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Chapter 1

Introduction

This thesis is concerned with the analysis of biologicabdat statistical clustering ap-

proaches. In this chapter we give an introduction into theega properties of modern

biological data sets, the challenges they pose for datysieand describe in some more
detail the specific data sets we are concerned with. Firthlycontent and main scientific

contributions of this thesis will be summarized.

1.1 Biological Mass data

The advent of modern, high-throughput experimental tejles has lead to new wealth of
data for all aspects of molecular biology. While the naturthese data sets is extremely
diverse, there are certain properties which are shared Iy ofahese types of data.

e The data is high-dimensional and only a subset of the feattar be expected to be
informative for the purpose of an analysis.

e The values of the data points are distorted by noise and tlaesea contains a non-
negligible number of missing values. Also, many biologidata sets will include
outliers due to experimental artifacts.

e The data set incorporates multiple sources of data froneréifft domains (e.g dif-
ferent experimental methods, geno- and phenotypic datg, @there the relative
relevance for the biological question to be addressed, #awpotential dependen-
cies between the different sources are unknown.

These properties make the analysis of such data a chaltptagk. The presence of many
uninformative features increases the difficulty of pickung on the regularities of inter-
est, as trends in the data are overshadowed by the cumudfidaet of the uninformative
features. The presence of noise as well as missing valuegeeg be dealt with in a
principled manner. Finally, the possibility of integrajiseveral, heterogeneous sources of
data in a single analysis is of increasing importance.

In the following sections we are going to give short, fairgngral introductions into the
types of biological data this work is concerned with. For endetails, refer to any mo-



Chapter 1 Introduction

lecular biology textbook (e.q [131]). More detailed infation on the specific biological
backgrounds of the data sets we analyzed will be given indgective chapters.

Genomic Sequences

Figure 1.1: DNA double helix. The helix is formed by the complementanyngeof A—T
and G—C pairs of nucleotides. (Image courtesy of the US Natibibrary of Medicine)

The building plan of any living organism, its genetic infation, is stored and passed on
in form of deoxyribonucleic acid (DNA) molecules. In thelcéle DNA is organized as
two polynucleotide chains, or strands, which are interéaim the famous double helix
structure (shown in Fig.1.1). In genomic DNA there are foucleotides, or bases, which
form the consistent parts of the DNA chain. These four baseadenine (A), cytosine (C),
guanine (G),and thymine (T). The double helix is formed ly¢bmplementary pairing of
the two strands by hydrogen bonds of A—C and G-T pairs of otides.

Much of the progress in modern genetics has been driven byribgress of DNA se-
guencing technologies and the ever increasing number opletety sequenced genomes.
The availability of such genomic sequences allows the stddyestions such as the pre-
diction of gene positionggene predictiorf92,194]), evolutionary relatedness of different
organisms and specieghylogenetic$27]) and the common genetic basis of closely and
distantly related organismsdmparative genomidga]).

Protein Sequences

Whereas DNA is the medium in which genetic information isratioin the living cell,
proteins are how this information is expressed. Proteili#l &pecific functions in the cell
and the interplay of many (i.e. on the order of hundreds ofisaad for humans) proteins
form the whole organism. On the DNA level information how taild each protein is
stored in specific stretches of the nucleotide chain, thegen
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The information in the genes is turned into proteins by the pmocessesanscriptionand
translation In thetranscriptionstep, the sequence of a gene is copied intaribesenger
ribonucleic acid (MRNA). The mRNA is needed to carry the gienaformation out of
the nucleus, where the DNA resides, into the cell plasma.re[tte mRNA is read by
molecular factories, the ribosomes, which actually build proteins. Each protein is a
polypeptide chain of twenty different amino acids (see appdd). The order of amino
acids in a protein is determined by the order of nucleotidinérespective gene (via the
MRNA) according to thgenetic code

In vivo, proteins exist in a three dimensional fold of the linearrmovacid sequence, the pro-
tein structure. This structure is typically consideredlueé levels. The first and simplest,
the primary structure, is simply the amino acid sequence itself. $&eondarystructure
is the folding of the amino acid chain into typical local stiures, thex—helices ands—
sheets, which are connected by loops. Finally,tér@ary structure is the complete three
dimensional fold of the whole chain. FigL.2 shows an exanmpbtein structure. The
secondary structure elements are shown in reehélices) and yellow{—sheets). Loop
regions are depicted green. The fold each protein takesirdetes which amino acids, in
which configurations, are presented to the outside mediuwtlareby also which func-
tion it performs in the organism. In this work we focus on thalgsis ofprimary structure
data, i.e. amino acid sequences.

Figure 1.2: Example protein structure. Secondary structure elememtsie@picted in red
(a—helices), yellowg—sheets) and green (loops).

By analyzing protein sequences one can study questionsasuitte prediction of protein
function based on the similarity of the amino acid seque(megein homologye.g. [182]),
discovery of subsequences with a specific function whicluootmany proteinsgrotein
domain discoverye.g. [34, 35]) and prediction of the three dimensional faid protein
(structure predictione.g. [23] 134]).
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Complex Disease Phenotypes

A different kind of data set arises from the study of complerefic diseases. The analysis
of genetic diseases has classically been directed towatdslishing direct links between
cause, a genetic variation, and effect, the observablatieniof phenotype. For complex
diseases which are caused by multiple factors and which sheide spread of variations
in the phenotypes this is unlikely to succeed. Recently; @fisrts are being undertaken
to collect data sets which allow the study and, potentia&lycidation of the various ge-
netic factors contributing to a diseases’ mode of inhecéaand course in an individual
(e.g. [69,88]). Often these data bases contain both geioaiypl phenotypic information.
The genotypic features of such a data set either are givereihyrgic regions which have
been linked to the disease in prior studies or, increasiofign, by whole—genome geno-
typing based on next generation sequencing techniquesphdretypes consist of clinical
features relevant to the disease. These can be as diversestgognaire scores for psy-
chological disorders and morphological abnormalitiespieysically manifested diseases.
In this work we focus on the analysis of disease phenotypas.tDthe high variability of
complex phenotypes a structuring of distinctive phenofygtterns is often a crucial first
step in the analysis.

Important questions with regards to the study of such desease for instance the identi-
fication of candidate genes and genomic regions using lmkaglysis (e.gl [73, 100]) or
candidate gene approaches [181].

1.2 Thesis Overview

The main focus of this thesis is the detection of meaningiblgsoups in biological data
sets where noise and the presence of uninformative featandsund the regularities given
by biological subgroupings. That is, we are concerned witktering and cluster analysis
of biological data. Clustering techniques attempt to findgsaups of similar samples in
the data. It is both exploratory anohsupervisedi.e. the biological interpretation of the
discovered groups is not necessarily clear and assignroesasnples to known categories
are not givera priori.

A classical statistical framework for performing clusteyiare mixture models (see chap-
ter[2). Mixture models have attractive properties for amialy biological data. Namely
that due to their probabilistic nature, mixtures acknowkethe inherent ambiguity of any
group assignment in exploratory biological data analysis, structured and theoretically
sound way. In chapté&i 2 we also describe the parameter teglogiexpectation maximiza-
tion (EM) and give a practical introduction for using mix¢srfor clustering. The chapter
is concluded by a description of the Bayesian formulatiomodture models. Chaptéft 2 is
a review of established research on conventional mixturdetscand lays the foundation
of the extensions described in chagpfier 3.



1.2 Thesis Overview

In chaptei B theontext-specific independen@@SI) extension to the mixture framework
is introduced and we give a novel formulation of CSI in mietunodels which conveys
additional attractive properties for practical data as@lyThis is followed by an update of
the Bayesian formulation for CSI mixtures. Also, we desetite structural EM algorithm
necessary to learn CSI mixtures from data and derive thengea estimators. In the last
section of the chapter we discuss some practical advantdgeSI| mixtures for cluster
analysis. Chaptdd 3 draws from prior work on CSI mixtureschfemployed a less rich
CSI formulation and updates the established structural Edrighm for this new CSI
formulation.

Chaptei¥ deals with practical aspects of learning CSI mestdrom data. The complex-
ity of the structure learning problem is discussed and waristrategies for reducing the
complexity in practice are introduced and evaluated. Thagpter also gives results on an
approach for reducing the running time of the structurenieay.

In this thesis CSI mixture based clustering was appliedreetibiological applications. In
chaptefb we present the first application of CSI mixturesHermodeling of transcription
factor binding sites (TFBS). We show that CSI is more suitedhe problem than the
conventional mixtures previously applied and examine tioéogical implications of the
subgroups found.

In chaptefb we describe the application of CSI mixture fastgring of protein subfamilies
with simultaneous prediction of functional residues. Wsoaéxamine some challenges
posed by protein sequence data and present a model extémgom of a novel Dirichlet
mixture prior to address them.

The third application deals with the clustering of heartedise phenotypes (chaplér 7).
The aim of this analysis being to detect groups of patientehvare characterized by

different phenotype patterns. These groups then also ralgirte some causal variant on
the genomic level. That means in this setup the clusteringuaits to detection of disease
subgroups.

Finally, in chaptefB the results and implications of thiskwill be discussed.






Chapter 2

Finite Mixture Models

Mixture models are a powerful and versatile class of prdistizi models for density esti-
mation and data analysis. The central paradigm of the maxramework is that the ob-
served data is generated by a number of different and unadiderunderlying processes.
Each of these processes is represented by a distributiate(wity in case of continuous
data) and the combination of thesemponentlistributions by a convex combination then
forms the mixture distribution. Mixtures are not only thetically capable of representing
arbitrary distributions [129], in practice they are alsaefiicient alternative for more com-
plex models such as Bayesian networks [117]. One of the fseys introducing mixtures
was the 1898 Pearson paper [141] which dealt with the maglelithe size distribution
of a heterogeneous population of crabs. Since then mixtwodeia have been applied in
numerous fields and settings, including sociology (in fofrfatent classmodels|[106]) or
as building blocks of neural networks [19].

In this chapter we are going to introduce finite mixture meg#he parameter learning
algorithm, describe how mixtures can be used for clustaaimdjthe extension of mixtures
to the Bayesian framework.

2.1 Mixture Models

Let X = X, ..., X, denote random variables (RVs) representing the featurap dimen-
sional data seD with N samplesr;,i = 1, ..., N where each; consists of a realization
(@i1, ..., xip) OF (X1, ..., X,)). A K component mixture distribution is given by

K
P(2;10) = > mP(il0), (2.1)
k=1

where ther, > 0 are the mixture coefficients witEkK:1 7w, = 1. For our purpose each
component distributiorP(x;|0;) is defined as a product distribution ov&s, ..., X, pa-
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Example data set Density plot

Figure 2.1: a) Example data set from a Gaussian mixture with three compenarer
two-dimensional dataX;, X5). b) Corresponding mixture density heat map with three
normal components.

rameterized by parametets = (61, ..., Oip),

p
P(x;16k) = [ [ P(i;16ky)- (2.2)
J=1

Then each of theP(x;;|6;) is a distribution over aX;, conditional on a mixture com-
ponentk. The form the parameters; take depends how featur€; is distributed (see
section[Z11l for examples). We denote the collection ofiglland the weight vector
7w = (m1,...,mx) 88O = (m, 04, ..., 0;). Then® completely parameterizes the mixture.

Fig.[2Z1 shows an example data set and corresponding mikéumsty for two continuous,

normally distributed features and a three component mextidig [2.1a) shows a plot of an
example data set where different colors denote samples@fiem different components.

Fig.[Z.b) shows a heat map of the mixture density the datagemaerated with. Each of
the three normal components can be seen as modes of theydamsit can be seen that
the components overlap.

The likelihood P(D|©) for data setD with N samples is simply the product over the
mixture density at each sample

P(D|©) = Hp(m@). (2.3)

In order to illuminate the model properties it is instruetio examine® more closely. In
addition to the mixture weights, the model parameterization includes one set of parame-
tersd,,,; for each componentin the model and featirein the data. This can be visualized
as shown in Fid.2]2a). The example shows the parametexfata mixture with 5 com-
ponent', ..., C5 and 4 features(y, ..., X,4. It can be seen that the model parameters are
arranged in a matrix spanned by the mixture components afeatures of the data set. A
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more abstract representation of the same model can be ebtaynomitting the parameter
variable names from the parameterization matrix. Thisdgehemodel structure matrix
(Fig.[2:2b)). For conventional mixture models, the modeictre does not look particu-
larly interesting as every component has a separate setahpters,,; for each feature.
This will change with the introduction of context-specificiependence in chapfér 3.

X1 Xy X3 Xy X: Xy X3 Xy

Cr m | O | o | O3] Ows Cy
1 | Oa1 | Oga | Oa3 | O b) Cy

Ty | Os1 | O30 | O33 | O34 Cs
Cy m | On1 | Oso | Oz | Oua Cy
Cs w1 | Os1 | O52 | O53 | Os4 Cs

Figure 2.2: a) Model parameterization matrix for a five component mixtuerdfour
features.b) Corresponding model structure matrix.

C.
a) Cz

The assumption of independence between elememswhich yields the convenient de-
composition in Eq.[{(Z]2) is a rather strong one and bearkdudiscussion. The compo-
nent product distribution®(z;|0) are also known as naive Bayes models. These models
have been successfully used on a large variety of applitata areas as diverse as emo-
tion recognition{[133], credit scoring [40], diagnosis auée abdominal pain_[42] or text
mining |147,162]). It has been found that despite its sioifylinaive Bayes performs sur-
prisingly well for a broad range of applications. This isdreven in situations where the
independence assumption is not necessarily met by thelst& 6, 137, 143, 154, 186].
Also, naive Bayes is a competitive and efficient alterreatovBayesian networks for gen-
eral density estimation [117]. Finally, the optimality bkEtnaive Bayes classifier has been
shown for specific problem settings [47, 98]. That being thseg it should be stressed
that there has been considerable progress for classificatablems and state-of-the-art
methods such asupport vector maching8€] can be expected to outperform naive Bayes.
However, since this work is primarily concerned with clustg problems, this has no
direct relevance.

It is important to realize that the independence assumgfionX are conditional on the
mixture components. In other words, the assumption is that the strongest derenes
between features are captured by fhenixture components and thgiyena specific com-
ponent the features can be treated as independent. Thiskindependence assumption,
while still a simplification, has proved to be very useful iamy applications.

One advantage of adopting naive Bayes models as compaoisaitiutions is that it con-
veys great flexibility in modeling different distributioms X. For instance continuous
and discrete RVs can be seamlessly integrated into the sardelmThis flexibility has
been extensively made use of by researchers to design mirtadels for a wide vari-
ety of applications, including distributions such as mdtnial [65, 67| 153], Gaussians
[74,1136,138, 149], exponential [11], Poisson |108], uniid43] and Dirichlet|[170]. In
this work we are going to focus on the multinomial and normatrdbutions due to the
nature of the data under consideration. It should be noteeer, that all that is required
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to build mixtures for any distribution from the exponenteily [5], is to plug in the ap-
propriate density functions and parameter estimatorsthredramework we are about to
describe.

2.1.1 Atomic Distributions

The K distributionsP(x;;|0;;) over featureX; in a mixture with naive Bayes components
can be specified freely from the exponential family to makehdata domain of featurk;.

It should be noted however, that these distributions arg atdmicin the sense that each
one models feature a single featufe. Each of theX; could be vector—valued in itself and
conceptually each of thé,; can be multivariate or even a mixture distribution o¥grin
itself. In other words it is possible to have both univariatel multivariate distributions as
parts of a naive Bayes component model.

In the following we focus on normally distributed and digerealued data. For the Gaus-
sian data we havéy; = (iu;,0r;) wherey,; ando;; parameterize the Gaussian density
function

P(i5]0k;) = M) : (2.4)

1
RV 2T P ( 207,

If all X; are distributed as Gaussians, the product over univariates€sans in the com-
ponent distributionP(x;|0;) is equivalent to a multivariate Gaussian with diagonal co-
variance matrix. The assumption of diagonality for the c@mrece is often made to avoid
serious numerical problems with estimating full covareumgatrices on limited amounts
of data [12/7]. The Gaussian distribution is often used to @hadntinuous measurements
of biological quantities. One important example for suchrmfities are the various experi-
mental techniques for measuring gene expression [46| B0, 1

In the case of discrete data we h@ye = (¢x;), wherepy; = (dk;1, --., Prjm) IS a stochas-
tic vector of length)M defining a distribution over an alphal@twith A/ symbols. Then
¢r; parameterizes the discrete probability mass functionrgsmply by the element of
¢x; corresponding to the symbo]; i.e.

P(%j\ek]‘) = P(SCz'j = Es‘ébkj) = ¢kj37 (2-5)

whereX, denotes the’'th symbol in the alphabet.

In bioinformatics the most important source of discreteadatinarguably the vast body
of known biological sequences. This includes DNA and progeiquences. As mentioned
earlier, later chapters will give example applications@i¥A and protein data (chaptdrs 5
and®).

10



2.1 Mixture Models

2.1.2 Mixture Models from Different Perspectives

In mathematics the same or similar concepts often ariseffereint subfields in a process
reminiscent of convergent evolution. Considering how om&tmodels are expressed from
the perspective of different subfields, is instructive tingdeeper understanding of the
constraints and flexibilities inherent to the model forntiola used.

Mixtures as Bayesian Networks

A Bayesian network (BN)LI&1] defines the joint distributiohaonumber of RVsX; by
encoding the conditional independence between RVs in atduleacyclic graph. The cen-
tral assumption of the BN formalism is that RVs are only dejest on their parents in
the graph. This allows for factorization of the joint liketiod and efficient inference. As
described in section 2.1, in the mixture framework all R¥sare conditionally indepen-
dent given the component. In order to represent the exanige ¢ Fig.[Z2b) as a BN,
we introduce the component indicator varialdle C' is a discrete RV which takes val-
ues in the set of component indicés.., K. The resulting BN graph structure is shown
in Fig.[2Z3a). The conditional distributions with ariserfrdhe conditional independence
statements encoded in the graph structure are usuallyssqaten so calledonditional
probability tables(CPTs). FigLZBb) shows the CPT for featufe for the example graph
in a). SinceX, is only dependent o, there exists a separate conditional distribution
Ok, k = (1, ..., 5) for each possible value @f.

mbwmn—\‘o
D
N

Figure 2.3: a) Bayesian network graph for a mixture distribution withufdeatures.
X, — X, are conditionally independent given the component indicét. b) CPT for
feature X. The conditional distributions ok, given the value of” are listed.

Mixtures as Hidden Markov Models

Hidden Markov models (HMMs) are time discrete stochastacpsses which have been
used extensively for such applications as analysis of tioweses|[15C, 161] and biological
sequences [94, 97]. An HMM consists of a number of hidderestatach of which has
an emission distribution, describing the observed dataaamdnsition distribution which
describes the dynamics within the state space. For morgésdeteHMMs refer to[150].

11
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The HMM topology which defines a model equivalent to the fivexponent mixture in-
troduced in Fig[Z12b) is shown in Fig._R2.4. There, each offivelinear chains of four
states corresponds to a mixture component over four featditee transitions distribution
from the START state to any of the chains is just the mixturggivs =. From the HMM

Figure 2.4: HMM topology equivalent to the five component mixture from[E2b) The
dashed arrows denote transitions with probability one.

perspective, a mixture is an HMM witR parallel linear state paths and a fixed observa-
tion lengthp. This relation between mixtures and HMMs means that it @ightforward
to adopt HMMs as component distributions of a mixture [160].

2.1.3 Sampling from a Mixture

Since mixtures argenerativemodels, it is straightforward to sample observations from a
given model. For each sample= (x4, ..., x,) first a component € (1, .., K) is chosen
by sampling from the mixture weight distributian i.e.

k~m.
In the next step the elements:ofire sampled from the component distributipn
xXr n~ 9k

s.t. z; ~ 0, for each j =1, ...,p. The straightforward generation of artificial data from
a given mixture is very useful for tasks such as the valigedibthe parameter estimation
procedures and assessment of clustering performance. ypmaltsetup for the latter
would be to sample a data set from a given mixture while rangrthe true component
labels of each sample. Then, a new model is learned from #tats®t and the clustering
performance can be assessed by comparing to the true labels.

2.2 Expectation Maximization (EM) Algorithm

The central learning task that needs to be addressed foaaefd? is inferring the values
of the parameter®. The reason that one cannot straightforwardly calculateimmam
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2.2 Expectation Maximization (EM) Algorithm

likelihood (ML) estimates fo© is that the assignment of samples to components in the
mixture is unknown. This is referred to as ansupervisedearning problem. Classically,
this situation is also often referred to as an incompleta gaetblem in which the observed
data D is joined by the unknown component assignmefitso form the complete data
D. = (D, H). In the case of complete data (i.e. Sugerviseadase), obtaining maximum
likelihood estimate® for the parameters of a mixture is straightforward. In treomplete
data case howeve® cannot be calculated analytically. The standard techrtiojaerive at
parameter estimaté3 in the incomplete data case is tBgpectation MaximizatiotEM)
algorithm [44].

2.2.1 General Formulation

The principle idea of the EM algorithm is to replace the unknphidden values with
their conditional expectations based on the current paemsiand the data. Once these
expectations have been computed, new paramétecan be analytically computed by
substituting the hidden values by their conditional exagchs and treating the problem as
the complete data case. Iterations of these two steps willezge to a local maximum of
the likelihood function([44].

Formally, the aim is to find the parametésswhich maximize the probability of the ob-
served daté&(D| ©), i.e. the ML estimates

~

© = argmax P(D| ©).
e

In order to achieve this, an auxiliaty function is defined. Thé&) function is the condi-
tional expectation of the likelihood of the complete daxa= (D, H) given the observed
dataD and a parameterizatig®’—'. This yields the function as

Q0,0 Y = Ellog P(D, H|O©)|D,0" ], (2.6)

where the observed dafaand the current model parametés! can be considered con-
stant. The missing datd is unknown. Finally, the new parametegsare the target of
the maximization. The&) function can be rewritten by summing over the unknown hid-
den datah € H (assuming the hidden dafa is discrete, otherwise integration ovEris
required).

Ellog P(D, H|©)|D, 0" '] = "log P(D, h|®)P(h|D,0"") dh (2.7)

heH

whereP(h|D, ©'"') is the distribution of the hidden valués conditioned on the current
parameter®’~! and the dataD. By integrating over the hidden valuég, the function
becomes a deterministic function @ which can be maximized analytically for distribu-
tions from the exponential family.

13



Chapter 2 Finite Mixture Models

In the following we are going to show one of the central resolt EM algorithm the-
ory [44]. Namely that that maximizing E4.(2.6) with respax®, i.e setting

O' = argmax Q(O, ' 1) (2.8)
o

also increases the likelihodd(D|©), i.e.
log P(D|©) > log P(D|©"1).
This can be shown as follows: From theg-ratio of the two likelihoods
log P(D|©) =log P(D,H|O) —log P(H|D, 0)

the following is obtained by taking the conditional expéicta of H with respect taD and
the current parametefs

log P(D|©) =Y log P(D,h|©)P(h|D,0"") = "log P(h|D,©)P(h|D,0" ).

heH heH

(2.9)
In terms of the definition in Eq[{2.6) this can be rephrased as
log P(D|©) = Q(©,0"") = > "log P(h|D,©)P(h|D,0""). (2.10)
heH
By applying the same transformationltg; P(D|©!!) it follows that
log P(D|©) — log P(D|©6" ') = Q(©,0" ') — (e ! o)
_ P(h|D,0t 1)

P(h|D,0" Y ]log ——2— % (2.11

HeH

The terms in the sum just form the relative entropy (also kmew the Kullback-Leibler
divergence)|[96] between the two distributioR§éH | D, ©'~!) and P(H|D, ©). Since the
relative entropy is always nonnegative, it follows that

log P(D|©) — log P(D|O"") > Q(©,01) — @O, 0. (2.12)
Substituting the optimal parameteéd$ from Eq. [Z8) into Eq.[(Z12) yields

log P(D|0") —log P(D|©") QO — Qe e

Q(@, @t—l) _ Q(@t—l’ @t—l)
0

(AVARAVARLY]

which also implies
log P(D|©") > log P(D|©" ).
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2.2 Expectation Maximization (EM) Algorithm

This means that by maximizing the conditional expectaticthefull likelihood (Eq. [Z.6))
given some arbitrary parametepé—! and the data with respect to new parameéswe
can obtain an improved likelihoddg P(D|©"). This immediately suggests an iterative
procedure in whicl®! from the previous step becom@sé-! for the next. It can be shown
that these iterations converge to a local optimum of thdihiked function [44].

Note that the condition 08' maximizing Q(©*,0) in Eq. (Z8) can be relaxed to re-
quiring © only to increasel)(©!, ©). This is referred to ageneralizedEM algorithm
(e.g. [45] 52, 146]) and is useful in situations were maxatian of ) if difficult.

In summary, the EM procedure for finding ML estimators @consists of iterations over
two steps:
EM Algorithm :

1. Expectation Step EvaluateQ (0!, ©'~!) by substituting the conditional expecta-
tions of H.

2. Maximization Step: Maximize@ with respect t@®’, i.e. ©' = argmaxg Q(0, 0™ 1)

2.2.2 EM for Mixture Models

In the following we are going to derive the EM for mixture méglbased on the general
formulation of in the previous section. Given the mixture

P(z;|0) = ZﬂkP (2]0k) (2.13)

thelog—likelihood function for a data sé? = x4, ..., zy IS

log L(©|D) = Z log [Zwk (2]60%) ] , (2.14)

which, as mentioned previously, cannot be maximized dyefite to the sum within the
logarithm. To get around this issue we consider the hiddésm Bawhich is given by the
assignments of samples, ..., )y to components$l, ..., k). One way to formalize this is
to define the space of hidden ddfaas the set of{ x N binary matrices with exactly one
element equal 1 in each column. For one configuration of tddn datah € H, a value
of hy; = 1 then indicates that; was generated by componéntThen the joint distribution
of the observed and hidden data is given by the completelaatikelihood

K N
log L(B|D, H) = P(D, H|©) = > Y hy;(log my, + log P(x]6)), (2.15)

k=1 =1

15



Chapter 2 Finite Mixture Models

i.e. simply the sum over the likelihoods of sampieswhereh,; indicates which compo-
nent contributed each sample. Again the EMunction is

Q0,0 ') = Ellog P(D, H|©)|D,0" '] =
> log P(D,h|©)P(h|D,0'") (2.16)

heH

where h is a possible configuration of the component assignmentatoli matrix 4,
P(D, H|©) is the complete data distribution and

K
P(H|D,0" ") = [T T] P(hwi = 1las, © 1)

i=1 k=1

is the distribution of the hidden data givéh and ©'~'. The terms in the product are
the posteriors of component membership for each sample.pBlyiag Bayes’ rule, this
posterior is given by

P(h}m = 1)P(xz|hlm = 17@2&71)
P(ZL‘Z‘|@t_1)

Wkp(l‘lwk)
= . 2.17
SF P f6r) &40

This posterior is crucial for both the parameter estimatiothe EM framework as well
as using mixture models for clustering (see sediioh 2@).,; = 1|D, 0" !) gives the

probability that a sample; was generated by componént For ease of notation in the
following we will refer to P(hy; = 1|D, ©'1) asTy,.

Tki — P(h,kz = 1‘D, @til)

2.2.3 Parameter Estimators

The EM objective function for the mixture case HQ.(2.16) barformulated as

Q0,07 =33 "7, (log mi + log P(xi[61)) (2.18)

k=1 i=1
by expanding the sum ovérc H and rearranging terms_[17, 129].

Based on Eq[{Z.18) ML estimators for the parametem® ican be derived by analytical
maximization of th&) function under appropriate side constraints with resyeitte model
parameters i®" [17].

As an example we give details for the derivation of the ediomsafor 7. First note that
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2.2 Expectation Maximization (EM) Algorithm

Eq. (ZI8) can be written as

K N K N
Q(O,0h ZZTM 10g7Tk+ZZTIm‘ log P(x;|6k), (2.19)

k=1 i=1 k=1 i=1

and that there are no terms containing batrandd,. Thereforer, andd, can be maxi-
mized separately. In order to ensure stochasticity wedloice the side conditioEkK:1 T =
1 into the first sum on the right-hand side of Hg. (2.19) whicuketo partial derivatives of
the Lagrangian (e.g.[101]) with respectip(k = 1, ..., K) and

50 K N K
5—7% [ZZTkllogwk+)\ Zﬂk—ll

k=1 =1 k=1

iy
> Laiaa=o, (2.20)
=1
K
‘;_i? _ [Z T — 1] 0. (2.21)
k=1

Solving Eq. [Z2D) forr,, and substituting into EqL{Z.P1) yields= —N. Resubstitution
into Eq. [Z.20) yields the estimators for the mixture wesghtn each time step as

A Zﬁ\ilTki o

Estimation of the component parametégsequires taking derivatives with respectéo

for the second sum in EJ._(Z]19). For the naive Bayes commatistributions this sum
further simplifies to

K N
Z ZTM log P(xi1|0k1) + ... + Tri log P(ip|6kp),

k=1 =1

which means that the derivatives for the individdg] also can be taken separately. For
atomic distributiong;,; from the exponential family there are closed form solutitmnghe
ML estimators. For the univariate Gaussian distributipn= (1;, o7;) the ML estimators
for parameterg,,; and variancer,%j [129] are

N
N i=1 TkiZij
iy = izt T (2.23)
21:1 Thi

and

N N
52 > iy Thi( Wi — Mkj)2_

— (2.24)
& Zivzl Thi
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Chapter 2 Finite Mixture Models

In case of discrete distributiort; = ¢, estimates for parametets; = (¢x;j1, ..., Prinm)
over somel/—symbol alphabeXt are given by

ZNZ‘:L Thi
N Tii =
Orjs = Z;\[if (s=1,....,M). (2.25)
i=1 "ki

2.2.4 Drawbacks of the EM Algorithm

While the EM algorithm allows efficient parameter estimatithe algorithm also has a
number of drawbacks. The first and foremost concern beingtrwvergence is only guar-
anteed locally. The quality of such a local maximum relatwéhe global maximum can
still be arbitrarily poor. The standard approach to addtiessissue is to run the EM pro-
cedure many times from different initial parameter setsreahy exploring the likelihood
surface and in the end retaining the best parameters foumgimyplified example of such
a likelihood surface is shown in Fig._2.5a). The x-axis reprds the model parametéds
the y-axis shows the corresponding likelihood functiororrdifferent starting value®°,
the EM procedure converges (dashed arrows) to differeal lInaxima shown in red and
blue. Therefore, some care has to be taken with the choicdiffieeent initial parameter-
izations®°. One possible approach which works well in practice is talomnly assign
samples to components and then perform an M-Step updateain 613

Another issue is EM’s sensitivity to outliers in the data. Wall number of uncharac-
teristic data points can cause the EM procedure to get tchppspurious local maxima
at the edges of the parameter space. One example of that WelwddGaussian mixture
density containing one or several components with very lsvaalances?. An example
of such a density is shown in Fig._R.5b). The peaked compawoethie right, contributes
disproportionately to the whole likelihood by overfittingeav outlying data points.

b) 0.25

P(x)

Figure 2.5: a) Simplified likelihood surface with two maxima. Dependingthe initial
parameters© the EM procedure converges to a different maximum. b) Examoph
Gaussian mixture which attains a spurious maximum by otiagfian outlier.

This problem can be addressed by adding a dedicated noigeoo@mt to reduce the impact
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2.3 Mixture Models for Clustering

of outliers (see sectidn Z.3.4) or by a regularization oftheameter estimates in a Bayesian
setting (see sectidn2.4).

2.3 Mixture Models for Clustering

One major application of mixture models is clustering. @ugsg gives a decomposition
of the V samples of a given data set inkd subgroups. Among the classical approaches
to clustering are the k-means algorithm_[119], self-orgeng maps|[156] and hierarchi-
cal clustering approaches [99]. One important feature efrttixture framework is that
due to its probabilistic nature, it naturally representsr@apping clusters. In the mixture
framework, each cluster is identified with one of tRiecomponents and the components
parameter®), capture the regularities which characterize the clustée dssignment of
samples to components is done by a maximum likelihood approser the component
posterior. That is, a sample is assigned to componeht such that

kE* = argmax 7. (2.26)
k

The component posteriat; (Eq. (Z.1T)) captures the uncertainty of assignment of argiv
sampler; [160]. If 7;.- is close to one, there is little ambiguity. One the other hanahi-
form component posterior means maximum uncertainty. Tistfication of uncertainty
in the cluster assignment can be visualized by computindgstiennon entropy [169] of
the component posterior. FIg. 2.6 shows an example mixtemsity [Z.6a) and the corre-
sponding entropy of the component posteiiior]l(2.6b). It aaeden that the entropy is high
in areas where clusters overlap and low towards the clustaers. The highest entropy
can be observed when all three clusters overlap.

One important consequence of the cluster assignment rul@Et$) is that it is invariant
against deviations of the posterior which do not chakigdn other words, for the cluster
assignment of a sample to be correct it is sufficient that e tomponent obtains the
highest posterior. This is one reason why the model to aioategree is robust against the
independence assumption not being met by the data.

2.3.1 Model Selection

One important aspect of clustering with mixture models & ¢thoice of the number of
componentdy. Classically this has been addressed by training mixtuidsawange of
components and then applying some model selection critésiselect the optimal number
of components. Generally speaking, these criteria seledets based on the principle of
maximum parsimonalso known a®©ccam’s Razof6]. This principle stipulates that the
simplest model which models the data sufficiently well sddag used.

Criteria such as thBayesian information criterio(BIC) [166] and theAkaike information
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Density plot Posterior Entropy Plot

Figure 2.6: a) Example mixture density plob) Entropy of the component posterior. The
red dots mark the mode of the three components.

criterion (AIC) [3] have been applied in this manner. BIC and AIC areglzed likelihood
scores which contrast the likelihood of a model with its céexjty. The BIC score for a
maximum likelihood estimates is given by

BIC(©, D) = —2log L(©|D) + |6|log(N), (2.27)

whereL(©|D) again is the likelihood function EJ.{Z114%)| the number of free parame-
ters in® and N the number of samples. Similarly, the AIC is defined as

AIC(6, D) = —2log L(6|D) + 2|6). (2.28)

It can be seen that the penalization for model complexityager intheB/C aslog(N) >

2 for N > 8, which will be the case for most real world data sets. Theeeficcan be said
that the BIC is more conservative in the penalization of nhedenplexity thanA/C . In
fact, in practice it is often observed that thd C' tends to underestimate the number of
components, whereas thd C' tends to overestimatz [61].

An alternative approach to model selection is taken byNbemalized Entropy criterion
(NEC) |14 ,/61]. While the penalized likelihood scores argngeneral in concept, the NEC
has been designed specifically for the choice of the numbeomiponents in a mixture.
The NEC scores models by their ability to provide well-seped groupings of the data.
The NEC arises from the decomposition of thelikelihood log L(6|D) in Eq. [Z1%)
into alog-likelihood term and an entropy term. Since for the modets®bn problem we
are only interested in the number of componediitsve letL, = log L(©x|D) where©

is a mixture with/’ components.

Then it can be shown that
Ly = Cg — FEk, (2.29)
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where

K N
Ck = ZZTm log[my, P(x4]0})] (2.30)

k=1 =1
and

K N
Ex = — Z Z Thi 10g(Thi)- (2.31)

k=1 i=1

Ck Is a classification likelihood term anBl; measures the overlap between the differ-
ent components.r; again denotes the component posterior as introduced intiequa

Eq. Z1I7).
Based on Eq[{Z.29) the NEC is defined as

Ek

(2.32)

A small value for NEQO, K) is obtained for models which capture strong groupings in
the data and the clusters are well separated. Since the N&Belea specifically designed
for mixture model selection in clustering, in the followiitgs used as the model selection
criterion of choice.

Alternative approaches for model selection include sitgbiased measures (e.g.[12, 103]),
methods based on the classification likelihood [16], irdégpt complete likelihood [15,
16], Fisher information matrices [1197] or methods basedamalom projections [50]. Re-
cently Bayesian approaches for selecting the number of oaeris have received some
attention. These methods incorporate change&’ ias an integral part of the parame-
ter estimation, either as part of a MCMC procedure [152] omimydeling the prior over
the mixture weightsP(7) as an stochastic process, in particular the Dirichlet m®ece
prior [48,149, 1286].

2.3.2 Clustering Evaluation

One possible setup for the validation of a clustering metlsdd compute the clustering

in an unsupervised manner, and then contrast the clusislalith the true, known class
labels of a given data set. A clustering is given by a veeter(cy, ..., cy) and analogously

the true labelg = (¢1,...,tx), With ¢;,t; € 1,..., K . Since the mapping of clusters to
classes is unknown, we cannot compaendt directly. Instead, we consider all ordered
pairs of samples;, z;,7 > [ and count whether the clustering correctly assigns the same
or different labels. This leads to the number of true posgi¢TP) as
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i.e. all pairs of samples where both the true labels and tsta labels are the same far
andz;. By the same reasoning we obtain the false positives (FP)

N N

FP=7% % 6(ti=t)d(c; # ),

i=1 l=i+1

the true negatives (TN)

N N

TN =YY" 6t # t)d(ci # )

i=1 [=i+1

and the false negatives (FN)

N N

FN=> "6t #t)d(c; = ar).

i=1 l=i+1

Based on these quantities we can now compute the standasiti\sBn specificity and
accuracy measures as

Sensitivity= __rr
TP+ FN’
e TN
SpeCIfICIty: m,
and
Accuracy= TP+ TN
TP+ FP+TN+ FN

The sensitivity measures the fraction of comparisons wkiggeclustering correctly as-
signed the same label, the specificity give the same for threcoassignment of unequal
labels. The accuracy combines the two measures by giveattldraction of comparisons
where the clustering matches the true labels.

2.3.3 Handling of Missing Data

Missing values are an issue which needs to be addressed for meal world data sets.
If there are samples where a majority of the values are ngssidrastic approach would
be to excise them from the data set. However, even samplasméhy missing values
may still retain some useful information and particulanythe case that there is little
data, simply discarding samples might be wasteful. Anodéipgroach are so callethta
imputationtechniques (e.g [88, 112, 144, 173]) where the missing gadue replaced with
values computed from the observed data and subsequentiiatheset is treated as being
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complete. This however can introduce unwanted biases @odsults, if an unsuitable
imputation method is chosen [4]. In context of probabitisnodels for clustering, this
problem can be circumvented by explicitly accounting fossimg data in the distributions
used|[161]. For discrete distributions this amounts to $ymroducing a dedicated noise
symbolm into the alphabet, i. e = ¥ U m For normally distributed, continuous data,
handling of missing data is equivalent by re-defining thedahge a® U m. Then each
atomic distribution inP(z;|0) is modified to assign some fixed probabili®(m) to the

missing symbol, i.e.
P(m) otherwise.

P(x|0k;) = {

The probability of the missing symbet has to be specified priori and does not change
during the parameter estimation. This scheme has the effatthe missing values will
yield the exact same probability under all components ardetbre the contributions to
the clustering will cancel out.

2.3.4 Dealing with Noisy Data Sets

Noisy data set

Figure 2.7: Data set with two clusters and 20% noisy samples.

Noise in the data is another common problem when dealing ieathword data sets es-
pecially in bioinformatics. An example of a data set with telosters (red and blue) and
uniform noise (green dots) is shown in Hig.12.7 for two—disienal datg X, X5). When

attempting to fit a two component normal mixture to this daf e noise will have a
detrimental effect on the learned parameters. This can & isethe density plot in the
left part of Fig[2.8. Here both components were basicallygeé due to the influence of
the noise. One technique which is often useful in addregsiisgproblem, is to explicitly
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account for noise samples in form of dedicated, uniformec@smponents. This leads to

the mixture
K-1

> meP(ailbn) + 7 U (),

k=1
where theK’th component is a naive Bayes uniform distribution oXerThe boundaries
of each uniform distribution, as well as the fixed weiglat are specifiec priori.

In the example, the addition of a noise component over thgerari values observed in
the data leads to the model on the right in Eig] 2.8. Here blosters have been captured
correctly. It should be noted that for this example the trigtridbution of the noise was
indeed uniform and therefore the noise component provigemifact fit. However uniform
noise component retain their usefulness also for the stuathere the true distribution of
the noise is unknown 8, 34].

Without noise component With noise component

Figure 2.8: Left: Mixture estimates on the noisy data set for a two compbmixture.
Right: Mixture estimates on the same data set with the aad?f uniform noise compo-
nent.

Another technique to reduce the impact of noise in the dateteyministic annealinfiL57].

In deterministic annealinghe assignment of samples to components by the component
posterior Eq.[(Z.17) during the EM procedure is shifted talxthe uniform distribution.

The shift is reduced gradually over successive iterationis thhe algorithm continues nor-
mally. This has the effect of potentially avoiding poor lbegxima in the likelihood. The
procedure can be seen as special casesohalated annealingetup [91].

2.4 Bayesian Mixture Models

Bayesian statistics deal with the integration of prior kfedge into the process of inference
over a data sel [63]. This prior knowledge decreases umegri@bout the model param-

eters and causes a regularization of the parameter essinfdie inclusion of prior expert

knowledge for a specific application can also help to achieese meaningful results. The
former is realized in the Bayesian framework by new paranestemators which take prior

knowledge into account. An example for the latter will bead®ed in chaptdrl6.
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This prior knowledge comes in form of prior distributioR$0| M ) over the model param-
eters wherée\/ is the model class, i.e. the number of components of the maxithe joint
likelihood of D and© is given by

P(D,8|M) = P(D|6, M)P(O|M) (2.33)

with the mixture likelihood again given by

N K D
P(D|©, M) =[D>_ m [ P(xilbx;) (2.34)
1

i=1 k=1 j=

and the parameter prior

P(O|M) = HHP Orj)- (2.35)
k=1 j=1
This means that due to the independence between parantieégpsior for the whole mix-
ture decomposes into the product of prior terms for eaclviddal parameter i®. Details
for the individual priors will be given in the following sech.

The parameter estimation task is then to find@&hehich maximizes the joint likelihood.
Thesemaximum a posterio(MAP) parameter® are given by

© = argmax P(D, 0| M).
e

That is,© is estimated with the value in the mode of the joint likelidaaf D and©. A
distinct advantage of MAP estimation is that it can be strdiggwardly integrated into the
EM framework and that all convergence results mentione@atien[Z.2 still apply. The
objective function of the MAP EM is obtained by substitutifg. (2.3B) into Eq.[{Z.18)
(see sectionZ2.4.2).

It must be stressed that the approach taken here is not fajye®8an in that we do not
evaluate the marginal probability of the data. Rather th@r@gch taken is equivalent to a
penalized maximum likelihood estimation.

One problem with the full Bayesian approach is that the nmaigiannot be computed ana-
Iytically due to the incomplete data setting, although agpnations exist.[31]. Alternative
approaches for the evaluation of the marginal likelihocel iiarkov chain Monte Carlo
(MCMC) sampling techniques$ [155] which sample directlynfrthe posterior. This class
of methods includes techniques such as Gibbs and imporsamegling [30, 71, 13%, 151].
While properly applied these methods are fairly accuraie|ack of efficiency often limits
their practical usability for real world data sets. Alsorigdonal methods [131, 190] can
be applied. These types of approaches define tractable samthe likelihood function
and operate by maximizing these bounds rather than théhdaad directly.

One important advantage of the MAP approach is that it alldvescalculation of the
posterior distribution of a modél! and the corresponding MAP parametét&\/, ©|D),
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i.e. the distribution over different modeld, © given data seD. The model posterior is
obtained byBayes ruleas
P(D|®,M)P(©,M) P(D|6, M)P(6|M)P(M)

P(6,M|D) = ) = 0 , (2.36)

where the model prioP (M) is a penalizing factor for model complexity (see chaptern3 fo
more details). Eq[{Z.36) can be simplified to

P(6,M|D)  P(D|©, M)P(6|M)P(M). (2.37)

This is an important simplification as it allows us to scoriedent A/ without having to

evaluate the tern®(D) which would require integration over all possible modeldeT
parameter estimation task can then be stated to find the ndddehich maximizes the
model posterior for a given data st

2.4.1 Conjugate Priors

The standard choices for parameter prie¥@;;) are the respective conjugate priors for
the distributions ir©. A prior overd,; defines a distribution over the parameter space of
0x;. The prior distributions are parameterized by hyperpatarae A conjugate prior has
the property that the posteridt(6,,|D) has the same distribution as the prior, but with
hyperparameters updated according to the data.

The conjugate prior for discrete distributions is the Ditet distribution. The Dirichlet
distribution defines a density over the space of stochastitovsy with dimension). The
distribution is parameterized by a vector of hyper-paramset = («a, ..., ayr), as > 0.
The density function is given by

M M
Plolo) = Lt [ o, 2.39

wherel is the Gamma function/[1]. Fi§._2.9a) shows an example Dietcttensity for the
three-dimensional simplex with parameters- (1.5, 1.5, 1.5). The mode of the density is
achieved for uniform discrete distributions. For an exargdlmodeling prior knowledge
using the Dirichlet distribution, refer to chaplerl6.2.

The conjugate prior for the univariate normal distributigfy:, 02) is given by the Normal-
Inverse-Gamma prior. This prior takes the form

P11, 0|y, Kips Sps Vﬁ) = P(ulptp, 0* /) P(0°|p, Vﬁ)a (2.39)

where the first term on the right side is the normal density. E4) for meanu, and
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2.4 Bayesian Mixture Models

(1,0,0) (0,0,1)

(0,1,0)

Figure 2.9: a) Density plot for the Dirichlet distribution withi/ = 3 and o =
(1.5,1.5,1.5) b) Normal-Inverse-Gamma density plot for and o2 with parameters
Mp =2,kp =0.5,¢ =2,v, =2

variances?/r,, and the second term is the Inverse-Gamma distribution diyen

2Sp

P(02|gp7 VZ?) = Fyé)gp) (0'2)*§p+1 exp (—%) . (2.40)

An example for the prior density overando? defined by this prior is shown in Fig.2.9b).
It can be seen that the density is zero for very small valueg ofhis helps alleviate the
problem of vanishing variances during the EM parametenmegion (see sectidn 2.2.4).

2.4.2 Parameter Estimators

The MAP estimators differ from the ML estimators given in ts@c[Z2.3 by the contri-
bution of the parameter priors. Substituting the jointlitkeod Eq. [Z.3B) into the EM)
function Eq. [ZIB) leads to partial derivatives of the laaggian for the MAP estimators
for 7 for the conjugate Dirichlet prior

k=1 i=1

6Q ZKZ D(CA o) &
[ Tkllogwk+logz k=1 %) E (o — 1) logm + A( E T — 1)
) = k=1

i(zf,ﬁ (g — 1))+ A =0,

T
L
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Chapter 2 Finite Mixture Models

Similarly to the derivation of the MLE case (section 21 2)lving for \ yields
A=—(N+|o| - K)

and consequently the MAP estimator founder the Dirichlet prior as

A :Zz’]\ilﬂﬂ'—i_ak_l
g N+ o] - K

(k=1,..K). (2.41)

Thus, the estimator for a discrete distributi®n = ¢x; with ¢ = (¢gj1, ..., drjm) Over
someM symbol alphabeX is given by

ZNi:L Thi T o — 1
A~ T=2
L= Ty C(s=1,... M). 2.42
e = N = ) (2:42)

Mathematically, the Dirichlet MAP estimators are equival® adding«| observations to
the data set, where each symbol is observed with frequencihis gives a direct intuition
on how the prior knowledge expressed by the prior influenceparameter estimation in
the MAP setting.

For a normal distributio,; = (u;, o3;) under the Normal-Inverse-Gamma prior, the
MAP estimates for the mean,; parameter are given by

. ZZJ\L Tri%ij + Kplt
Qg = 1N J e (2.43)
Zi:l Tki t Kp

that is the prior contribution adds, observations with valug,,.

For the variance;; MAP estimates are obtained as

N 1 KpT —
2 D e Twi(Ti — fig)? + 6 + el (0 T 1p)?
ki = N - (2.44)
S ey Thi +Vp+ 3

with n, = Zf;l T; andfix; given by the ML estimator fop,,; in Eq. (Z2B8). See [53] for
details on the derivation.
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2.5 Partially-supervised learning

2.5 Partially-supervised learning

Clustering is performed in amsupervisedetup. This means that the assignment of sam-
ples to clusters is unknowa priori. A variant of this problem is the case where for a
subset of samples there is information about the clusterlmeeships. A biological exam-
ple for such a situation would be a set of protein sequenaes £ which have functional
annotations. This is referred to apartially-supervisedor alsosemi-supervisedearn-

ing [29,1160] problem. This information usually takes thenficof positive (must-link) or
negative (must-not-link) constraints for pairs of samples

A

Figure 2.10: Example of constraints arising from labeled samples. Tha datwo—
dimensional with features x and y. Red edges between paititsate positivenust-link
constraints, blue edges negativaist-not-linkconstraints.

Fig. 210 shows an example for the constraints implicit ia kbeling of data samples.
Red edges between points represenst-linkconstraints, where each red edge stands for
a different label, blue dashed edgmsist-not-linkconstraints. Each positive constraint
implies negative constraints to all data points constihinadifferent clusters.

A simple way to implement positive constraints in the migtaase is to fix the assignment
of samples with positive constraints to the same compomettie component posterior
(Eg. (Z1T)). That is, for a labeled samplgwith label/ this meansy,; = 1 for k = [
andO for all otherk. This binds the contribution of the sample to parametenedton
to a specific component. This setup can also be thought of aén&ip the continuum
between complete data and incomplete data learning taskghé&former, the assignment
of samples to components is known (i.e. the posterior tdieform given above). For the
latter, the assignment of samples to components is unknadnhe EM algorithm needs
to be used to arrive at estimates tor

This simple modification described above gives rise to thiéglly-supervised EM algo-
rithm for estimation of© with hard positive constraints. More complex variants @& th
partially-supervised setup have been explored in thealibee, including negative con-
straints and soft constraints_[38, 102,1167].
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Chapter 3

Context-specific Independence Mixture
Models

The concept otontext-specifitndependence (CSI) arose in the setting of Bayesian net-
works. It should be kept in mind that finite mixture models barseen as a special case of
a Bayesian network with constrained graph topology (setose2.1.2).

Bayesian networks define a structured decomposition ofdim gistribution of a col-
lection of RVs. Such a decomposition is required, since thiecbnditional distribution
(where each RV is dependent on all the others) has a numbaraigters exponential in
the number of RVs and in general cannot be estimated frone fsaimples. It is therefore
crucial to limit the model complexity (loosely the numberfofe parameters) by mak-
ing assumptions about structural regularities in the jdistribution. In case of Bayesian
networks one such assumption would be the Markov propedy,that each RV is only
dependent on its parents in the network structure. In a faata setting, attempting to
learn too complex a model will lead to overfitted parameteis spurious results. A good
model can then be characterized as being simple enouglow @bust inference while at
the same time capturing the most relevant trends in the data.

The central idea of the CSI formalism is to increase robsstiy making use of regular-
ities in the parameters of a model to reduce and adapt modgbleaity to the degree of
variability observed in the data.

3.1 Prior Work

This notion of reducing model complexity and enhancingrefee by capturing additional
structure in the model parameters has received consi@eastiehtion in the Bayesian net-

larity networkg82], multinetd62], asymmetric representations for decision making/[172
decision trees [21, 70] and the application of probabdiktorn rulesi[145].

The first application of CSI in the context of mixture modelasausing Bayesian CSI
mixture models for clustering gene expression data [10¢ mhin difference between |10]
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Chapter 3 Context-specific Independence Mixture Models

and the model we are going to introduce in this chapter ligserformulation of CSl used.
[10] used the so calledefault tabled57], which allows for far less flexibility in the CSI
structure than our formulation (see sectiod 3.3 for détailis new CSI formulation has
profound impacts on the usefulness of the model for prdafigia analysis.

We previously applied our CSI mixtures for the analysis oération deficit hyperactivity

disorder patient data [64]. However, this work did not takieamtage of the Bayesian
framework and the structure learning was done by a fairlypsstic AIC-based clustering

of model parameters following the EM estimation.

3.2 Context-specific Independence (CSI)

Formally, statistical independender two RVs X, andC' is defined as
P(X;|C) = P(X;). (3.1)

In the mixture framework, each of thg,, ..., X, is dependent on the component RV
which takes valueg in the set of component indicés, ..., K). The dependency o€’
is then expressed by the component-specific paramétersThis leads to the mixture
distribution familiar from Eq.[(Z11) and(Z.2)

K
P(2;]0) =Y mP(11|041) P(2ia|Ok2)-.. P (wip|Ohp) (3.2)
k=1

where the sum goes over the possible valueSate. (1, ..., K). Intuitively, this depen-
dence on the component varialdlefollows the assumption that a feature carries regular-
ities which help to characterize and discriminate the camepts. Conversely, a feature
which does not contain such informatioruisinformativefor the purpose of characterizing
the components and therefarelependentf C'. This is not an uncommon situation espe-
cially for exploratory data analysis where the relevanceauh feature for the clustering is
not knowna priori. If we assume without loss of generality that featireis independent
of C,i.e. P(x;1|0k1) = P(xy) forall k € (1,..., K) we have

K
P(2;]©) = P(xn) Y i P(2in|0k2)-..P(wip|Oy). (3.3)

k=1

The kind of model in EqL{3]3), where one or several featuea® been set to be indepen-
dent of the component variable, has been referred selastive naive Bayesixtures [10].
Essentially, feature; equally contributes to the likelihood of each component tuede-
fore has no impact on the component membership posteriar @&&1)) or the cluster
assignments.

In between the two extremes of full in— or dependencé’asithe case where some feature,
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3.3 CSI for Mixture Models

say X1, is informative for characterizing and discriminating sets of components. For

instance a feature may discriminate two rather broad categof clusters whereas other
features contain information for division into further sakegories. In such a case, the
natural parameterization is to identify a separate set odrpaters with each subset of
components, i.e. theontexithe feature discriminates.

This notion ofcontext-specifimdependence is formalized as an extension to the conven-
tional mixture framework in the next section.

3.3 CSI for Mixture Models

In case of conventional mixture models ttenditional independenaessumption between
components means that for each value of the component i&igba separate set of
parameterd),; needs to be specified. In the CSI case, several componentsmaag
parameters in a feature, depending on different contegtssubsets of .

X, Xy X3 X, X, X, X3 X,
Cl Cl
CQ CQ
Q) o, b) ¢,
C4 CY4
C5 C5

Figure 3.1: @) Model structure for a conventional mixture with 5 composead four
RVs. Each cell of the matrix represents a distribution inrfigture and every RV has an
unique distribution in each componeltm). CSI model structure. Multiple components may
share the same distribution for a RV as indicated by the mateils spanning multiple
rows. In example€’y, C3 andCy share the same distribution fo¥,.

From the structure matrix for a conventional mixture showrkig.[3.1a) this leads to a
CSil structure shown in Fi§._3.1b). Again, each cell of therirakpresents an uniquely
parameterized distribution but several components masegherameters for certain fea-
tures. This means that for examgle andC’, are represented by the same distribution for
X; and all components share the same distributionXfor It should be noted that the vi-
sual structure matrix representation used here is a siggdibin since it can only represent
groups which are contiguous in a column. However, for thee s#kthe example this is
sufficient and if full generality is required, the differagoups in the matrix can be color
coded (see sectidn 3.6.1).

In addition to the reduction in model complexity, the sturetmatrix also helps to facilitate

a cluster analysis by giving an explicit, high-level ovewiof the regularities in the data
which characterize the different components (i.e. cls$teFor instance, in the example
one can see that for featudd component$C;, Cy) and(Cy, Cs) share characteristics and
are represented by one set of parameters. On the other hanboent’'; does not share

its parameterization foX;. Moreover, if components share the same group in the CSI
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Chapter 3 Context-specific Independence Mixture Models

structure for all positions, they can be merged thus reduttia number of components in
the model. Therefore learning of a CSI structure can amauantautomatic reduction of
the number of components as an integral part of model trgunin

We will further discuss the practical implications of thel@G8ucture for cluster analysis

in sectio3.611.

The default tablerepresentation of CSI used in_[10] assumes that for eachroothere

is only a single group in the CSI matrix with size larger thare.o In the example, this
means that the structures &%, X3 and X, can be represented default tableswhereas

X, cannot. As the number of components increases, so doessthietrens on structure
space imposed by thaefault tablerepresentation.

The more general formulation of CSI structures used in tlokvallows for the capture of
more and richer regularities in the data, which enhanceasbtilness of CSI for facilitat-
ing data analysis. This will become apparent when applyegnodel to biological data
sets (esp. chaptEl 7.

X, X, X3 X,

gl ‘9X1|g11 6X2\921 ZX3|931
2 X3lg32
03 0X1|912 0)(2\922 0X3|933 0X4\941
g4 0X1|913 0 ZX3|934
5 Xolg2s | YX3lg3s

Figure 3.2: CSI parameter matrix for the structure shown in figl3.1a).

Formally, we define the CSI mixture model as follows: For teeaf component indexes

C = {1,.., K} and variablesX,, ..., X, letG = {g,}(=1,...» be the CSI structure of the
modelM. Theng; = (g;1,...9;z;) WhereZ; is the number of subgroups fof; and each
g;r,v = 1,..., Z; is a subset of component indexes frédmThat is, eacly; is a partition

of C into distinct subsets where eagh represents a subgroup of components which share
the same distribution foX ;. The CSI mixture distribution is then obtained by replacing

P(:Ezj|0k]) with P(xij|0Xj|gj(k)) in (M) Wheregj(k) = Gjr such that: Gjr-

This yields the mixture distribution as

iS]

[M] >

:EZ|@ = WkHP l‘lijj‘gj(k)), (34)

where accordinglp = (7, 0x,1g,, -, Ox11gz, s -+ Ox, )91 ...,QXp|gZp) is the model parame-
terization.
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3.3 CSI for Mixture Models

3.3.1 CSI from Different Perspectives

In this section we revisit the two different perspectivesnoixture models described in
section 2. IR (Bayesian networks and HMMs and examine hevattoption of the CSI
formalism is reflected in these models.

CSl in Bayesian Networks

While the finer-grained statements of CSI cannot be repteden the canonical Bayesian
network graph.[22], they become apparent by regularitiéiserCPT tables. Fi§._3.3 shows
again the example network graph and the CSI CPT for feaXuyre

X
HXl\gn
eXl\gn
9X1\912
‘9)(1\913
0X1\913

mbwmn—\‘o

Figure 3.3: a) Bayesian network graph for a mixture distribution withiféeatures. X, —
X, are conditionally independent given the component indicat. b) CPT for feature
X1. The table contains parameters according to the CSI stracghown in Fig[(311a).

It can be seen that for contexts ((1,2), (3), (4,5)) X; has a specific distribution . Also,
the relation to the corresponding CSI mixture parameteririig. [3.2b) is obvious.

CSl in Hidden Markov Models

From the perspective of an HMM, the CSI structure amountsttong of state emission
and transition distribution parameters. The ideas of reducodel complexity in HMMs
by representing several states with the same distribufi6f, 1883], and of adapting the
model complexity by topology learning [178], have receigedne attention in the litera-
ture.

The HMM topology for the CSI structure matrix in Fig.B.1b)sisown in Fig[E3K4. Here
boxes around states imply a tying of the corresponding eomsand transition parame-
ters.
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o

T
. T

................

...............

Figure 3.4: HMM topology with state parameter tying equivalent to the ftemponent
CSI mixture from Fig—311.

3.4 Bayesian CSI Mixtures

To extend the model posterior (EG.(2.37)) to the CSI cagentbdel priorP (M) is set as
a prior term over the CSI structure. Again we have the modsigrmr Eq.[Z.3]7)

P(6, M|D) < P(D|6, M)P(6|M)P(M)

with P(D\é), M) given by adaptation of Eq-{Z.34) for CSI mixtures. The power the
CSI structureP (M) serves as a regularizer for the structure learning simileghé pa-
rameter priors when computing parameter estimates. Amy griowledge about the CSI
structure of a given model can be encoded in this prior. Ireg@rthough, there exists no
such prior knowledge and the prior only captures a geneedép@nce for a less complex
model. For such a priaP(M) we adopted the factored form

P(M) x P(K)P(G), (3.5)
where theP(K) is the prior over the number of components dhd~) is the model struc-
ture prior defined as

P(K)=+%, P(GQ)= f[wzj (3.6)

wherevy,w < 1 are hyperparameterg,is the number of dimensions, K is the number of
components and; is the number of groups in the CSI structure of featire That is,
both prior terms will decrease for largér andZ; (due toy,w < 1) and thereby penalize
complex models. Therefore by means of the prior a bias tosvandaller models and
simpler structures is introduced into the model posteridre values ofy andw need to
be chosen a priori and can be considered to adapt the strehtytb preference for a less
complex structure. It should be noted that, of the twais the more important hyper-
parameter as it drives the feature-wise structure leaymihgreasy only contributes to the
posterior for structures where entire components are rdaaggether in the structure. In
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3.5 Structural EM Algorithm

sectio4.3]1, we give a simple data-driven heuristic taoskdhe hyper-parameters for a
given data set.

3.5 Structural EM Algorithm

In the previous sections, we introduced the CSI formalisnal, motivated it by describ-
ing both its desirable properties for robustness in paramestimation and facilitation of
cluster analysis. In order to harness these advantagesdtiqe, a reliable way to learn
such a CSI structure from data is required. Our structummieg method of choice is the
structural EM algorithm (sEM).[55, 56]. The sEM frameworlkais extension of the classic
parametric EM (section2.2) in which the unknown CSI streeeis inferred based on the
expected sufficient statistics of the data given the stractu

3.5.1 General Formulation

Before describing the structure learning for CSI mixturedetail, we give the extensions
to the parametric EM which give rise to SEM generically. Tégails adapting the EN)
function (Eq. [Z.b)) for the CSI case. In addition to the pagterso, the structure learning
requires assessment of a structGr@as part of a moded/. We consider cases where the
objective scoring metric takes the form

S(©, M) = log P(D|©, M) — Per(®, M), (3.7)

where Pe(©, M) is a penalty function based on the current paramebeasid the model
M. This formulation includes classic model selection ciitesuch as BIC(Eq[{Z.27)) or
AIC (Eq. (Z2.28)) as well as the Bayesian mixture model postéiq. (Z.37).

In analogy to the parametric EM, the sEM objectyeunction is the expectation of the
scoring metric

Q(O, M; 0! M*™Y) = E[log P(D, H|©, M) — Per(©, M)|D, 0" M*"'].  (3.8)

The expectation can be computed by taking the integral dVgroasible values of the
hidden dat&h € H andP(h|D,©!, M*!) is the distribution of the hidden data.

Ellog P(D,H|©, M) — Pen®, M)|D, 0" M'™!] =
/ log(P(D, h|©, M) — Pen(©, M)) P(h|D,0" ', M1 dh. (3.9)
heH

In analogy to the parametric EM procedure [128], it can benshf®5] that, by choosing
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model and parameters which maximize théunction

(6, M*) = argmax Q(©, M; ©~1, M*™1),
o,M

the increase in th@ function in each step, i.e.
Qe M, et MY > (e, M; 0t Mt
also guarantees that the score itself increases
S(ef, MY > SOt Mth.
This holds until convergence is reached [55] and there is arohange in the score, i.e.

S(@tJrl’MtJrl) — S(@t,Mt).

3.5.2 Structural EM for Bayesian CSI Mixture Models

The task of learning a CSI model from data consists of assggvelues to the group struc-
ture variableg); and estimating parametegsfor the induced distributions.

We adopt the Bayesian approach described in seCiidn 3.4dasdoring function, that is
different models are scored by the model posterior disivbuEqg. [Z.37))

P(6©,M|D) < P(D|6, M)P(6, M) = P(D|©, M)P(6|M)P(M)

where agairP(D|O, M) is the likelihood based on the data(Eq. (Z3%)),P (6| M) is the
parameter prior (EqL{ZB5)F (M) is the prior over the model structure (Elg.{3.5)) and the
© are the MAP parameter estimates (EQ.1(2.4)).

From Eq. [3J7) the sSEM) function for the mixture case is given by
Q(e", M e M) = Ellog P(D|©, M) —log P(©, M)|©" ', M*].  (3.10)
In the next section the parameter estimators for the sEMigtgowill be derived by taking

derivatives of Eq.[{3.30) with respect to the model paramsete

3.5.3 Structure Parameter Estimators
Using Eq. [Z.IB) and Eq_{3.4) we can write the €Bfunction Eq. [3.1D) as

QO,M;e07 M) =

K N P
Z ZTM (log T + Zlog P(xij|8xj|gj(k))) +log P(©|M) +log P(M).  (3.11)
j=1

k=1 i=1
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The estimators forr remain unchanged from Eq.(Z141). When taking derivativith w
respect to soméy,,. , the difference to the conventional MAP case is that in tha su
over K there are contributions from all € g;,. After substituting the priolog P(©|M)
(Eq. (Z3%)), taking the derivative with respect to a givan,,,, and setting to zero we
have

K N p
oY (log me + ) log P(xy \9X,7-|g,7-<k>)> +

k=1 i=1 j=1
K
k=

50X 95

log P(m) + log P(0x;|g,x)) +1og P(M)| = 0.

1 j5=1

This can be simplified by dropping terms independent of fegitio

50 K N
50 [Z ZTIm log P(ij|0x;14,(k)) + ZlogP Ox;19;( k))] =0. (3.12)
i195r

k=1 i=1

The general formulation in Eq[{3]12) can be adapted forifpetomic distributions
0x,lq,, DY substituting the density functioR(z;;|0x;|4,)) and the conjugate prior den-
sity P(0x;|4;(x))- For instance, lefx,,, be a discrete distribution, i.élx, ., = ¢4, =
(Pg;015 -+ Pg;onr) With ¢y being stochastic. For ease of reading, in the following vagodr
the indexg;, from ¢, , i.e. ¢,,. = ¢. Then the derivative of the Lagrangian with respect
to the elements af and )\ are

50 K N o) M
50 [ZZTkllog@UquogZZ =1 %s H(b? 1 ( Zqﬁs—l

k=1 i=1 _ () s=1
1 N
™y > Y mit (-1 | +A=0, (3.13)
5\ kegi(r) i=1,

Tijj=24s

5Q | &
— E s— 1 =0. 3.14
N Ll(b ] (3.14)

Analogously to the derivation of the ML (sectidn(Z]2.3)daMAP (section [2.4]2)) es-
timators, the CSI mixture MAP estimators are obtained byieglthe Lagrangian fop
and. In this case we obtain = — (3, (. EZ | Tki + Z;(as — M)) whereZ; again
is the size of the current group structurg. Note that, due to the summation ovef in
Eq. (3.1%), the conditioning on a specific symbglin Eq. (3.I8) drops out of the sum over
N.

For discrete distributions, the parameter estimators foy and structurey;, is then given
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by

(EkEgj(r) E]\;il, Tki) + Zj(as — 1)

N
EkEQj(r) Ei:l Thi + ZJ(|a‘ - M)

(s=1,.., M). (3.15)

When contrasting Eq{3.1L5) with the results for the MAPreators in Eq.[[Z.42), it can be
seen that the estimator for a given CSI structure is obtaayguboling, i.e. adding up, the
component posterior and prior contributions of all compuasen the group. This makes
intuitive sense when thinking of the model posterigras the relative contribution of sam-
ple z; to the parameters of componént In order to obtain the parameters for the case
where components share the same distribution for a feafureve pool the contributions
of the components. This pooling of the posterior gives rastéexpected sufficient statis-
tics of the data given the structure in the estimators. One ilpbonsequence of this
result is that once we have computed the model posteriofdr eomponent separately,
we can get estimates for all possible groupings in the C8tsire in an efficient manner
by pooling the posterior over subsets of components.

The estimators for a Gaussiég, |y, = (ugjr,o—gﬁ_) = (u, 0?) (again we drop the indices)
are obtained by a straightforward extension of the deowagjiven in [53]. First, we sub-
stitute the Gaussian (Eq.(2.4)) and and Normal-Inversen@a prior Eq.[(2.39) densities

into Eq. [3.1R) to obtain

33 e (=Y

k=1 i=1

i log [m exp (—%(u - up)Q)

Taking the derivative with respect toof Eq. (3.16) yields
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xzy 1) Kp2(ph — fip) _
= Zm + ) =0
keg;(r) i= keg;(r)
2
:O'_ - Z Zﬂczng Tki Z Rplh — Kpfhp =0
kegj( kEg]

= — Z ZT/ﬂl‘” +u Z Zﬂm + Zikpt — ZiKplp =0 (3.17)

keg;(r) = keg;(r) i=

Solving Eq. [3.1I7) fop: yields the MAP estimator
ZkEQJ Zz | TkiTij + Zj (’fp:“p). (3.18)

o=
EkEQj(r Ez 1 Thi + Z; ifp

The estimator for? is obtained analogously. From [53] the derivative with oo

can be written as
N
@ B Zkegj(r) > i1 Thi + Zi(vp +3) B
oo o

1
; Z ZT]{)Z Tij —

kegj(r) i

n N
P42+ L | =0
Kp T T

Solving foro? yields the estimator

(3'2 Zkng Zz 1 Tkz($z] M) + Z; (§ + ,:If;k (la - MP)Q) (3 19)
Zkegj(r) Zi:l Ti + Zj(’/p +3)
again withn, = > ." | 7; andji; given by the ML estimator for Eq. (Z2ZB) for structure
gjr-

3.6 CSI Mixtures and Clustering

Now that the MAP estimators for CSI mixtures have been ddrivee will discuss some
implications of the CSI formalism for practical data anadyend clustering.
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3.6.1 Interpretation of the CSI Structure

One advantage of the CSI extension for practical data aisayhe high-level overview of
the regularities found in the data. In order to illustratis,tbonsider the example structure
in Fig.[33. In this figure the structure is color coded. Witkach column of the matrix
the same color indicates membership in the same group of 8het@icture. There are a

X, Xo Xz X4 X5 Xe X0 Xg

Ch
Cy
Cs
Cy

Figure 3.5: Example of a color coded CSI matrix for four components agttdeatures.

number of observations about the regularities which chierae the different components
in this model which can read directly from this structure mxat

e FeaturesX;, X3 and X are not informative for the clustering.

e The four components fall into two general categor@és () and (s, C,). Features
X, and X} discriminate these general categories.

e (1 and(, are subdivided into separate components by feakiyrand the same is
true for featuresX, and X; for component€’s andCl.

It should be stressed that this information is a direct autieof the unsupervised learning
procedure (see section B.5) and does not require any hurtemention. This kind of
overview over the characteristics of the model is espgciadeful for data sets with many
features. There the detailed analysis of the regularitiesacterizing a cluster requires
considerable effort.

3.6.2 Feature Ranking

One typical problem during data analysis is to find whichdess contribute the most to
the discrimination of the components for a given model. Wttile CSI structure explicitly
captures features with do not contribute at all, a finer, gtaive ordering of the most
informative features is often useful. Such an ordering carobtained by ranking the
features with an entropy-based score on the model parasneter

Probably the most common form of ranking would be to assigirémks to features which
capture a high degree of variability between componente. @y to formalize that would
be by the weighted symmetric Kullback-Leibler divergende &f the parameters for a
given feature, i.e.

K K

SCOFQj) = Z Z (7Tk‘1 + 7Tk2>KL <9Xj|9j(k?1)7 9Xj|gj(k2))' (320)
k1=1ko=k1+1
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3.6 CSlI Mixtures and Clustering

This score will assign large values to features which stiyodigcriminate the components.
A ranking of features based on these scores in descendimy will identify the most
informative features.

An alternative, more refined form of ranking would be to findtfees which characterize
a component (or a subset of components) against all othgp@oemts. Such a ranking can
be obtained as follows. In order to quantify the relevance tdatureX, for component
subgroupL, we assume a CSI structure in whidfj is discriminative for components
versus the other components, i&; = 2 with g;; = L andg;, = {1,..., K} \ L. Based
on this structure a component-specific parametef seind a parameter set for all other
component®,;., are constructed by doing a single SEM update (see sdciidf) 3.5

The score for featur&l; and component id is then given by
Scorg, ; = KL (01, Oother), (3.21)

where KL is again the symmetric relative entropy.
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Chapter 4

Structure Learning Algorithm

In order to make practical use the advantages of the CSI faméor data analysis, a reli-
able way to estimate CSI structures from data is requirethisrsection we give details for
the CSI structure learning algorithm, discuss the combietcomplexity and give results
for several strategies for running time improvement.

4.1 Algorithm Overview

The basic outline of the CSI structure learning algorithmdaiven data seb is as fol-
lows

Step 1 Run parametric EM (sectidn2.2) to obtain modél
Step 2 Perform structural EM o/ to obtain CSI structure.

The second step involves the scoring of possible CSI strestoy their model posterior.
Several exhaustive and greedy strategies for searchingringture space are discussed in
sectio4B.

4.2 Combinatorial Complexity

A naive approach to the CSI structure learning problem doedjuire the scoring of each
possible structure by its model posterior. The space ofiplesstructures for a single
feature is identical to all possible partitions of the com¢at indices set, ..., K and in-
creases exponentially witR. The exact number of possible structures can be computed
by the Bell number3x [2]. As an example for a single feature and ten components the
number of possible structures to be evaluated is givelBhy= 115,975. For several
features the number of possible combinations is then alporesntial in the number of
featuresp. For a given component numbé&f and number of features this meansB?.
possible structures in total.
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Chapter 4 Structure Learning Algorithm

Therefore, exhaustive enumeration of all possible strestis infeasible in for most real-
world data sets and non-exhaustive search strategiedmstrticture space are required.

4.3 Structure Space Search Strategies

We considered the following search strategies over theespigossible CSI structures:

Full enumeration of all possible structures. This is only feasible for very small data
sets but it yields an useful benchmark for the performandbebther strategies. As
mentioned, the number of structuredi%, exponential in both andp.

Feature-wise enumeration of the possible structures. The structure is learned for each
featureX; separately and in each feature all possible structuresoamsidered. The
number of structures iBxp, only exponential in

Greedy, top down search For each feature the search is initialized with the full stiuve
matrix (i.e. all components have a unique distribution).amiterative fashion all
pairwise merges of groups in the current structure are d@ord the one which yields
the best model posterior is retained for the next iteratibime maximal number of
structures the greedy procedure will scor®ig<p), i.e. cubic ink.

Greedy, bottom up search Similarly to the top down procedure, except that the initial
structure is the case where all components are in the samp.gidl possible splits
are scored to find the structure for the next iteration. Thapexity of the search
space i) (K?p), i.e. quadratic ink .

The feature-wise, greedy learning of the CSI structureauitiverge to the global optimum
of the model posterior in those cases where the optimal tcattureg; is identical to
the structure of the feature on the globally optimal streestuTo put it differently, if the
globally best structure includes a locally suboptimal e, the feature-wise procedures
will not return the global optimum.

Exhaustive structure enumeration will be infeasible forsin@al world data sets. This
means one of the greedy strategies will have to be applie@grefdre it is important to
evaluate and quantify the difference in performance wisipeet to the global optimum of
the model posterior as obtained by the complete enumer@emnsection 4.3.2).

4.3.1 Choosing the Structure Prior

The first step of the structure learning procedure for a gol&ta set is the choice of the
hyperparameterg andw in the structure prioP (M) (Eq. (3.5))

P(M) x P(K)P(G).

In generalP(M) encodes the preference for a simpler model. This is coettastthe
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4.3 Structure Space Search Strategies

model posterio?(©, M| D) with the data likelihoodP(D|©, M) (Eq. (Z34)), which in-
creases with model complexity. One way of thinking aboutrthation between prior and
likelihood is that the prior acts as a regularizer of thelllk@od to prevent overfitting by
including too many parameters in the model. From the pets@eof the CSI structure
learning task, the choice of the hyper parametef the structure prioP(G) expresses
the preference for a simpler, less complex structure. Oneafdooking at this, is that
w puts a threshold on the decrease in likelihood that is aabépin exchange for a less
complex structure. Since the likelihood of a data set is ddpet on the sample sizZ€
the same must be true far. To make this explicit, consider the decision rule between a
model M° with MAP parameter®° and a candidate mod@l/, © during an iteration of
the learning algorithm. Assume thaf and M are identical except for a single merge in
ag;. This merge is accepted if

P(©°, M°|D) _ P(D|O°, M)P(0°, M) _

P(6, M|D) P(D|©,M)P(6, M)
Under the assumption of uniform parameter priors, by stilisty Eq. [Z.3%) and Eq{3.5)
and canceling terms this equals

0

[[oete |, o,
o1 P(2:]0)
Each of thelV fractions gives the decrease in likelihood of ;dor moving fromA/° to the
less complex model/. That is, we can think of each fraction @s+ ¢;) whered; is the
relative decrease in likelihood far;. Under the simplifying assumption that all of the
are equal, i.ed; = 9, we can now choosedas themaximal relative decreada likelihood
we are willing to accept in exchange for a less complex mobetnw is given by

1

w:w(é,N):m.

(4.1)
It is important to stress that at this point all we have dorte ieplace the choice af with
the choice ofs. However this is advantageous for two reasons: First, thadta given
above explicitly shows the impact of the data set $\izeSecondlyy has a straightforward
interpretation based on the difference in likelihood betwéwvo models. As such it is
easier to make an informed choice fobased on the specific application.

The choice ofy is less crucial for the learning procedure parameterizes the prior over
the number of component3( K'). This prior has an impact on the posterior of models with
different numbers of components. The effective number ofanents in a model changes
if two or more components are in the same group for all featufiéne value ofy can be
seen as an additional bias for a smaller number of compoiretits model posterior. This
is useful for applications where the number of resultingstdus should be more strictly
penalized. Otherwise can be chosen as the neutral, uniform prior wits 1.
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Chapter 4 Structure Learning Algorithm

4.3.2 Search Strategy Evaluation

In order to assess the performance of the different stregegie randomly created models
of different sizes and compositions. We considered modéls @aussian, discrete and
both Gaussian and discrete features. The number of comsoveied byK < (2,3,4)
and the number of features by (2, 3,4, 5). For each model a CSl structure was chosen
uniformly and model parameters were sampled accordingetsttincture (see appendix D
for details on random model generation). A data set of sif¥)3@as sampled from each
generating model and MAP estimation of a conventional mecaf the appropriate size
was performed to obtain the root model. The experiment wasated 4800 times for each
of the three data types (discrete, Gaussian, discrete &<Ea)s The different structure
learning approaches were applied on different copies sfriot model and the quality of
the resulting structures was assessed. Here, the modeliposibtained with the exhaus-
tive enumeration was used as benchmark, as this procecids yine global maximum of
P(M|D) for a given data set and root model.

All Gauss discrete Gauss & discrete
Feature-wise enum. 99.29% 99.75% 99.01 % 99.08 %
Top down 99.26% 99.75% 98.99 % 99.02 %
Bottom Up 65.57% 5852% 72.85% 65.88 %

Table 4.1: Global optimum obtained for non-exhaustive search stiatedt can be seen
that the feature-wise enumeration and top-down local des@erform as well as the full
enumeration in most cases.

The results of the comparison with the full structure enwanen for the different types
of generating models are shown in Tabl4.1. It can be seendhatlfdata types both the
feature-wise enumeration as well as the top down procedtaimed the globally optimal
structure in almost all cases. These results indicate beawast reduction in problem
complexity that is obtained by fixing the feature order dgratructure learning does not
carry too heavy a price with regards to the quality of theredrstructures. The results
for the different types of generating models are fairly ¢stent, with the exception of
the bottom-up procedure which performed better for Gandbian for discrete generating
models. As one would expect, the results for heterogeneensrgting models with both
discrete and Gaussian features were in between the two @itiregs.

While generally the local search strategies perform wehé&experiments, the cases where
the local procedures did not return the globally optimal&inre warrant closer examina-
tion. The question being which factors are common to thosgatsavhere the local search
strategies did not return the global optimum. Two factorsenidentified which jointly
characterize the cases where the local searches divegadtlie global optimum. The
first was the observation that most of the problematic gemgranodels had redundant
components in their structure, i.e. there were several commts which shared the same
group in all features. Fig.4.1 shows an example of such atsireiwhere components;
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4.3 Structure Space Search Strategies

andCs; share parameters in all features and could therefore beshertp a single compo-
nent with weight(m, + m3). Such a structure introduces dependencies between tiuedeat

X; Xy Xs; Xy

Ch
Cy
Cs
Cy

Figure 4.1: Example CSI matrix with redundant components. Compon@pntsnd Cs
share parameters for all features.

in the sense that the two components can only be merged totfarmptimal structure, if
all feature-wise structure searches also find this grouptrdpes make sense then, that in
such a situation the exhaustive enumeration of all possibletures will find the optimal
structure, where a local search might miss it due to dewiataf the trained parameters
even for a single feature. The latter aspect leads us to tendecharacteristic of the
problematic cases. It could be seen that component redap@éone was not sufficient to
cause divergent results, rather the parameter estimatae parametric EM runs (Step 1
in sectiof4]l) had to be to some extent divergent from theegenerating parameters. A
typical case of such estimates would be that some compob&ihed a very small weight
in the trained model whereas no such component existed igetherating model. In such
a case one can say the parametric EM failed to sufficientljucaphe generating model.

In summary, there seem to be two constellations were thé seeach is sub-optimal
e The generating model has redundant components and the gtardaM failed.
e The parametric EM failed by a wide margin.

The second case is fairly rare in comparison to the first. Wb#t cases have in common
is that they arise from the parametric EM taking a, relayiggleaking, bad local maximum
of the likelihood. This is a well known drawback of the EM pedltire and it highlights the
importance of using the algorithm in a manner which minireizecurrence of such bad
parameters (see section 212.4 for details). It also shbasthie exhaustive enumeration is
able to compensate to some degree for an suboptimal paraEktrun by the sampling
of the parameter space inherent to the structure search.

The next question was how the three local search strategresrmed in comparison with
each other. Talh. 4.2 shows the counts of experiments whermoal search outperformed
another, as measured by the model posterior. Each entryeitatile gives the number
of cases where the search strategy in the row outperforneedtthtegy for the column.
In example, there were 4777 out of the 14400 cases where d@h@rdewise enumeration
outperformed the bottom up approach.

It can be seen that the feature-wise enumeration and theotep skearch perform strongly
consistent with only 8 cases where different structuregwbtained (6 where the feature-
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Feature-wise enum. Top down Bottom up

Feature-wise enum. - 6 4777
Top down 2 - 4778
Bottom Up 5 4 -

Table 4.2: Performance comparison for the local search strategieschEentry is the
number of cases where the strategy in a row outperformedttagegy in a column.

wise numeration was better, 2 where top down was). The botjormrocedure is com-
monly outperformed by the two other approaches. The masoretor that is probably the
overly restricted search space of the split-based seatabhwnly covers structures which
fall in the default table representation. This problem doofl course be addressed by an
improved version of the bottom-up approach which includes Bplit and merge movesin
the structure. However, considering the favorable resiltee top down approach when
compared to full local enumeration (which is optimal for fixeature order), there is no
need for a more complicated greedy search. Another integeaspect to consider is the
case where a locally suboptimal choice of structure leadsttetter global structure. This
situation is the only case where either the top-down or botip search can outperform
the feature-wise enumeration. By taking the sum over theifeavise enumeration col-
umn in TalZP we get the total number of occurrences of sumitets. Out of the 14400
experiments run, only 7 such cases were observed. In thesgeg the restriction of the
structure search space inherent to the greedy procedurdsabge led to a local structure
which resulted in a global structure which was better thanféature-wise enumeration.
Fortunately this this problematic constellation seemsctmucs rather rarely.

Given all these results, the greedy top-down procedurelstant as the search strategy of
choice. It combines computational efficiency with a stroegfgrmance in the structure
learning. The results presented in the application chafidb andl7 are based on the
application of the top-down greedy search.

4.4 Running Time Optimization

In order to make structure learning feasible for larger data in acceptable running time,
an efficient formulation of the learning algorithm and thp-ttown structure search is cru-
cial. This includes caching strategies to avoid re-contparieof certain terms and bounds
on the model posterior to speed up the model posterior evatua
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4.4.1 Feature-wise Caching

One useful consequence of the restriction to feature-waaech strategies is that the de-
composition of the mixture likelihood can be used to speechupputations. From Ed.{2.1)
and Eq.[[ZR) we have the mixture likelihood

P(zi|©) = Y m [ [ Plaij|6ky)-

k=1  j=1

Assuming that we are currently learning the structure fatufee X ;- this can be written
as

K

p
P(z;0) = " mp | Plaijl0ks) [ PlailOn;)
k=1 7j=1,
J#i
Now, all the terms in the product are equal for all structwkfeatureX ;- and need only
be computed once. This straightforward caching alreadyedses the running time of the

structure learning by a factor 6f(p).

4.4.2 Candidate Structure Graph

The top-down search strategy considers in each step aligaimerges of groups in the
current structure and accepts the merge which yields tHeekignodel posterior. An ex-
ample of this is shown in Fig["4.2a). For clarity we denétg,, with the simplified
notationd,, in the example. Each of the four nodes in the figure represeatenponent
of the mixture and each pair of components gives rise to a engagametef,, based on
the expected sufficient statistics of the merge (see s€8imB), which in turn allows the
evaluation of the model posteriét(©, M|D).

Figure 4.2: a) Pair-wise merges to be evaluated in the first step of the gretdicture
learning for a four component mixtur®) Second step aftet 3 has been accepted in a).
Only the parameters corresponding to the red edges need recbenputed.

This means that in each st€j Z?) candidate merges have to be computed, witiie the
current number of groups, starting witf) = K in the first step. An important observation
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that can be made, is that the merge paramétersf disjunct merges are independent in the
sense that the respective computations have no terms in oconirhis is because the merge
parameters are computed from the element-wise additiohneo€démponent membership
posteriorsr, = {7 }i—1,.. v Of the components that are part of the merge (seelEQl(3.15)).
An example would bé, 3 andf, 4 in Fig.[4.2a). The former is based on; = 7 + 73,
whereas the latter arises from, = 7, + 74. If we were to accept the merge band3 in

the first step, the second step (shown in Eig. 4.2b)) wouldstate the re-computation of
only the merge parametets, ; and6, s 4 (edges shown in red), wheres, would remain
unchanged from the previous step and need not be computad abarefore, by caching
the merge parameters in each step, the complexity of mergengters to be re-evaluated
in each step after the first drops fra{Z?) to O(Z;). This greatly increases the speed of
the structure learning, especially for models with a langehber of components.

4.4.3 Posterior bounds

Another approach for speeding up the evaluation of caneligi@ticture model posteriors
is to derive upper and lower bounds on the candidate strictecision function. This
decision function is simply the fraction of model postesifor the current model/° and
the candidate modél/?, i.e.

P(6° M°|D)

— < L.
P(e', M'|D)

Dec=

Given analytical lower bounds D&t and upper bounds D&ton Dec which can be com-
puted efficiently we could make use of D&c< 1 = Dec< 1 and De€” > 1 = Dec> 1

to obtain a faster decision for a given candidate merge. Igmficant caveat to this is that
the bounds need to be sharp with respect to Dec, in order feceidn to be possible.
Since De#” > 1 % Dec > 1 (and respectively for Dé®) an insufficiently sharp bound
will not resolve the decision and Dec has to be evaluatedtlgxadote also that De is
the more useful bound as it allows for the quick identificatod structures which can be
discarded. The developments in this section are indep¢odiéme CSI extension. There-
fore the somewhat easier formulation@ffrom the conventional mixtures will be used in
the remainder of the section.

In the following we give examples for possible definitionsEd® and Deé¢r. The first
is a simplistic example, which illustrates the principleheTsecond can be seen on an
extension of the first making use of properties of the lobarit

Substituting Eq.[{Z2.34) into Dec yields
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sz Ty meP(35]605) P(MO)
Ek 1Hp717TkP(xm|0 ) (Ml)

Assumingyj* is currently being learned we lét;k = Hle,#j* P (2]0;;) andl;k =

Dec— H Zk 1 L?kl?k (é(]’ MO) )
k= 1Lzlklzlk (617M1)

Now definel) = (1%, ..., %) and analogousl¥. It should be noted that in fraction of the
two priors, almost all terms cancel and it is therefore &liyito evaluate.
Simplistic bounds

Given that all elements i, I} and L;, are positive, and that thé;;, are identical in
numerator and denominator, bounds ¢@and De&” can be obtained as

ow N min(/;) (é )
Dec?” = H max(l;) P (é)

and

N A0 340
p_ max(l;) P(0", M)
Dec 11 min(l;) P(él, M)

These bounds illustrate the principle. In practice howdvey are rarely sharp enough to
allow a decision based on D&t and Deé” alone.

Logarithmic bounds

Since numerator in Dec is the model postedg©°, M°| D) of the currently best structure
found, we can consider it to be constant and known. In this easonly need bounds for

the likelihood function of the candidate structuPéD|0', M*) (as the prior is unproblem-
atic). This likelihood is given by

N
P(D|e', M") =[] P(x:l0"),
i=1

often it is more convenient to use the—scale, which is also consistent with the actual
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implementation due to underflow avoidance. The-likelihood is

N K
log P(D|6', M) =Y log ¥ Lilis,*
k=1

i=1

as the function to be bounded. Now, tlhe—scale computations yield theg values of
Lilg, k =1, ..., K, which means that thieg of the inner sum cannot be straightforwardly
evaluated. We apply the standard solution in form ofd¢helogs function [121] to com-
putelog Zle Ll based onfog Liyli, k = 1, ..., K. One property of theumlogs func-
tion is that is requires the maximum over the L;./;;, as an input. This implies that
first all log L;xl;;, have to be computed befosamlogs can be applied. The evaluation of
log Zle Lixlix requires then twd) (N K') passes over the data and mixture components.

The bounds we are about to propose are based on the obsevetidhe structure learn-
ing operates on the MAP parametéds this implies that for most data points typically
one component* will yield a much higher value than the others. The exceptiere are
only data points which lie at the boundary of component degssor within strongly over-
lapping components. It is a property of the logarithm thanth,, ;.- will dominate in
log Zszl Lilix. This fact can be made use of to define a lower bobittd(D|M?') as

PU(Dle', M') =Y max_log Licli.

.....

That is, all but the largest element of the inner sum are exhitdince we are dealing with
non-negative values, this yields a lower bound on the suntlatbgarithmic properties
ensure that the bound will be sharp in many cases. For the bpped we need to define
the functionscdmax which simple returns the second largest element of a veChan

N
up 3 M = " _ 1
P(D0", M) = Z;kglf}?fKIOg Ligli + ((K — 1) sedmax log Lixlix)

gives the upper bound. Here each of the non-maximal sumntesdseen replaced by the
second largedbg L;.l;.. Since typically the maximal term in the sum is much larganth
the second largest, this will give a tight upper boundbgfP(D|O!, M1).

The computational advantage of these bounds lie in thatatye$t and second largest
value oflog L;.l;. can be propagated with very little effort while they are conegl. If the
bounds allow for a quick rejection of a structure, the eviadunaof sumlogs is omitted.It
should be noted that these bounds do not reduce th@ loigmplexity of the algorithm but
can yield improved running times in practice (see followsggtion).

!Note that thel.}, I, = Lkl for the rest of this section
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4.4.4 Structure Learning Running Time

We compared running times of the basic structure learninggctsire learning with cached
candidate history as described in section 4.4.2 and catediiatory plus logarithmic
bounds (see previous section) for three different modetgyprhe types were Gaussian
mixtures, discrete mixtures and mixtures with both diseeetd continuous features. The
data set size®V used were 1000, 3000 and 10000. The number of componentsAvere
10, 15, 20 and 25. Each model had 40 features with randomégteel parameters and
CSl structure (see appendriX D for details of random modetgdion). Boxplots for the
running times of 100 repetitions of the experiment for theckte and Gaussian variants
are given in Figl 413 and Fif."4.4 respectively.

First consider the results for Gaussian mixtures in[Eig. #.8an be seen that for ten com-
ponents all variants perform similarly for all values/@f For higher component numbers,
the structure history yielded a smaller improvement in mgriime, while the improve-
ment conveyed by the bounds increases. For the discretanesig[4.1) we find consis-
tently that the structure history considerably improvesrimning time behavior, whereas
the addition of bounds actually has a detrimental effece fEsults for the setup with both
discrete and Gaussian features again produced result$wedre the two pure cases (not
shown).

The reason that the learning history did not yield a greatrawgment for the Gaussian
models when compared to the discrete mixtures lies in tHerdiit numbers of degrees
of freedom for these distributions. The learning historyuees the number of necessary
computations of MAP parameter estimates (se¢fionl?.4.2)jlethe Gaussian distribution
only required estimates for the mean and variance paraséterdiscrete distribution used
were defined over an alphabet of size eight, making the MAiagts more expensive,
and conversely the learning history more useful.

Another interesting aspect of these results is that the deactually had a detrimental
effect on running time for the discrete models. The reasonhat is due to an inherent
property of the distributions, namely how clearly the comgat parameters of a model
are separated. One typical way to quantify this separasahe relative entropy. For
discrete distribution the relative entropy is boundedldy, M whereas for continuous
distributions the entropy is unbounded. Since the shagpokthe bounds increases with
the separation of the components, the bounding scheme is lkely to bear fruit for
Gaussian distributions.

Based on these results the use of the bounds should be ®$eribe use on continuous
data, whereas the learning history is of general use.
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Chapter 5

Mixture Modeling for Transcription
Factor Binding Sites

In this chapter we describe the application of CSI mixtuogstie modeling of transcription
factor binding sites (TFBS). In the following sectibnl5.E tve provide some biological

background on the problem setting. In secfion 5.3 we evalilnt performance of the CSI
mixtures on both simulated and biological data.

5.1 Introduction

ona .| ATATCGAG ...

TFBS

Figure 5.1: A transcription factor binds to a specific stretch of DNA ie tienome.

The binding of transcription factors (TF) to specific sthets of genomic DNA is one
of the major mechanism of gene regulation. Figl 5.1 showsrmaa of such a bind-
ing event. Through chemical interactions of the TF and theogec DNA, TFs bind to
specific stretches on the genome, the binding sites. Thesknbi sites are specific for
each factor and the study of the binding behavior of TFs isablpm of considerable
importance for understanding gene regulation. The acdegperoach is to formulate a
mathematical representation of the binding pattern of argfactor based on collections
of confirmed binding site sequences. This representati@ubsequently used to score
candidate sequences for occurrences of said pattern. Téwtiefness of this approach
depends on the models ability to accurately formalize tigeilegities found in the con-
firmed sites. The most commonly taken approach is the pasitweight matrix (PWM)
model [175] 176, 179, 130, 194]. PWMs are a statistical agoggr@o modeling the factor-
specific binding site composition. A PWM is derived from a tiplé alignment of con-
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Chapter 5 Mixture Modeling for Transcription Factor BingiBites

firmed binding sites. For each position in the alignment &idistion over the four bases
is estimated from the corresponding alignment column. Assg independence between
positions, this gives a probabilistic model of the bindinig ®f a specific factor which
subsequently can be used to score whether a DNA sequenansoatbinding site for
this factor [85, 107]. From the perspective of mixture mgsdal PWM is simply a single
component naive Bayes model (HQ.12.1)).

However, the PWM approach relies on two strong assumptraragly thatll positions

2
il o 0 <+ 0 [ B [} o
" r oy

sAcC

Figure 5.2: WebLogoslittp://weblogo.berkeley.edldor the two subgroups of Leu3 bind-
ing sites. It can be seen that sequence variability is lichi positions 1, 4, 5 and 6
(indicated by arrows).
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within the site are independent and, more importantly, #fidiinding sites of a factor are
slight variations of thesamesequence. The former has been shown to be a simplification
of biological reality for such examples as the Zinc finger ne{199] or the Mnt repres-
sor [120]. For the latter there is ample biological evidetwenake it at least doubtful:
It is well known that TFBS occur in clusters of functionaltlytéracting TFs in promotor
regions, so called transcriptional modules [20,/ 118| 185%ingle factor may have many
different interaction partners for different genes andag been shown that the topology of
these modules has an impact on the binding site sequenass fauabout nine thousand
sites inS. cerevisiagl&]. Also, it is known that a single change in a binding siéa biave
profound effects on both the interaction behavior of a faftdé&] or the level of induced
gene expression [196]. Moreover, Iin[93] the authors finddased levels of conservation
for non-consensus binding site positions for 16 factorib4cterial genomes, concluding
that these sites are subject to evolutionary pressurell¥imgL8€] the authors confirmed
the presence of position dependencies within a set of bynsltes taken from the JASPAR
data base [158]. This gives further evidence for a level ofidgiical complexity of binding
site sequences beyond the “single site” hypothesis and/ates the development of more
sophisticated methods.

This issue has received some attention in recent years.|] lth¢9authors successfully
used subclasses of Bayesian networksifonovamotive discovery, among them mixtures
of PWMs. More recently, in[79] binding sites have also beesaidibed as mixtures of
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5.1 Introduction

PWMs. There it was shown, that a two component mixture moédgd improved con-
servation scores and higher expression coherence wheraceth{p using a single PWM
for a collection of 64 PWMs taken from the JASPAR.

However, there are several drawbacks of the conventiondune approach as it was intro-
duced in chaptdd2. Namely, the essentially unsolved pnoloechoosing an appropriate
number of mixture components, in particular if data is sparsd the classical model selec-
tion techniques (see sectibn213.1) will not perform watli.general too few components
lead to suboptimal performance due to insufficient geneatiin, while, more severely,
too many components will cause overfitting. To circumvert ibsue the number of com-
ponents was fixed to two in_[i79]. Moreover, it seems plauditde for most factors which
have several types of binding sites (and can thus be modedegl prnecisely by a mixture),
the different subgroups will not consists of distinct, distar sequences. Rather, the vari-
ability between sites will be concentrated on specific passt. Estimating a full PWM for
each mixture component will then introduce unnecessamgrpeters into the model. This
increases model complexity unnecessarily and leads todesst parameter estimates.

These issues are addressed in the automatic adaptatiordef owanplexity inherent to the
CSI framework. Therefore CSI mixtures are a natural chofamadel to capture the full
biological signal of TFs with complex binding behavior.

In this context the CSI principle introduced in section 3Boaints to representing binding
site positions with little variability in the different cqmonents by the same distribution.
A biological example for such a situation is the TF Leu3. [I§][the authors showed
that a two component mixture naturally separated the knawditg sites|[113] into one
high and one low binding-energy subgroup. Now, consider[&i@. The figure shows
the sequence logos [163] for these subgroups. It can be baemsdquence variability
is only present in position 1, 4, 5 and 6 (indicated by arrowbjle the other sites are
highly conserved. Another example is the factor Rebl. Retdsbwith different affinities
to motives TTACCCGand TTACCCT[191], that is the two subgroups differ in a single
position only.

As described in previous sections, the advantage of the Gflelmn settings such as
the Leu3 and Reb1 data is that in a conventional mixture nansleguence deviations will
cause the parameters in the different components for the pasition to vary slightly, even
if there is no biologically meaningful variability on thecgeence level. This overfitting
introduces a distortion in the scores produced by the mbdéihay result in a decrease in
performance. Therefore, learning a CSI structure doesmlgtyeeld a more parsimonious
model, as less parameters are required, but also incredmestmess for noisy data.

In the following sections we will evaluate the performanéehe CSI method for TFBS
data based on both simulated and real biological data.
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5.2 TFBS Modeling

Modeling Choices

Since transcription factor data consists of DNA sequenttessmodels are mixtures of
discrete distributions over the four bases, i¥.= (A,C,G,T). The parameter prior
is a product of conjugate Dirichlet priors (see secfion.4The prior over the mixture
weightst was uniform, the priors over thg |, were chosen to be almost uniform with a
small bias towards uniforré (i.e., all hyperparameters of the Dirichlets were set t@)1.0
This was done to guard against overfitting by setting zertatodities in the parameter
estimation.

For this application it seemed reasonable to use a strong ptich that the structure only
introduced additional complexity into the model if cleavisarranted by the data. In the
following we choose hyperparameters for the prior accaydmthe heuristic Eq[{4l1)
with w(0.18, N) (unless noted otherwise). As an example for 20 sequenceshtano
w(0.18,20) = 0.036.

Sequence Scoring

One practical advantage of the CSI model extensions istthefines the models ability to
represent TF binding patterns without abandoning the fveonle of probabilistic models.
This means that the CSI model can be seamlessly and easilyimedwith established
techniques for finding hits with significant scores in genosequences [36, 107]. Here,
as in [79], the score of a mixture was defined as the maximumesmeer all components.
This means that the score of a sequence was given by the sstaignal found among the
components. Similar scoring schemes have been used fangesin the field of speech
recognition.

5.3 Results

5.3.1 Simulation Studies

In order to examine the difference in performance betweenaational mixture and CSI
models we generated artificial data sets from mixtures witkrthg numbers of compo-
nents and structures.

In the first experiment the generating model was a two compa@8I mixture withp = 10
and random weights. The CSI structure was set up as follows: Out of the ten pmossti
six were represented by single distributions in both congptsand four had a unique
distribution in each component. The parameters of theiligionsfx,,. were chosen
randomly.
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5.3 Results

Generating model Best trained model a¥BIC

Gy M, 32.36
Gy M, 70.28
Gesr Mesy 232.16
G, M, 149.31

Table 5.1: Optimal model for the four data sets according to the avewdifference in BIC
to the BIC of the generating model over 30 repetitions.

First we evaluated the ability of our method to adapt to tinecstire in the data and thus
to avoid overfitting. We trained one conventional and one @8ture model, both us-
ing three components on a training data set with 40 samples fifst result was that the
structure learning algorithm recovered the generatingetsotivo component CSI struc-
ture with high accuracy (not shown). In order to quantify dilwantage of the CSI model
for sequence scoring we generated test data sets with 508lesam\e used a uniform
background model to obtain the scores for each sample arstties were then converted
to p-values based on a score distribution on 1Mb of randormeseze. We repeated the
simulation for 30 different randomly generated data setisadoserved that the CSI mixture
yielded better (lower) p-values than the conventional orixt The one-sided Wilcoxon test
for paired samples assigned a significance of 0.02 to thidtrd®epeating the experiment
with only 25 training samples confirmed these results withilgdXon test significance of
0.04.
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Figure 5.3: Distributions of the difference in BIC to the generating rebfbr the four
simulated data sets on 30 repetitions.

The next question we addressed was how the CSI model perddonéifferent data sets
in a classical model selection setup. We generated datafsgtse 3000 withp = 12 from
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Chapter 5 Mixture Modeling for Transcription Factor BingiBites

four different models: a single PWM modé};, a conventional two component mixture
(G, a CSI mixture with four components-s; and a conventional four component mixture
(4. The parameters of the discrete distribution®iwere chosen such that one baseas
assigned a random probability sampled uniformly from [@.&, and the remaining mass
split randomly over the other bases. In each ¢gases chosen such that it adhered to the
CSI structure of the respective model, that is componeiatisdial not share a group for a
X, also had a dissimila#. The structure itz -s; consisted of 4 positions with four groups,
four positions with two groups and four positions with onewy each. This means that
the CSI model matche@,, G, andG, in complexity for four features each.

Subsequently, we trained 30 modalsof each of the four types (i.eM, M,, Mcs; and
M,) on each of the four generating model types. Model fit wassseskby BIC (seeZ.R27).
As a base value the BIC of the generating model on the tessdataas computed.

Table[5.1 shows the average difference in BIC of the bestechimodel {/;, M,, Mqg; or
M) when compared to the BIC score of the true model. As one wexpect, the model
type that best matches the respective generating modelsyiké optimal BIC. A more
interesting point to consider was the distributions of tifeecences of the BIC scores of
the different models to the BIC obtained under the geneagatindel shown in Fid. 513. It
can be seen that over the range of generating mddgls achieves model selection scores
comparable to those models which match the generating fipese results illustrate the
inherent ability of CSI models to adapt to different datdisgs. This makes CSI a prefer-
able choice of model for practical applications where the thumber of components is
unknown.

5.3.2 Analysis of TF LEU3

1 2 3 456 7 8 9 10

Gy
Cs
Figure 5.4: Two component CSI mixture structure for known Leu3 binditeg sEach cell

represents a discrete distribution, where cells spanniatih lbows identify positions with
high conservation in both subgroups.

It was shown that 46 known binding sites of the TF Leu3 [113] ba separated into a
high and low binding-energy subgroup using a two componexiure with highly signif-
icant p-valuel[79]. We repeated this analysis by traininv@a tomponent CSI mixture.
Since we were using the model in a clustering context a weiak pf w(0.05,46) = 0.11
was used. Fid.5l4 shows the resulting CSI structure. Na&edhrespondence between
the fully parameterized positions (1, 4, 5, 6) and the grquezsic sequence variability as
visualized in Fig[&R2. The CSI mixture yielded a subgroupsibn of the Leu3 sites that
was practically identical to the one previously reportedwdver there are two important
differences between the two models: First, the conventiomeure requires the estima-
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tion of 61 free parameters while due to the tying expresseédarCSI structure our model
only needs 43 parameters. This means that CSI gave equivaits using about 30%
less parameters. Secondly, the CSI structure makes infamabout the subgroup and
position specific sequence variability an explicit partfoé model. Having this informa-
tion readily available will facilitate further investigans, especially for large-scale studies
where hundreds or more factors are involved.

5.3.3 Conservation Statistics

The validation of predicted binding sites with respect taittibiological functionality is a
difficult problem as functionality cannot be assessed tliye©ne surrogate for function-
ality found in the literature is the degree of conservatioigeénomic sequences between
related species [184]. For the sake of comparability withrésults reported in_[79] we
follow the same evaluation approach taken there and ewathatdifferent models by the
fraction of conserved predicted binding sites.

In the following we are going to evaluate the performance sirgle PWM M, a two
component mixturé/, and a two component CSI mixtufd-s; based on human-mouse
conservation. We used the same 64 JASPAR TFs aslin [79]. Waldaded the 1kb up-
stream regions of thkgl7assembly (May 2004) from the UCSC genome data hase [87].
The mouse conservation datarfi7) was extracted from the axtNet data set [165] (also
UCSC). For each of the 64 TFs and each of the three models aodsideration, we then
computed the 1000 best scoring hits in the 1kb upstreamnegithe overall base com-
position of the sequences was used as the background moaiethd=mixtures the hits
were chosen proportionally to the mixing weights. This neethyat for ar = (0.6, 0.4) we
would chose the 600 best hits from the first component and@bebést from the second.
The fraction of hits that was conserved in mouse was then atedbased on a 80% se-
guence identity cutoff.

Evaluation: In order to decrease the impact of random variation on théysisawe
considered TFs with very similar fractions of conserved ffiar two model types as not
giving conclusive preference to any of the two. That is, € thfference in the conserved
fraction was less than ten percent of the maximal consemadidn observed for any
of the three model types, the scores were considered to h&lefpr the purposes of
this analysis. This has the effect of making the results nooreservative in the sense
that the impact of factors with very small differences in tenservation statistics was
suppressed.

Fig.[5.5 shows the comparison of conserved fraction forihestmodel types. To illustrate
the impact of the available number of training sampleor a factor on performance, we
depict TFs differently based on the number of associatedesemps. TFs with less than
18 sequences are shown as red diamonds, TFs with 19 - 31 seguae shown as blue
rectangles and TFs with more than 31 sequences are showeeas dpts. The numbers
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Figure 5.5: a) Conserved fractions of hits fav/; and M,. The mixtureM, is as good
or better for 67% (43) of the TFs. b)
Conserved fractions foMg; and M;. For 70% (45) of the TFs the conservation of
Mg was as good or better than faw/;. Outliers with strong preference fav/; model
had very few known sequences. If we only consider TFs witkagt PO sequences, the
CSl yields as good or better conservation in 85% (34/40) efdhsesc) Comparison of
conservation statistics dff; and M¢gy. For 89% (57) of the TF94¢g; yields higher or
equal conservation.



5.3 Results

M, > M, (43) M, > M, (21)

Mcsr = Mo 84% (36) 100% (21)
Mcsr > M, 47% (20) 81% (17)
Mcsr = M, 89% (38) 33% (7)
Mesr > M, 37% (16) 10% (2)

Table 5.2: Comparison of the conserved fraction of the 1000 best sgdniis for M g7,
M; and M> in the two subsets of the TF data given the conditioh > M;) and
(M > M>) respectively.

were chosen as to split the 64 TFs into three roughly equalddgroups.

In the following we compare and contrast the results for tiree different model types
Ml; MQ andMCS].

M, vs M,: In[BE-Ha) you can see the conserved fractionhf and M, for the 64 TFs in

the data set. The mixture mod&l, was as good or better thavf; in 67% (43) of the

cases. For 33% (21) of the TFs the mixture was strictly hetteis means that the perfor-
mance of the two component mixture was somewhat weaker iamalysis than reported
in [I79] . Recall, that our data set differed from the onelir][&9 it was based on a later
genome freeze and, more importantly, it did not contain amyrstream sequences. To
the best of our knowledge the rest of our analysis was idalrttbd¢he one conducted in [79].

Mgy vs My: The comparison between the fraction of conserved hits®fQ8I mixture
Me¢sr and the single PWM modél/; can be seen in Fi§.8.5b). In 70% (45) of the TFs
under consideratio/-s; showed a conserved fraction as good or better thanwith
28% (18) being strictly better. One important observat®that in most instances where
M, had a strong advantage in conserved hits, the factor hacaarall number of known
binding sites. This can be seen by the large number of diambeldw the diagonal. For
instance the rightmost point in Fig_5.5b) at (0.53, 0.43yesponds to MA0062 which
has 7 known sites. In such a situation a little random vanaiin the sequences can have
a strong impact on the trained model and lead to spurioustates. This is supported by
the correlation between the number of available sequencesfactor and the increase in
conservation for the CSI model. If we only considered TFhwib or more sequences,
Myesy is as good or better in 74% (40/54) of the cases, for 20 or megaences in 85%
(34/40) and for 40 or more in 94% (15/16). The fraction of THseve M g; is strictly
better remained in the range of 30% independent of the nuoflsEquences.

Mesr vs Mo In Fig.[E.5c¢) we show the fraction of conserved hits id¢s; and the con-
ventional two component mixturg/,. For 89% (57) of the TFs the CSI model yields
higher or equal conservation, 58% (37) being strictly great
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Performance of\/os;: Applying the two condition§M, > M;) and(M; > M) on the
conserved fractions of hits split the 64 TFs in two subsesszaf 43 and 21. We can think of
the first subset as those TFs where a mixture model is apptefand the second subset as
being better represented by a single PWM. In the followingewamined the performance
of our CSI models within these two subsets. The results amerarized in Tabl€5l2.
For the subset induced by, > M;) Mqs; was as good or better thevl; or M, for

a strong majority of 84% (36) and 89% (38) of the TFs respebtivi s, was strictly
better for 47% and 37% respectively. This means that for TRereva two component
mixture improves performance as compared to a single PWMC®I model will in most
cases outperform both of the other modél$, due to the reduction in overfitting and the
more robust parameter estimaté$, because of the improved description of the binding
pattern.

For the subset where a single PWM vyielded a larger conseraetidn than the two com-
ponent mixture (given by the conditigil/; > Ms)) Mcs; was as good or better thad,
for all the TFs in the subset (100% (19)) and strictly better&d1% (17). This illustrates
the property of the CSI model to adapt to the number of sulggcupported by the data
(one in this case) by means of the structure learnirgs; is equivalent or better thai/;

in 33% (7) of the TFs in the subset. This rather low numberraghows the impact of
spurious structures for TFs with few known binding siteswéf only consider the 11 TFs
in the subset with 20 or more annotated binding sites, theevalr (Mos; > M;) goes up
to 64% (7/11). FinallyM s, is strictly better than/; for a negligible 10% (2). This is not
surprising as we would not expect CSI to outperfavimin situation where a single PWM
is the appropriate model. Rather a successful applicafitimeostructure learning in such
a case makes/-s; equivalent tolM;. This corresponds to the points which lie directly on
the diagonal (i.e. the conserved fractions are equal) ifERD).

5.3.4 Examples of Binding Site Subgroups

Out of the 64 TF under consideration 41 showed two groupsdarQ8l structure, for the
remaining 23 the structure was completely merged into thglsiPWM case. In Fid. 5.7
we show the sequence logos of four examples of subgroupfgpleitiding patterns and
the corresponding CSI structure. The factors are Foxd3 (04A), HLF (MA0043), Foxa2
(MA0047) and CEBP (MA0102). The double arrows mark the pasg where two distri-
butions were taken in the learned CSI structure.

As one would expect, it can be seen that these positionsspmnel to the most strongly
discriminatory positions between the two sequence logbss dlso interesting to note
that the discriminatory positions are unevenly distributethe examples. For Foxd3, for
instance, these positions are concentrated at the begiohihe binding site whereas for
Foxa2, they are evenly spread along the length of the binglieg Another aspect is the
guestion whether there is a global preference for the oenue of discriminatory positions
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Relative positions of discriminatory nucleotides in binding sites

Position Counts

0.4 0.6 0.8

Relative position in binding site

Figure 5.6: Relative positions along the binding sites of positionscWidiscriminate the
two subgroups for 41 TFs.

along the binding sites. To examine this, we considereddlagive positions within the
binding site of all positions which are discriminatory. Hig8 shows the distribution of
relative positions for the 41 TFs with CSI structure. As cansken the discriminatory
positions show no clear preference in their positioningnglthe binding sites.

While these pictures and observations seem to hint at paligntery interesting biological
findings, it would require a experimental validation to detme whether these binding

motive subgroups are of direct biological relevance. Uniioately, this kind of validation
is beyond the scope of this work.

For a more detailed discussion of all the results refer ttiae8.2.
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HLF (MA0043)

Foxd3 (MAQ041)

CEBP (MA0102)

Foxa2 (MA0047)

B

B—-—- C O
<6

Figure 5.7: Example sequence logos of binding site subgroups for four fidfm the

JASPAR data set.
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Chapter 6

Clustering of Protein Families Using
Mixtures

In this chapter we describe the application of CSI mixturedoiaclustering on protein
subfamily discovery and simultaneous prediction of funcél residues.

6.1 Introduction

Proteins within the same family commonly fall into sub categs which differ by func-
tional specificity. The categorization and analysis of éh&sbgroups is one of the central
challenges in the study of these families. In particulas dfiinterest which residues deter-
mine functional specificity of a subgroup. These functioealdues are characterized by a
strong signal of subgroup specific conservation.

RGSHLNTVK-VN
IRALTLSPQS 1K
VRVATGAA-QIE
VGLHLPAVNQVA
YGAVL--GA-VN
LRALTSNL-GID
FGADLNKHK-VS
RGSHLNTVK-VN
c1 FGADLNKHK-VS
YGAVL --GA-VT
VGLHLPAVNQVA
VRVATGAA -QIIE
C2 LRALTSNL-G/ID
IRALTLSPQSIEK

Figure 6.1: Top: The input to the method is a MSA of protein sequen8sstom: The
output is a clustering into sub-families (C1, C2) and antiota of putative functional
residues (colored columns)

The general problem addressed in this chapter is visualizéig[6.1. Given a multiple se-
guence alignment (MSA) of protein sequences (top), we gecsub-families of sequences

71



Chapter 6 Clustering of Protein Families Using Mixtures

with different functional specificities (C1, C2) and sinarieously predict residue posi-
tions which are causal for these functional differencess hindicated by the differently

colored columns (bottom). Generally speaking, there isnareased sub-family-specific
sequence conservation at positions which are relevantresgbect to the distinct functions
of the sub-families. These positions are highly informafier the characterization of the
clusters. Conversely, positions which are not relevantierfunctional characterization
of the sub-families may show very little variability betwesub-families. Such positions
are very weakly informative for the clustering and subfgms#éparation. This situationis a
natural fit for the sort of fine grained regularities that carchptured in the CSI structure.

A number of studies have focused on the question how to degsiclues which determine
functional specificity based on prior knowledge of subtypambership. A review of these
methods can be found in_[90]. Among the approaches taken retatve entropy based
scores |[78], classification based on similarity to a dat& loffunctional residue templates
[2&] and contrasting position specific conservation inolidgues and paralogues to predict
functional residues [132]. In_[200] the authors use knowarence protein 3D structures
to find conserved discriminatory surface residues. Onemigjdation of thesesupervised
approaches is the requirement of biological expert aniootatf the number of subtypes
and subtype assignments for each sequence. This limitsseéfaloess of these methods
to cases where prior biological knowledge is abundant. ématbsence of such knowledge
the inference of the subgroups becomes one central asptwt pfediction of functional
residues. In many cases the subgroup structure of a givalyfiara direct consequence of
evolutionary divergence of homologue sequences. As sighdt surprising that methods
based on the phylogenetic tree of a family have been extegsand successfully used to
study protein family subgroups _[105, 110, 142,1195]. Howgthee performance of these
methods does degrade in cases where the evolutionary dna¥getween subgroups is
large. Moreover phylogeny does not account for situatiolnere functional relatedness of
proteins arose from a process of convergent evolution. Als there is a need for additional
methods for detection and analysis of the subgroups inhererset of related sequences.
CSI mixture models are well suited to this application forener of reasons. First, the
probabilistic setup provides a good fit for the noisinesstexpected for MSAs, especially
from rather divergent sequences. Second, as mentioneeé ahewdata can be expected to
contain many weakly or even uninformative features. In sushuation the CSI structure
can greatly increase the robustness of the clustering.dTtiie combination of the CSI
structure and feature ranking schemes provides a stractune principled way to assess
the importance of each residue. This allows to make predtistfor function positions in
the MSA.

One of the challenges of clustering protein families intbggoups based on the sequence
is that the discriminating features one attempts to learagaroperty of the structure rather
than the sequence. As an example, consider three subgratipsesfect conservation of
amino acids Leucine, Isoleucine and Tryptophan respdgtateone position. A naive ap-
plication of a clustering would consider said position toHaghly discriminative for all
three groups. Of course, this would be misleading due to teatgimilarity in chemical
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properties between Leucine and Isoleucine which makes,tbesome extent, synony-
mous as far as structure is concerned. To adapt the CSI mirtodel for this situation

we apply a parameter prior in form of a mixture of Dirichleslibutions (see sectidn ®.2).
These Dirichlet mixture priors have been successfully is@tprove generalization prop-
erties of parameter estimates for probabilistic modelsiall sample sizes [170]. In the
CSI framework a suitably chosen prior additionally acts todg the structure learning
towards distributions indicative of structural differesdoetween the subgroups.

6.2 Dirichlet Mixture Priors

As described in sectidn 3.4, the fit of different models todhta is assessed by the model
posteriorP(M|D) given by

P(6,M|D) « P(D|©, M)P(6|M)P(M)

againP(D|©, M) is the Bayesian likelihood based on the d&at¢Eq. [Z3%)),P(O| M) is
the parameter prior (E.{ZI35)y( M) is the prior over the model structure (Eg.{3.5)) and
the © are the MAP parameter estimates (Eq.1(2.4)).

Recall that

P = P [[T] P6)

Assuming all the&;;; are discrete, a possible choice of parameter gri@; ;) is a mixture
of Dirichlet distributions. A Dirichlet mixture prior (DMPover a discrete distribution
ij = (ijl, v eij) is given by

P(0k;) Z dg Dy (Orjlay), (6.1)

whereD, is the Dirichlet density Eq[{Z.88) parameterizedhy= (a1, ..., agar), ogs > 0
andg, are the mixture weights. The DMP has a number of attractiopgties for the
modeling of protein families. Not only does the DMP retaimjcmacy to the discrete
distribution which guarantees closed form solutions fa& farameter estimates, it also
allows for a great degree of flexibility in the induced deypsiter the parameter space. This
allows for the integration of amino acid similarities in tsieucture learning procedure.

The parameter estimators derivation for the DMP case israigktforward extension of
the single Dirichlet prior case [67].
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Chapter 6 Clustering of Protein Families Using Mixtures

6.3 Prior Parameter Derivation

In order to apply the DMP framework on the problem of reguiag the structure learning
for protein families we have to specify the parameterizatb P(6y,;). This includes the
choice ofG, theg, and thex,.

We considered three different approaches to arrive at eedar these parameters,

1. choice of parameters based on a PAM series amino acidtstist probability ma-
trix,

2. use of previously published DMP regularizers [170] basethachine learning tech-
niques and

3. heuristic parameter derivation based on basic chemiopkpties of the amino acids.

The first approach based on PAM matrices [41] proved prolienmathat the PAM matri-
ces are stochastic, whereas the parameters of a Diricleletrdy constrained in that they
are positive. This means that the information in a PAM mdiitex the parameter values)
is on a different scale and cannot be straightforwardlyrbeseinto a DMP. In practice this
makes PAM matrices unsuitable for our application.

As for the second approach, the DMPslin [170] were traineddweige suitable regular-
ization to compensate for small sample sizes. While thigigamly related, it is not quite
the same as the kind of regularization we require for the @8cture learning. Clearly
a machine learning approach for specifying the prior patareevould be desirable. This
however is not straightforward for two reasons: First, imdd clear how the training data
for learning a DMP for this application would have to be adskethand secondly the opti-
mization of DMPs is a difficult problem as many local minimase§170)].

Therefore it seemed prudent to consider an additional,psibich was constructed based
on the chemical properties of the twenty amino acids. Th s appealing as it is based
on a rather simple heuristic and therefore the values of énarpeters lend themselves to
straightforward interpretation. The derivation of therdhprior will be described in more
detail below.

The impact of an amino acid substitution on the fold of a groiepends on the similarity
of the chemical properties of the two amino acids. The maossidiilar the amino acids
are, the more pronounced the effect on protein structurebwil The relevant chemical
properties can be arranged into a hierarchy of more genedaspecific properties [116].
The nine properties we consider and the assignment of amide B summarized in Table
. The amino acid are denoted by the single letter codesafsiegendiXC) Table entries
'x"and’-’ denote presence and absence of a property respectivety.tihad the gap symbol
'-" is negative for all properties.

Based on this characterization of the amino acids by thesrcbeéhemical properties we
construct a DMP as follows: To each of the properties in Tlewe assign a component
D, in the DMP. The parameters, are chosen such that, is larger if amino acids
has the property. This means we construct nine Dirichldtidigions which give high
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ARNDCQEGHI LKMFPSTWYV -
Hydrophobic/ x - - - x - - X X X X X X X X X X X
Polar X X X - X X - X - - X X X X X
Small X « X X X + « X + -+ « + + < X XX X
T|ny X + « .« « .« . X X
A||phat|c L ¢
Aromatic T * GO VO
Positive X - e e oo X e -X
Negative e X - - X
Charged X - X - - X - X - -0 X

Table 6.1: The twenty amino acids can be characterized by nine cherpiogkrties. A x
in the table denotes the presence,the absence of a trait.

density to distributions with strong prevalence of aminmgaaevith a certain property. The
combination of all property specifid, in the DMP then yields a density which allows the
guantification of similarity between amino acids in the bitistic framework. In order
to arrive at a scheme to choose the parameters of the DMP ltbeiftg constraints were
taken into consideration:

e The strength of a Dirichlet distribution priab, is determined by the sum of its
parametersa,|. The size oflay| is also anti-proportional to the variance b,.
To assign equal strength to all property specific Dirichlgfs all |, | are set to be
identical.

e More general properties should receive greater weighits the DMP.
e The strength of the prior, i.¢a,| should depend on the size of the data/Set

This leads to the following heuristics for choosing the DM gmeters: Let the strength
of eachD, be one tenth of the data set size; i®,| = & andb = %1'0"‘ the base value
for the parameters,. Thenay,, = b, for all amino acids were the property is absent and

0.25 |ay|

Qgs = b+ 3

g
for all amino acids where the property is present, whgyelenotes the number amino acid
which have the property. Finally, the weigltsare set to

— BQ
== =
Zg:l BQ

which means that more general properties receive propaitiohigher weight in the prior.
Thus, the priors in the model introduce two types of biasd itite structure learning. An
unspecific preference for a less complex model giverPby/) and a specific preference
for parametersy ,,, that match the amino acid properties encoded in the ptéfM).

dyg
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Chapter 6 Clustering of Protein Families Using Mixtures

6.4 Feature Ranking

To predict which features are functional residues for armgsugbgroup, it is necessary to re-
fine the information in the CSI structure matrix by ranking thformative features. Since
these features are distinguished by subgroup specific segumnservation, the relative
entropy is a natural choice to score for putative functiorealdues. Therefore the score
Eq. (321) defined in sectidn 3.6.2 was used. Note that thdmgrscheme is somewhat
similar to the setup used in [78]. The major difference beiag in [78] subgroup assign-
ments were assumed to be known and in this work the scoringsedon the posterior
distribution of component membership and parameter estsriaduced by the expected
sufficient statistics in the sEM framework.

6.5 Results

We evaluated the performance of CSI mixture models for praiebfamilies on a number
of data set of different sizes from families with known syi#yassignments and structural
information. This allows for a validation of the clusteringsults. Any column in the
alignment with more than 33% gaps was removed prior to th&@ting. Model selection
was carried out using the NEC{2132). The strength of thecktra prior was chosen by
5 = 0.1 (see sectioi.4.3.1). The position of predicted functioeaidues in the three
dimensional structure can be evaluated from known strastabtained from th@rotein
Data Bank(PDB) |13].

To assess the impact of our DMP on model performance the Acgysee sectidn2.3.2) of
the clusterings with DMP were compared to mixtures with #m@e number of components
but a simple uninformative single Dirichlet prior and the 8CG-DMP 'up9’ obtained from
the supplementary materials of [170].

6.5.1 L-lactate Dehydrogenase Family

This data set consisted of members of the L-lactate dehgdiase family with differing
substrate specificities. The two subfamilies under comatote were the malate and lac-
tate dehydrogenases. In this family, despite substardighnce within and between the
subfamilies, a single position is responsible for definingsdrate specificity. Taking PDB
1IB6 as reference sequence, an R in position 81 confersfgigdor lactate whereas a Q
in the same position would switch substrate specificity tdatea Clusterings were com-
puted for the 29 sequences in the PFAMI [51] seed alignmerttaifdomain (PF00056).
The alignment contained 16 lactate dehydrogenases (LDtH) @amalate dehydrogenases
(MDH).

As shown in Figl&2, the NEC model selection clearly inddda2 components to provide
the best fit for the data.
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e 2 3 4 5 6 7 8 9
Number of components

Figure 6.2: NEC model selection plot for the malate and lactate dehyeliage data set.
The optimal model was given obtained for= 2.

The two components separated the MDH/LDH groups withowdréior our DMP mix-
ture.When using the uninformative prior, considerablydowccuracies of around 75%
were achieved. To assess the robustness of this result wateglly trained two compo-
nent models with DMP, uninformative and UCSC priors. Avexd@ver 10 models our
DMP achieved accuracy 94% (SD 2.1%). The results of the UDSIE* were compa-
rable accuracy-wise although there was no model which gealperfect separation of
MDH/LDH. The uninformative prior yielded an accuracy of 72D 8.3).
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Figure 6.3: Feature ranking scores for the Malate/Lactate dehydrogendata set.

Thus, the CSI mixtures successfully identified the two suiiifias correctly without any
prior biological knowledge. The position identified as miosbrmative for distinguishing
the groups by the feature ranking shown in Figl 6.3 was indeedne responsible for
substrate specificity. Many of the other highly ranked nesglwere arranged around the
NAD interaction site of the domain, which suggests they nlay p role in malate / lactate
recognition.

Fig.[6.4 shows the structure of 11B6 with the true specificigtermining residue (red),
other putative functional residues (orange) and the ligatetacting sites (white).
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Chapter 6 Clustering of Protein Families Using Mixtures

Figure 6.4: Structure of PDB 1IB6 with predicted functional residueheTrue speci-
ficity determining site is shown in red, other putative fiortal residues in orange and
additional known ligand interacting sites in white.

6.5.2 Protein Kinase Family

log(NEC)
&

1 2 3 4 5 6
Number of components

Figure 6.5: Model selection plot for the kinase data set. The best s@reachieved for
K =2andK = 4.

The protein kinase super family is one of the largest anddiadied protein families. The
human genome contains more than 500 protein kinases [122)y kmown to be involved
with diseases such as cancer or diabetes. The probably musin@nt classification of
this key players in signal transduction is between tyrosing serine/threonine kinases.
These can be further subdivided according to different|eggry mechanismsl.ﬂsg]. For
this data set, these levels of classification were combiggdibing tyrosine kinases (TK)
with two groups of serine threonine kinases, STE (Homoldg®ast Sterile 7, Sterile 11,
Sterile 20 kinases) and AGC (Containing PKA, PKG and PKC has). An alignment
of 1221 representative sequences of the subfamilies wamebtfrom theProtein kinase
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resource[l71].

Fig.[&5 shows the NEC model selection scores for this datdtsan be seen that the three
best NEC model selection scores were assigned to 2,3 andpgoc@mts. Since the scores
of 2 and 4 were too similar for a clear choice of componentsxisdhe intermediate value,
we will consider the results for all three as valuesiof For the two component model
the TK and STE sequences were collected in one subgroup ansetiond was almost
exclusively AGC. The four component model yielded a clustein which the sequence
of the AGC subfamily got split over two components. In theethcomponent model each
family acquired its own subgroup with an accuracy of 87%.uURsdor the uninformative

and UCSC-DMP priors were only slightly worse (about 1% aacyy for this data set.

These results were highly robust in the repetitions withdsad deviations of 0.1%-0.3%
for the accuracies of all three prior types. In the followPDB 2cpk (cCAMP-dependent

1.0

0.5

0'00 50 100 150 200 25

Figure 6.6: Feature ranking scores for the Kinase cyclase data set.

protein kinase, alpha-catalytic subunit, Mus musculusisied as reference sequence for
residue numbering. A ranking of the informative featureshaf three component model
with respect to the TK subgroup as shown in [Eigl 6.6 yieldetiiwithe top 20 positions a
region of three residues (168-170) which has been expetaiishown to be important
for kinase substrate specificity [77].

Fig.[6.1 shows the structure of PDB 2CPK with the predictattfional residues. The
three residue stretch marked in red have been experimengaified to be of relevance for
kinase substrate specificity.

This data set highlights the difficulty of the model selectiask. While from the way the
data set was constructed three components seemed the mgyaera the NEC judged a
merging of the TK and STE sequences as well as a further $pltecAGC subgroup to
capture the data better. Despite that, the three compohstéing gave a good separation
of the true subgroups and biologically relevant positianghe ranking. This can be seen
as a cautionary tale, that while model selection critereacartainly helpful for selecting
K, in cluster analysis of biological data it is often also resay to look at the different
suboptimal models and which regularities they capture.
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Figure 6.7: Structure of PDB 2cpk with predicted functional residuese Btretch of
three amino acids shown in red has been experimentally showe relevant for kinase
substrate specificity.

6.5.3 Nucleotidyl Cyclase Family

Nucleotidyl cyclases play an important role in cellularr&fing by producing the sec-
ondary messengers cAMP and cGMP which regulate the act¥ityany other signaling
molecules. As cGMP and cAMP fulfill different biological ed, specificity of converting
enzymes is imperative.

2 3 4 5 6 7 B 9
Number of components

Figure 6.8: Model selection plot for the cyclase data set. Two companactieve the
optimal score.

Five residues have been experimentally confirmed by sulistitexperiments to convey
substrate specificity. These positions are 938, 1016, 10089 and 1020 (numbering
according to PDB 1A88m5]. We used this family as a tesedas families with multi-

ple sites involved in functional classification, complenney the L-lactate dehydrogenase
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family with a single site.
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Figure 6.9: Feature ranking scores for the Nucleotidyl cyclase data set

We computed a MSA from 132 GC (EC 4.6.1.2) and AC (EC 4.6.%fjusences obtained
from the ExPASy data base [60]. As shown in Eig 6.8, the NECehsélection indicated

two components to provide the best fit. The model with optiNtaC produced a clustering
with an accuracy of 85% with respect to the GC / AC subgroupgsrdged over 10 models
the uninformative prior yielded a decreased performan&8%8 (SD 6.4) accuracy. For the
UCSC prior 'uprior.9comp’ the averaged results over 10 atperere accuracy of 70% (SD
2.5%). For our DMP the averaged results were an accuracy6f(3® 4.0). Based on the

Figure 6.10: Adenylyl cyclase with predicted functional sites highiiegh- Subunit | in
green, subunit Il in orange. The 10 most informative siteevgelected. Shown in red:
experimentally validated identified sites, blue: addiéibidentified sites.

ranking of alignment positions shown in FHg.16.9, Figuredsshows the three dimensional
structure of 1AB8 with the 10 most informative sites highligd. These contain 4 of the
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sites involved in substrate specificity ( 1018 (ranked 20)16L(3.), 938 (6.), 1019 (9.)).
Further top ranking positions included sites which are pathe subunit | and Il domain
interface (919, 912, 911). Position 943 is right next to ad&tin interaction site and
position 891 interacts with magnesium. Residue 921 fin&lylso a metal interacting
site [202]. Thus, not only known substrate specific siteseweentified, but also further
functional sites. The next step would then require expemtalezalidation of the identified
sites with no functional annotation.

6.5.4 Partially-supervised Protein Clustering

To investigate the impact of the partially-supervised getescribed in sectidn 2.5, we per-
formed clustering on two data sets with different amounit&lled samples. The labeled
samples for each class were chosen randomly based on tHadlogical sequence anno-
tations. In this section the amino acid property prior fraotoon[6.8 was used.

SH3 domain family

The src homology domain 3 (SH3) is a protein interaction n@dinding to polyproline
regions. Its preferred binding partner is characterized Byructural motive, the polypro-
line type Il helix. Two types of binding mode can be distirghed based on the direction
of the helix in the binding groove [125]. These differentdiimy preferences are not caused
by two different binding patches on the domain, rather itne site responsible for these
interactions. Obviously, this makes an automated claasidic and identification of speci-
ficity inducing sites challenging. We analyzed a large so#keraction study on 20 yeast
SH3 domaing [189]. Here, each domain was classified inte treups (1, Il and Unusual)
based solely on their ligands and the labels were chosentfrisrfunctional annotation.

Accuracy for different numbers of random labels
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Figure 6.11: Average accuracy for different numbers of randomly choséels for the
SH3 domain data set.

To evaluate the performance for different numbers of |glaslerage accuracies over thirty
repetitions were computed. The results are shown inEidl. 6t tan be seen that for 10%
labels an average accuracy of around 65% (SD 12%) was oldséfleen contrasting this
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with the unsupervised approach (0 labels) where we obsem@@dge accuracies of 80%
(SD 11%), it becomes apparent that for30% labels the partially-supervised setup had
a detrimental effect on clustering performance on this data The main reason for this
is probably the random selection of labels for the partiailpervised parameter training.
It has been observed in a number of studies, that the qudlityedabeling is crucial for
the performance of partially-supervised approaches [8#&hen samples are selected for
labeling which are outliers in their own class, the labelmgyght even have a negative
impact on the clustering performance. This issue is inanghsreceiving attention in the
machine learning community [[72].

Pyridoxal-dependent decarboxylase

The pyridoxal-dependent decarboxylase domain is invob®e catalytic coenzyme in
a multitude of reactions, including decarboxylation, destion and transamination pri-
marily in amino acid biosynthesis and metabolism. We careid a data set of pyridoxal-
dependent decarboxylase sequences with specificity foerdit-glutamate or L-tyrosine
substrates. The data set was constructed by selectinggalesees of the PFAM family
pyridoxaldeC which had annotation for the substrate specificity in @&ATHALYTIC
ACTIVITY field of the corresponding SWISSPROT entries. This resut&% sequences
with glutamate specificity and 37 sequences with speciffoityyrosine. An alignment of
these 72 sequences was obtained usinglistalw[104] software.

Accuracy for different numbers of random labels
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Figure 6.12: Average accuracy for different numbers of randomly chogbels for the
pyridoxal-dependent decarboxylase data set.

When clustering without labels the separation of the glatienand tyrosine subclasses
proved to be very challenging. The average performance3¥egepetitions was an accu-
racy of 51% (SD: 0.3%). When adding the power of the partisllpervised framework
to the clustering by randomly selecting different numbédngbels for the two subclasses,
a different picture emerges. The average accuracies basg8d repetitions for different
amounts of randomly selected labels per class are showmifGH2. It can be seen that
the clustering accuracy increases monotonously with thaoeu of labeled samples. How-
ever, it can also be seen that while the average accuracpwapsignificantly in the range
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of 5%—-16% labeled samples, the variance also increasesinAfjés is most likely an
effect of the random selection of labels. For 22% labelsntloaseen that the variance de-
creases again and models with perfect accuracy and zeemear(over the 30 repetitions)
are obtained for- 22% labels.

The wholly unsupervised clusterings returned a very lowavece, highly robust grouping
of the sequences. While these groupings did not reflect tlositye/glutamate subgroups
with any accuracy, the question was whether they represem ®ther biological context.
Upon examination it became clear that the unsupervisedetlog split the data set based
on phylogenetic divergence. One cluster contained pregiamily achae and bacteria se-
guences, the other metazoa and viridiplantae (i.e. gremng)l Based on this taxonomic
classification of the sequences, the clusterings had am@eerccuracy of 82%. This
means that for the unsupervised setup, the clustering ghickeon decomposition of the
sequences which, while being biologically meaningful self, did not reflect the specific
guestion we were interested in. This problem was overcomediyding prior knowledge
in form of sequence labels.

These results illustrate how the partially supervised @@gh can improve the parameter
estimation and structure learning by guiding it away froraalomaxima which are not
consistent with the biological question under consideratHowever, the high variance for
moderate amounts of labeled samples again underline theriamee of the label selection
procedure.

For a discussion of these results refer to sedfioh 8.3.
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Chapter 7

Clustering of Heart Disease Phenotype
Data

In this chapter CSI mixture model based clustering is agdliea data set of heart disease
phenotypes.

7.1 Introduction

Defects in heart development during embryogenisis are gntio& most common birth
defects in humans. The genetic basis of the various cardiamalies is not yet well un-
derstood but there is a rapidly growing number of transienipiactors which are implicated
in heart development [33]. An increasing number of can@didgne mutations have been
identified to be of relevance for heart disease phenotyfeslksd,| 174, 192]. However, a
necessary requirement for the success of such a mappindaaradescription of the phe-
notype to be studied. Clustering can provide such desenptby identifying subgroups of
patients with distinctive phenotype patterns in phenagiby diverse data sets.

In the following we give a brief introduction into the phykigy of the human heart. For
more details refer to textbooks on cardiovascular medi@e [24)54]). The schematic
organization of the human heart is shown in Eigl 7.1. Thethmansists of four chambers,
left atrium (LA), left ventricle (LV), right atrium (RA) andight ventricle (RV). The cham-
bers, as well as the in- and out going blood vessels, areaepdny a system of valves.
The oxygen poor blood arrives from the body circulation ia BA, passes the tricuspid
valve into the RV and from there is pumped through the pulmpralve (PV) and pul-
monary artery to the lungs. The oxygenated blood from thgdwarives in the LA, passes
the mitral valve into the LR and is released through the aedlve into the aorta. In the
healthy heart, the circulatory system is separated intavapoessure (venous system, RA
and RV) and high—pressure (arteric system, LA and LV) system

Normal heart function can be impaired or even impeded by etyaof anatomical mal-
formations. These include anatomical features such aguilae connections or positions
of blood vessels. For instance the aorta may be connecteothovientricles as opposed
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Figure 7.1: Schematic representation of the human heart. Reproduoad/fikipedia.org

to only the LV. Another category of possible defect are haledbe membranes separating
the chambers (septums). Finally, valves could be narrosteth@tic), permanently closed
(atretic) or leaky. A leaky valve permits blood flow in the dal setting (insufficient). The
most common congenital defects in human is a bicupsid aeatiee with two instead of
three cusps. Generally speaking, the effect of these alalibies is an impaired pumping
capacity of the heart, leading to reduced supply of oxygehedoody.

When clustering phenotype data from complex disease sucbragenital heart defects,
the main aim to find distinctive phenotype patterns whichratigrize subgroups of pa-
tients. Due to the high variability in phenotypes often otsed in such data sets, it must
be expected that there is no clear separation of clusteesibas a few features. Rather
the patterns characterizing the clusters will arise fromdbmbination of many features.
In such a situation the CSI structure matrix can greatlylifaté the practical use of the
clustering by making explicit which regularities descrésech cluster.

7.2 Data Set

In this section we introduce the data set and describe theopyy@ges which are covered.

The specific disease phenotype of each of the 65 individodls data set is described by
26 binary featureﬂb@?] shown in T&R17.1. Each of thufes gives the presence
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or absence of a phenotypic trait with relevance for heagatis indication. Most of the
features concern either specific anatomical abnormitiddawd pressure indicators. The
features are summarized in TRQ17.1.

7.3 Results

The clustering was performed using a structure prior giwet & 0.05 (see sectioh4.3.1).

NEC model selection was performed far = (1, ..., 10). Fig.[Z.2 shows the NEC scores
for different numbers of components. It can be seen thatadbe domponent model ob-

tained the best score on this data set. The cluster sizesAyéi®e 18 and 23 samples for
clusters 1, 2, 3, and 4 respectively.

Normalized Entropy Criterion (NEC)
0.1

0.0

2 3 4 5 6 7 8 9 10

Figure 7.2: NEC model selection for the heart disease data. It can be Hesnfour
components obtain the optimal score.

The next question was which features were most informativéhie clustering. This was
addressed by ranking the 26 features using the entropyiontgq. [3.20). Figl_7Z]3 shows
the ranked features and corresponding scores. Note thaetlen features on the bot-
tom were found to be uninformative during the structurereay and obtained a score of
0. FeaturdVS.shunt.BIRIGHTLEFT was found to be the most strongly discriminative
feature.

In order to analyze which feature characterize each clugtezonsider the CSI matrix re-
turned by the structure learning. F[g.17.4 shows a visutdineof the CSI matrix of the
four clusters. The colors represent the probability for phesence of a feature, the cor-
responding value in percent is given in each cell of the matfihe ordering of features
is given by the ranking in Fig—74.3. It can be seen for instarleat the most discrimi-
native featurdVS.shunt.BIRIGHTLEFT ,i.e. the presence or absence of a bidirectional
shunt in the interventricular septum, strongly separdtestusters into groupd, 2) and
(3,4). Itis worth noting that this group structure could not betoagd by thedefault table
CSI formulation (sectioh312). This illustrates how théngc CSI formulation used in our
approach is more suited to capture regularities in reabgiohl data.
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Feature

| Description

AoArch.anatomy.RIGHT.AORTIC.ARCH

Aortic arch (AoArch) is shifted to
the right

AOAsc.source.RV

Aorta ascendensis (AOAsc) is
sourced in right ventricle (as
opposed to the left ventricle in
normally developed hearts )

AoAsc.source.RV.AND.LV

AoAsc is sourced in both right and
left ventricle

AoV.insufficiency.yes

Aortic valve (AoV) is insufficient

BPsys.rarm.above

Heightened systolic blood pressure
(measured in the right arm)

Concordance.AV

Atrioventricular (AV) concordance,

i.e. the right and left atrium is con-
nected to the right and left ventricle
respectively

IAS.defect

Interatrial septal defect (IAS)

IAS.defect.PFO.PFO

Patent foramen ovale (PFO), spe-
cific defect in the interatrial septum

IAS.defect.secundum.SECUNDUM

Interatrial septal defect type |l

IVS.defect.perimembr.DEFECT

Defective perimembrane in inter-
ventricular septum (IVS)

IVS.shunt.BIRIGHTLEFT

Bidirectional shunt in the IVS

IVS.shunt.LEFT.RIGHT

Left-to-right shunt in the IVS

LSVC.present. ABNORMALLY.PRESENT

Abnormally formed left superior
caval vein

MPA.morphology.DILATED

Dilation of the main pulmonary
artery (MPA)

MPA.morphology.STENOTIC

MPA is stenotic

PV.Psys.gradient.increased

Increased systolic blood pressure at
the pulmonary valve (PV)

PV.morphology.ATRETIC PV is atretic
PV.morphology.STENOTIC PV is stenotic
PV.morphology.bicuspid.BICUSPID PV is bicuspid
RA.morphology.DILATED RA is dilated
LV.morphology.DILATED LV is dilated

LV.morphology.trophy.HYPERTROPHIC

LV is hypertrophic, i.e increased in
mass and size

RV.anatomy.INFUNDIBULAR.STENOSIS

RV is stenotic

RV.morphology.DILATED

RV is dilated

RV.morphology.trophy.HYPERTROPHIC

RV is hypertrophic

RV.sys.pressure.increased

Increased systolic blood pressure
int the RV

88

Table 7.1: The 26 phenotypic features of the heart disease data set.
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IVS.shunt.BIRIGHTLEFT
AoAsc.source.RV.AND.LV
RV.anatomy.INFUNDIBULAR.STENOSIS
IVS.shunt.LEFT.RIGHT
IVS.defect.perimembr.DEFECT
PV.morphology.bicuspid.BICUSPID
MPA.morphology.DILATED
PV.Psys.gradient.increased
AoAsc.source.RV
Concordance.AV
AoV.insufficiency.yes
RV.morphology.trophy.HYPERTROPHIC
MPA.morphology.STENOTIC
LV.morphology.DILATED
IAS.defect.PFO.PFO
RV.sys.pressure.increased
PV.morphology.STENOTIC
BPsys.r.arm.above
RV.morphology.DILATED
RA.morphology.DILATED
PV.morphology.ATRETIC
LV.morphology.trophy.HYPERTROPHIC
LSVC.present. ABNORMALLY.PRESENT
IAS.defect.secundum.SECUNDUM
IAS.defect
AoArch.anatomy.RIGHT.AORTIC.ARCH 0

2 4 6 8 10 12 14
Entropy score

Figure 7.3: Ranking of the 26 heart disease features. A large score med@ature is
strongly discriminative for the clustering.

There are a number of features whose presence or absencelyraljaracterizes a cluster.
For cluster 1 these features are

e PV.Psys.gradient.increased

e AoAsc.source.RV

e Concordance.AV.
For all these features there is a stronger disposition svire presence of the feature
than in the other three clusters (e.g. 99% versus 44%/#@sys.gradient.increased.
For cluster 2BPsys.r.arm.aboveshows a characteristic increase of the prevalence of high

blood pressure as compared to the other clusters. Clusten@& iuniquely characterized
by a single feature. Finally, cluster 4 has a unique distidloufor features

e |VS.defect.perimembr.DEFECT,
¢ RV.morphology.trophy.HYPERTROPHIC
e RV.sys.pressure.increased

In opposition to the other clusters, cluster 4 is charao¢erby a reduction in prevalence of
these three phenotypes. Aside from the features which ahjgharacterize a cluster, there
are also many features with two groups in the CSI structureddition to the previously
mentionedVS.shunt.BIRIGHTLEFT , these are

e AOAsc.source.RV
e RV.anatomy.INFUNDIBULAR.STENOSIS
o |VS.shunt.LEFT.RIGHT
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IVS.shunt.BIRIGHTLEFT

AoAsc.source.RV.AND.LV

RV.anatomy.INFUNDIBULAR.STENOSIS

IVS.shunt.LEFT.RIGHT

IVS.defect.perimembr.DEFECT

PV.morphology.bicuspid.BICUSPID

MPA.morphology.DILATED | 3

PV.Psys.gradient.increased

AoAsc.source.RV

Concordance.AV

AoV.insufficiency.yes

RV.morphology.trophy. HYPERTROPHIC

MPA.morphology.STENOTIC

LV.morphology.DILATED

IAS.defect.PFO.PFO

RV.sys.pressure.increased

PV.morphology.STENOTIC

BPsys.r.arm.above

RV.morphology.DILATED

RA.morphology.DILATED

PV.morphology.ATRETIC

LV.morphology.trophy.HYPERTROPHIC

LSVC.present. ABNORMALLY.PRESENT

IAS.defect.secundum.SECUNDUM

IAS.defect

AocArch.anatomy.RIGHT.AORTIC.ARCH

Figure 7.4: CSl structure matrix of the heart disease data set and fawstels. The colors
indicate the probability of observing the presence of a gjpgghenotype. This probability
(in percent) is also given in the cells of the matrix. The omlefeatures is given by the
ranking in Fig[Z.3B.
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PV.morphology.bicuspid.BICUSPID
MPA.morphology.DILATED
AoV.insufficiency.yes
MPA.morphology.STENOTIC
LV.morphology.DILATED
IAS.defect.PFO.PFO
PV.morphology.STENOTIC

From this it is quite clear that, aside from the uniquely dietatory features, the full
characteristics of each cluster arise from a combinatiothefdifferent feature-specific
groups found.

The clustering described above defines four subgroups of tisease patients with char-
acteristic phenotype patterns. The next question was whétiese patterns match with
previously described forms of heart disease. It can be etluster 3 matches the pheno-
type for a classicaktralogy of Fallot(TOF) [24] type heart disease. The TOF is character-
ized by four anatomical abnormalities (therefteralogy). These abnormalities are a pul-
monary stenosisRV.morphology.STENOTIC), a ventricular septal defedS.defect.-
perimembr.DEFECT), an overriding aorta, i.e. the aorta is source in both RV &vid
(AoAsc.source.RV.AND.LV) and hypertrophy in the RVRV.morphology.trophy.HYPER-
TROPHIC). While taken singularly these features are also presenthigr clusters, cluster
3is the only one which has prevalence for all of the four fe=g@nd thus matches the clin-
ical definition.

Cluster 1, on the other hand, falls into the clinical defomtiof thedouble outlet right
ventricle (DORV) [24] type heart defect. The DORYV is rather broadly dedi and can
take various forms, in particular the DORV physiology casermable TOF. Characteristic
features of DORV are a bi—directional shunt in the IWV8S.shunt.BIRIGHTLEFT ), an
increased blood pressure at the FR¥/(Psys.gradient.increasedas well as an increased
prevalence of discordant heart anator@pficordance.A\).

When considering cluster 2, it can be seen that its phenqgtggtern is similar to both
TOF and DORYV type heart disease, without quite matching theria for either. This
IS interesting since, as previously mentioned, the debimiaf DORV is rather broad and
to some degree overlaps with TOF. In fact, in a somewhat diegblview of the clinical
situation one can think of TOF and DORYV being on the ends ofdicoum of heart disease
phenotypes. The phenotype patterns of the patients inecl@shen marks a point along
this continuum. This is an interesting result, since ushgdlassical diagnostic schemes
of DORV and TOF, these patients would not fall in either catggand might therefore be
ignored in subsequent analysis’.

Finally, cluster 4 is largely characterized by the absericksease phenotypes when com-
pared to the other three clusters. To put it differently,ghenotype pattern is rather diffuse
with many features being present with low probability. Tédfere the patients in this cluster
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can be characterized aslaversegroup, where no clear phenotypic pattern emerged.

In summary, it can be stated that the phenotype patternggicg by the clustering both
relate closely to established clinical knowledge as weBuwggest a new previously unde-
scribed pattern of heart disease phenotypes.

As the original publication of the data set [187] also gawults for a clustering of this
data based on a simple hierarchical clustering, we canasiritre two clustering solutions.
The agreement of the two clusterings can be quantified by aangpthe accuracy (sec-
tion[Z.3.2) and treating the labels from [187] as the truss#a. This yields an agreement
of 78%, i.e. the two clustering disagree on 22% of the pasveissignments. Also, the
chosen cutoff inl[187] yielded a more fine grained decompmsivith seven clusters and
the interesting grouping in cluster 2 was not picked up.

For a discussion of these results refer to sedfioh 8.4.
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Chapter 8

Discussion

Clustering is a first step in the exploratory analysis of mhiojogical data sets. Due to
their high-dimensionality and inherent noisiness, manyhete data sets make for chal-
lenging clustering problems. In this work we presented d@areston to mixture models in
form of the CSI formalism which allows for automatic adaptmf model complexity and
offers attractive properties for facilitating data ana&ysrhe method was applied to three
biological data sets from different domains and the anslyslded ample biological sup-
port for the clusterings obtained.

In the following sections we are going to discuss the varempgects of this work and give
indications for possible future research avenues.

8.1 CSI Mixture Models & Structure Learning

As was demonstrated by the three applications presentddsiwork, the CSI mixture
framework is a powerful method for clustering of biologickta sets with uninformative
features and noisy samples. While the applications destridbcused on discrete valued
data, it bears repetition that the framework is not regtddb discrete data. By adopting
appropriate atomic distributions the method can be apmied on continuous data or
data sets which contain both discrete and continuous femtufhe CSI structure which
is returned as a direct outcome of the structure learningrigign does not only have
attractive theoretical properties, it also has the vergtral advantage of making explicit
which features characterize and discriminate the varitusters. This is of considerable
importance especially for large data sets with many featu#hen contrasting our CSI
formulation withdefault tablesit can be said that the richer formulation used in this werk i
more suited to the complexity of real biological data se¢e @lso sectioris1.3 ahdB.4).

The combinatorial complexity of the structure learninglgeon necessitates the use of
greedy local search methods for real world data sets. THeagi@n of these greedy strate-
gies on randomly generated models with known structure shbat in the majority of
cases the greedy top—down search performs as well as thastixfeaenumeration. This
result allows some confidence that the structure obtainatidyop—down search on real
world data sets are also useful.
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In the future, it would be interesting to adapt the CSI miggiby extensions such as
infinite mixture modelsi[114, 152] or more complex component digtrdms, for instance
conditional Gaussians [3[7, 177] or the discrete equivalanttures of trees [130]. For the
structure learning algorithm, alternative approacheblécstructural EM algorithm used in
this work could be considered. One possible direction saciltarnative could arise from
is the newly emerging field of model selection by algebraadistics [139].

8.2 Transcription Factor Data

In this section the results from the application of CSI miggito transcription factor bind-
ing site data in chaptéi 5 will be discussed.

The results of the simulation studies in secfion3.3.1 shat the CSI formalism yields
more parsimonious and robust representations of the nmotivig=s that exhibit a position-
wise subgroup structure in their binding pattern. The gneaarsimony of the CSI model,
as compared to conventional mixtures, was demonstratedsiabgrouping of known Leu3
binding sites. In this example CSI required 30% less parara¢han a conventional mix-
ture for an equal performance in separating the high and lodifig energy subgroups.
The analysis of the conserved fraction of predicted bindiings in human upstream re-
gions in mouse presented in sectlon 3.3.3 showed that a twpaoeent CSI model is
clearly superior to a conventional two component mixturéhe case where a more com-
plex model is warranted by the data. This means that leathi@gCSI| structures led to
a more biologically meaningful characterization of thediny patterns of the TFs under
consideration. For the TFs where the CSI model increasddrpgnce, we can assess
that the known binding sites apparently exhibited a biaiatly relevant subgroup struc-
ture. The exact nature of the biological mechanisms unoieylhese subgroups remains
elusive at this point. One possible explanation though didel the existence of different
conformations of the TFs which show distinct binding patser

While CSI outperformed the conventional mixture, a strodgamtage of the CSI (or con-
ventional mixture) model over the single PWM model could betobserved on this data
set. This was due to the occurrence of spurious structureBRe with very few known
binding sites and the large number of TFs where the single Riddiel seems to be appro-
priate. This makes sense as one would expect the structurerg to be more vulnerable
to outliers in situations where data is extremely sparse. cidmclusion we draw from this
result is twofold: First, CSl is a practical tool for the sgtafor putative TFBS that fits in
seamlessly within the probabilistic framework for scorimts that has been established for
the single PWM model (e.gl [107]). For a practical analysmg CSI though it seems
important to require a minimum number of available bindiitgss(say 18) in order to
attempt to fit a CSI model and to use the single PWM model otiserwThis could be
easily included into the model prior. Secondly, we wouldexntghe general usefulness of
the CSI approach to increase in the future as the pool of krmmfirmed binding sites
increases.
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For future work, it would be interesting to repeat the clustg of binding sites on larger
data sets such as the TRANSFAC data base [124, 198] to obtangexr sample of TFs
which shows subgrouping in their binding sites. This wouldvato address more ques-
tions about the distribution of CSI structures for transtoin factors of the kind discussed
in sectio5.3}4. This might yield additional insights itihe biological mechanism behind
these subgroups. Complementary to such high-throughplyss, it would also be very
interesting to examine the subgroups found for specifiofadnh detail. While this would
require dedicated wet lab experiments for most factorsettsealso an increasing number
of studies which provide detailed information about thedioig behavior of specific factors
(e.g. [25) 26, 95, 111]). The availability of such data mihlp to interpret the results of
the binding site clusterings.

8.3 Protein Family Data

The results of CSI mixture-based clustering of protein fammpresented in chaptdr 6 show
that the approach is capable of simultaneously finding biokd relevant subgroups, as
well as predicting functional residues which charactetizese groups. The functional
residue prediction proved to be robust to some degree torfegi®mns in the clustering
with respect to the true biological subgroup membershipss fighlights that this kind of
analysis is also useful when functional classificationgtierproteins of a data set are not,
or only partly, available.

The results also show that the use of DMPs in the analysisjstemtly lead to an increase
in performance on the protein data when contrasted with thefarmative prior. For
the two DMP under consideration, the heuristic DMP basedioa chemical amino acid
properties performed somewhat better than a previousllighdad DMP on the data sets
under consideration, although the difference was ratlgintslin addition, due to its rather
simple structure, the heuristic DMP allows for an interptiein of the DMP components
and by that also the kind of bias it introduces into the patamestimates.

One observation which could be made was that the degree esbuament of the DMPs
over the uninformative prior differs considerably betwéea families. This is not surpris-
ing as one would expect differing amounts of synonymoustgubiens within the various
subgroups and that is the situation where a DMP makes thestadgfference as compared
to the uninformative prior. Also, there was no case whereugeof a DMP had a detri-
mental effect on performance, which highlights the genesefulness of the DMP for this
kind of data.

For future work it might be worth investigating the impactdifferent DMPs on the clus-
tering results and in particular whether customized DMRssfiecific applications yield
improvement over the general purpose priors used in thig wiloreover, now that the
usefulness of the method has been established on familiesaisiindant prior knowledge
about subgroups and structure, a next step would be be tp thenmethod to bear to pre-
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dict groups and functional residues on data sets where sumhil&dge does not exist yet.
This, again would require experimental validation of thedicted residues and subgroups.
Another avenue for validation of predicted functional desis might come from the many
alanine substitution studies (e.g. [7,.123,]193/ 201]) Wiegperimentally investigate the
impact of specific alanine substitutions on the structucefanction of proteins.

The preliminary analysis of the partially-supervised pdtusectior6.5]4 show that the
approach has the potential to guide the clustering to peogidups which are meaningful
for specific biological questions. At the same time, the ltssare also a cautionary tale
in that small amounts of labels can actually have a detriedegifect on the clustering,
if randomly selected. This is probably the case, due to thdam label selection. This
can cause the cluster centers to be strongly characterizeditbers, especially if only
few labels are available. The effect of low quality labeldhave a detrimental effect on
clustering performance has been reported in the litergB&E Bearing that in mind, if
the labeled samples are known to be of high quality, thegdbrsupervised approach can
greatly improve the clustering setup.

8.4 Heart Disease Phenotype Data

The clustering of heart disease phenotypes presentedjerfilais a good example of how
clustering can be used as a first step in the attempt to uncawgblex phenotypes. Also,
it shows how the CSI matrix (Fig._1.4) can facilitate clusaealysis by making explicit

which regularities characterize each cluster.

The clustering revealed distinctive phenotype patterrb strong correlation to classical
heart diseases. In addition to two clusters with directti@iato known clinical pheno-
types (TOF and DORV), the clustering also gave a novel inteliate phenotype pattern
which does not fit into the classical schemes and might thexefot be taken into account
when studying causal genetic variants. Finally, samplastwdiid not show a strong com-
mon phenotype pattern were collected in a single clustetlam@by were prevented from
confounding the regularities present in the other clusters

The difficulty of studying the genetic roots of complex phipes such as congenital heart
disease, is that there are many distinct genetic factorsiwduintribute to a given phenotype
and that the different phenotypes overlap. This makes treetdapplication of genetic

association approaches problematic. In this situatiorddmmposition of samples into
distinct phenotype patterns given by a clustering can gmatipe hypothesis’ to be tested
and thereby increase the power of the analysis. The undgrissumption being, that
patients which share distinctive phenotype patterns are fik&ly to also share underlying

causal genetic variants. In this manner clustering can fheay for subsequent analysis’
and deeper understanding of complex phenotypes. Moreibgbiuld also be noted, that
for most complex genetic diseases the established diagruadegories are by necessity
tailored toward clinical treatment. This means these categ do not necessarily reflect

96



8.4 Heart Disease Phenotype Data

commonality in genetic causes. Due to the unsupervisedeaficlustering, it is possible
to obtain subgroups in a manner which is not biased by commadtwisdom. One example
of that is the potentially interesting compound phenotyqaenfl in cluster 2.

Another aspect worth pointing out is that the CSI structorelie heart disease data could
not be represented asdeafault table(see sectioi3l1). This highlights that our CSI for-
mulation and the greater flexibility it affords to the stwret search, is a more natural
representation of the kind of regularities which can be etgrin biological data sets.

When comparing the CSI mixture—based clustering to thetsbrcal clustering presented
in a previous publication [187], two points seem worth pmigout. While the two cluster-
ings were fairly consistent in the pairwise assignment efdhta points, both the number
of clusters as well as the interpretation of the clusterfeiditl. The hierarchical cluster-
ing returned a more fine grained decomposition into sevestals for the chosen cutoff.
For instance, this clustering split the TOF patients intar feubgroups. While such a fine
grained separation also can be of interest for other agpitg it can be argued that the
more general groups returned by the CSI clustering are ntroraiping as an initial step
of genetic association studies. This is due to the loss oepawthe association analysis
that comes with the small sample sizes for too specific alsiste

For future work, it would be interesting to follow up the desanalysis by performing ge-
netic associatior [73] and gene expression studies [10Bhwhight establish connections
between specific phenotypes and genomic regions, genepm@ssion patterns. Also, the
analysis presented here was based on a subset of 26 phensgpeted in [187] out of a
larger data set of 250 features. Repeating the analysiseowltble data set might yield a
clearer characterization of the phenotypes pattern anid t@ucontrasted with the results
obtained so far.
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Appendix A

Notation

NS

(2:[©)
P

(bk:js
™

Tki

Component indicator variable

Data set of\V realizations ofX.

Expectation of random variablg

CSI structure of a mixture model

CSl structure for feature(;

Mapping from component indices to CSI group
indices, i.eg;(k) : (1,...,K) — (1,..., Zj)

r'th group in CSlI structurg;

Hyper—parameter of the prior over the number
of components(K)

Hidden data, i.e. labels which assign samples in
D to components

Number of components of a mixture.

Mean parameter of a Gaussian distribution at
index;j in componenk

Number of samples ib.

Hyper—parameter of the prior over the CSI
structureP(G)

Number of dimensions X .

Probability density or mass function over vari-
able X parameterized b¢

Discrete distribution ovef/—symbol alphabet

Y] atindexj in component

s'th entry of discrete distribution;

Mixture weights, K—dimensional stochastic
vector

Alphabet with)/ symbols

Variance parameter of a Gaussian distribution at
index;j in componenk

Posterior of component membership for sample
1 and component
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Appendix A Notation

S} Mixture model parameterization

Oy Parameterization of thé’th component of a
mixture

O, Parameters for thg’th distribution in naive
Bayes componerit

X Multivariate random variable with dimensions

x; Realization ofX, i.e. vector of lengthy

Tij Realization ofX;, j’th element ofz;

X; Random variablej’'th element ofX

Z; Number of groups in CSI structugg
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Appendix B

Abbreviations

AIC
AoArch
AOAsC
AoV
AV
BIC
BN
CPT
CsSl
DMP
DNA
DORV
EM

FN

FP
HMM
IAS
IVS
LA
LDH
LV
MAP
MCMC
MDH
MRNA
ML
MPA
MSA
NEC
PDB
PFO

Akaike information criterion
Aortic arch

Aorta ascendensis

Aortic valve
Atrioventricular

Bayesian information criterion
Bayesian network
conditional probability table
context-specifimdependence
Dirichlet mixture prior
deoxyribonucleic acid DNA
double outlet right ventricle
Expectation Maximization
false negatives

false positives

Hidden Markov model
Interatrial septal defect
interventicluar septum

left atrium

lactate dehydrogenases

left ventricle

maximum a posteriori
Markov chain Monte Carlo
malate dehydrogenases
messengeribonucleic acid
maximum likelihood

main pulmonary artery
multiple sequence alignment
Normalized Entropy criterion
Protein Data Bank

Patent foramen ovale
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PV
PV
PWM
RA
RV
RV
TF
TFBS
TK
TN
TOF
TP
SEM

pulmonary valve
pulmonary valve
positional weight matrix
right atrium

random variables

right ventricle
transcription factors
transcription factor binding sites
tyrosine kinases

true negatives
tetralogy of Fallot

true positives
structural EM



Appendix C

Nucleotide & Amino Acid Codes

Nomenclature for the four nucleotides and 20 standard am@nds is determined by the
International Union of Pure and Applied Chemis{iyPAC) codes.

Nucleotide| 1-letter code
adenine A
cytosine C
guanine G
thymine T

Table C.1: IUPAC codes for the four nucleotides.
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Appendix C Nucleotide & Amino Acid Codes

Amino acid | 3-letter code 1-letter code
Alanine Ala A
Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine GIn Q
Glycine Gly G
Histidine His H
Isoleucine lle I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y
Valine Val \Y

Table C.2: IUPAC codes for the twenty standard amino acids.
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Appendix D

Random CSI Models

When generating random CSI models, some care has to be tfakethé structure and
model parameters are not inconsistent in the sense thatrtiotse gives separate groups
to two components, whereas the randomly selected parasnkyechance, are very similar.
In order to circumvent the problem, an exhaustive strudeaening is performed to after
the random sampling of parameters to make sure this situdties not occur.

Therefore, the protocol to generate a data/8dtom a random CSI model with given
dimensiornp, numbers of componert and number of samplées is

sample structure G uniformly from all possible structureegp and K

for all featuresX; sample parameterk, |, according to the local structurgs

— if 0,4, Is discrete, sample parameters from a uniform Dirichletritiistion
with M =8

— if 0x,),,, Is Gaussian, sampleandos? from uniform distributiong/(—25.0, 25.0)
andU(0.3,5.0) respectively

e perform structure learning with exhaustive enumeratiosnsure consistency

sampleN data points to obtain the data det
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Appendix E

Zusammenfassung

Die Dissertation beschaftigt sich mit der Analyse von dg$chen Daten aus dem Bereich
Genetik und Molekularbiologie. Der Fokus der Arbeit liegt dem 'Clustering’, d.h. der
automatischen Unterteilung eines Datensatzes in Gruppet@knlichen Dateneintragen.
Diese Gruppen werden dann im Bezug auf ihre unterschiedlablogische Bedeutung
analysisert.

Der statistische Formalismus, der in der Arbeit angewendt, ist das Mischmodell.
Mischmodelle weisen eine Reihe von erstrebenswerten Eofpaften auf. Sie sind flexibel
in der Abbildung verschiedener Datensatze, erlaubeniegife Parameterschatzung und
sind robust gegeniiber verrauschten Daten. Im Kdgitel Aeveder Mischmodellformalis-
mus, der Algorithmus zur Parameterschatzung und Detailaawendung fiur das Cluster-
ing beschrieben. Im Kapitél 3 wird eine neuartige Erweitgrder konventionellen Mis-
chmodelle, digkontext-spezifische Unadihgigkeit(eng. CSI) motiviert und eingefihrt.
Die CSI Erweiterung erlaubt die automatische Anpassundvietell-Komplexitat an die
Variabilitat eines gegebenen Datensatzes. Dies hat mightden Vorteil, dass nur so
viele Parameter geschatzt werden mussen, wie bendtidt em den Datensatz abzu-
bilden. Die gelernte CSI Struktur erlaubt auch die Charaisrung der vom Clustering
erzeugten Gruppen. Im Kapitdl 4 wird der Algorithmus, der Rarameterschatzung von
CSI-Mischmodellen benotigt wird, eingefuhrt und gedest

Die erste Anwendung, die in der Arbeit behandelt wird, ig Modellierung von Tran-
skriptionsfaktorenbindestellen (TFBS) mit Hilfe von CBIschmodellen (Kapitdll5). Klas-
sicherweise wird das Bindeverhalten eines Transkriptaktsrs (TF) mit einer einfachen
Positionsgewichtsmatrix (enlg. PWM) modelliert. In die§tudie zeigen wir, dass fur
TFs, die mehrere, unterschiedliche Bindemotive aufweiS&t-Mischmodelle die geeignete
Modellklasse darstellen. Am Beispiel des TFs Leu3 konnterzeigen, dass die Anwen-
dung von Mischmodellen biologisch motiviert ist. Deswegte fanden wir in einer Se-
guenzkonservierungsstudie zwischen Mensch und Maugrfanéatensatz von 64 TFs,
dass CSI-Mischmodelle durchgehend bessere Ergebni$seles konventionelle Mis-
chmodelle.

Die zweite Anwendung beschaftigt sich mit dem Clusterimg WProteinsequenzen aus
funktionell verwandten Proteinunterfamilien (Kaple! &s ist bekannt, dass viele solcher
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Appendix E Zusammenfassung

Unterfamilien unterschiedliche Substratspezifitatefwaisen. Oftmals beruht die un-
terschiedliche Spezifitat nur auf einer kleinen Anzahl anirosaureresten. Das Clus-
tering eines Datensatzes von Proteinsequenzen umfagssingzn nur die Einteilung in
Untergruppen, sondern auch die Vorhersage der funktem&keste, das heildt, der Posi-
tionen im Protein, die die Substratspezifitat bestimmem die CSI-Mischmodelle fur
diesen Zweck anzuwenden, fuhren wir eine neuartige Medediterung, basierend auf
der Dirichletverteilung ein. In der Folge analyisieren die Performanz des Ansatzes auf
einer Reihe von Proteinsequenzdatensatzen.

Die dritte Anwendung befasst sich mit dem Clustering voarRiypen von Patienten mit
angeborenen Herzfehlern (Kapifél 7). Der Datensatz umf&®dinare Phanotypen, die
jeweils die An- oder Abwesenheit von verschiedenen anacmen Missbildungen des
Herzens reprasentieren. Die Anwendung von CSI-Mischiterdé&ir das Clustering eines
Datensatzes von 65 Herzpatienten fuhrte zur Unterteilnger Untergruppen. Die Anal-

yse der Untergruppen zeigte sowohl eine gute Korrelatidrklassischen Herzkrankheit-
stypen, als auch eine neuartige Gruppierung, die eine Misthvon klassisch beschriebe-
nen Herzkrankheiten ist.
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