clustering of Protein Families Using Mixtures

Figure 6.4: Structure of PDB 1IB6 with predicted functional residues. The true speci-
ficity determining site is shown in red, other putative functional residues in orange and
additional known ligand interacting sites in white.

6.5.2 Protein Kinase Family
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Figure 6.5: Model selection plot for the kinase data set. The best scoresare achieved for
K = 2 andK = 4.

The protein kinase super family is one of the largest and beststudied protein families. The
human genome contains more than 500 protein kinases [122], many known to be involved
with diseases such as cancer or diabetes. The probably most prominent classification of
this key players in signal transduction is between tyrosineand serine/threonine kinases.
These can be further subdivided according to different regulatory mechanisms [89]. For
this data set, these levels of classification were combined by joining tyrosine kinases (TK)
with two groups of serine threonine kinases, STE (Homologs of yeast Sterile 7, Sterile 11,
Sterile 20 kinases) and AGC (Containing PKA, PKG and PKC families). An alignment
of 1221 representative sequences of the subfamilies was obtained from theProtein kinase
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resource[171].

Fig. 6.5 shows the NEC model selection scores for this data set. It can be seen that the three
best NEC model selection scores were assigned to 2,3 and 4 components. Since the scores
of 2 and 4 were too similar for a clear choice of components and3 is the intermediate value,
we will consider the results for all three as values ofK. For the two component model
the TK and STE sequences were collected in one subgroup and the second was almost
exclusively AGC. The four component model yielded a clustering in which the sequence
of the AGC subfamily got split over two components. In the three component model each
family acquired its own subgroup with an accuracy of 87%. Results for the uninformative
and UCSC-DMP priors were only slightly worse (about 1% accuracy) for this data set.
These results were highly robust in the repetitions with standard deviations of 0.1%-0.3%
for the accuracies of all three prior types. In the followingPDB 2cpk (cAMP-dependent
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Figure 6.6: Feature ranking scores for the Kinase cyclase data set.

protein kinase, alpha-catalytic subunit, Mus musculus) isused as reference sequence for
residue numbering. A ranking of the informative features ofthe three component model
with respect to the TK subgroup as shown in Fig. 6.6 yielded within the top 20 positions a
region of three residues (168-170) which has been experimentally shown to be important
for kinase substrate specificity [77].

Fig. 6.7 shows the structure of PDB 2CPK with the predicted functional residues. The
three residue stretch marked in red have been experimentally verified to be of relevance for
kinase substrate specificity.

This data set highlights the difficulty of the model selection task. While from the way the
data set was constructed three components seemed the right answer, the NEC judged a
merging of the TK and STE sequences as well as a further split of the AGC subgroup to
capture the data better. Despite that, the three component clustering gave a good separation
of the true subgroups and biologically relevant positions in the ranking. This can be seen
as a cautionary tale, that while model selection criteria are certainly helpful for selecting
K, in cluster analysis of biological data it is often also necessary to look at the different
suboptimal models and which regularities they capture.
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Figure 6.7: Structure of PDB 2cpk with predicted functional residues. The stretch of
three amino acids shown in red has been experimentally shownto be relevant for kinase
substrate specificity.

6.5.3 Nucleotidyl Cyclase Family

Nucleotidyl cyclases play an important role in cellular signaling by producing the sec-
ondary messengers cAMP and cGMP which regulate the activityof many other signaling
molecules. As cGMP and cAMP fulfill different biological roles, specificity of converting
enzymes is imperative.
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Figure 6.8: Model selection plot for the cyclase data set. Two components achieve the
optimal score.

Five residues have been experimentally confirmed by substitution experiments to convey
substrate specificity. These positions are 938, 1016, 1018,1019 and 1020 (numbering
according to PDB 1AB8) [115]. We used this family as a test case for families with multi-
ple sites involved in functional classification, complementing the L-lactate dehydrogenase
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family with a single site.
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Figure 6.9: Feature ranking scores for the Nucleotidyl cyclase data set.

We computed a MSA from 132 GC (EC 4.6.1.2) and AC (EC 4.6.1.1) sequences obtained
from the ExPASy data base [60]. As shown in Fig 6.8, the NEC model selection indicated
two components to provide the best fit. The model with optimalNEC produced a clustering
with an accuracy of 85% with respect to the GC / AC subgroups. Averaged over 10 models
the uninformative prior yielded a decreased performance of63% (SD 6.4) accuracy. For the
UCSC prior ’uprior.9comp’ the averaged results over 10 repeats were accuracy of 70% (SD
2.5%). For our DMP the averaged results were an accuracy of 73% (SD 4.0). Based on the

Figure 6.10: Adenylyl cyclase with predicted functional sites highlighted - Subunit I in
green, subunit II in orange. The 10 most informative sites were selected. Shown in red:
experimentally validated identified sites, blue: additional identified sites.

ranking of alignment positions shown in Fig. 6.9, Figure 6.10 shows the three dimensional
structure of 1AB8 with the 10 most informative sites highlighted. These contain 4 of the
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sites involved in substrate specificity ( 1018 (ranked 2.), 1016 (3.), 938 (6.), 1019 (9.)).
Further top ranking positions included sites which are partof the subunit I and II domain
interface (919, 912, 911). Position 943 is right next to a forsoklin interaction site and
position 891 interacts with magnesium. Residue 921 finally,is also a metal interacting
site [202]. Thus, not only known substrate specific sites were identified, but also further
functional sites. The next step would then require experimental validation of the identified
sites with no functional annotation.

6.5.4 Partially-supervised Protein Clustering

To investigate the impact of the partially-supervised setup described in section 2.5, we per-
formed clustering on two data sets with different amounts labeled samples. The labeled
samples for each class were chosen randomly based on the truebiological sequence anno-
tations. In this section the amino acid property prior from section 6.3 was used.

SH3 domain family

The src homology domain 3 (SH3) is a protein interaction module binding to polyproline
regions. Its preferred binding partner is characterized bya structural motive, the polypro-
line type II helix. Two types of binding mode can be distinguished based on the direction
of the helix in the binding groove [125]. These different binding preferences are not caused
by two different binding patches on the domain, rather it is one site responsible for these
interactions. Obviously, this makes an automated classification and identification of speci-
ficity inducing sites challenging. We analyzed a large scaleinteraction study on 20 yeast
SH3 domains [189]. Here, each domain was classified into three groups (I, II and Unusual)
based solely on their ligands and the labels were chosen fromthis functional annotation.
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Figure 6.11: Average accuracy for different numbers of randomly chosen labels for the
SH3 domain data set.

To evaluate the performance for different numbers of labels, average accuracies over thirty
repetitions were computed. The results are shown in Fig. 6.11. It can be seen that for 10%
labels an average accuracy of around 65% (SD 12%) was observed. When contrasting this
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with the unsupervised approach (0 labels) where we observedaverage accuracies of 80%
(SD 11%), it becomes apparent that for< 30% labels the partially-supervised setup had
a detrimental effect on clustering performance on this dataset. The main reason for this
is probably the random selection of labels for the partiallysupervised parameter training.
It has been observed in a number of studies, that the quality of the labeling is crucial for
the performance of partially-supervised approaches [39].When samples are selected for
labeling which are outliers in their own class, the labelingmight even have a negative
impact on the clustering performance. This issue is increasingly receiving attention in the
machine learning community [72].

Pyridoxal-dependent decarboxylase

The pyridoxal-dependent decarboxylase domain is involvedas a catalytic coenzyme in
a multitude of reactions, including decarboxylation, deamination and transamination pri-
marily in amino acid biosynthesis and metabolism. We considered a data set of pyridoxal-
dependent decarboxylase sequences with specificity for either L–glutamate or L–tyrosine
substrates. The data set was constructed by selecting all sequences of the PFAM family
pyridoxal deC which had annotation for the substrate specificity in theCATHALYTIC
ACTIVITY field of the corresponding SWISSPROT entries. This resultedin 35 sequences
with glutamate specificity and 37 sequences with specificityfor tyrosine. An alignment of
these 72 sequences was obtained using theclustalw[104] software.
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Figure 6.12: Average accuracy for different numbers of randomly chosen labels for the
pyridoxal-dependent decarboxylase data set.

When clustering without labels the separation of the glutamate and tyrosine subclasses
proved to be very challenging. The average performance over30 repetitions was an accu-
racy of 51% (SD: 0.3%). When adding the power of the partiallysupervised framework
to the clustering by randomly selecting different numbers of labels for the two subclasses,
a different picture emerges. The average accuracies based on 30 repetitions for different
amounts of randomly selected labels per class are shown in Fig. 6.12. It can be seen that
the clustering accuracy increases monotonously with the number of labeled samples. How-
ever, it can also be seen that while the average accuracy improves significantly in the range
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of 5%–16% labeled samples, the variance also increases. Again, this is most likely an
effect of the random selection of labels. For 22% labels it can be seen that the variance de-
creases again and models with perfect accuracy and zero variance (over the 30 repetitions)
are obtained for> 22% labels.

The wholly unsupervised clusterings returned a very low-variance, highly robust grouping
of the sequences. While these groupings did not reflect the tyrosine/glutamate subgroups
with any accuracy, the question was whether they represent some other biological context.
Upon examination it became clear that the unsupervised clustering split the data set based
on phylogenetic divergence. One cluster contained predominantly achae and bacteria se-
quences, the other metazoa and viridiplantae (i.e. green plants). Based on this taxonomic
classification of the sequences, the clusterings had an average accuracy of 82%. This
means that for the unsupervised setup, the clustering picked up on decomposition of the
sequences which, while being biologically meaningful in itself, did not reflect the specific
question we were interested in. This problem was overcome byincluding prior knowledge
in form of sequence labels.

These results illustrate how the partially supervised approach can improve the parameter
estimation and structure learning by guiding it away from local maxima which are not
consistent with the biological question under consideration. However, the high variance for
moderate amounts of labeled samples again underline the importance of the label selection
procedure.

For a discussion of these results refer to section 8.3.
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Chapter 7

Clustering of Heart Disease Phenotype
Data

In this chapter CSI mixture model based clustering is applied to a data set of heart disease
phenotypes.

7.1 Introduction

Defects in heart development during embryogenisis are among the most common birth
defects in humans. The genetic basis of the various cardiac anomalies is not yet well un-
derstood but there is a rapidly growing number of transcription factors which are implicated
in heart development [33]. An increasing number of candidate gene mutations have been
identified to be of relevance for heart disease phenotypes [59, 164, 174, 192]. However, a
necessary requirement for the success of such a mapping is a clear description of the phe-
notype to be studied. Clustering can provide such descriptions by identifying subgroups of
patients with distinctive phenotype patterns in phenotypically diverse data sets.

In the following we give a brief introduction into the physiology of the human heart. For
more details refer to textbooks on cardiovascular medicine(e.g. [24, 54]). The schematic
organization of the human heart is shown in Fig. 7.1. The heart consists of four chambers,
left atrium (LA), left ventricle (LV), right atrium (RA) andright ventricle (RV). The cham-
bers, as well as the in- and out going blood vessels, are separated by a system of valves.
The oxygen poor blood arrives from the body circulation in the RA, passes the tricuspid
valve into the RV and from there is pumped through the pulmonary valve (PV) and pul-
monary artery to the lungs. The oxygenated blood from the lungs arrives in the LA, passes
the mitral valve into the LR and is released through the aortic valve into the aorta. In the
healthy heart, the circulatory system is separated into a low–pressure (venous system, RA
and RV) and high–pressure (arteric system, LA and LV) system.

Normal heart function can be impaired or even impeded by a variety of anatomical mal-
formations. These include anatomical features such as irregular connections or positions
of blood vessels. For instance the aorta may be connected to both ventricles as opposed
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Figure 7.1: Schematic representation of the human heart. Reproduced fromWikipedia.org

to only the LV. Another category of possible defect are holesin the membranes separating
the chambers (septums). Finally, valves could be narrowed (stenotic), permanently closed
(atretic) or leaky. A leaky valve permits blood flow in the closed setting (insufficient). The
most common congenital defects in human is a bicupsid aorticvalve with two instead of
three cusps. Generally speaking, the effect of these abnormalities is an impaired pumping
capacity of the heart, leading to reduced supply of oxygen tothe body.

When clustering phenotype data from complex disease such ascongenital heart defects,
the main aim to find distinctive phenotype patterns which characterize subgroups of pa-
tients. Due to the high variability in phenotypes often observed in such data sets, it must
be expected that there is no clear separation of clusters based on a few features. Rather
the patterns characterizing the clusters will arise from the combination of many features.
In such a situation the CSI structure matrix can greatly facilitate the practical use of the
clustering by making explicit which regularities describeeach cluster.

7.2 Data Set

In this section we introduce the data set and describe the phenotypes which are covered.

The specific disease phenotype of each of the 65 individuals in the data set is described by
26 binary features [168, 187] shown in Tab. 7.1. Each of the features gives the presence
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or absence of a phenotypic trait with relevance for heart disease indication. Most of the
features concern either specific anatomical abnormities orblood pressure indicators. The
features are summarized in Tab. 7.1.

7.3 Results

The clustering was performed using a structure prior given by δ = 0.05 (see section 4.3.1).
NEC model selection was performed forK = (1, ..., 10). Fig. 7.2 shows the NEC scores
for different numbers of components. It can be seen that the four component model ob-
tained the best score on this data set. The cluster sizes were7, 17, 18 and 23 samples for
clusters 1, 2, 3, and 4 respectively.

Figure 7.2: NEC model selection for the heart disease data. It can be seenthat four
components obtain the optimal score.

The next question was which features were most informative for the clustering. This was
addressed by ranking the 26 features using the entropy criterion Eq. (3.20). Fig. 7.3 shows
the ranked features and corresponding scores. Note that theseven features on the bot-
tom were found to be uninformative during the structure learning and obtained a score of
0. FeatureIVS.shunt.BIRIGHTLEFT was found to be the most strongly discriminative
feature.

In order to analyze which feature characterize each clusterwe consider the CSI matrix re-
turned by the structure learning. Fig. 7.4 shows a visualization of the CSI matrix of the
four clusters. The colors represent the probability for thepresence of a feature, the cor-
responding value in percent is given in each cell of the matrix. The ordering of features
is given by the ranking in Fig 7.3. It can be seen for instance,that the most discrimi-
native featureIVS.shunt.BIRIGHTLEFT ,i.e. the presence or absence of a bidirectional
shunt in the interventricular septum, strongly separates the clusters into groups(1, 2) and
(3, 4). It is worth noting that this group structure could not be captured by thedefault table
CSI formulation (section 3.2). This illustrates how the richer CSI formulation used in our
approach is more suited to capture regularities in real biological data.
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Feature Description

AoArch.anatomy.RIGHT.AORTIC.ARCH
Aortic arch (AoArch) is shifted to
the right

AoAsc.source.RV

Aorta ascendensis (AoAsc) is
sourced in right ventricle (as
opposed to the left ventricle in
normally developed hearts )

AoAsc.source.RV.AND.LV
AoAsc is sourced in both right and
left ventricle

AoV.insufficiency.yes Aortic valve (AoV) is insufficient

BPsys.r.arm.above
Heightened systolic blood pressure
(measured in the right arm)

Concordance.AV

Atrioventricular (AV) concordance,
i.e. the right and left atrium is con-
nected to the right and left ventricle
respectively

IAS.defect Interatrial septal defect (IAS)

IAS.defect.PFO.PFO
Patent foramen ovale (PFO), spe-
cific defect in the interatrial septum

IAS.defect.secundum.SECUNDUM Interatrial septal defect type II

IVS.defect.perimembr.DEFECT
Defective perimembrane in inter-
ventricular septum (IVS)

IVS.shunt.BIRIGHTLEFT Bidirectional shunt in the IVS
IVS.shunt.LEFT.RIGHT Left-to-right shunt in the IVS

LSVC.present.ABNORMALLY.PRESENT
Abnormally formed left superior
caval vein

MPA.morphology.DILATED
Dilation of the main pulmonary
artery (MPA)

MPA.morphology.STENOTIC MPA is stenotic

PV.Psys.gradient.increased
Increased systolic blood pressure at
the pulmonary valve (PV)

PV.morphology.ATRETIC PV is atretic
PV.morphology.STENOTIC PV is stenotic
PV.morphology.bicuspid.BICUSPID PV is bicuspid
RA.morphology.DILATED RA is dilated
LV.morphology.DILATED LV is dilated

LV.morphology.trophy.HYPERTROPHIC
LV is hypertrophic, i.e increased in
mass and size

RV.anatomy.INFUNDIBULAR.STENOSIS RV is stenotic
RV.morphology.DILATED RV is dilated
RV.morphology.trophy.HYPERTROPHIC RV is hypertrophic

RV.sys.pressure.increased
Increased systolic blood pressure
int the RV

Table 7.1: The 26 phenotypic features of the heart disease data set.
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Figure 7.3: Ranking of the 26 heart disease features. A large score meansa feature is
strongly discriminative for the clustering.

There are a number of features whose presence or absence uniquely characterizes a cluster.
For cluster 1 these features are

• PV.Psys.gradient.increased

• AoAsc.source.RV

• Concordance.AV.

For all these features there is a stronger disposition towards the presence of the feature
than in the other three clusters (e.g. 99% versus 44% forV.Psys.gradient.increased).
For cluster 2BPsys.r.arm.aboveshows a characteristic increase of the prevalence of high
blood pressure as compared to the other clusters. Cluster 3 is not uniquely characterized
by a single feature. Finally, cluster 4 has a unique distribution for features

• IVS.defect.perimembr.DEFECT,

• RV.morphology.trophy.HYPERTROPHIC

• RV.sys.pressure.increased.

In opposition to the other clusters, cluster 4 is characterized by a reduction in prevalence of
these three phenotypes. Aside from the features which uniquely characterize a cluster, there
are also many features with two groups in the CSI structure. In addition to the previously
mentionedIVS.shunt.BIRIGHTLEFT , these are

• AoAsc.source.RV

• RV.anatomy.INFUNDIBULAR.STENOSIS

• IVS.shunt.LEFT.RIGHT
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Figure 7.4: CSI structure matrix of the heart disease data set and four clusters. The colors
indicate the probability of observing the presence of a specific phenotype. This probability
(in percent) is also given in the cells of the matrix. The order of features is given by the
ranking in Fig 7.3.
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• PV.morphology.bicuspid.BICUSPID

• MPA.morphology.DILATED

• AoV.insufficiency.yes

• MPA.morphology.STENOTIC

• LV.morphology.DILATED

• IAS.defect.PFO.PFO

• PV.morphology.STENOTIC

From this it is quite clear that, aside from the uniquely discriminatory features, the full
characteristics of each cluster arise from a combination ofthe different feature-specific
groups found.

The clustering described above defines four subgroups of heart disease patients with char-
acteristic phenotype patterns. The next question was whether these patterns match with
previously described forms of heart disease. It can be seen that cluster 3 matches the pheno-
type for a classicaltetralogy of Fallot(TOF) [24] type heart disease. The TOF is character-
ized by four anatomical abnormalities (thereforetetralogy). These abnormalities are a pul-
monary stenosis (PV.morphology.STENOTIC), a ventricular septal defect (IVS.defect.-
perimembr.DEFECT), an overriding aorta, i.e. the aorta is source in both RV andLV
(AoAsc.source.RV.AND.LV) and hypertrophy in the RV (RV.morphology.trophy.HYPER-
TROPHIC ). While taken singularly these features are also present inother clusters, cluster
3 is the only one which has prevalence for all of the four features and thus matches the clin-
ical definition.

Cluster 1, on the other hand, falls into the clinical definition of thedouble outlet right
ventricle (DORV) [24] type heart defect. The DORV is rather broadly defined and can
take various forms, in particular the DORV physiology can resemble TOF. Characteristic
features of DORV are a bi–directional shunt in the IVS (IVS.shunt.BIRIGHTLEFT ), an
increased blood pressure at the PV (PV.Psys.gradient.increased) as well as an increased
prevalence of discordant heart anatomy (Concordance.AV).

When considering cluster 2, it can be seen that its phenotypepattern is similar to both
TOF and DORV type heart disease, without quite matching the criteria for either. This
is interesting since, as previously mentioned, the definition of DORV is rather broad and
to some degree overlaps with TOF. In fact, in a somewhat simplified view of the clinical
situation one can think of TOF and DORV being on the ends of a continuum of heart disease
phenotypes. The phenotype patterns of the patients in cluster 2 then marks a point along
this continuum. This is an interesting result, since using the classical diagnostic schemes
of DORV and TOF, these patients would not fall in either category and might therefore be
ignored in subsequent analysis’.

Finally, cluster 4 is largely characterized by the absence of disease phenotypes when com-
pared to the other three clusters. To put it differently, thephenotype pattern is rather diffuse
with many features being present with low probability. Therefore the patients in this cluster

91



Chapter 7 Clustering of Heart Disease Phenotype Data

can be characterized as adiversegroup, where no clear phenotypic pattern emerged.

In summary, it can be stated that the phenotype patterns picked up by the clustering both
relate closely to established clinical knowledge as well assuggest a new previously unde-
scribed pattern of heart disease phenotypes.

As the original publication of the data set [187] also gave results for a clustering of this
data based on a simple hierarchical clustering, we can contrast the two clustering solutions.
The agreement of the two clusterings can be quantified by computing the accuracy (sec-
tion 2.3.2) and treating the labels from [187] as the true classes. This yields an agreement
of 78%, i.e. the two clustering disagree on 22% of the pairwise assignments. Also, the
chosen cutoff in [187] yielded a more fine grained decomposition with seven clusters and
the interesting grouping in cluster 2 was not picked up.

For a discussion of these results refer to section 8.4.
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Discussion

Clustering is a first step in the exploratory analysis of manybiological data sets. Due to
their high-dimensionality and inherent noisiness, many ofthese data sets make for chal-
lenging clustering problems. In this work we presented an extension to mixture models in
form of the CSI formalism which allows for automatic adaption of model complexity and
offers attractive properties for facilitating data analysis. The method was applied to three
biological data sets from different domains and the analysis’ yielded ample biological sup-
port for the clusterings obtained.

In the following sections we are going to discuss the variousaspects of this work and give
indications for possible future research avenues.

8.1 CSI Mixture Models & Structure Learning

As was demonstrated by the three applications presented in this work, the CSI mixture
framework is a powerful method for clustering of biologicaldata sets with uninformative
features and noisy samples. While the applications described focused on discrete valued
data, it bears repetition that the framework is not restricted to discrete data. By adopting
appropriate atomic distributions the method can be appliedalso on continuous data or
data sets which contain both discrete and continuous features. The CSI structure which
is returned as a direct outcome of the structure learning algorithm does not only have
attractive theoretical properties, it also has the very practical advantage of making explicit
which features characterize and discriminate the various clusters. This is of considerable
importance especially for large data sets with many features. When contrasting our CSI
formulation withdefault tables, it can be said that the richer formulation used in this work is
more suited to the complexity of real biological data sets (see also sections 7.3 and 8.4).

The combinatorial complexity of the structure learning problem necessitates the use of
greedy local search methods for real world data sets. The evaluation of these greedy strate-
gies on randomly generated models with known structure shows that in the majority of
cases the greedy top–down search performs as well as the exhaustive enumeration. This
result allows some confidence that the structure obtained bythe top–down search on real
world data sets are also useful.
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In the future, it would be interesting to adapt the CSI mixtures by extensions such as
infinitemixture models [114, 152] or more complex component distributions, for instance
conditional Gaussians [37, 177] or the discrete equivalent, mixtures of trees [130]. For the
structure learning algorithm, alternative approaches to the structural EM algorithm used in
this work could be considered. One possible direction such an alternative could arise from
is the newly emerging field of model selection by algebraic statistics [139].

8.2 Transcription Factor Data

In this section the results from the application of CSI mixtures to transcription factor bind-
ing site data in chapter 5 will be discussed.

The results of the simulation studies in section 5.3.1 show that the CSI formalism yields
more parsimonious and robust representations of the motivefor TFs that exhibit a position-
wise subgroup structure in their binding pattern. The greater parsimony of the CSI model,
as compared to conventional mixtures, was demonstrated fora subgrouping of known Leu3
binding sites. In this example CSI required 30% less parameters than a conventional mix-
ture for an equal performance in separating the high and low binding energy subgroups.
The analysis of the conserved fraction of predicted bindingsites in human upstream re-
gions in mouse presented in section 5.3.3 showed that a two component CSI model is
clearly superior to a conventional two component mixture inthe case where a more com-
plex model is warranted by the data. This means that learningthe CSI structures led to
a more biologically meaningful characterization of the binding patterns of the TFs under
consideration. For the TFs where the CSI model increased performance, we can assess
that the known binding sites apparently exhibited a biologically relevant subgroup struc-
ture. The exact nature of the biological mechanisms underlying these subgroups remains
elusive at this point. One possible explanation though would be the existence of different
conformations of the TFs which show distinct binding patterns.

While CSI outperformed the conventional mixture, a strong advantage of the CSI (or con-
ventional mixture) model over the single PWM model could notbe observed on this data
set. This was due to the occurrence of spurious structures for TFs with very few known
binding sites and the large number of TFs where the single PWMmodel seems to be appro-
priate. This makes sense as one would expect the structure learning to be more vulnerable
to outliers in situations where data is extremely sparse. The conclusion we draw from this
result is twofold: First, CSI is a practical tool for the search for putative TFBS that fits in
seamlessly within the probabilistic framework for scoringhits that has been established for
the single PWM model (e.g. [107]). For a practical analysis using CSI though it seems
important to require a minimum number of available binding sites (say 18) in order to
attempt to fit a CSI model and to use the single PWM model otherwise. This could be
easily included into the model prior. Secondly, we would expect the general usefulness of
the CSI approach to increase in the future as the pool of knownconfirmed binding sites
increases.

94



8.3 Protein Family Data

For future work, it would be interesting to repeat the clustering of binding sites on larger
data sets such as the TRANSFAC data base [124, 198] to obtain alarger sample of TFs
which shows subgrouping in their binding sites. This would allow to address more ques-
tions about the distribution of CSI structures for transcription factors of the kind discussed
in section 5.3.4. This might yield additional insights intothe biological mechanism behind
these subgroups. Complementary to such high-throughput analysis, it would also be very
interesting to examine the subgroups found for specific factors in detail. While this would
require dedicated wet lab experiments for most factors, there is also an increasing number
of studies which provide detailed information about the binding behavior of specific factors
(e.g. [25, 26, 95, 111]). The availability of such data mighthelp to interpret the results of
the binding site clusterings.

8.3 Protein Family Data

The results of CSI mixture-based clustering of protein families presented in chapter 6 show
that the approach is capable of simultaneously finding biological relevant subgroups, as
well as predicting functional residues which characterizethese groups. The functional
residue prediction proved to be robust to some degree to imperfections in the clustering
with respect to the true biological subgroup memberships. This highlights that this kind of
analysis is also useful when functional classifications forthe proteins of a data set are not,
or only partly, available.

The results also show that the use of DMPs in the analysis, consistently lead to an increase
in performance on the protein data when contrasted with the uninformative prior. For
the two DMP under consideration, the heuristic DMP based on nine chemical amino acid
properties performed somewhat better than a previously published DMP on the data sets
under consideration, although the difference was rather slight. In addition, due to its rather
simple structure, the heuristic DMP allows for an interpretation of the DMP components
and by that also the kind of bias it introduces into the parameter estimates.

One observation which could be made was that the degree of improvement of the DMPs
over the uninformative prior differs considerably betweenthe families. This is not surpris-
ing as one would expect differing amounts of synonymous substitutions within the various
subgroups and that is the situation where a DMP makes the largest difference as compared
to the uninformative prior. Also, there was no case where theuse of a DMP had a detri-
mental effect on performance, which highlights the generalusefulness of the DMP for this
kind of data.

For future work it might be worth investigating the impact ofdifferent DMPs on the clus-
tering results and in particular whether customized DMPs for specific applications yield
improvement over the general purpose priors used in this work. Moreover, now that the
usefulness of the method has been established on families with abundant prior knowledge
about subgroups and structure, a next step would be be to bring the method to bear to pre-
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dict groups and functional residues on data sets where such knowledge does not exist yet.
This, again would require experimental validation of the predicted residues and subgroups.
Another avenue for validation of predicted functional residues might come from the many
alanine substitution studies (e.g. [7, 123, 193, 201]) which experimentally investigate the
impact of specific alanine substitutions on the structure and function of proteins.

The preliminary analysis of the partially-supervised setup in section 6.5.4 show that the
approach has the potential to guide the clustering to provide groups which are meaningful
for specific biological questions. At the same time, the results are also a cautionary tale
in that small amounts of labels can actually have a detrimental effect on the clustering,
if randomly selected. This is probably the case, due to the random label selection. This
can cause the cluster centers to be strongly characterized by outliers, especially if only
few labels are available. The effect of low quality labels tohave a detrimental effect on
clustering performance has been reported in the literature[39]. Bearing that in mind, if
the labeled samples are known to be of high quality, the partially-supervised approach can
greatly improve the clustering setup.

8.4 Heart Disease Phenotype Data

The clustering of heart disease phenotypes presented in chapter 7 is a good example of how
clustering can be used as a first step in the attempt to unravelcomplex phenotypes. Also,
it shows how the CSI matrix (Fig. 7.4) can facilitate clusteranalysis by making explicit
which regularities characterize each cluster.

The clustering revealed distinctive phenotype patterns with strong correlation to classical
heart diseases. In addition to two clusters with direct relation to known clinical pheno-
types (TOF and DORV), the clustering also gave a novel intermediate phenotype pattern
which does not fit into the classical schemes and might therefore not be taken into account
when studying causal genetic variants. Finally, samples which did not show a strong com-
mon phenotype pattern were collected in a single cluster andthereby were prevented from
confounding the regularities present in the other clusters.

The difficulty of studying the genetic roots of complex phenotypes such as congenital heart
disease, is that there are many distinct genetic factors which contribute to a given phenotype
and that the different phenotypes overlap. This makes the direct application of genetic
association approaches problematic. In this situation thedecomposition of samples into
distinct phenotype patterns given by a clustering can sharpen the hypothesis’ to be tested
and thereby increase the power of the analysis. The underlying assumption being, that
patients which share distinctive phenotype patterns are more likely to also share underlying
causal genetic variants. In this manner clustering can pavethe way for subsequent analysis’
and deeper understanding of complex phenotypes. Moreover,it should also be noted, that
for most complex genetic diseases the established diagnostic categories are by necessity
tailored toward clinical treatment. This means these categories do not necessarily reflect
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commonality in genetic causes. Due to the unsupervised nature of clustering, it is possible
to obtain subgroups in a manner which is not biased by conventional wisdom. One example
of that is the potentially interesting compound phenotype found in cluster 2.

Another aspect worth pointing out is that the CSI structure for the heart disease data could
not be represented as adefault table(see section 3.1). This highlights that our CSI for-
mulation and the greater flexibility it affords to the structure search, is a more natural
representation of the kind of regularities which can be expected in biological data sets.

When comparing the CSI mixture–based clustering to the hierarchical clustering presented
in a previous publication [187], two points seem worth pointing out. While the two cluster-
ings were fairly consistent in the pairwise assignment of the data points, both the number
of clusters as well as the interpretation of the clusters differed. The hierarchical cluster-
ing returned a more fine grained decomposition into seven clusters for the chosen cutoff.
For instance, this clustering split the TOF patients into four subgroups. While such a fine
grained separation also can be of interest for other applications, it can be argued that the
more general groups returned by the CSI clustering are more promising as an initial step
of genetic association studies. This is due to the loss of power in the association analysis
that comes with the small sample sizes for too specific clusters.

For future work, it would be interesting to follow up the cluster analysis by performing ge-
netic association [73] and gene expression studies [109] which might establish connections
between specific phenotypes and genomic regions, genes or expression patterns. Also, the
analysis presented here was based on a subset of 26 phenotypes selected in [187] out of a
larger data set of 250 features. Repeating the analysis on the whole data set might yield a
clearer characterization of the phenotypes pattern and could be contrasted with the results
obtained so far.
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[182] J. Söding. Protein homology detection by HMM-HMM comparison.Bioinformatics,
21:951–960, Apr 2005.

[183] S. Takahashi and S. Sagayama. Tied-structure hmm based on parameter correlation
for efficient model training. InICASSP ’96: Proceedings of the Acoustics, Speech,
and Signal Processing, 1996. on Conference Proceedings., 1996 IEEE International
Conference, pages 467–470, Washington, DC, USA, 1996. IEEE Computer Society.

[184] J. Thomas, J. Touchman, R. Blakesley, G. Bouffard, S. Beckstrom-Sternberg,
E. Margulies, M. Blanchette, A. Siepel, P. Thomas, J. McDowell, B. Maskeri,
N. Hansen, M. Schwartz, R. Weber, W. Kent, D. Karolchik, T. Bruen, R. Bevan,
D. Cutler, S. Schwartz, L. Elnitski, J. Idol, A. Prasad, S. Lee-Lin, V. Maduro,
T. Summers, M. Portnoy, N. Dietrich, N. Akhter, K. Ayele, B. Benjamin, K. Cariaga,
C. Brinkley, S. Brooks, S. Granite, X. Guan, J. Gupta, P. Haghighi, S. Ho, M. Huang,
E. Karlins, P. Laric, R. Legaspi, M. Lim, Q. Maduro, C. Masiello, S. Mastrian,
J. McCloskey, R. Pearson, S. Stantripop, E. Tiongson, J. Tran, C. Tsurgeon, J. Vogt,
M. Walker, K. Wetherby, L. Wiggins, A. Young, L. Zhang, K. Osoegawa, B. Zhu,
B. Zhao, C. Shu, P. De Jong, C. Lawrence, A. Smit, A. Chakravarti, D. Haussler,
P. Green, W. Miller, and E. Green. Comparative analyses of multi-species sequences
from targeted genomic regions.Nature, 424(6950):788–793, Aug 2003.

[185] W. Thompson, M. J. Palumbo, W. W. Wasserman, J. S. Liu, and C. E. Lawrence.
Decoding human regulatory circuits.Genome Res, 14(10A):1967–1974, Oct 2004.

[186] B. Todd and R. Stamper. The relative accuracy of a variety of medical diagnostic
programs.Methods Inf Med, 33:402–416, Oct 1994.

[187] M. Toenjes, M. Schueler, S. Hammer, U. Pape, J. Fischer, F. Berger, M. Vingron,
and S. Sperling. Prediction of cardiac transcription networks based on molecular
data and complex clinical phenotypes.Mol Biosyst, 4:589–598, Jun 2008.

[188] A. Tomovic and E. Oakeley. Position dependencies in transcription factor binding
sites.Bioinformatics, 23:933–941, Apr 2007.

[189] A. Tong, B. Drees, G. Nardelli, G. Bader, B. Brannetti,L. Castagnoli, M. Evan-
gelista, S. Ferracuti, B. Nelson, S. Paoluzi, M. Quondam, A.Zucconi, C. Hogue,
S. Fields, C. Boone, and G. Cesareni. A combined experimental and computational
strategy to define protein interaction networks for peptiderecognition modules.Sci-
ence, 295:321–324, Jan 2002.

[190] J. J. Verbeek, N. Vlassis, and J. R. J. Nunnink. A variational em algorithm for
large-scale mixture modeling. InIn Proc. 8th Ann. Conf. of the Advanced School for
Computing and Imaging (ASCI 2003), Het Heijderbos, Heijen, 1998.

[191] K. L. Wang and J. R. Warner. Positive and negative autoregulation of REB1 tran-
scription in Saccharomyces cerevisiae.Mol Cell Biol, 18(7):4368–4376, Jul 1998.

112



Bibliography

[192] S. M. Ware, J. Peng, L. Zhu, S. Fernbach, S. Colicos, B. Casey, J. Towbin, and J. W.
Belmont. Identification and functional analysis of zic3 mutations in heterotaxy and
related congenital heart defects.Am J Hum Genet, 74(1):93–105, 2004.

[193] G. A. Weiss, C. K. Watanabe, A. Zhong, A. Goddard, and S.S. Sidhu. Rapid map-
ping of protein functional epitopes by combinatorial alanine scanning.Proceedings
of the National Academy of Sciences of the United States of America, 97(16):8950–
8954, 2000.

[194] T. Werner. Models for prediction and recognition of eukaryotic promoters.Mamm
Genome, 10(2):168–175, Feb 1999.

[195] N. Wicker, G. R. Perrin, J. C. Thierry, and O. Poch. Secator: a program for inferring
protein subfamilies from phylogenetic trees.Mol Biol Evol, 18(8):1435–1441, Aug
2001.

[196] J. R. Williams, C. Thayyullathil, and N. E. Freitag. Sequence variations within PrfA
DNA binding sites and effects on Listeria monocytogenes virulence gene expres-
sion. J Bacteriol, 182(3):837–841, Feb 2000.

[197] M. P. Windham and A. Cutler. Information ratios for validating mixture analyses.
Journal of the American Statistical Association, 87(420):1188–1192, 1992.

[198] E. Wingender, P. Dietze, H. Karas, and R. Knüppel. TRANSFAC: a database on
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Appendix A

Notation

C Component indicator variable
D Data set ofN realizations ofX.
E[X] Expectation of random variableX
G CSI structure of a mixture model
gj CSI structure for featureXj

gj(k) Mapping from component indices to CSI group
indices, i.e.gj(k) : (1, ..., K) → (1, ..., Zj)

gjr r’th group in CSI structuregj

γ Hyper–parameter of the prior over the number
of componentsP (K)

H Hidden data, i.e. labels which assign samples in
D to components

K Number of components of a mixture.
µkj Mean parameter of a Gaussian distribution at

indexj in componentk
N Number of samples inD.
ω Hyper–parameter of the prior over the CSI

structureP (G)

p Number of dimensions inX.
P (xi|Θ) Probability density or mass function over vari-

ableX parameterized byΘ
φkj Discrete distribution overM–symbol alphabet

Σ at indexj in componentk
φkjs s’th entry of discrete distributionφkj

π Mixture weights, K–dimensional stochastic
vector

Σ Alphabet withM symbols
σ2

kj Variance parameter of a Gaussian distribution at
indexj in componentk

τki Posterior of component membership for sample
i and componentk
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Appendix A Notation

Θ Mixture model parameterization
θk Parameterization of thek’th component of a

mixture
θkj Parameters for thej’th distribution in naı̈ve

Bayes componentk
X Multivariate random variable withp dimensions
xi Realization ofX, i.e. vector of lengthp
xij Realization ofXj, j’th element ofxi

Xj Random variable,j’th element ofX
Zj Number of groups in CSI structuregj
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Appendix B

Abbreviations

AIC Akaike information criterion
AoArch Aortic arch
AoAsc Aorta ascendensis
AoV Aortic valve
AV Atrioventricular
BIC Bayesian information criterion
BN Bayesian network
CPT conditional probability table
CSI context-specificindependence
DMP Dirichlet mixture prior
DNA deoxyribonucleic acid DNA
DORV double outlet right ventricle
EM Expectation Maximization
FN false negatives
FP false positives
HMM Hidden Markov model
IAS Interatrial septal defect
IVS interventicluar septum
LA left atrium
LDH lactate dehydrogenases
LV left ventricle
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
MDH malate dehydrogenases
mRNA messengerribonucleic acid
ML maximum likelihood
MPA main pulmonary artery
MSA multiple sequence alignment
NEC Normalized Entropy criterion
PDB Protein Data Bank
PFO Patent foramen ovale

117



Appendix B Abbreviations

PV pulmonary valve
PV pulmonary valve
PWM positional weight matrix
RA right atrium
RV random variables
RV right ventricle
TF transcription factors
TFBS transcription factor binding sites
TK tyrosine kinases
TN true negatives
TOF tetralogy of Fallot
TP true positives
sEM structural EM
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Appendix C

Nucleotide & Amino Acid Codes

Nomenclature for the four nucleotides and 20 standard aminoacids is determined by the
International Union of Pure and Applied Chemistry(IUPAC) codes.

Nucleotide 1-letter code
adenine A
cytosine C
guanine G
thymine T

Table C.1: IUPAC codes for the four nucleotides.
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Appendix C Nucleotide & Amino Acid Codes

Amino acid 3-letter code 1-letter code
Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartic acid Asp D

Cysteine Cys C
Glutamic acid Glu E

Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W

Tyrosine Tyr Y
Valine Val V

Table C.2: IUPAC codes for the twenty standard amino acids.
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Appendix D

Random CSI Models

When generating random CSI models, some care has to be taken that the structure and
model parameters are not inconsistent in the sense that the structure gives separate groups
to two components, whereas the randomly selected parameters, by chance, are very similar.
In order to circumvent the problem, an exhaustive structurelearning is performed to after
the random sampling of parameters to make sure this situation does not occur.

Therefore, the protocol to generate a data setD from a random CSI model with given
dimensionp, numbers of componentK and number of samplesN is

• sample structure G uniformly from all possible structures givenp andK

• for all featuresXj sample parametersθXj |gjr
according to the local structuresgj

– if θXj |gjr
is discrete, sample parameters from a uniform Dirichlet distribution

with M = 8

– if θXj |gjr
is Gaussian, sampleµ andσ2 from uniform distributionsU(−25.0, 25.0)

andU(0.3, 5.0) respectively

• perform structure learning with exhaustive enumeration toensure consistency

• sampleN data points to obtain the data setD
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Appendix E

Zusammenfassung

Die Dissertation beschäftigt sich mit der Analyse von biologischen Daten aus dem Bereich
Genetik und Molekularbiologie. Der Fokus der Arbeit liegt auf dem ’Clustering’, d.h. der
automatischen Unterteilung eines Datensatzes in Gruppen von ähnlichen Dateneinträgen.
Diese Gruppen werden dann im Bezug auf ihre unterschiedliche biologische Bedeutung
analysisert.

Der statistische Formalismus, der in der Arbeit angewendetwird, ist das Mischmodell.
Mischmodelle weisen eine Reihe von erstrebenswerten Eigenschaften auf. Sie sind flexibel
in der Abbildung verschiedener Datensätze, erlauben effiziente Parameterschätzung und
sind robust gegenüber verrauschten Daten. Im Kapitel 2 werden der Mischmodellformalis-
mus, der Algorithmus zur Parameterschätzung und Details zur Anwendung für das Cluster-
ing beschrieben. Im Kapitel 3 wird eine neuartige Erweiterung der konventionellen Mis-
chmodelle, diekontext-spezifische Unabhängigkeit(eng. CSI) motiviert und eingeführt.
Die CSI Erweiterung erlaubt die automatische Anpassung derModell-Komplexität an die
Variabilität eines gegebenen Datensatzes. Dies hat nichtnur den Vorteil, dass nur so
viele Parameter geschätzt werden müssen, wie benötigt sind, um den Datensatz abzu-
bilden. Die gelernte CSI Struktur erlaubt auch die Charakterisierung der vom Clustering
erzeugten Gruppen. Im Kapitel 4 wird der Algorithmus, der zur Parameterschätzung von
CSI-Mischmodellen benötigt wird, eingeführt und getestet.

Die erste Anwendung, die in der Arbeit behandelt wird, ist die Modellierung von Tran-
skriptionsfaktorenbindestellen (TFBS) mit Hilfe von CSI-Mischmodellen (Kapitel 5). Klas-
sicherweise wird das Bindeverhalten eines Transkriptionsfaktors (TF) mit einer einfachen
Positionsgewichtsmatrix (enlg. PWM) modelliert. In dieser Studie zeigen wir, dass für
TFs, die mehrere, unterschiedliche Bindemotive aufweisen, CSI-Mischmodelle die geeignete
Modellklasse darstellen. Am Beispiel des TFs Leu3 konnten wir zeigen, dass die Anwen-
dung von Mischmodellen biologisch motiviert ist. Desweiteren fanden wir in einer Se-
quenzkonservierungsstudie zwischen Mensch und Maus für einen Datensatz von 64 TFs,
dass CSI-Mischmodelle durchgehend bessere Ergebnisse liefern als konventionelle Mis-
chmodelle.

Die zweite Anwendung beschäftigt sich mit dem Clustering von Proteinsequenzen aus
funktionell verwandten Proteinunterfamilien (Kapitel 6). Es ist bekannt, dass viele solcher
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Appendix E Zusammenfassung

Unterfamilien unterschiedliche Substratspezifitäten aufweisen. Oftmals beruht die un-
terschiedliche Spezifität nur auf einer kleinen Anzahl an Aminosäureresten. Das Clus-
tering eines Datensatzes von Proteinsequenzen umfasst dann nicht nur die Einteilung in
Untergruppen, sondern auch die Vorhersage der funktionellen Reste, das heißt, der Posi-
tionen im Protein, die die Substratspezifität bestimmen. Um die CSI-Mischmodelle für
diesen Zweck anzuwenden, führen wir eine neuartige Modellerweiterung, basierend auf
der Dirichletverteilung ein. In der Folge analyisieren wirdie Performanz des Ansatzes auf
einer Reihe von Proteinsequenzdatensätzen.

Die dritte Anwendung befasst sich mit dem Clustering von Ph¨anotypen von Patienten mit
angeborenen Herzfehlern (Kapitel 7). Der Datensatz umfasst 26 binäre Phänotypen, die
jeweils die An- oder Abwesenheit von verschiedenen anatomischen Missbildungen des
Herzens repräsentieren. Die Anwendung von CSI-Mischmodellen für das Clustering eines
Datensatzes von 65 Herzpatienten führte zur Unterteilungin vier Untergruppen. Die Anal-
yse der Untergruppen zeigte sowohl eine gute Korrelation mit klassischen Herzkrankheit-
stypen, als auch eine neuartige Gruppierung, die eine Mischform von klassisch beschriebe-
nen Herzkrankheiten ist.
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