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Chapter 1

Introduction

We are concerned with the use of computational and statistical methods for the analysis of
gene expression data. In this chapter, we describe some basic concepts in gene expression
and biotechnological methods used to measure gene expression in large-scale experiments.
Additionally, we give a brief overview of the main tasks and challenges in the analysis of
the resulting data. Finally, we outline the main scientific contributions of this thesis and
summarize its contents.

1.1 Gene Expression: Transcription, Translation and
Control

First, we briefly review the process of gene expression. A detailed description can be
found in many textbooks, see for example [4]. The genetic information of organisms is
stored in deoxyribonucleic acid (DNA) molecules. These molecules are composed of two
polynucleotide chains (or strands) forming the double helix structure (Figure 1.1). The
nucleotides, which are the building blocks of a DNA molecule, are characterized by the
base attached to a sugar phosphate. The classical four types are: Adenine (A), Cytosine
(C), Guanine (G) and Thymine (T). One particularity of the double stranded DNA is the
complementary base pairing, i.e., a particular base on a strand only binds to a comple-
mentary base on the opposite strand. More precisely, “A” binds only to “T”, and “C” to
“G” (Figure 1.1). The reaction in which a single stranded DNA molecule binds to a com-
plementary strand is called hybridization, a reaction exploited by many molecular biology
techniques.

In eukaryotes, i.e., organisms which have cellular nucleus, several linear DNA molecules,
called chromosomes, are present in the cell nucleus. Each of these chromosomes is formed
by billions of base pairs. Genes are regions of the chromosome that code one or more
proteins1. They represent the basic units responsible for storing and passing on hereditary
characteristics.

Gene expression is the process by which the genetic information contained in the genes
1Some genes will code functional RNA structures, which are not translated into proteins.
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Chapter 1 Introduction

Figure 1.1: Example of a double stranded DNA molecule. Figure reproduced from the US
National Library of Medicine.

is translated into ribonucleic acid (RNA) molecules and, later, into protein molecules [4].
This process is divided into two main steps: transcription and translation. In the transcrip-
tion step, regions of DNA, which code genes, are transformed into RNA molecules by the
RNA polymerase (Figure 1.2, Step 1). RNA molecules are different from DNA in several
aspects: (1) they are only single stranded; (2) they have Uracil (U) instead of Thymine (T);
and (3) they have a quicker degradation time.

Next, in the translation process (Figure 1.2, Step 2), RNA molecules leave the nucleus
and are “read” by the ribosome in order to synthesize proteins. Triplets of RNA bases are
mapped via the genetic code into one of the twenty amino acids. These amino acids are
the building blocks of the proteins. Proteins, the final products of genes, are vital to the
cell functioning, since they constitute the structural components of the cells and catalyse
biochemical reactions.

While most cells of an eukaryotic organism encode the same genetic information, they ex-
press genes at distinct levels. The expression of a particular set of genes is either a response
to distinct environmental conditions or is part of the specific repertoire of a given cell type.
Understanding the mechanisms controlling gene expression is a central question in mole-
cular biology. This control can happen at several levels of the gene expression process.
The first level and the one of main concern in this work is the transcriptional control. At
this level, proteins, called transcription factors, bind the upstream (or regulatory) regions
of genes. These factors act as initiators (or repressors) of transcription by facilitating (or
blocking) the access of the RNA polymerase to initiate transcription.

2



1.2 Measuring Gene Expression with Microarrays

Figure 1.2: We depict here the main stages of gene expression. Step 1 corresponds to
the transcription of DNA to RNA molecules. Step 2 corresponds to the trans-
lation of messenger RNA (mRNA) to protein molecules. Figure reproduced
from [136].

1.2 Measuring Gene Expression with Microarrays

Microarray technology allows the simultaneous measurement of the concentrations of RNA
molecules (or transcripts). More precisely, this technology allows the measurements of
the expression patterns of genes—also known as expression profiles. For example, by
comparing the expression profiles of disease and normal cells [5], responses of cells to
environmental conditions [82], or during biological process such as cell cycle [201] and
development [214], the researchers can explore the dynamics of gene expression, to form
hypotheses about regulatory and functional roles of genes, and to obtain molecular signa-
tures of cell types and all this on a genome-wide scale.

Microarray Technology. The main idea behind DNA microarrays is to exploit the fact
that two complementary single stranded DNA molecules hybridize [111]. For each gene
of interest, a short sequence complementary to its sequence is select. These sequences are
called probes and have lengths ranging from 20 to 60 bases. The probes should be selected
in such a way that there is a low chance of hybridizing with sequence others than the target
gene sequence.

Then, with the aid of robotics or nano manufacture technologies, thousands of copies of
a particular probe are placed in a tiny area of a hard surface — the array. Thousands of
such probe spots can be placed side by side forming a grid on the array. Each spot contains
probes designed to hybridize with RNA from a specific gene. In the end, one can have as

3
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many as 105 spots arranged in a 2× 2 cm array.

In the next step, the RNA molecules of the cell population of interest are separated and
transcribed to single stranded complementary DNA (cDNA) molecules. This step is needed
as RNA molecules are unstable and would quickly degrade. Afterwards, the cDNA mole-
cules are marked with fluorescent or radioactive labels. The cDNA molecules are, then,
poured onto the slide. After some time, the slide is washed, removing the cDNA molecules
that did not hybridize with the probes.

Next, the slide is scanned, resulting in an image with all the spots intensities (see Figure 1.3
middle). Such an image is further processed using computational methods. The aim is to
calculate the intensity at each spot, which is proportional to the number of transcripts of a
gene that a probe is complementary to (the whole process is illustrated in Figure 1.3).

There are several distinct microarrays technologies such as cDNA microarrays [183] and
Affymetrix Gene Chips (also known as Oligonucleotide arrays) [134]. They differ mostly
by how the chips are manufactured and on methodologies for probe selection. The particu-
lar characteristics of such technologies are important for decisions concerning experimen-
tal design, experimental costs, measurements reliability and data pre-processing aspects.
See for example [119] for a complete description of microarray technologies.

One important aspect of microarrays is the use (or not) of reference RNA samples. In
double channel microarrays, such as cDNAs microarrays, two cell samples are poured in
the same microarray: cells of interest (e.g., disease cells, treated cells) and reference cells
(e.g., healthy cells, untreated cells). Each of these cell populations is dyed with a distinct
marker, for instance, a red Cy3 dye versus a green Cy5 dye. Double channel microarrays
return a relative quantification of the RNA expression in relation to the reference cell,
usually measured by taking the logarithm of the ratio between the red and green signals
(see Figure 1.3 (a) for an example of a two-channel microarray).

In single channel arrays, only one RNA sample is poured in the array, and no reference
sample is used. Single channel arrays return estimates on the number of copies of a par-
ticular transcript in a given sample. With Affymetrix microarrays, an example of single
channel array, 20 to 40 distinct probes, which are complementary to the sequence of an
unique gene, are placed in distinct spots on the array in order to obtain reliable estimates of
RNA quantities. Additionally, a mismatch spot (MM) containing a sequence, where a base
in the middle of the original probe (PM) sequence is exchanged, is placed next to each PM
spot. These reduce the effect of cross-hybridization, increase the signal to noise ratio and
improve the accuracy of the RNA quantification (see Figure 1.3 (b) for an example of an
single-channel microarray).

Pre-processing and normalization procedures are the initial computational tasks in the ana-
lysis of data from microarrays. These procedures are responsible for improving the esti-
mates of the RNA levels measured by microarrays. In the pre-processing step, one tries to
correct the probe intensities for errors introduced by experimental artifacts, such as non-
specific hybridization, dye efficiency, spatial biases, and so on. See for example [106]

4
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technology review
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As array technology has advanced, more sensitive and quantita-
tive methods for target preparation have had to be developed. In
cases in which the quantity of RNA is not limited, incorporation
of nucleotides coupled to !uorescent dyes during synthesis of the
"rst strand of cDNA is the method of choice, as it provides the
most linear relationship between starting material and labelled
product. However, most protocols require between 25–100µg
total RNA, which is often not readily available in studies using pri-
mary cells or tissues. Various procedures have been developed to

increase sensitivity and reduce the amount of RNA required. One
strategy is target ampli"cation by in vitro transcription, whereby up
to 50µg o! abelled cRNA can be produced from 1µg of mRNA. In
addition, several rounds ofin vitro transcription can be combined
with cDNA synthesis to enhance the ampli"cation even further4.
Using these protocols, it is even possible to pro"le the transcripts of
a single cell5. Another strategy is post-hybridization ampli"cation
using labelled antibodies or molecules carrying large numbers of
!uorophors6. Several studies have used target-ampli"cation tech-
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Figure 1 Schematic overview of probe array and target preparation for spotted
cDNA microarrays and high-density oligonucleotide microarrays. a , cDNA microar-
rays. Array preparation: inserts from cDNA collections or libraries (such as IMAGE
libraries) are ampli!ed using either vector-speci!c or gene-speci!c primers. PCR
products are printed at speci!ed sites on glass slides using high-precision arraying
robots. Through the use of chemical linkers, selective covalent attachment of the
coding strand to the glass surface can be achieved. Target preparation: RNA from
two di"erent tissues or cell populations is used to synthesize single-stranded cDNA
in the presence of nucleotides labelled with two di"erent #uorescent dyes (for exam-
ple, Cy3 and Cy5). Both samples are mixed in a small volume of hybridization bu"er
and hybridized to the array surface, usually by stationary hybridization under a cover-
slip, resulting in competitive binding of di"erentially labelled cDNAs to the correspon-
ding array elements. High-resolution confocal #uorescence scanning of the array with
two di"erent wavelengths corresponding to the dyes used provides relative signal

intensities and ratios of mRNA abundance for the genes represented on the array. 
b, High-density oligonucleotide microarrays. Array preparation: sequences of 16–20
short oligonucleotides (typically 25mers) are chosen from the mRNA reference
sequence of each gene, often representing the most unique part of the transcript in
the 5 -untranslated region. Light-directed, in situ oligonucleotide synthesis is used to
generate high-density probe arrays containing over 300,000 individual elements.
Target preparation: polyA+ RNA from di"erent tissues or cell populations is used to
generate double-stranded cDNA carrying a transcriptional start site for T7 DNA poly-
merase. During in vitro transcription, biotin-labelled nucleotides are incorporated into
the synthesized cRNA molecules. Each target sample is hybridized to a separate
probe array and target binding is detected by staining with a #uorescent dye coupled
to streptavidin. Signal intensities of probe array element sets on di"erent arrays are
used to calculate relative mRNA abundance for the genes represented on the array.
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Figure 1.3: We depict how microarray experiments are performed for cDNA (a) and
Oligonucleotide (b) microarrays. In the top, we depict how microarrays are
manufactured; and in the bottom, how RNA samples are obtained. In the
middle, we can see the images obtained after RNA samples hybridize to the
microarrays. For cDNA microarrays (a), each dot represents a probe, and the
red (or green) colors are proportional to the counts of RNA hybridized to that
probe in the reference (or control) sample. Similarly, the intensity of white
dots in Oligonucleotide arrays (b) represents the counts of RNA hybridized to
that probe. Figure reproduced from [190].
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Chapter 1 Introduction

for a review of methods on Affymetrix Gene Chips or [230] for protocols for cDNA mi-
croarrays. Next, normalization methods are applied with the aim of making expression
values obtained in distinct hybridization experiments comparable. See [203] for a review
of pre-processing and normalization methods.

Computational Challenges in the Analysis of Gene Expression data. Large-scale data
produced by microarrays experiments shows how gene expression changes in distinct bio-
logical conditions and tissue types. Manual analysis of such amount of data is not feasible.
Due to this limitation, statistical and computational methods are vital for analyzing gene
expression data. In fact, data arising from microarrays have several particularities that
should be taken into consideration by these methods: they should be able to cope with the
high dimensionality of the data, be robust to noise and take advantage of the experimental
design associated with the biological experiment.

For example, gene expression levels are often measured in few experimental conditions,
i.e., tissues types or time points (less the 100) for thousands of genes (more the 10,000).
Furthermore, despite improvements of microarrays experiments and protocols, these tech-
nologies still suffer from several sources of noise: either by manufacturing failures, pro-
blems in the reading procedure, unspecific probes, variability in biological samples, or
variations in the environment conditions in which experiments are performed. A recent
study [107] showed that at least 10% of expression measurements differ significantly in
replication experiments.

Another important aspect is the experimental design procedure used for acquiring the data.
For instance, in microarrays experiments measured over time, such as during cell cycle,
the cell populations tend to desynchronize with time. This results in deterioration of the
expression measurements of later time points [201]. The explicit use of knowledge of the
biological process makes computational and statistical methods more robust to this type of
inherent noise.

1.3 Thesis Overview

In this thesis, the main focus is on the problem of finding groups of co-expressed genes, or
genes that display the same expression behavior through particular biological conditions,
such as cell cycle, or developmental processes. The basic rational underlying this approach
is the assumption that co-expressed genes should (1) perform a similar functional task,
and (2) be regulated by the same transcription regulation program. Thus, exploiting the
guilty by association principle, one can deduce the function of an uncharacterized gene by
observing the function of co-expressed genes [71]. Also, by including additional data in
the analysis, such as regulatory regions, one can explore and uncover regulatory programs
controlling the expression of genes [212].

One traditional approach for finding co-expressed genes is the use of clustering methods,
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1.3 Thesis Overview

also known as unsupervised learning [64]. Clustering methods are usually based on a
similarity metric, which defines how close objects (or gene profiles) are in a given multidi-
mensional space, followed by a method that, for example, searches for groups (or clusters)
of objects that lie in compact regions and are far apart from other groups. While cluster
analysis is a well-developed research area [109], the characteristics of gene expression data
impose challenges not previously addressed by classical clustering methods.

This thesis uses mixture models as a statistical formalism for performing clustering of gene
expression data [145]. Mixture models are robust to noise, can model uncertainty about
cluster assignments, allow the inclusion of prior knowledge, such as intrinsic dependencies
of the experimental design, and offer a flexible framework for integration of additional
biological data.

In Chapter 2, we introduce the mixture model formalism and the method used for estima-
ting mixture models; the expectation-maximization (EM) algorithm. Then, in Chapter 3,
we describe how mixture models can be used to solve the clustering problem, and how
questions as choosing the number of clusters and cluster validation can be answered in
the context of mixture models. Additionally, in Chapter 3 we propose a novel external in-
dex for validating clustering computed by mixtures. With the exception of the proposal of
this external index, Chapters 2 and 3 basically review established research on mixture mo-
dels, and introduce the methodological framework used in the bioinformatic applications
described in later chapters.

Mixture models allow, with a proper choice of component models, to make explicit as-
sumptions about the data. This thesis proposes two novel types of components models
for analyzing gene expression profiles. The use of hidden Markov models with linear
topologies to analyze gene expression time courses will be the focus of Chapter 4. In
Chapter 5, we propose a new type of probabilistic model, dependence trees, to model
gene expression profiles during a developmental process. This approach assumes that the
sequence of changes from a stem cell to a particular mature cell, as described by a devel-
opmental tree, are the most important in modeling gene expression from developmental
processes. We also explore in Chapter 5 the benefits of using priors of model parameters
to obtain maximum-a-posteriori point estimates, and how this improves the robustness of
the method.

Once a given component model is defined, it is straightforward to apply any extension of
the expectation-maximization (EM) algorithm. We propose, in Chapter 6, the use of an
established semi-supervised learning method [123] to integrate additional biological data
and improve clusterings of gene expression time-courses. We evaluated the inclusion of
Gene Ontology annotations [9] and location analysis of transcription factor biding derived
from Chip-on-chip experiments [128]. Additionally, we propose a novel method, which
combines gene expression time-courses with location of gene expression in Drosophila
embryos [214], for finding groups of syn-expressed genes. Finally, in Chapter 7, we present
final remarks and future work with respect to the specific contribution of this thesis.
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Chapter 2

Finite Mixture Models

A finite mixture model is a convex combination of two or more probability density func-
tions. By combining the properties of the individual probability density functions, mixture
models are capable of approximating any arbitrary distribution [145]. Consequently, fi-
nite mixture models are a powerful and flexible tool for modeling complex data. Mixture
models have been used in many applications in statistical analysis and machine learning
such as modeling, clustering, classification and latent class and survival analysis. In this
chapter, we will introduce the basics about mixture models. Thereby, we define the sta-
tistical and computational framework that will be further explored for specific bioinfor-
matics applications in the subsequent chapters. All the content covered in this chapter is
a review of established research in the area and can be found, for example, in the text-
books [93, 142, 145].

First, we describe the basic concepts and notations used through this thesis (Section 2.1).
Then, we introduce mixture models formally (Section 2.2), show how a mixture model can
be efficiently estimated with the expectation-maximization (EM) algorithm (Section 2.3),
give an example of mixture models with multivariate Gaussians (Section 2.3.3) and dis-
cuss some aspects of model selection and determination of the number of components
(Section 2.3.5).

2.1 Basics

A continuous L-dimensional random variable will be denoted as X = (X1, ..., Xl, ..., XL),
where Xl corresponds to the lth variable. Lower case letters will be used for a particular
observation (or realization) x = (x1, ..., xl, ..., xL) of a variable X . Bold face letters, such
as X, will denote a data of N observations of variable X or, equivalently, a N × L matrix,
where xil is the value of the ith observation for the lth variable in X. This notation is based
on the one introduced in the textbook [93].

A probability density function (pdf) p(x) is any function defining the probability density of
a variable X such that p(x) ≥ 0 and

∫∞
−∞ p(x) = 1. By integrating p(x) over an interval,
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Chapter 2 Finite Mixture Models

we obtain the probability that variable X assumes values in the interval [a, b], that is

P[a ≤ Xi ≤ b] =

∫ b

a

p(x) dx.

For a given pdf p(x), the expectation of X is defined as,

E[X] =

∫ ∞

−∞
xp(x) dx. (2.1)

In relation to the model parameters, we use the “hat” symbol to indicate an estimator. For
example θ̂ is the estimator of parameter θ.

2.2 Mixture Models

Let X = (X1, ..., Xj, ..., XL) be a L-dimensional continuous random variable and x =
(x1, ..., xL) be an observation of X . A probability density function (pdf) of a mixture
model is defined by a convex combination of K component pdfs [145],

p(x|Θ) =
K∑

k=1

αkpk(x|θk), (2.2)

where pk(x|θk) is the pdf of the kth component, αk are the mixing proportions (or compo-
nent priors) and Θ = (α1, ...,αK , θ1, ..., θK) is the set of parameters. We assume that

αk ≥ 0, for k ∈ {1, ..., K}, and (2.3)

K∑

k=1

αk = 1. (2.4)

By the property of convexity, given that each pk(x|θk) defines a probability density func-
tion, p(x|Θ) will also be a probability density function.

The most straightforward interpretation of mixture models is that the random variable X
is generated from K distinct random processes. Each of these processes is modeled by
the density pk(x|θk), and αk represents the proportion of observations from this particular
process. For example, the mixture in Figure 2.1 (a) models a bimodal density generated
by two independent processes. A mixture can also, by combining simpler densities, model
pdfs of arbitrary shapes. For example, with two Gaussian densities as components, we can
model a skewed density Figure 2.1 (b), or a heavy tail density Figure 2.1 (c).
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Figure 2.1: Examples of densities modeled by mixtures of two Gaussians pdfs. Green
lines indicate the individual component densities and red lines the mixture
densities. In Figure (a), we have a highly overlapping bimodal density, while
in Figure (b), we depict an unimodal density skewed to the left, while in Figure
(c) a density with heavy tails. These are only a few examples representing the
power of mixture models in modeling densities of arbitrary shapes.

2.3 Mixture Model Estimation

For a given data X with N observations, the likelihood of the data assuming that xi are
independently distributed is given by

p(X|Θ) = L(Θ|X) =
N∏

i=1

K∑

k=1

αk· pk(xi|θk). (2.5)

The problem of mixture estimation from data X can be formulated as to find the set of
parameters Θ that gives the maximum likelihood estimate (MLE) solution

Θ∗ = arg max
Θ

L(Θ|X). (2.6)

The summation inside the product in Eq. 2.5 prevents the possibility of analytical solutions.
One alternative is to maximize the complete likelihood in an expectation-maximization
(EM) approach [61].

2.3.1 Expectation-maximization Algorithm

The expectation-maximization (EM) algorithm is a general method for finding maximum
likelihood estimates when there are missing values or latent variables [61]. In the mixture
model context, the missing data is represented by a set of observations Y of a discrete
random variable Y , where yi ∈ {1, ..., K} indicates which mixture component generated
the observation xi. For now, we will assume that the number K is fixed and known a
priori.
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Chapter 2 Finite Mixture Models

The likelihood of the complete data (X,Y) takes the following multinomial form

p(X,Y|Θ) = L(Θ|X,Y) = p(X|Y, Θ)p(Y|Θ)

=
K∏

k=1

N∏

i=1

(αk· pk(xi|θk))
1(yi=k) (2.7)

where 1 is the indicator function, i.e. 1(yi = k) = 1 if yi = k holds, and 1(yi = k) = 0
otherwise.

The EM algorithm is derived as follows. Let Q be an auxiliary function, the conditional
expectation of the complete data (X,Y), given the observed data X and a parameterization
Θp−1,

Q(Θ, Θp−1) = E[log(p(X,Y|Θ))|X, Θp−1)

=
∑

Y∈Y

p(Y|X, Θp−1) log(p(X,Y|Θ)), (2.8)

where Y is the space of all possible values of Y and p(Y|X, Θp−1) =
∏N

i=1 p(yi|xi, Θp−1).

As Y is the space of all possible values of Y, it follows that
∑

Y∈Y

p(Y|X, Θp−1) = 1. (2.9)

By Bayes rule we can re-write the likelihood function (Eq. 2.5) as

p(X|Θ) =
p(X,Y|Θ)

p(Y|X, Θ)
. (2.10)

Then, applying the logarithm function to Eq. 2.10 and by Eq.2.9, it follows that

log p(X|Θ) =
∑

Y∈Y

p(Y|X, Θp−1) log p(X,Y|Θ)−
∑

Y∈Y

p(Y|X, Θp−1) log p(Y|X, Θ).

(2.11)

Next, by replacing the definition of Q (Eq. 2.8) in Eq. 2.11, we can represent the ratio
log(p(X|Θ)/p(X|Θp−1)) by

log p(X|Θ)− log p(X|Θp−1) = Q(Θ, Θp−1)−Q(Θp−1, Θp−1)

+
∑

Y∈Y

p(Y|X, Θp−1) log
p(Y|X, Θp−1)

p(Y|X, Θ)
(2.12)

The last term of this equation is equal to the relative entropy between the two densities,
and by definition have always positive value [54]. Thus, it follows that
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2.3 Mixture Model Estimation

log p(X|Θ)− log p(X|Θp−1) ≥ Q(Θ, Θp−1)−Q(Θp−1, Θp−1). (2.13)

Given a parameterization Θp such that

Θp = arg max
Θ

Q(Θ, Θp−1), (2.14)

and substituting Θp in Eq 2.13, we obtain

log p(X|Θp)− log p(X|Θp−1) ≥ Q(Θp, Θp−1)−Q(Θp−1, Θp−1)

≥ Q(Θ, Θp−1)−Q(Θp−1, Θp−1)

≥ 0

and consequently
log p(X|Θp) ≥ log p(X|Θp−1). (2.15)

Intuitively, this means that by maximizing Q (Eq. 2.8) in regard to a parameterization Θp−1,
we obtain a parameterization Θp that maximizes the log likelihood (Eq. 2.5). Based on this
result, the EM algorithm works by iterating between two steps. In the first (E-step), it finds
the expected value of the complete likelihood given the current parameterization Θp−1. In
the second step (M-step), it looks for the set of parameters Θp that maximize the expecta-
tion from the E-step. At each iteration, the EM increases the log-likelihood converging to
a local maximum [61]. These steps are repeated P times or until a convergence criterion is
fulfilled.

Before proceeding with the deduction, we need to define the posterior probability of yi = k,
given xi. By Bayes rule this can be defined as follows [145],

p(yi = k|xi, Θ) =
p(yi = k)p(xi|yi = k, θk)

p(xi|Θ)

=
αkpk(xi|θk)∑K

k′=1 αk′pk′(xi|θk′)
(2.16)

For simplicity of notation we denote p(yi = k|xi, Θ) by rik.

In the case of mixture models, Eq. 2.8 can be re-written, after some mathematical manipu-
lations [27], as follows

Q(Θ, Θp−1) =
K∑

k=1

N∑

i=1

rik log(αk· pk(xi|θp−1
k )). (2.17)

For the E-Step, we need to find the expected value of L(Θ|X,Y) given xi and the current
parameterization. As log (L(Θ|X,Y)) is linear in xi, this step reduces to calculating the
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Chapter 2 Finite Mixture Models

expected value yi = k given xi and the previous parameterization Θp−1, that is

E[yi = k|xi, Θ
p−1] = p(yi = k|xi, Θ

p−1)

= rik. (2.18)

The M-Step can be formally described as

Θp = arg max
Θ

Q(Θ, Θp−1). (2.19)

To find the parameter estimates, we need to integrate Eq. 2.8 in relation to its parameters
Θ in a maximum likelihood fashion.

For the αk, the MLE estimate can be obtained as

0 =

[
K∑

k=1

N∑

i=1

rik log(αk· pk(xi|θk)) + λ(
K∑

k=1

αk − 1)

]
∂

∂αk
(2.20)

0 =
N∑

i=1

1

αk
rik + λ (2.21)

where λ is a Lagrange multiplier that guarantees stochasticity (Eq. 2.4). Setting λ = −N ,
we have

αk =

∑N
i=1 rik

N
. (2.22)

The estimates of θk will be specific to the choice of the component densities. For many
families of densities, such as exponential type densities, there are analytical solutions (see
Section 2.3.3). Even for cases where the maximum likelihood estimate cannot be found, it
is sufficient to find a parameterization Θp−1, such that

Q(Θp, Θp−1) > Q(Θ, Θp−1). (2.23)

This is the case, for example, when Hidden Markov Models (HMM) are used as the com-
ponent densities. In this scenario, we can apply the Baum-Welch algorithm [21] for each
component of the mixture at the M-Step of the EM algorithm. This procedure estimates
a local maximum likelihood estimate of a HMM, and meets Eq. 2.23. This estimation
method is known as the generalized expectation-maximization algorithm [27].
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2.3 Mixture Model Estimation

2.3.2 Method Initialization

An important point of the EM algorithm is the selection of the initial parameterization
Θ0 of the model. A standard way to obtain Θ0 is to choose random rik values uniformly
from [0, 1] and estimating the individual models with the M-Step. In order to deal with the
effects of the random initialization, all estimations are repeated a number of times (usually
15), and the solution with highest likelihood is selected [143].

2.3.3 Mixture of Multivariate Gaussians

As an example, we show how the estimates of a mixture with multivariate Gaussians can
be computed. The probability density function of X is defined as

p(x|θ) =
1√

2π|Σ−1
x |

exp

(
−1

2
(x− µx)Σ

−1
x (x− µx)

T

)
(2.24)

where µx is a vector of means (µx1 , ..., µxL), Σx is the L × L covariance matrix, and
θ = (µx, Σx). By replacing 2.24 in 2.17, we obtain,

Q(Θ, Θp−1) =
K∑

k=1

N∑

i=1

rik log(αk)−
1

2

K∑

k=1

N∑

i=1

rik log(2π|Σ−1
x|k|)

−1

2

K∑

k=1

N∑

i=1

rik(x− µx|k)Σ
−1
x|k(x− µx|k)

T , (2.25)

where θk = (µx|k, Σx|k) are the parameters of the pdf pk. Subscripts on parameter the
µx|k indicate that the parameter µ is an estimate of the variable X and it is conditioned
on the mixture model component k. By taking the derivative of Eq. 2.25 in respect to
θk = (µx|k, Σx|k), we obtain the following estimates,

µ̂x|k =

∑N
i=1 rikxi∑N
i=1 rik

, and, (2.26)

Σ̂x|k =

∑N
i=1 rik(xi − µx|k)(xi − µx|k)T

∑N
i=1 rik

. (2.27)

Mixture of multivariate Gaussians are able to model groups of observations in ellipsoidal
regions of the Euclidean space with any orientation and size. See Figure 2.2 for an ex-
ample. In many situations, it may be desirable to use models with simpler assumptions,
and consequently fewer parameters. One alternative is to restrict the covariance matrix
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Figure 2.2: Example of solutions in a two dimensional data found by a mixture of Gaus-
sians with full covariance matrices (a), mixture of Gaussians with diagonal
covariance matrices (b), and mixture of Gaussians with identity covariance
matrices (c). The ellipsoids correspond to the region with 95% of the compo-
nent density. With the full covariance matrix, the mixture fits the two groups
shapes well. With the diagonal covariance matrix, the components also model
similar groups of observations compared to the full covariance matrix. How-
ever, for the former, the density cover regions of the space without observa-
tions. Gaussians with identity covariance matrices, which can only find spher-
ical and equal size components, cannot model the two groups of observations
well.

(Eq. 2.27) to the diagonal entries

Σd
x|k = diag(Σx|k), (2.28)

where diag(Σ) denotes a matrix, which has same values as the diagonal of the matrix Σ
and zero for all off diagonal entries. In this case, we obtain pdfs with ellipsoidal shape,
but with orientation parallel to the coordinate (see Figure 2.2). Another possibility is to
restrict all covariance matrices of the components to be the identical, which leads to all
components having the same shape and orientation. The most simplistic assumption is
the use of identity covariance matrices such that Σ∗

k = σ2I and αk = 1/K. In this case,
all components cover spherical and equal size regions of the space (see Figure 2.2 for a
comparison of distinct parameterization in a toy data). See [10] and [37] for a complete
listing of possible parameterizations of the covariance matrix of a multivariate Gaussian.

2.3.4 EM and Local Maxima

Ideally, one would like to use the full covariance matrix parameterization, as it model
all covariance between variables. However, with such covariance matrices, the EM usu-
ally returns local maximizers, characterized by having a component with few observations
assigned to it [143]. In other words, the mixture fits perfectly a small part of the data,
obtaining a high likelihood, but does not achieve a good fit for other regions of the space.
This follows from the fact that the likelihood function is unbounded on boundaries of the
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2.3 Mixture Model Estimation

parameter space (very low values of α or diagonal entries of Σ.) In particular, when the
number of observations (N) in the data is low, or in the presence of outliers, such solutions
will be often found by the EM algorithm [143].

To prevent this, there are several techniques available. One simple method [95] is to con-
strain the diagonal values of the covariance matrices to never be below a given threshold
value. Another alternative, which minimizes the effects of outliers, is to use alternative
density functions, such as the student [144], or the use of noise components [10].

A more principled approach is to define prior density functions on the mixture parameters
and perform a maximum-a-posteriori (MAP) estimation with Monte Carlo Markov Chains
(MCMC) [65, 84, 180]. This requires the specification of a proper conjugate prior on the
parameters. For example, [65] considers a Wishart density function as a prior on Σk and
Dirichlet distributions for the component responsibilities α. However, MCMC has a higher
computational cost than the EM algorithm. Recently, [80] showed that for multivariate
Gaussians, where the posterior mode solution is given with the use of conjugate priors,
EM estimation with point MAP estimates achieves comparable results to those obtained
with the computationally costly MCMC.

2.3.5 Determining the Number of Components

We cannot rely on maximal likelihood to estimate the number of components, since over-
fitted solutions, such as one component per observation would arise (see Figure 2.3). We
need to balance between fit versus generality. This is commonly done with a penalized
likelihood approach, as the Bayesian information criterion (or BIC for short) [191], and
further extensions [26, 38, 227]. The problem of finding the number of components can
also be tackled in a Full Bayesian setting using Dirichlet Process priors [75]. However, this
approach requires the use of the computationally expensive MCMC. Despite its simplicity,
BIC performs well in simulation studies [145]. Thus, it will be the methodology used
throughout this thesis for selecting the number of components.

We can tackle the selection of the number of components in a Bayesian framework by
comparing two mixture models ΘK and ΘK+1 with Bayes Factors. We calculate the ratio
of posterior,

BK,K+1 = p(X, Y |ΘK)/p(X, Y |ΘK+1), (2.29)

where ΘK and ΘK+1 are the parameters of two mixture models with K respectively K +1
components. It is possible to compare several models at once, rather than two by two
as in frequentist statistical test. When we use the EM-algorithm to estimate maximum
likelihood mixture models, approximate Bayes factors can be easily deduced from the
Bayesian information criterion (BIC) [191],

−2 log p(X, Y |ΘK) ≈ −2 logL(ΘK |X,Y) + ψK log N, (2.30)

where K is the number of components, L(ΘK |X,Y) is the maximized mixture log-likeli-
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Figure 2.3: Examples of mixture models with 1, 6 and 82 components fitting the Galaxy
Velocity data [176]. On the left plots, we have the density of individual com-
ponents and the histogram of the data, while in the right we have the mix-
ture density and the data histogram. The mixture with one component models
roughly the density in the range [15, 25], and imposes zero density to other
ranges of the density, plots (a) and (b). The mixture with 82 components, the
maximum likelihood solution for number of components equal to the number
of observations, simply over-fits the data, plots (e) and (f). The solution with
6 components offers a trade off between these two solutions, providing a good
fit of the data, modeling well all ranges of the density, plots (c) and (d) . This
mixture was presented in [145] as the optimal solution for the Galaxy data.
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2.3 Mixture Model Estimation

hood with K components (Eq. 2.7), ψK is the number of free parameters in ΘK and N is
the number of observations in X.

The term ψK log N penalizes more complex models, since the fit of a model tends to im-
prove as the number of parameters increases. The smaller the value of BIC, the better the
model. It has been shown that BIC does not underestimate the number of true components
asymptotically and performs well in simulation studies [145]. In the case of a multivariate
Gaussians, parameterized by (µx, Σx), the number of free parameters in a model θk is equal
to L + L(L− 1)/2. Hence,

ψK = K ∗ (L + L(L− 1)/2). (2.31)

This chapter covered the basics aspects on mixture models and their estimation. In the
next chapter, we show how mixture models can be used in the context of clustering. Fur-
thermore, for specific applications, as the ones described in Chapter 4 or in Chapter 5, we
take advantage of the characteristics of the data at hand, and choose the component models
accordingly.
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Chapter 3

Mixture Models and Clustering

In this thesis, we focus on the use of mixture models to perform clustering. By clustering
we mean finding groups (or clusters) of observations in a finite data set, such that each
group represents observations sharing characteristics, which are distinct from the overall
data set. Mixture models, being based on statistics, tackle this problem in a formal and
principled way. The applications of mixture models for clustering [79] has a number of
advantages in contrast to classical clustering methods such as k-means and hierarchical
clustering: it quantifies the uncertainty of a given cluster assignment; the estimated models
are descriptors of the groups found; and it is possible to answer questions such as the
number of clusters in a purely statistical way [145].

The characteristics of mixture models make this approach of great value in the analysis
of biological data. In particular, for gene expression analysis [11], the main interest is on
finding groups of genes that have similar expression patterns through a set of experimental
conditions, and possibly are part of a biological functional module [71, 135]. However, a
single gene (and its products) can participate simultaneously in more than one functional
module, for example by taking part in distinct protein complexes, each with its particular
function [122]. Furthermore, data arising from large-scale experiments, such as microar-
ray measurements of gene expression, contain large amount of noise [135]. In this context,
overlapping clusterings, such as the ones given by a mixture models, represent the results
of gene expression clustering analysis in a more natural way than “hard” clusterings. Also,
the uncertainty of a given cluster assignment returned by the mixture model is a valuable in-
formation in the distinction of assignments derived from relevant and noisy observations.
Furthermore, the mixture components can model particular assumptions about the data,
such as temporal dependencies, therefore producing more reliable estimates. As an evi-
dence, there is a vast list of publications that successfully applied mixture models in finding
potentially overlapping groups in gene expression analysis [14, 138, 143, 147, 155, 185–
187, 232, 234].

This chapter is organized as follows: Section 3.1 gives a definition of the use of mixture
models to perform clustering, and introduces how clusters can be obtained from mixtures.
Later, we propose a novel external index to perform validation of mixture models in Sec-
tion 3.2, which is evaluated with simulated data in Section 3.3.
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Chapter 3 Mixture Models and Clustering

3.1 Clustering with Mixture Models

Clustering is the task of partitioning a data set of N objects (or observations) from X into
K disjoint groups (or clusters). We represent a data set by a N × L matrix X, where entry
xij denotes the values of the jth variable of the ith object. The clustering (or partition) can
be represented by Y, where yi ∈ {1, .., K} indicates the group to which a given object xi

belongs to [142]. In mixture model based clustering, we assume that each component in
the mixture represents a group of objects. In other words, the density of the kth component
can be interpreted as the conditional of xi on yi, i.e., pk(xi|θk) = p(xi|yi = k, θk), and the
mixing coefficient as the prior probability of the component, i.e., αk = p(yi = k).

For a given data set X with N observations and a variable Y defining the component
assignments, the likelihood of the complete data assuming that the xi are independently
distributed is given by

p(X,Y|Θ) = L(Θ|X,Y) =
K∏

k=1

N∏

i=1

(αk· pk(xi|θk))
1(yi=k) (3.1)

Thus, the problem of clustering observations from X can be formulated as finding the
maximum likelihood estimate (MLE)

Θ∗ = arg max
Θ

L(Θ|X,Y). (3.2)

This problem, as described in Section 2.3, can be solved by maximizing the complete
likelihood using the EM algorithm [61].

The posterior probability (Eq. 2.16) of a mixture model reveals the probability of a cluster
assignment. The simplest way of decoding a mixture, that is, to infer clusters in the data, is
to interpret the mixture components as descriptive models of non-overlapping clusters and
assign each object xi to the cluster k of maximal posterior,

yi = arg max
1≤k≤K

(rik). (3.3)

In model-based clustering as well as k-means, these hard assignments are performed af-
ter each E-Step, while for the mixtures this is only necessary after estimation is finished.
Indeed, a mixture of Gaussians with the identity covariance described in Section 2.3.3,
where σ2 → 0 and hard assignments are performed, is equivalent to the k-means algo-
rithm [88]. In the next chapters, we will refer to model-based clustering whenever such
hard assignments are performed during the EM, and to mixture estimation otherwise.

An inspection of the distribution of the posterior probability of component assignments
given an object xi, i.e., ri = (ri1, ..., riK), reveals the level of ambiguity in making the
cluster assignments. Therefore, we propose here a novel decoding method, entropy thresh-
olding, which takes the ambiguity of assignments into account. As depicted in Figure 3.1,
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Figure 3.1: Entropy of posterior assignments for the bimodal density from Figure 2.1.
Values in between the two density functions have high entropy, and would be
discarded by the entropy threshold method. If we select ϕ = 0.9, objects in
the range [−0.2, 0.2] will be assigned to the cluster K + 1.

this ambiguity can be quantified by computing the Shannon entropy [54]

H(ri) = −
K∑

k=1

rik log
1

rik
. (3.4)

Choosing a threshold ϕ for the entropy yields a grouping of the data into at most K + 1
groups. If H(ri) < ϕ, we assign xi to the component with maximal posterior as in Eq. 3.3.
Otherwise, xi is assigned to the (K + 1)-st group, which contains all objects which cannot
be assigned unambiguously, that is

yi =

{
arg max1≤k≤K(rik), H(ri) < ϕ
K + 1, otherwise.

(3.5)

3.2 Validation of Mixture Models

The task of obtaining a mixture model does not end with the parameter estimation. Ques-
tions on the number of components and the quality of the representation of the data often
arise after this step. In classical clustering, there are several methodologies, under the
name of cluster validation, proposed for answering these questions. These methodolo-
gies, mainly based on re-sampling techniques and fit indices, have been proposed in the
vast cluster validation literature [28, 56, 66, 124, 141, 233] and reviewed for example
in [89, 109]. Nevertheless, the mixture model framework embraces challenges and charac-
teristics not explored by “classical” cluster validation techniques.

One often over-looked aspect is the use of external indices, which are used to compare
the similarity of a cluster solution to a gold standard or to another clustering solution.
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Chapter 3 Mixture Models and Clustering

Most external indices proposed so far are only able to measure the agreement between two
non-overlapping clusterings [109]. Mixtures, however, can be interpreted as a partition
with overlap, and encode more information than non-overlapping partitions. Therefore,
the overlap, encoded by the posterior distributions of the mixture, should be taken into
consideration when for example two mixtures are compared. Additionally, there are cases,
where even if the clustering results are non-overlapping partitions, the a priori labels are
based on overlapping partitions. This is the case, for example, of functional annotation of
genes [9].

Motivated by the previous problem, in the next Section, as one of the contribution of this
thesis, we propose a novel external index that can used for the comparison of mixture mo-
dels and overlapping partitions [51]. Such an index is an extension of a widely employed
external index for comparing hard partitions — the corrected Rand index [103].

In Section 3.2.1, we introduce the basics of external indices of non-overlapping partitions,
and we define the extension for the overlapping case. Finally, in Section 3.3, we employ
simulated data for assessing the characteristics of the external indices in data with over-
lap.

3.2.1 External Indices

External indices assess the agreement between two partitions defined over the same set of
objects, where one partition Y represents the result of a clustering method, and the other
partition Y′ represents class labels1. While a number of external indices have been in-
troduced in the literature, the use of corrected Rand (CR) is recommended [103]. CR has
its value corrected for chance agreement, it is not dependent on the cluster size distribu-
tions and can compare partitions with distinct number of clusters [149]. See [110] for a
comprehensive review of external indices.

Let Y and Y′ be discrete vectors representing the partitions yielded by a clustering method
and the class labels. Let yi ∈ {1, ..., K} and y′

i ∈ {1, ..., L} be, respectively, observations
from Y and Y′, where yi = k indicates that object i belongs to cluster k. Note, K and L
can be distinct. Thus, the following indicator functions can be defined

1(yi = yj) =

{
1, if yi = yj

0, otherwise
and, (3.6)

1(y′
i = y′

j) =

{
1, if y′

i = y′
j

0, otherwise.
(3.7)

From these, we can define the following terms

1Y and Y′ can also be partitions from two distinct clustering methods applied to the same data set.

24



3.2 Validation of Mixture Models

a =
N−1∑

i=1

N∑

j=i+1

1(yi = yj)1(y′i = y′j), (3.8)

b =
N−1∑

i=1

N∑

j=i+1

(1− 1(yi = yj))1(y′i = y′j), (3.9)

c =
N−1∑

i=1

N∑

j=i+1

1(yi = yj)(1− 1(y′i = y′j)), and (3.10)

d =
N−1∑

i=1

N∑

j=i+1

(1− 1(yi = yj))(1− 1(y′i = y′j)). (3.11)

The term a measures the number of object pairs that are found in the same cluster in both Y
and Y′. It is the equivalent of the number of true positives commonly used in the machine
learning literature. Analogously, b, c and d correspond respectively to the number of false
positives, false negatives and true negatives. The total number of object pairs p is equal to
p = a + b + c + d . From these terms, the corrected Rand is defined as [103],

CR =
(a + d)− ((a + b)(a + c) + (c + d)(b + d))p−1

p− ((a + b)(a + c) + (c + d)(b + d))p−1
. (3.12)

CR takes values from -1 to 1, where 1 represents perfect agreement while values of CR
near or below 0 represent agreements occurring by chance. The correction of Rand index,
proposed in [103], estimates the expected Rand index value by assuming that the baseline
distributions of the partitions are fixed. This is equivalent to calculating the expected Rand
index value for random permutations of the objects labels in one partition, while the other
is fixed.

Two other interesting external indices, which can be defined by the terms in Eq. 3.8, 3.9, 3.10
and 3.11, are the sensitivity and specificity [199],

Sens =
a

a + c
(3.13)

Spec =
a

a + b
(3.14)

They both take values from 0 to 1, where 1 indicates perfect agreement. The use of these
indices is complementary to CR, as they indicate for example a tendency to make more
false positives or false negative errors — CR treats both errors equally. In practice, a lower
sensitivity (more false positives) is an indicator of joining real clusters; while a lower
specificity (more false negatives) indicates a tendency to split real clusters.
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Chapter 3 Mixture Models and Clustering

Extended Corrected Rand

The main idea of the extended corrected Rand (ECR) is to redefine the indicator functions,
as defined in Eq. 3.6 and Eq. 3.7, giving them a probabilistic interpretation [51]. The
posterior distribution defines the probability that a given object xi from X belongs to the
component k, i.e., yi = k, in a mixture model parameterized by Θ, i.e. p(yi = k|xi, Θ).
This is exactly the Eq. 2.16, which we refer to as rik for simplicity. Likewise, we have r′il
for indicating the posterior that xi belongs to component l in Y′. We denote the event that
a pair of objects has been generated by the same component in Y, the co-occurrence event,
as xi ≡ xj given Y. Assuming independence of the clusters from Y, the probability of the
co-occurrence of xi and xj given Y for 1 ≤ i ≤ j ≤ N can be estimated as

p(yi ≡ yj given Y ) =
K∑

k=1

rikrjk. (3.15)

We use the previous equation to redefine the variables a, b, c and d, used in the definition
of CR

a =
N−1∑

i=1

N∑

j=i+1

p(yi ≡ yj given Y)p(yi ≡ yj given Y′),

b =
N−1∑

i=1

N∑

j=i+1

(1− p(yi ≡ yj given Y))p(yi ≡ yj given Y′),

c =
N−1∑

i=1

N∑

j=i+1

p(yi ≡ yj given Y)(1− p(yi ≡ yj given Y′), and

d =
N−1∑

i=1

N∑

j=i+1

(1− p(yi ≡ yj given Y))(1− p(yi ≡ yj given Y′)). (3.16)

From these, the extended corrected Rand (ECR) can be computed by the original formula
Eq. 3.12. ECR also takes values from -1 to 1, where 1 represents perfect agreement while
values of ECR near or below zero represent agreements occurred by chance. By definition,
it works exactly as the corrected Rand when “hard” partitions are given.

3.3 Experiments

To evaluate the extended corrected Rand, we make use of simulated data from mixtures of
Gaussians. In the first experiment, we define a very simple scenario with a mixture of two
Gaussians components in an univariate space. Hence, we can compare the characteristics
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Figure 3.2: We depict the mean CR and ECR for the results of the mixture estimation with
the normal bimodal density. The larger d, the lower is the overlap between
the two components.

of ECR and CRwhen distinct degrees of overlap between the components are present. In the
second experiment, we sample data from a mixture, where components show a large degree
of overlap. From an initial mixture, we vary the number of components and distributions
of objects in the components.

The EM algorithm is used to fit the multivariate Gaussian mixtures with full covariance
matrices as described in Section 2.3.3. The EM method is initialized as described in Sec-
tion 2.3.2. In the simulated data experiments, 50 data sets are generated for each proposed
mixture.

3.3.1 Simulated Data 1

We perform experiments with a normal mixture with two equiprobable components to
evaluate the proposed index characteristics in the presence of distinct degrees of overlap.
The components have means µ1 = [0, 0]T , µ2 = [d, 0]T , and covariance matrices Σ1 =
Σ2 = I , as suggested in [77]. For obtaining mixtures with distinct degrees of overlap
(bimodal data), we vary d in the range [0.0, 7.5]. The lower the value d, the higher is the
overlap between the two components. For each component we draw 200 objects. The
density function given the original mixture parameterization is used to obtain the posterior
r′
il. We also calculate the values of CR after performing hard assignments of the solutions

(Eq. 3.3).

Additionally, we generate random data to function as a null case. This consists of data gen-
erated from a single normal component with µ = [d/2, 0]T and Σ = I . A random solution
(Y′) with the same number of components and object distributions as the corresponding
bimodal data is calculated. For each particular d, we carried out a non parametric equal-
means hypothesis test based on bootstrap [70] to compare the mean ECR (or CR) obtained
with the bimodal and random data.
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Results. As displayed in Figure 3.2, for data with high overlap, ECR has higher values
than CR, while for data with low overlap both indices have similar values. With random
data, the indices take on mean values near zero and low variance (< 0.001), which indicate
that ECR is successful in the correction for randomness.

With respect to the hypothesis test, the equal means hypothesis is rejected with the use
of ECR in all d > 0.0 with p-value < 0.001. On the other hand, with the use of CR,
the null hypothesis (equal means) is only rejected (p-value < 0.001) when low overlap is
presented (d > 0.4). We can conclude that ECR is able to detect the distinction between the
agreement of the random and bimodal data in all cases, while CR fails when a high degree
of overlap is present. Furthermore, when overlap is low, both indices behave similarly.

3.3.2 Simulated Data 2

We use a more extensive set of simulated data to evaluate ECR. Based on a mixture defined
in [77], which will be called “base mixture”, we change and extend its definition to generate
data with distinct components densities and number of components. The “base mixture”
has four components, three of them with a large overlap and two of them with same mean
vectors

µ1 = [−4,−4], Σ1 =

[
6 −2
−2 6

]
,

µ2 = [−4,−4], Σ2 =

[
1 0.5

0.5 1

]
,

µ3 = [−1,−6], Σ3 =

[
0.125 0.0
0.0 0.125

]
,

µ4 = [2, 2], Σ4 =

[
2 −1
−1 2

]
.

An example of a data set sampled from this mixture can be seen in Figure 3.3.

As with the bimodal data, we also generate random data from the normal

µ = [0, 0], C =

[
10 0
0 10

]
.

For each data set the EM is performed with to 2 to 10 components. As in [149] it is
expected that ECR should obtain mean values near zero for random data and low standard
error. Additionally, ECR will be maximum at the correct number of components. For
comparison, we also compute BIC and CR.

Components Distribution. We use three types of component distributions for the “base
mixture”: equal density (ED), (α1 = α2 = α3 = α4 = 0.25), 10% density (10%) (α1 =
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Figure 3.3: We depict the points of data sampled from the base mixture in the two di-

mensional space. Objects in light blue corresponds to component 1, in red to
component 2, in dark blue to component 3, and in green to component 4. As
can be seen, components 1 and 2 have the same mean, but distinct orientations
and sizes. Furthermore, component 3 is also inside component 1.

α2 = α3 = 0.3 and α4 = 0.1) and 60% density (60%) (α1 = 0.6 and α2 = α3 = α4 =
0.16).

Number of Components. In addition to the components in the base mixture, we also
included the components (µ5 = [−6,−1]T , µ6 = [−12,−12]T and Σ4 = Σ5, Σ3 = Σ6).
We generated data sets with two to six components with 700 observations. For each number
of component K, we select the first K components from the mixture. The component
distribution used is α1 = α2 = α3 = α6 = 0.21 and α4 = α5 = 0.07.

Results As can be observed in Table 3.1, CR and ECR indicate the right number of clus-
ters (four) in all three scenarios of component distributions. Nevertheless, in the setting
10%, the equal means hypothesis test was not rejected, when comparing the mean of the
CR with 4 and 5 components. In relation to BIC, it overestimates the number of cluster as
five, in the distribution setting 10%, and as 8 in the distribution setting 60%.

In relation to the data with distinct number of components, ECR indicates the right number
in all data sets, as shown in Table 3.2. CR overestimates the number of components of the
data set with 5 and 6 components indicating 8 components in both cases. BIC can only
correctly predict the number of clusters in the data with 2 and 3 components. Note that the
degree of overlap varies in the models with distinct number of components, in special for
the highly overlapping c = 2 and c = 3. This makes the mixture estimation task harder,
as a result, lower ECR (and CR) values are obtained in those data sets. Additionally, the
estimated mixtures obtain mean ECR values near zero and low standard errors (< 0.001)
in all situations with the random data (not shown).

29



Chapter 3 Mixture Models and Clustering

Table 3.1: We depict the mean values for data with distributions ED (top), 10% (middle)
and 60%(bottom) against the number of components in the mixtures for cor-
rected Rand, extended corrected Rand and BIC. For all indices, the maximum
values (in bold) indicate the predicted number of components.

no clusters 2 3 4 5 6 7 8 9 10

ED CR 0.32 0.68 0.76 0.71 0.71 0.69 0.66 0.64 0.65
ECR 0.31 0.64 0.68 0.63 0.63 0.60 0.57 0.54 0.55
-BIC -8.95 -8.20 -8.08 -7.94 -8.12 -8.14 -8.00 -8.02 -8.21

10% CR 0.34 0.50 0.66 0.66 0.64 0.59 0.57 0.58 0.58
ECR 0.43 0.45 0.58 0.55 0.52 0.48 0.45 0.44 0.44
-BIC -9.03 -8.97 -8.77 -8.72 -8.74 -8.76 -8.78 -8.80 -8.80

60% CR 0.36 0.75 0.81 0.76 0.74 0.72 0.67 0.66 0.62
ECR 0.35 0.64 0.71 0.65 0.61 0.55 0.50 0.44 0.41
-BIC -8.16 -7.70 -7.45 -7.31 -7.48 -7.35 -6.92 -7.09 -7.11

We analyzed how distinct criteria measure the agreement of two mixtures when data is
generated from highly overlapping mixtures. The extended Corrected Rand displays bet-
ter results than the corrected Rand in discriminating the right solutions in all scenarios.
Furthermore, ECR behaves similarly to CR when no great overlap is present in the data,
and in the correction for randomness. It is important to stress that CR and ECR do not
substitute BIC for finding the right number of components, because they require the true
labels (or true posteriors). These labels are often not present, and despite the sub-optimal
results in this analysis, BIC works reasonably in practice. Nevertheless, if true labels and
overlapping assignments are present, ECR is more precise.

In summary, this chapter covers the basic aspects of the use of mixture models to perform
clustering. All results discussed here are based on the use of multivariate Gaussians as the
components of the mixture. Nevertheless, for specific applications, one can take advantage
of the characteristics of the data at hand, and choose the component models accordingly.
The EM algorithm offers a flexible framework for such extensions. In practice, for a given
model choice, one only needs to redefine the M-Step accordingly.

This thesis focuses on two types of components models for analyzing gene expression
profiles. The use of HMMs to analyze gene expression time-courses will be the focus of
Chapter 4. While in Chapter 5, we propose a new type of probabilistic model, dependence
trees, to model gene expression profiles during a developmental process. Furthermore,
once the M-Step for a given model is defined, one can straight-forwardly apply any other
extensions of the EM algorithm. We explore, in Chapter 6, the use of semi-supervised
extension of the EM to integrate additional data biological and improve clusterings of gene
expression time-courses.
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Table 3.2: We present the mean values for data with 2, 3, 4, 5 and 6 components (top to
bottom) against the number of components of the estimated mixture for cor-
rected Rand, extended corrected Rand and BIC . For all indices, the maximum
values (in bold) indicate the predicted number of components and the line pre-
ceding the indices values states the correct number of components.

no clusters 2 3 4 5 6 7 8 9 10

CR 0.37 0.30 0.24 0.20 0.17 0.15 0.14 0.13 0.12
ECR 0.21 0.15 0.12 0.09 0.07 0.06 0.05 0.04 0.04
-BIC -4.74 -4.75 -4.77 -4.79 -4.81 -4.84 -4.86 -4.88 -4.91

no clusters 2 3 4 5 6 7 8 9 10

CR 0.33 0.52 0.48 0.43 0.40 0.36 0.33 0.30 0.30
ECR 0.31 0.39 0.35 0.30 0.27 0.23 0.21 0.19 0.18
-BIC -5.74 -5.49 -5.50 -5.52 -5.54 -5.56 -5.58 -5.60 -5.63

no. clusters 2 3 4 5 6 7 8 9 10

CR 0.34 0.50 0.66 0.66 0.64 0.59 0.57 0.58 0.58
ECR 0.43 0.45 0.58 0.55 0.52 0.48 0.45 0.44 0.44
-BIC -9.03 -8.97 -8.77 -8.72 -8.74 -8.76 -8.78 -8.80 -8.80

no. clusters 2 3 4 5 6 7 8 9 10

CR 0.33 0.46 0.48 0.53 0.54 0.55 0.56 0.55 0.56
ECR 0.33 0.42 0.44 0.47 0.478 0.46 0.46 0.44 0.44
-BIC -1.00 -0.99 -0.98 -0.97 -0.97 -0.97 -0.96 -0.97 -0.96

no. clusters 2 3 4 5 6 7 8 9 10

CR 0.21 0.44 0.48 0.54 0.56 0.56 0.57 0.55 0.56
ECR 0.18 0.44 0.48 0.51 0.52 0.52 0.52 0.50 0.50
-BIC -7.34 -6.79 -6.74 -6.71 -6.71 -6.70 -6.70 -6.68 -6.58
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Chapter 4

Analysis of Gene Expression Time
Courses

The analysis of gene expression over the course of time is an important step to understand-
ing function and regulatory roles of genes [11]. For example, during the cell cycle, we can
find groups of genes that are only over-expressed in a particular phase. From this infor-
mation, one can try to infer the gene function by relating it to genes with known function
and similar expression profiles in a “guilty by association” approach [71]. Another alter-
native is to explore the promoter sequence of a group of co-expressed genes and search
for common patterns of transcription factor binding sites in the upstream region of those
genes [201]. Furthermore, by searching for genes (or groups) with similar expression pro-
files patterns, but with distinct time of change in gene expression levels, it is possible to
explore regulatory roles [78]. For instance, earlier “activated genes” could regulate genes
with similar expression patterns with a later “activation” time. A first step towards all these
analyses is to find co-expressed genes, or groups of genes that display a similar expression
profile over the course of time.

In this context, initial work was based on clustering methods that assume independence
between expression values of distinct time points, for example, hierarchical clustering [71,
82], k-means clustering [212] and singular value decomposition [6]. However, in a tempo-
ral setting, the expression value in a time point is dependent on values of preceding time
points. In contrast to these earlier studies, temporal models were applied to gene expres-
sion time courses, such as cubic splines [12, 138] and autoregressive curves [172]. These
methods are often robust to noise found in time course experiments, such as noise in a
single time point or expression profiles showing a slower rate of expression. Furthermore,
these methods can make use of information relevant to time courses such as sampling time
and periodicity.

As one of the main contribution of this thesis, we propose in this chapter a hidden Markov
model (HMM) with a linear topology that is suitable for modeling time-dependent se-
quences such as a time courses. These models represent co-regulated genes with a sim-
ilar prototypical behavior, or the same sequence of expression level changes, in an asyn-
chronous manner. By asynchronous, we mean that the HMM captures time courses with
the same events of expression changes at possibly distinct time points. Nevertheless, syn-
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chronous groups and their time of expression changes can be latter inferred from a model
by the analysis of the most probable state path of a time course in the HMM. Therefore, it
is possible to build a partial order on synchronous groups of genes all displaying the same
prototypical expression pattern but with distinct time of expression changes.

Two main applications of linear HMMs are presented here. The first is an iterative graphical
tool that allows an user to query a set of gene expression time courses for those displaying a
specific prototypical behavior. This tool allows the user to build a linear HMM interactively
and to explore a given gene expression data set for prototypical patterns of interest. A
second, and more intricate application, is to estimate a mixture of linear HMMs to find
groups of genes with the same prototypical expression patterns within a given data set.

This chapter is organized as follows. First, we describe related work in Section 4.1. Then,
we give a brief definition of HMMs (Section 4.2) and the specific HMM topology employed
here. In Section 4.3, we describe the application for querying gene expression data with a
linear HMM, while in Section 4.4 we introduce a method for finding groups of genes with
a mixture of HMMs. In Section 4.5, we present the evaluation of our method with two
gene expression data sets. We present final remarks and future directions in Chapter 7.

4.1 Related Work

There are several computational tasks related to the analysis of gene expression time
courses. These can be divided in three levels: (1) pre-processing methods, which are
responsible for tasks such as microarray data normalization; (2) exploratory methods,
which search for genes differentially expressed or for groups of co-regulated genes; and
(3) network-based methods, which try to reconstruct regulatory (or metabolic) networks
from genes (or gene products). For methods in (1) and (2), it is a common strategy to take
the temporal nature of time courses into account. Next, we will give an overview of the
most relevant methods in the exploratory level, which is the category our method belongs
to. More complete reviews of methods in all these analyses levels can be found in [8, 11],
and methods for normalization and differential expression in [29, 203].

There are few approaches concerning the detection of differentially expressed genes from
time course gene expression. For example, [206] extended the significant analysis method
in [219] to take temporal dependencies into account. In [208] an Empirical Bayes approach
was presented to detect differentially expressed genes when replications of the time course
measurements are present.

One interesting variation of the problem described in the previous paragraph is the detec-
tion of genes displaying different temporal expression patterns in time courses measured
under distinct conditions, e.g., experiments with two (or more) time courses, each one mea-
suring a particular cell applied to a distinct treatment or an environmental condition. Genes
differentially expressed in one or more time courses should be biologically relevant to the
treatment or condition analyzed. In [13], for instance, data from time courses from yeast
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cell cycle of a wild type and after FKh1 or FKH2 knockout were studied. There, B-splines
were used to model the temporal patterns. Analysis of promoter regions confirmed that
the detected differentially expressed genes were related to the knockout factors. A similar
problem was approached in [235], where gene expression time courses of mice with dis-
tinct oxidative stress and age were investigated. Their method was based on a HMM with
linear topology and Gamma distributions as state emissions. Using an Empirical Bayes
approach [36], the authors could obtain p-values concerning the significance of these dif-
ferences.

One particular type of time course data, which has received great attention in the literature,
is gene expression time courses of the cell cycle, which is the process through an eukar-
iotic cell duplicates into two genetically identical cells. The cell cycle consists of four
phases: G1 phase, where the cell starts to grow and prepare for DNA replication; S phase,
where DNA replication occurs; G2 phase, where microtubules are produced; and, finally,
M phase, where nuclear and cytoplasmic division occurs [4]. For these experiments, a par-
ticular population of cells is arrested at a cell cycle phase (usually G1). After the release of
the cells to start the cell cycle, the expression is measured over the course of two to three
cell cycles. Examples of such data sets are found in [42, 201] for yeast and in [226] for
human HeLa cells. In such data sets, some time courses have a periodic behavior usually
displaying a cosine type of gene expression pattern, with an over-expression peak at one
particular phase at each cell cycle (see Figure 4.11 for an example of such profiles). One
particular effect of the arresting protocol is that the individual cells will have distinct cell
cycle periods. Thus they will desynchronize, and the periodic signal deteriorates with time.
Also, such data sets have usually more than 30 time points, a number far larger than most
other time course experiments [73].

Such cell cycle based experiments pose a number of interesting methodological questions.
In [1], a method for aligning pairs of time courses with a dynamic programming algorithm
was proposed. Such a method finds pairs of genes, which have a similar expression pattern,
but distinct phases. Pairs displaying such time-lags (or shift in expression patterns) are
potential candidates for regulatory relationships. A more extensive study was performed
in [78], where methods for shift and phase detections were proposed, so that distinct cell
cycle experiments could be integrated in one.

One typical application in cell cycle data sets is the detection of transcripts displaying
periodic behavior, as well as at which time point these periodic transcripts peak. See [58],
for a good review of methods and comparison on popular data sets. Interestingly, [58]
found that a simple method based on Fourrier analysis [201] was significantly better than
all more sophisticated computational approaches. Also, a recent work has shown that the
choice of the background model for performing the statistical tests has a great impact on
the detection of periodic expressed genes [81].

In [71], the problem of finding functional modules of genes with the use of clustering meth-
ods was first proposed. This study is restricted to the application of simple methods, such
as k-means and hierarchical clustering with classical distance measures such as Euclidean
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distance or the Pearson correlation coefficient. Its main methodological contribution was
the proposal of a heat-map style plot for displaying groups of co-regulated genes, also
known as red and green plots (see Figure 5.5 for an example of such plots). More re-
cently, [6] proposed the use of singular value decomposition and [232] the use of mixture
of multivariate Gaussians. In the latter, a wide comparison on the effect of data normaliza-
tion strategies and the choice of the covariance matrix on the results was performed in a
cell cycle data set. It was shown that full covariances matrices were prone to over-fitting,
and that standardization of the time courses improved the results. One alternative to the
use of classical distance measures is the use of similarity measures based on mutual in-
formation. In contrast to Pearson correlation and Euclidean distance, Mutual information
is able to capture non-linear correlations (or dependencies) [33, 204]. Nevertheless, these
methods are based on expression data sets with large number of samples, i.e., more than
> 100 biological observations, that is rarely the case in gene expression studies.

None of the previous reviewed methodologies take the temporal nature of time courses into
consideration for finding co-regulated genes. In particular, classical clustering methods,
such as k-means and hierarchical clustering rely on distance functions between expression
profiles, such as correlation or Euclidean distance, which neglect the temporal nature of
time-courses. This shortcoming was first approached in [172], where auto-correlation mo-
dels based on a low-order linear regression was proposed. This clustering method works
in an agglomerate Bayesian fashion. It relies on several heuristics for the choice of pa-
rameters and finding the number of clusters. Also, another shortcoming of this method
is the modeling of only low order dependencies, which will fail in modeling correlations
in cell cycle data sets, where periodicity occurs after 8 or more time points. Simultane-
ously [12] and [138] proposed model-based clustering approaches using cubic splines [12]
and B-splines [138]. Both methods require the specification of several parameters for the
splines and take advantage of time courses with a large number of time points. The use of a
model called hidden phase model (HPM) as a prior on a mixture of multivariate Gaussians
was proposed in [30]. The HPM model, which can be seen as an extension to an HMM,
allows the user to include preference towards component models with a particular type of
temporal pattern, e.g., cyclic patterns, increase in expression, or decrease in expression.
The method displayed good performance in recovering clusters of periodically expressed
genes, even when a low number of time courses were present.

The method proposed in this chapter, mixture of linear HMMs, has a similar motivation as
the methods described in the previous paragraph [12, 138, 172]. As in those methods, linear
HMMs makes use of temporal dependencies for modeling groups of co-expressed genes.
The main distinction of our method to those is the capability of modeling groups of genes
with similar expression patterns, but with asynchronous changes in expression. As each
of these approaches are based on distinct assumptions for modeling time dependencies,
none of them is likely to be the overall best choice. For comparing these methods with
our approach, we perform an empirical evaluation using data from yeast cell cycle data set
described in Section 4.5.1.
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In [234], it was investigated how repeated microarray measurements could be integrated
in the cluster analysis. The rationale behind their approach is that measurements with
low replicate variability should be more reliable than measurements with high variability.
Consequently, they have a higher weight on the clustering procedures. They applied this
idea on several model-based clustering methods. The study found that an infinite mixture
of multivariate Gaussians obtained the most favorable results. However, the work did not
explore any method modeling the temporal dependencies. Even though our proposal do
not explore replicate estimates, an extension of our method using the proposal of [234] is
straightforward.

Recently, attention has been given to the fact that time courses data sets have usually few
time points [73, 150]. Indeed, 80% of the data sets in Gene Expression Omnibus [69]
have less the 8 time points. This is of crucial importance, as most of the model-based
clustering methods described before [12, 138, 172] will suffer from over-fitting with such
data sets. In [150], a fuzzy clustering method for short and unevenly sampled time courses
was proposed. This method takes into account first-order dependencies and the sampling
of time points. They showed for data set with seven time points that the method was
superior to k-means and hierarchical clustering. In [73], the authors proposed a method
that performs a greedy search over the set of possible expression patterns. It finds the
patterns that are significantly distinct from the others. The authors showed that the method
had favorable results in relation to k-means and CAGED [172] for a time course data
set with 5 time points. Note that even thought this also poses a problem the mixture of
HMMs, which also take advantages of larger time courses, this point could be tackled in
our approach with the use of structural learning techniques favoring HMMs with fewer
stages.

An interesting problem is the integration of additional biological data in the detection of
groups of co-regulated genes. In [101], authors explored the joint analysis of gene expres-
sion and sequences from promoter regions. The main idea is to inspect if co-regulated
genes also shared similar transcription factor binding sites. They defined a method based
on the EM and Gibbs sampling for performing a clustering with both expression and se-
quence data. The same problem was approached with an EM method in [194] with the use
of discriminative position weights matrices as models for hits of transcription factor bind-
ing sites. However, none of these approaches used models taking temporal dependencies
into account. One exception is the work of [231], which combined location analysis data
(also known as Chip-on-chip [128]) with time courses from cell cycle. They could find
groups of co-regulated genes displaying time lagged expression pattern in relation to the
expression profile of transcription factors. Data from location analysis confirmed regula-
tory roles between some of these transcription factors and groups of co-expressed genes.
In [74], the authors applied an input-output HMM to combine time course gene expres-
sion with location analysis data in order to detect groups of genes, which are targets of a
given transcription factor and have a similar co-expression profile. They analyzed short
time courses after treatment of yeast to stress conditions, and could detect novel putative
regulatory roles.
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Recently, there has been a great deal of data sets with multiple (usually short) time courses
measured over distinct gene knockouts [236], treatments [174], patients [225], or environ-
mental conditions [82]. Such data present new methodological challenges not addressed
before. In [113], time courses from multiple sclerosis patients after particular treatments
were analyzed. Their Bayesian framework could detect gene responses, which were spe-
cific to either the treatment type or to specific responses of a particular patient. In [174],
time courses of Arabidopsis after several distinct treatments were analyzed. The work
aimed to find genes that display a treatment specific time-lag in their expression profiles
in relation to the expression profile of known transcription factors. The groups of time-
courses with time-lag were found with the use of a covariance index and an heuristic based
on the Gap statistic. In [197], a similar problem was approached with the use of a graphical
model. They used a set of known transcription factors and gene target relations to estimate
parameters and time lags. Then, their model was used to predict unknown regulatory rela-
tionships. One main difficulty of this problem is the fact that the time lag is dependent of
the biological condition and transcription factor, which requires the estimation of a large
number of free parameters. However, both [174, 197] showed that their methods, by using
multiple time courses, were superior is detecting regulatory roles of genes from expression
time-lag than methods based on single time course data as [1, 78].

4.2 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic model composed of a Markov chain with
M discrete states and emission probability density functions (pdf) assigned to each state.
At a given time point, a HMM is at a particular unknown state and it emits a symbol in
accordance to the density function assigned to that state. More formally, given a continuous
random variable X = (X1, ..., Xt, ..., XL) representing the emitted symbols, and a discrete
hidden variable Q = (Q1, ..., Qt, ..., QL). For an given observation x = (x1, ..., xt, ..., xL)
from X , we have a corresponding hidden sequence path q = (q1, ..., qt, ..., qL), where
qt ∈ {1, ...,M} represents the state emitting xt. A HMM allows a computational efficient
approximation of the joint densities p(x, q) for observations x and q. There are two main
independence assumptions regarding HMMs: (1) the probability to reach a state t depends
only on the previous state (t− 1) 1

p(qt|q1, ..., qt−1) = p(qt|qt−1), (4.1)

and (2) the density function of emitting xt depends only on the current state t

p(xt|q1, ..., qt) = p(xt|qt). (4.2)

We can represent the probabilities in Eq. 4.1 by a transition matrix A = {auv} for 1 ≤ u ≤

1We only consider here, HMMs with first-order dependencies.
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M and 1 ≤ v ≤ M , where auv is equal to the probability of going from state u to state v,
i.e., p(qt = v|qt−1 = u), given that

∑M
v=1 auv = 1 and auv ≥ 0 for 1 ≤ u ≤ M . The initial

state probabilities p(q1 = u) = πu are represented by a vector π = (π1, ...,πu, ...,πM). In
our problem, which deals with gene expression, the emission variables are continuous, and
univariate Gaussian densities are used as emission function on the states

p(xt|qt = u) = pu(xt|µu, σ
2
u) =

1√
2πσ2

u

exp−(xt − µu)2

2σ2
u

, (4.3)

where pu(xt|µu, σ2
u) is the probability density function (pdf) associated with the uth state,

and µu, σ2
u are the pdf parameters. Hence, a HMM with M states is parameterized by the

vector θ = (A, ((µ1, ..., µM), (σ2
1, ...,σ

2
M)) , π).

Given an observation x and the corresponding sequence of visited states, the joint distribu-
tion can be defined as follows

p(x, q|θ) = p(x|q, θ)p(q|θ) (4.4)

= p(q1)p(x1|q1)
L∏

t=2

p(qt|qt−1)p(xt|qt) (4.5)

= πq1fq1(x1|µq1 , σ
2
q1

)
L∏

t=2

aqt−1,qtfqt(xt|µqt , σ
2
qt
) (4.6)

For a given HMM defined by the parameters θ, one first natural question, following [169],
is how to compute the likelihood of an observation x, or

p(x|θ) =
∑

q∈Q

p(x, q|θ), (4.7)

whereQ is the set of all possible state sequences q. A brute force calculation of the previous
equation requires the infeasible evaluation of ML sequences. Nevertheless, a technique
based on dynamic programming, called forward-backward algorithm allows us to compute
Eq. 4.7 in O(ML) time [20].

The second problem is the maximum likelihood estimation of a HMM from a data set X
with N observations, where xi is the ith observation from X, that is, finding

θ∗ = arg max
θ

N∑

i=1

p(xi|θ). (4.8)

This problem can be solved with the Baum-Welch algorithm [21], which is a specific ap-
plication of the EM algorithm for HMMs.

The last task is the decoding problem, or for a given observation x and a HMM with
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Figure 4.1: Example of a linear HMM with two emitting states (states 1 and 2), an initial
state and an end state. Given the linear topology, all sequences will always
visit, respectively, the start state, 1, 2 and end state. The state 1 models ex-
pression values near zero, while the state 2 models expression values around
one. Thus, this lHMM models time courses up-regulated at some time point.
The values of the self-transition parameters a11 and a22 will define the ex-
pected duration that a state will be visited. For example, if we set a11 > a22,
the model will give a higher likelihood for expression profiles with late up-
regulation patterns.

parameters θ, find the sequence of visited states q that has maximum likelihood,

q∗ = arg max
q

p(x, q|θ). (4.9)

This problem can be solved with the Viterbi algorithm [222]. For more details, proofs and
other extensions we refer to [121, 169].

4.2.1 Linear HMM and Time Courses

We use a particular linear topology for modeling gene expression time courses. In this
topology, a given state only has a self-transition and a transition to the next state. We in-
clude in the beginning (and end) of each chain a special start state (and end state). Given
that the time courses are normalized by taking the logarithm in relation to a control exper-
iment (an usual procedure in gene expression time course analysis [71, 201]), we interpret
that an expression value near zero means expression close to background level, above zero
over-expression (or up-regulation) and below zero under-expression (or down-regulation).
For example, a linear HMM—lHMM for short—with two emitting states: the first ones
with a mean emission of zero and the second one with a mean emission of one, we model
time courses displaying an up-regulation prototypical behavior (Figure 4.1).

More formally, the random variable X = (X1, ..., Xt, ..., XL, XL+1) represents the gene
expression time courses, where x = (x1, ..., xt, ..., xL, xL+1) is an observed time course,
xt is the expression value at time-point t and xL+1 is set to the special ending symbol
“!”. As described in the Section 4.2, a HMM is parameterized by a transition matrix
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A, emission parameters (µ1, ..., µM), (σ2
1, ...,σ

2
M) and initial probability vector π. As we

restrict the topology to a linear chain of states, we can adopt a simple notation for the linear
HMMs. For a given state u, we only need to define the self-transition probability auu, as
au(u+1) = 1 − auu and all other transitions from state u are set to zero. A more intuitive
representation is the expected duration length of a state. For a single state, the length
distribution respects a geometrical distribution [67], and has an expected length of

du =
1

1− auu
. (4.10)

This parameter represents how many time steps the observation sequence is expected to
spend in state u. Accordingly, we can obtain the transition probability auu from a given
duration,

auu = 1− 1

du
. (4.11)

We also constrain the duration parameters so that

L∑

u=1

du = L, (4.12)

for assuring that the expected length of reaching the end state matches the time course
length L.

We include an end state M + 1 with a self-transition set to one and an emission density
fixed to a special ending symbol. The initial probability vector π can be ignored, since
we will have π1 = 1 and πu = 0 for 2 ≤ u ≤ M . Given that all observations x have
an end symbol at xL+1 and M ≤ L + 1, all sequence paths not visiting each state at least
once have zero likelihood. Consequently, such sequence paths are ignored in the parameter
estimation performed by the Baum-Welch algorithm. Furthermore, we have the parameters
µu and σ2

u for the emission function. Finally, a given state is parameterized by the triple
(du, µu, σ2

u), and a lHMM by θl = ((d1, µ1, σ2
1), ..., (dM , µM , σ2

M)).

Such linear HMMs are able to model time courses displaying several prototypical behav-
iors. For example, in Figures 4.1 and 4.2, we depict a lHMM that models profiles with
distinct prototypical expression behaviors (up-regulation, up and down-regulation, and so
on). One way to interpret the temporal behavior modeled by an lHMM is the following:
each state represents a particular level of expression specified by µu, where a certain level
of error (encoded by σ2

u) is allowed2, and the time course has an expected length of du of
staying in this particular expression level. This can be interpreted as a “bounding box”
specifying the expected expression of time courses, as depicted in Figure 4.3. Even though
a lHMM models the expected duration of visiting states, it allows some flexibility concern-

2In a normal probability density function the interval [µ − σ, µ + σ] defines the region around the mean
containing 68% of the density. In the figures depicting the lHMMs, the lengths of the σ are only used for
illustration purposes and do not strictly define the exact proportion of the densities.
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Figure 4.2: Example of linear HMMs modeling up-regulation (a) and up- and down-
regulation patterns (c). On (b) and (d), we display time courses with 19 time
points observations from these linear HMMs. The duration of states are all set
so that time courses will visit each state for the same number of time points.
For simplicity, we do not depict start and end states from models.

ing the time of changes in expression levels (or transitions between distinct states). This
characteristic makes it possible to model asynchronous time courses showing a similar pro-
totypical behavior. An inspection of the Viterbi path q for a given model θl and time course
x (Eq. 4.9) indicates the most probable sequence of transitions and can be used to recover
synchronous groups of time courses. For example, in Figure 4.4, the Viterbi paths indicate
the existence of three synchronous groups of up-regulated genes: up-regulation event from
the time point 9 to 10 (green), from time point 10 to 11 (red) and from time point 11 to 12
(blue).

Periodic Gene Expression Time Courses. We can extend the linear HMM topology to
model some special applications in gene expression time course analysis. For example, in
periodic time courses, expression is measured during two or three cell cycles, and interest-
ing genes should show a periodic or cyclic behavior [42, 201]. By including a transition
probability from state M to state 1 and adjusting all du to match the expected cycle length,
we obtain a HMM that models periodicity.

Formally, we need to specify the expected cycle length R and the number of cycles mea-
sured S. Both values are usually known from the experimental setting used in the gene ex-
pression data acquisition. The duration of states should be chosen such that

∑M
u=1 du = R.

For the last emitting state L, aLL is defined as usual (Eq. 4.11), and the other transitions
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Figure 4.3: Example of up-regulated time courses with 19 time points sampled from the
linear HMM depicted in Figure 4.1. For that topology, we set the parameters
of state 1 to (d1, µ1, σ2

1) = (10, 0.0, 0.1) and of state 2 to (d2, µ2, σ2
2) =

(9.0, 1.0, 0.1). The duration value d1=10 corresponds to setting a11 = 0.9
and a12 = 0.1. The gray boxes depict the overall expression pattern modeled
by each state. For example, in state 1, µ1 = 0 defines the box location in the
y-axis (or the mean expression value), σ1 the width of the box in the y-axis (or
the allowed variation around the mean expression value) and the parameter
d1 the length of the box in the x-axis (or the duration a time course will stay
at a particular expression value). Note that the boxes define only the expected
expression behaviors; time courses violating these bounds are allowed as well
as long as the overall expression pattern is matched. Also, asynchronicity in
the time courses is allowed, as we have time courses where the up-regulation
event occurred a few points before or after the expected transition time point
(t=10).
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Figure 4.4: Example of the Viterbi paths of the time courses from Figure 4.3 given the
model depicted in Figure 4.1. These time courses have one of the three Viterbi
paths: time courses in green have a transition from state 1 to state 2 at time
point s9 to s10, time courses in red at s10 to s11 and time courses in blue from
s11 to s12. The Viterbi path sequences are depicted below the graph with the
color of the corresponding group of time courses.

are specified as follows

aL1 =
(1− aLL)(S − 1)

S
(4.13)

and
aL(L+1) =

1− aLL

S
. (4.14)

Support of Missing Data. Another useful extension, in the context of gene expression,
is the support of missing data. Formally, we define a special symbol (Nan) and extend the
space of variable X to R ∪ {Nan}. We then redefine the emission density from Eq. 4.3 as
follows

p(xt|qt = u) = (1− φ) ∗ fu(xt|µu, σ
2
u) + φ ∗ 1(xt = Nan), (4.15)

where φ represents the proportion of missing observations. For given data X, we can derive
φ by measuring the percentage of missing symbols in X

φ̂ =
#{xiu = Nan|xiu, 1 ≤ i ≤ N, 1 ≤ u ≤ L}

L · N . (4.16)

Linear HMMs and Multivariate Gaussians. There is a close relation between the linear
HMMs presented in this chapter and the multivariate Gaussians discussed in Section 2.3.3.
In a lHMM with one state per time-point, which implies M = L and auu = 0 for all
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Figure 4.5: Example of the extension of the linear HMM defined in Figure 4.2 (a) for
modeling periodicity (a). The model requires simply the addition of transition
a51 and re-parameterization of all transition values. We display time courses
with L = 19 sampled from this model (b).

1 ≤ u ≤ L, the linear model is equivalent to a multivariate Gaussian with mean vector
(µ1, . . . , µL) and covariance matrix diag(σ1, . . . ,σL) (see Section 2.3.3). Typically, the
number of states of a lHMM respects M < L and there is no simple analytical way to
parameterize a multivariate Gaussian from the parameters of a lHMM in this case. The
reason for this is that the probability of visiting a state u is dependent on each time course,
which would require the computation of posterior probabilities of being at a given state
(p(sl = u|x) [67]).

One way to evaluate the type of covariance structures modeled by the linear HMMs is to
sample data from a linear HMM, and estimate the empirical covariance matrix from it. In
order to do so, we sampled 1,000 sequences with length L = 19 from the models depicted
in Figures 4.1, 4.2 and 4.5, and estimated the covariance matrices as defined in Eq.2.28.
We also sampled data from a linear HMM with 19 states, where µu = 0 for 1 ≤ u ≤ 10,
µu = 1 for 11 ≤ u ≤ 19, du = 1 and σu = 0.01 for 1 ≤ u ≤ 19. This lHMM, which
measures time courses up-regulated from time point 10 to 11, corresponds to the case with
L = M and it is equivalent to a multivariate Gaussian with diagonal covariance matrix.
The covariance matrices of four lHMMs are displayed in Figure 4.6. As expected, the
covariance matrix derived from the lHMM with L = M has values near zero (dark blue)
in all off-diagonal entries. In other words, there is no dependence between time points.
For the lHMM modeling up-regulation—Figure 4.2 (a)—the covariance matrix indicates
correlations between consecutive time points (entries near the diagonal). The covariance
matrix from the lHMM modeling up- and down-regulation—Figure 4.2(c)—has a more
intricate correlation pattern, displaying correlation between consecutive time points, but
also a negative correlation with time points 7 steps apart. This is a consequence of the
down-regulation event, which happens later in these time courses. In the cyclic lHMM, the
block of the matrix σuv for 1 ≤ u ≤ 9 and 1 ≤ v ≤ 9 (also σuv for 11 ≤ u ≤ 19 and
11 ≤ v ≤ 19) have a courser but similar covariance structure to the lHMM modeling up-
and down-regulation (Figure 4.2 (c)), and all other entries have values similar to zero.

If we inspect only time courses following similar Viterbi paths, we get a further under-
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Figure 4.6: We depict heat map plots of the absolute value of the empirical covariance
of data sampled from a 19 state lHMM (a), from the up-regulation lHMM
depicted in Figure 4.1 (b), up- and down-regulation lHMM depicted in Fig-
ure 4.2 bottom (c) and the cyclic lHMM depicted in Figure 4.5 (d). Dark blue
entries indicates zero values, while red indicates positive (or negative) values.

standing of the covariance structure modeled by the lHMM. For example, if we look at
the simulated data from the lHMM depicted in Figure 4.1, and divide it into three groups:
(1) time courses with the up-regulation event before time point 7; (2) time courses with
up-regulation between 7 and 12; and (3) time courses up-regulated after time point 12. The
covariance matrices of these groups are depicted in Figure 4.7. The resulting covariance
matrices are decompositions of the original matrix—Figure 4.6 (b), where the covariances
between consecutive time points are restricted now to earlier (Figure 4.7 (a)), middle (Fig-
ure 4.7 (b)) or late (Figure 4.7 (c)) time points.

The linear HMMs allow modeling of dependencies between subsequent time points. More-
over, depending on the topology, longer term dependencies are also captured, e.g., up- and
down-regulation lHMM (Figure 4.2 (c)). One very important characteristic is the few num-
ber of free parameters necessary for the linear HMMs. A lHMM requires the specification
of (3×M − 1) free parameters. In contrast, a multivariate Gaussian with diagonal matrix
has (2×L) and a multivariate Gaussian with full covariance matrix

(
2× L + L×(L−1)

2

)
free

parameters. In other words, lHMM will require a substantially fewer number of parameters
than a multivariate Gaussian with full covariance matrix and, whenever 2M < 3L, a lHMM
has fewer parameters than a Gaussian with diagonal covariance matrix. Furthermore, the
lHMM captures low order dependencies, whereas the Gaussian with diagonal covariance
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Figure 4.7: We depict heat map plots of the absolute value of the empirical covariance of
data sampled from a 19 state lHMM from the up-regulation lHMM depicted
in Figure 4.1, where the up-regulation event occurred before time point 7 (a),
between 7 and 12 (b), and time courses after time point 12 (c). Dark blue
entries indicates zero values, while red indicates positive values.

matrix assumes independence between time points. Of course, one could estimate the full
covariance matrix, but as discussed in Section 2.3.4, such models could present over-fitting
problems when used in mixture models. Thus, due to its characteristics, lHMMs are an
ideal candidate for component models in a mixture model for analyzing gene expression
time courses, as it requires few free parameters and is able to model temporal dependen-
cies.

4.3 Querying of Time Courses

An initial exploratory analysis of gene expression time course can be performed by query-
ing a particular data set for specific patterns of expression. This can be done by specifying
a HMM topology and parameters manually and, later, ranking all time courses in X by
their likelihood for that particular model (Eq. 4.7).

More formally, for a given linear HMM θl, a data set X and a stringency value v < N , a
query can be described as follows

S = {x|rank
(
p(x|θl)

)
≤ v, x ∈ X} (4.17)

where p(x|θl) is the likelihood function defined as in Eq. 4.7, the function rank returns
the rank of ordering x in relation to the likelihood, and S is the set of expression profiles,
which have highest v likelihoods under the model θl.

As the knowledge discovery process in the analysis of biological data is human-centric, a
high degree of interactivity is important in an initial analysis. We develop an interactive
tool—the Graphical Query Language (GQL)—for querying data sets from gene expres-
sion time courses [53]. The tool allows the user to define a linear HMM model, tune its
parameters and to define the query stringency (v) interactively. Modifications of the lin-
ear HMM parameters in the interface tool are simultaneously showed in the time courses
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Chapter 4 Analysis of Gene Expression Time Courses

Figure 4.8: The GQLQuery interface is divided into two main components: the left part is
the model editor, where the user can view and change the model’s parameters,
and in the right part is the query result, where the queried time courses are
displayed.

panel, which plots the time courses on S. The user can explore all possible prototypical
patterns of expression presented in the data set. By scrolling the mouse over a desired time
course, GQLQuery will depict the Viterbi path in the bar below the time course plots, as
well as display information as the gene name. The interface also allows the user to create
models for periodic time courses. All query results and generated models can be saved and
used for further analysis.

4.4 Mixture of linear HMMs

In order to find groups of co-expressed time courses, we combine K linear HMMs in a
mixture model. With such a model, we can find groups of expression patterns displaying a
similar prototypical behavior within a gene expression data set. Formally,

p(x|Θ) =
K∑

k=1

αkpk(x|θl
k), (4.18)

where αk is the mixture coefficient respecting αk ≥ 0 and
∑K

k=1 αk = 1 (see Section 2.2),
pk(x|θl

k) is the density corresponding to the kth HMM as defined in Eq. 4.7, and Θ =
(α1, ...,αK , θl

1, ..., θ
l
K).

We can estimate mixtures with the use the EM algorithm described in Section 2.3.1, by the
inclusion of a missing variable Y , where y ∈ {1, ..., K} indicates which mixture compo-
nent produced the observation x. As previously discussed, the only necessary extension is
the specification of the M-Step. In the M-Step, we need to obtain for a particular cluster
assignment the maximum likelihood estimate of each of the models θl

k. While there is no
analytic way for computing the maximum likelihood estimate for HMMs, we can apply the
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4.4 Mixture of linear HMMs

Baum-Welch algorithm to (locally) maximize Eq. 4.8 in an iterative procedure.

Note that there is no need to extend the Baum-Welch algorithm for the specific topology of
linear HMMs. All zeros entries in the transition matrix A, which are imposed by the linear
topology, will remain equal to zero after the application of the Baum-Welch [121], and the
topology will always be preserved. The parameter φ, related to the missing values, is kept
fixed.

4.4.1 Model Initialization

The EM algorithm requires an initial model as starting point for the inference. This can be
performed with random assignments, as described in Section 2.3.1. The lHMMs require the
previous specification of few parameters, for example, the number of states M for each θl

k.
Note that each component model can have a distinct number of states as long as M ≤ L.
Also, in the initialization of the duration parameters the property

∑M
u=1 du = L should be

respected, where L is the length of the time courses (see Section 4.2.1 for restrictions for
the periodic extension of lHMMs). We will refer to this initialization method as the random
model collection (RMC).

Another alternative is to use the results of other clustering methods as the initial assignment
for the mixture [145]. Thus, we also consider the use of k-means for initializing the models,
which we will reefer to as (KMC).

The inference of HMM topology can be solved for special topological cases with the use
of priors and additional computational cost [61, 184, 205]. In a previous work [185],
a collaborator proposed an adaptation of the Bayesian model-merging algorithm [205] to
continuous emissions and linear HMMs. In this context, [185] takes advantage of the linear
topology of the lHMM. It starts with a topologically unconstrained maximum likelihood
model, which has one linear HMM per gene-expression time course x (or a branch), and
one state per time-point in each branch, i.e., L = M . The method in [185] is based on
merging states of the unconstrained model in two steps.

First, it merges states within the branches. The method identifies for each branch states
whose merging decreases the likelihood the least. As the merging method assumes that
variances are equal for all states, it only has to identify those successive states whose means
are similar. A merging of components is performed until it reaches the desired number of
states. Typical values range from a third to half the number of time-points. Second, the
method merges the shrunken branches such that the loss of likelihood is minimal in each
merging step with hierarchical clustering. For detailed description of the algorithm, which
we will refer to as Bayesian Model Collection (BMC), see [185].
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4.4.2 Viterbi Decomposition

The idea of the Viterbi decomposition is to find sub-groups of synchronous groups within
genes following the same asynchronous prototypical patterns as modeled by a lHMM. An
example on how the Viterbi path can be used in finding asynchronous groups is depicted in
Figure 4.4. In that simple example, all time courses presented only three distinct paths. On
real data and with a lHMM with more states, the number of distinct Viterbi paths is larger,
and simple path enumeration would lead to a high number of asynchronous groups. One
way to overcome this is to apply a clustering method for finding groups of similar Viterbi
paths.

For a set of time courses x belonging to a cluster k, or Xk = {x|y = k, x ∈ X}, we
measure the most probable Viterbi path q of each of the time courses x ∈ Xk

Qk = {q|q = arg max
q

p(x, q|θ), x ∈ Xk} (4.19)

and look for groups of similar Viterbi sequences qi.

In the approach proposed by a collaborator [132, 185] and used in the following analysis,
the main assumption is that the sequence paths over one state will be the most significant
in finding a group of synchronous time-courses. Take, for example, a group of cyclic
time courses. Sorting these according to the time at which the first peak is reached is
enough to produce subgroups of time courses with the same phase shift. Initially, the
method searches the most appropriate state by calculating a Silhouette coefficient [178] for
all states, and returns the one with lower Silhouette, i.e., the one with more compact and
isolated sub-groups. After one state is selected, all possible unique paths are enumerated,
and a greedy clustering method is performed by joining pairs of sub-groups leading to the
highest increase in the Silhouette coefficient, until no more increase is possible. See [132,
185] for details of the method.

4.4.3 GQLCluster

All methods described in this section are implemented in the tool GQLCluster [53]. This
software also includes some additional features useful in the analysis of time courses, such
as methods for filtering gene expression data sets, an implementation of standard clustering
methods such as k-means and hierarchical clustering, mixture of Gaussians and a semi-
supervised approach described in [187].

After clustering by mixtures of lHMMs (or other clustering methods) has been carried out,
GQLCluster offers several interactive tools for the analysis of the results. As a starting
point, the graphical interface creates panels, which contain the time courses of each of
the clusters/components (Figure 4.9). Then, for each cluster, it is possible to inspect the
list of gene identifiers, which are linked to known web databases. In the mixture model
methods, the time courses are assigned to the most likely model. The user can choose
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Figure 4.9: After estimation, GQL Cluster displays the time courses assigned to each clus-
ter. The user can then perform a more detailed inspection of the modules, such
as looking for gene annotation in known web databases, inspection for GO
enrichment or computation of sub-groupings.

only genes that can be unambiguously assigned to one model by increasing the entropy
cut-off threshold. A further refinement of the clusters can be obtained by the application
of a Viterbi decomposition analysis, which finds sub-groups of synchronous time courses.
All results, plots and estimated models can be saved for further analysis. A tutorial on the
application, data and installation instructions can be found at [90].

4.5 Experiments

In order to illustrate the use of all the methods proposed in Section 4.2.1, we describe in
the following the computational experiments based on two gene expression time course
data sets. For benchmarking purposes, we make use of fully annotated data from yeast
cell cycle. With this data set, we make a comparison with other clustering methods such
as clustering with Splines [14], CAGED [172] and k-means. We also test the effects of
initialization procedures: random model initialization (RMC), k-means initialization (KMC)
and Bayesian initialization (BMC) (see Section 2.3.2 for details). Furthermore, we also
test the use of the Viterbi decomposition (VD) for finding sub-groups in the clusters. For
the second data set, which is based on a human HeLa cell cycle, we evaluate the use
of the Viterbi decomposition and the entropy threshold proposed in Section 3.1. For the
evaluation of the entropy threshold method, we make use of a specificity score based on
the functional annotation of genes.
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4.5.1 Data

Yeast Cell Cycle YCC. This data represents the expression level of around 6000 genes
during two cell cycles from yeast measured in 17 time points [42]. As in [233], we used a
subset of this data in the experiments. This data set, 5-phase criterion, abbreviated as YCC,
contains 384 genes visually identified to peak at five distinct time points [42], each repre-
senting a distinct phase of cell cycle. The expression values of each gene are standardized.
As showed in [233], such a procedure enhances the performance of model-based clustering
methods, when the original data consists of intensity levels. This data set has class labels
for the full range of genes, allowing the comparison of distinct methods.

HeLa Cell Cycle. We use published data from a time course experiment, in which the
authors measured genome wide gene expression of synchronized HeLa cells [226]. We
use the raw data from “doubly thymidine experiment three” as provided by the authors in
the supplementary information. In this data set, HeLa cells, which have been arrested in
S phase by a double thymidine block, are measured every hour from 0 to 46 hours. For
reasons of comparison, we exclude clones showing missing values from further analysis.
We obtain log ratios by dividing all expression values by the reference value (time point
0h) and taking the logarithm. Furthermore, the data is pre-processed by extracting all those
genes with an absolute fold change of at least two in at least one time point. This results in
a data set containing 2,272 expression time courses.

Specificity Score based on Gene Annotation. Gene Ontology (GO) describes genes
in three distinct categories [9]: cellular component, molecular function and biological
process. GO has a form of a directed acyclic graph (DAG), where the leaves are genes
and the internal nodes are terms (or annotations) describing gene function, gene cellular
localization or the biological process genes take part in. Leaves near the root describe
very general processes, while nodes near the leaves describe specific ones. One should
expect that the more unambiguous a cluster is, the more specific information it contains.
Following this rationale, we evaluated the relation between ambiguity of gene clusters
and the specificity (or level) of GO annotations (see Section 6.2.2 for a more detailed
description of GO).

In order to find GO annotations related to a given subset of genes, we use an enrichment
analysis [24], to look for annotation terms that are over-represented in this subset. The
probability that this over-representation is not found by chance can be measured with the
use of a hyper-geometric Fisher exact test [199]. The enrichment test returns for each
cluster and GO term a p-value describing how statistically significant is a particular GO
term for describing genes in a particular cluster3. See Appendix A for a description of the
test.

3In the subsequent chapters, when a particular GO term is over-represented for a given cluster, we state GO
Term X is enriched in cluster Y, or we found enrichment for GO Term X in cluster Y
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Table 4.1: Results of the different methods on YCC.

Description CR Spec. Sens.

HMM Mix. & RMC 0.330 0.488 0.475
HMM Clu. & RMC 0.331 0.474 0.490
Splines 0.362 0.494 0.516
HMM Clu. & KMI 0.380 0.534 0.502
HMM Clu. & BMC 0.388 0.520 0.543
HMM Mix. & BMC 0.390 0.531 0.527
HMM Mix. & KMI 0.391 0.538 0.517
HMM Clu. & KMI &VD 0.407 0.470 0.732
K-means 0.430 0.563 0.557
HMM Mix. & KMI &VD 0.432 0.502 0.718
HMM Clu. & RMC &VD 0.454 0.534 0.672
HMM Mix. & RMC & VD 0.458 0.540 0.664
HMM Clu. & BMC & VD 0.462 0.547 0.654
HMM Mix. & BMC & VD 0.467 0.551 0.658

The calculation of the specificity (or level) of the annotations from a set of genes is straight-
forward. Given a cluster, we repeat the enrichment test for each term in GO, and retrieve
the ones exceeding a given p-value. Then, the length of the path from the root to each
enriched GO term is counted and averaged. Since GO is a DAG, one node can be reached
by more than one path from the root. Therefore, the average of all possible path lengths is
taken. The final score reflects the mean distance of the enriched GO terms to the root of the
Gene Ontology. The larger the score value, the higher is the specificity of the functional
annotations enriched in the evaluated gene clustering.

4.5.2 Results

Yeast Cell Cycle. As Table 4.1 illustrates, the k-means algorithm obtains a good result
with a corrected Rand (CR) of 0.43 (specificity of 0.54 and sensitivity of 0.56). Mixture
estimation with BMC and a posterior Viterbi decomposition obtains the highest values for
all indices, with a CR of 0.467, specificity of 0.55 and sensitivity of 0.66. The results of
CAGED are not included, since it could only find one cluster, which makes the calculation
of the indices impossible. Note that the number of clusters in CAGED cannot be con-
trolled by the user. Moreover, model-based clustering with splines, another method taking
temporal dependencies into account, has an overall poor result. Furthermore, the mixtures
of HMMs (HMM Mix.), which perform “soft” cluster assignments during the EM, have
a better performance than the use of model-based clustering with HMMs (HMM Clu.),
which performs hard assignments during the EM method.

Looking at the results in more details, we find that most methods join genes from the cell
cycle class“Late G1” with “S” and genes from the cell cycle class “M” with “Early G1”.
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Figure 4.10: BIC versus number of components for the data set YCC. The correct number
is five.

Note that these classes correspond to cell cycle phases with a small phase-shift and their
genes have very similar time courses. Interestingly, the BIC index underestimate the num-
ber of components by one in YCC (Figs. 4.10), which is a further indication of the difficulty
of separating these two classes. The application of the Viterbi decomposition after estima-
tion of mixtures of HMMs improves the results, in particular for these “difficult” classes,
which indicates the usefulness of the Viterbi decomposition in refining the clusters.

In relation to the initialization method, BMC obtains higher accuracy than KMI and RMC
in most of method combinations. Another important characteristic in favor of BMC is its
deterministic nature. As a consequence, there is no need to perform replicates of the ex-
periments and to choose the best replicate, in contrast to use of RMC or KMI.

HeLa Cell Cycle. The initial collection used for mixture estimation for this data set
consists of 35 lHMMs with 24-states obtained from RMC. Two groups have periodically
expressed time courses. We apply the Viterbi decomposition to these groups. For cluster
1 (Figure 4.11), the first subgroup contains 26 genes known to be in cell cycle phase G2
and one gene to cell cycle phase G2/M, the second subgroup eleven G2 and 19 G2/M,
the third subgroup 31 G2/M, two M/G1 and 1 G1/S (see Section 4.1 for description of
cell cycle phases). The second group (not shown) contains twelve G1/S and two S-phase
genes. Both CDC2 representatives are found in the same subgroup (Figure 4.11, phase
1). Furthermore, cyclin A (Figure 4.11, phase 2) and cyclin B (Figure 4.11, phase 3) are
assigned to different subgroups, shifted in phase with respect to the one containing CDC2.
Moreover, all time courses that are assigned to the different phases of our G2, G2/M phase
cluster are known to be cell cycle regulated in their respective phase [226]. The same holds
for the G1/S, S phase subgroups.

In relation to the entropy threshold, we observe an increase in the GO specificity score for
lower entropy threshold values, followed by a decrease of specificity for very low threshold
values (see Figure 4.12). The mean GO specificity score raises considerably (around 2.0)
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Figure 4.11: One group has periodically expressed time courses in the HeLa data set.
This group is subsequently decomposed into three subgroups (top to bottom),
corresponding to groups of synchronous genes, with the Viterbi decomposi-
tion. The first subgroup (red) contains mainly cell cycle phase G2 genes, the
second (green) G2 as well as G2/M genes and the third (blue) mostly G2/M
genes.

00.511.52
3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Entropy threshold

G
O

 S
pe

cif
ici

ty

Figure 4.12: The mean GO specificity level of clusters from HeLa versus the entropy
threshold. The lower the threshold, the less unambiguous are the cluster
assignments.
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until the threshold value 0.3. This result indicates that less ambiguous assignments, as
derived by the posterior probabilities returned by the mixture model, lead to an enrichment
of more specific GO annotations. Therefore, the entropy threshold is a valuable tool for
refining the results returned by the mixture of lHMMs and deriving fine grained groups of
functionally related genes.
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Chapter 5

Analysis of Gene Expression in
Lymphoid Development

The study of gene regulatory mechanisms controlling cell proliferation and differentiation
is central in developmental biology. In particular, the development of lymphoid cells is
well studied, as individual cell populations are easy to obtain and due to clinical inter-
est [140, 177]. In Lymphoid development [25], all starts with the Hematopoietic stem cell
(HSC), which differentiates into the Lymphoid progenitor, and later into B-cell, T-cell or
Natural Killer cell lineages (see Figure 5.1 for a developmental tree). Recently, several
studies have analyzed expression profiling of lymphoid cells in their distinguishable de-
velopmental stages [3, 34, 98, 100, 105, 156, 165, 220, 229]. Our main focus is on the
analysis of patterns of gene expression in the distinct stages of the developmental tree, the
developmental profiles of genes. In particular, we are interested in finding groups of genes
displaying a particular pattern of expression, e.g., over-expression in T cells but under-
expression in B cells.

As one of the major contribution of this thesis, we propose here a method for analyzing
patterns of gene expressions in the course of development. Ideally, such method should
exploit inherent dependencies arising from the data, as in methods for analyzing gene ex-
pression time-courses (see Chapter 4). We assume that, in development, the sequence of
changes from a stem cell to a particular mature cell, as described by a developmental tree,
are the most important in modeling gene expression from developmental processes. Moti-
vated by this, we propose dependence trees (DTree) to model expression during the course
of development [50]. We investigate here two approaches for obtaining the structure of de-
pendence trees. In the first approach, we assume that the structure of the dependence tree
is equal to the developmental tree as known by the biologists [50]. In a second approach,
we additionally estimate the dependence tree structure from the data [49].

To find groups of co-expressed developmental profiles we use dependence trees in a mix-
ture model [143]. Also, to minimize problems related to over-fitting, we propose Maximum-
a-posteriori (MAP) estimates of parameters [80]. By doing so, we obtain a robust and flex-
ible statistical model for clustering genome-wide mRNA expression data sets, which takes
the intrinsic dependencies between developmental stages explicitly into account.

57



Chapter 5 Analysis of Gene Expression in Lymphoid Development

DN1

DN2 DN3 DN4 DPL DPS

SP8

SP4

Lymphoid
progenitor

Pro-B Pre-BI
PreBII
Large

PreBII
Small

Imm.
B-cell

Mature
B-cell

C-kit+
B220+
DHJH

B220+
CD25+

sIgM-large
DHJH, VHDHJH 

B220+
CD25+

sIgM-small
VLJL

B220 low
sIgM+
small

B220 high
sIgM+
small

Mye.-Ery.
progenitor

Multipot.
progenitor

CD25+
CD44+

CD25+
CD44-
D!J!CD25-

CD44+
Proliferating 

large cells

NK

pHSC

CD25-
CD44-

CD4-
CD8+

CD4+
CD8-Thymus

Bone Marrow

CD4+
CD8+

V!D!J!

CD4+
CD8+
V"J"

Figure 5.1: Schematic view of lymphocyte cell development. Developmental stages are
depicted as nodes and arrows indicate transition from one stage to another,
i.e., specialization. Self-renewing hematopoietic stem cells give rise to T cells
in the thymus (green), B cells in the bone marrow (blue) and natural killer
cells (NK) via intermediate stages. DN stands for CD4-/CD8- double neg-
ative cells, DPL for CD4+/CD8+ double positive large cells, and DPS for
CD4+/CD8+ double positive small cells. Cell surface antigens and rear-
rangement events are partially annotated. Some expression data sets inves-
tigated in this Chapter are denoted as follows: green ovals for T Cell and
blue ovals for B Cell.

This chapter is organized as follows. In Section 5.1, we give an overview of related work.
Then, we present the dependence tree and the estimation of its parameters in Section 5.2.
In Section 5.3, we describe mixtures of dependence trees, and derive the parameters of the
MAP estimates (Section 5.3.2). Next, in Section 5.4, we show the results of the analysis
of gene expression from lymphoid development. For the mixture of dependence trees with
fixed tree structures (Section 5.4.1), we analyze two detailed data sets from B cells [100]
and T cells [99]. Furthermore, we explore plausible regulatory roles of microRNAs known
to be involved in hematopoiesis. For mixture of dependence trees with estimated structures
(Section 5.4.2), we analyze a gene expression compendia with data from hematopoietic
stem cells, T cells, B cells and Natural Killer cells. We perform a comparison of several
clustering methods on a score based on enrichment analysis of biological pathways. For
both methods, results on simulated data show the conditions under which our method has
advantages. In Chapter 7, we present final remarks and future work.

5.1 Related Work

Dependence trees were first introduced for discrete variables by Chow and Liu [43], which
showed that efficient computation using a maximum weight spanning tree algorithm is
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possible. They applied the method for pattern recognition of handwritten digits. Mixtures
of dependence trees were first proposed in [148]. The authors also proposed extensions
to the basic structure estimation algorithm from [43] for sparse data and the use of priors
in the tree structure. This also allowed forests (or disconnected trees) to be estimated. It
was also shown that the estimated structures of the dependence trees were a good indicator
of relevant dependencies between variables. Both studies [43, 148], however, were only
concerned with discrete variables, in contrast to our approach, which regards continuous
variables.

Another closely related method is the mixture of directed acyclic graphs (DAG) [213].
Indeed, the mixture of DAGs is a more general graphical model than the mixture of depen-
dence trees. The use of DAGs as component models allows to model high order dependen-
cies. However, there is no exact solution for the structure estimation of DAGs. Thus, its
estimation is based on heuristics and requires larger computational effort than mixture of
dependence trees. Another related research field is the estimation of covariance matrices
with zero entries. In [40], an iterative conditional fitting method was applied for computing
sparse covariance matrices from arbitrary undirected graphs. While the method obtained
better estimates than classical statistical approaches, such as [7], it does not offer a solu-
tion for inferring the graph structure. In [182], a similar problem in the context of gene
dependence (or association) networks was investigated. The authors applied a shrinkage
factor in an efficient way for defining zero entries in the covariance matrix, while keeping
it well-conditioned. Both methods have a high computational cost. They are also not able
to find association networks, which are specific for particular gene modules, as performed
by mixtures of dependence trees.

In the context of mixtures, our method represents an alternative to the parameterization of
the covariance matrix of a mixture of multivariate Gaussians (MoG) not previously char-
acterized [37, 79] (see Section 5.2.4 for a discussion). When computing MLE estimates,
the dependence tree model essentially imposes zeros in the inverse of the covariance ma-
trix reducing the number of free parameters to O(L). If we considered all the covariances
between observations for L developmental stages, it would be straightforward to represent
the data distribution by an L-variate Gaussian model with full covariance matrix. However,
this parameterization has O(L2) parameters, which are often unreliable even for small val-
ues of L. Moreover, the parameter estimation is prone to over-fit to outliers often found
in noisy and scarce data [143]. This was also indicated in our results with simulated data
(Section 5.4.1 and Section 5.4.2), where mixtures of Gaussians with full covariance ma-
trix were outperformed by most of the methods. Additionally, in a study in the context of
gene expression time courses [232], MoG with full covariance matrix was outperformed by
simpler parameterizations of the covariance matrices.

The estimation of the structure of mutagenic trees is a related problem in bioinformat-
ics [62, 63, 223]. In this application, one is interested in inferring the mutation events
occurring in cells, such as cancer, which follow a tree-like event structure. For this par-
ticular problem, the root is known a priori (a wild type cell without mutations) and only
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

variables with observed mutation events are included as nodes in the tree [63]. The tree
structure is estimated with a maximum weight branching algorithm (Edmonds’ branching
algorithm [46]). Recently, mixture of mutagenic trees, which combined the individual tree
estimation from [63] with the EM algorithm, was applied to infer mutation events in HIV
strains [23].

The problem approached in this chapter is closely related to the gene expression time-
course analysis discussed in Chapter 4. Dependence trees can also be used for analyzing
short time courses. We can define the dependence tree structure to be a linear chain con-
necting consecutive time points. In this scenario, DTrees will model only first-order tem-
poral dependencies, but ignore higher order dependencies often present in gene expression
time-courses (see Section 4.2.1). On the other hand, models employed in time course ana-
lysis [14, 185] cannot be extended to modeling tree like dependency structures arising in
developmental processes.

Mixture of dependence trees with estimated structure has some relation to bi-clustering.
Bi-clustering methods find not only co-expressed genes but also similarity of expression
in the biological conditions. However, bi-clustering methods do not make explicit use of
any dependencies (developmental or temporal) in these data sets (see [139] for a survey
on bi-clustering algorithms). One of such method, Samba [210], is graph-based and finds
strongly connected subgraphs in a bi-partite graph. The bi-partite graph has genes and
biological conditions as nodes. The edges between nodes representing genes and biological
conditions are weighted proportional to the gene expression value of the given gene in that
particular biological condition. Another relevant approach is the use of a non-negative
matrix factorization (NMF) [31]. This method decomposes the gene expression matrix in
two matrices: one representing the K most significant “meta-conditions” and the other the
K most significant “meta-genes”. The authors proposed a consensus clustering method for
choosing K (or the number of clusters) automatically and minimizing problems related to
the random initialization of the method.

Regarding lymphoid development, lymphocyte cell populations can be purified by fluo-
rescence activated cell sorting (FACS) exploiting the large variety of cell surface anti-
gens, which appear in specific order during differentiation as the result of a linear se-
quence of genomic rearrangements at the T and B cell receptor loci [98, 100]. Based on
this, lineage-specific expression and roles of transcription factors have been studied exten-
sively [140, 177, 224]. Recently, a new class of regulatory RNAs, microRNAs, have been
identified as being involved in lymphocyte cell development [41, 151, 171].

Several studies [3, 34, 98, 100, 105, 156, 165, 220, 229] have combined FACS mediated
cell sorting and mRNA expression profiling to derive a more comprehensive picture of the
lymphocytes in distinguishable developmental stages. Nevertheless, prior work on the ana-
lysis of gene expression from lymphoid development relies mostly on classical clustering
methods, such as self-organizing maps [98, 100], hierarchical clustering [156, 220], k-
means [3], principal component analysis (PCA) [229] or on performing tests of differential
expression between cell types of interest [165]. One particular interesting study was pro-
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Figure 5.2: Example of a simple developmental tree and a group of developmental pro-
files. On the left, we depict a simple developmental tree, where arrows rep-
resent dependencies between variables. Above each tree variable, we depict
a pdf related to it. On the right, we display the gene expression values (y-
axis) in the distinct development stages (x-axis). Each line corresponds to the
developmental profile of a given gene of a particular path of the tree on the
left, as in a time-course plot. Distinct paths have different colors, according
to the tree on the left. In this particular example, we have the path A, B and
C in green and B and D in red. By superimposing the lines corresponding to
paths B to C and B to D, we can contrast the differences in expression values
of genes in these two alternative differentiation lineages.

posed in [105], where several publicly available data from lymphoid cells were combined
and made available for further analyses through an interactive web tool. The authors ap-
plied PCA analysis to explore similarities of lymphoid cells based on their gene expression
signatures. Furthermore, a simple method based on the correlation measure was used for
inferring “networks” of genes. However, that work did not address any developmental as-
pect of lymphoid cells, as it was restricted to gene expression profiles from lymphoid cells
at mature or immature cell stages (later developmental stages). Other studies concentrated
on small-scale data, where selected genes are used to infer regulatory networks. One of
these studies applied a state-space model to infer networks of T cell activation [173]. Tron-
cale and colleagues adopted Petri Nets to model and infer regulatory networks of early
pHSC development [216], while Basso and colleagues proposed a novel algorithm for a
similar task [18].

5.2 Dependence Trees

The main assumption underlying dependence trees (DTree) is that expression levels of a
particular developmental stage depend primarily on expression levels of the immediately
preceding stage. For example, given the tree structure depicted in Figure 5.2, we assume the
following approximation of the joint probability density function (pdf) of the observation
vector from four random variables (xA, xB, xC , xD)

p(xA, xB, xC , xD) ≈ pT (xA, xB, xC , xD) = p(xA)p(xB|xA)p(xC |xB)p(xD|xB). (5.1)
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In other words, we condition the probability of a given variable on its immediate prede-
cessor in accordance with the tree structure shown in Figure 5.2. In Figure 5.2 right, a
group of hypothetical genes with similar developmental profiles is illustrated. The genes
display average expression in stage A, up-regulation in stage B, down-regulation in stage
C and up-regulation in stage D. Furthermore, the genes have distinct expression intensities,
but similar relative expression changes. Genes strongly up-regulated in B are also strongly
down-regulated in C and strongly up-regulated in D. These dependencies are reflected in
the correlation between these stages. For example, A and B (or B and D) are positively
correlated, and stages B and C are negatively correlated. A statistical model for such de-
velopmental profiles should include these dependencies between subsequent stages, as it is
provided by DTrees.

Formally, let X = (X1, ..., Xu, ..., XL) be an L-dimensional continuous random vector
where the variable Xu denotes the expression values of the developmental stage u and
x = (x1, ..., xL) denotes an observation of X representing a developmental profile of a
gene. Consider a directed graph (V, E), where each vertex in V represents a variable in
X , |V | = L , and a directed edge (v, u) ∈ E indicates that variable Xu is dependent on
variable Xv. The structure of a DTree is represented by a directed tree. A directed tree is
a connected directed graph, whose vertices except the root have in-degree equal to 1, and
there are no cycles in the graph. For simplicity, we represent the DTree structure by the
parent map, pa : {1, ..., L} "→ {1, ..., L}, where pa(u) = v indicates that (v, u) ∈ E. The
root of the DTree, which has no incoming edges is represented by pa(u) = u. We define
the pdf of a DTree as

pT (x|θ) =
L∏

u=1

p(xu|xpa(u), τu). (5.2)

We denote the model parameters by θ = (pa, τ1, ..., τu, ...τL). Note, that a DTree can be
also regarded as an approximation of the joint pdf of a L-dimensional continuous random
vector by a product of L− 1 second order pdfs [43].

5.2.1 Equivalence of Dependence Trees

We can use the formalism of graphical models and Bayesian networks, which DTrees are
a particular case, for analyzing characteristics of the model [125]. One interesting aspect
is the existence of several DTrees with equivalent pdfs. Intuitively, the main information
contained in the DTree structure are the connected pair of variables, but not the directions
of the edges. For example, we can obtain an equivalent DTree pdf using an undirected
tree representation. Formally, we can apply a graph factorization [125] to the undirected
representation of the DTree structure, which yields the following pdf [148]

pT (x|θ) =

∏
(u,v)∈E p(xu, xv)

∏
v∈V p(xv)deg(v)−1

, (5.3)
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Figure 5.3: We depict the undirected tree structure of the graph from Figure 5.2 (top), and
the four possible directed versions obtained by choosing respectively edges A,
B, C and D as a root (bottom).

where deg(v) is the number of edges of v.

It can be shown with the application of the Bayes rule that the pdfs from Eq. 5.2 and Eq. 5.3
are equivalent,

pT (xA, xB, xC , xD) =
p(xA, xB)p(xB, xC)p(xB, xD)

p(xB)p(xB)

=
p(xA)p(xB|xA)p(xB, xC)p(xB, xD)

p(xB)p(xB)

= p(xA)p(xB|xA)p(xC |xB)p(xD|xB).

For any undirected tree structure, we can also obtain a directed tree by choosing a vertex as
a root, and directing the edges away from the root. Any arbitrary choice of root will lead
to equivalent decompositions of the tree pdfs. For instance, in Figure 5.3 left-middle, we
have XB as a root, which leads to the following pdf

pT (xA, xB, xC , xD) = p(xB)p(xA|xB)p(xC |xB)p(xD|xB). (5.4)

By Bayes rule we can show that Eq. 5.4 can be easily transformed into Eq. 5.1

pT (xA, xB, xC , xD) = p(xB)p(xA|xB)p(xC |xB)p(xD|xB)

= p(xA, xB)p(xC |xB)p(xD|xB)

= p(xA)p(xB|xA)p(xC |xB)p(xD|xB).

In summary, any directed representation of an underlying undirected tree will lead to equiv-
alent tree pdfs [148]. See [125] for a formal treatment based on the equivalence of pdfs
(or distributions) in chain graphs. Given the simplicity and the intuitive representation, this
chapter will mostly use directed versions of the tree structures. The choices of the direction
of edges are based on the prior knowledge of the data, i.e., the underlying developmental
tree.
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5.2.2 Parameterization of Dependence Trees

We use conditional Gaussian density functions [126] as conditional densities, denoted by
p(xu|xpa(u), τu) in Eq. 5.2. Hence, for a given developmental profile x and a non-root
developmental stage u with pa(u) = v, the pdf takes the following form

p(xu|xv, τu) = (
√

2πσu|v)
−1 exp

(
−(xu − µu − wu|v(xv − µv))2

2σ2
u|v

)
, (5.5)

where τu = (µu, wu|v, σ2
u|v) are the parameters for one conditional density in the model.

For a given expression data set X consisting of N gene observations at L developmental
stages, let xi = (xi1, . . . , xiu, . . . , xiL) be the developmental profile of gene i, and xiu be
the expression value of the gene i in development stage u for 1 ≤ i ≤ N and 1 ≤ u ≤ L.
The maximum likelihood estimates (MLE) for the parameters of the conditional Gaussian
are [125],

µ̂u =

∑N
i=1 xiu

N
, (5.6)

ŵu|v =
σ̂uv

σ̂2
v

, and (5.7)

σ̂2
u|v = σ̂2

u − ŵ2
u|vσ̂

2
v . (5.8)

These terms can be computed from the sufficient statistics as follows

σ̂2
u =

∑N
i=1(xiu − µ̂u)2

N
, andσ̂uv =

∑N
i=1(xiu − µ̂u)(xiv − µ̂v)

N
. (5.9)

The conditional normal pdf can be seen as estimating a linear fit between Xu and Xv, where
wu|v > 0 indicates a positive linear correlation and wu|v < 0 a negative linear correlation
between variables; wu|v = 0 if the variables are independent. Furthermore, wu|v and σ2

u|v
are related because the better the linear fit the smaller the variance. For the special case
of the root (recall that pa(u) = u), wu|u is set to zero, and the conditional density is
effectively an univariate normal. The model has 3L− 1 free parameters. See Section 5.3.2
for the complete derivation of MAP estimates of the conditional Gaussians.

Returning to our example, the model estimates given the developmental tree and expression
profiles from Figure 5.2 are the following

τA = (µ̂A, ŵA|A, σ̂2
A|A) = (−0.01, 0, 0.02),

τB = (µ̂B, ŵB|A, σ̂2
B|A) = (0.97, 2.2, 0.02),

τC = (µ̂C , ŵC|B, σ̂2
C|B) = (−0.99,−0.3, 0.01), and

τD = (µ̂D, ŵD|B, σ̂2
D|B) = (0.45, 0.53, 0.01).

As expected, ŵB|A and ŵD|B are positive, indicating a linear dependence between these
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variables. On the other hand, ŵC|B is negative, which indicates a negative correlation
between XB and XC .

5.2.3 Estimation of the Structure of Dependence Trees

As described in the previous section, in developmental processes the developmental tree
structure is already known a priori. Although the developmental tree is an interesting
candidate for modeling dependencies, we are also interested in the case of estimating the
tree structure from the data. We summarize here our extension to continuous variables of
the solution proposed in [43], which considers trees on discrete distributions. The solution
is based on finding the DTree structure that minimizes the relative entropy between p(x)
and the approximation pT (x)

pT∗ = argminpT D(p||pT ). (5.10)

The relative entropy between p and pT is defined as [54],

D(p||pT ) =

∫

X

p(x) log
p(x)

pT (x)
.

Replacing pT (x) by Eq. 5.2, we obtain,

D(p||pT ) =

∫

X

p(x) log p(x)−
∫

X

p(x)
L∑

u=1

log p(xu|xpa(u)),

= H(X)−
∫

X

p(x)
L∑

u=1

log p(xu)−
∫

X

p(x)
L∑

u=1

log
p(xu|xpa(u), )

p(xu)

We can simplify the previous equation by applying the Bayes rule and the definition of
entropy (H) and mutual information (I) [54],

D(p||pT ) = H(X)−
L∑

u=1

H(Xu)−
∫

X

L∑

u=1

p(xu, xpa(u)) log
p(xu, xpa(u))

p(xu)p(xpa(u))
,

= H(X)−
L∑

u=1

H(Xu)−
L∑

u=1

I(Xu, Xpa(u)). (5.11)

Since H(X) and H(Xu) are independent of pT , then Eq. 5.10 can be reduced as follows,

pa∗ = argmaxpa

L∑

u=1

I(Xu, Xpa(u)). (5.12)

The solution to this problem can be efficiently computed by applying a maximum weight
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spanning tree algorithm on a fully connected undirected graph, where vertices represent
the variables and the weights of edges are equal to the mutual information between vari-
ables [43]. The computational complexity of this algorithm is O(L2 log L).

Finally, we need to compute I(Xu, Xpa(u)) for multivariate Gaussian. Given that pa(u) = v,
the mutual information is defined as [54]

I(Xu, Xv) =

∫

Xu

∫

Xv

p(xu, xv) log
p(xu, xv)

p(xu)p(xv)
dxudxv. (5.13)

Expanding the terms, we obtain

I(Xu, Xv) =
∫

Xu

∫
Xv

p(xu, xv) log p(xu, xv)dxudxv −
∫

Xu

∫
Xv

p(xu, xv) log p(xu)dxudxv

−
∫

Xu

∫
Xv

p(xu, xv) log p(xv)dxudxv,

and by definition of H(X), it follows that

I(Xu, Xv) = H(Xu) + H(Xv)− H(Xu, Xv). (5.14)

The entropy of an L dimensional multivariate Gaussian pdf is defined as [54],

H(X) =
1

2
log(2πe)L|ΣX |, (5.15)

where ΣX is the covariance matrix of X . By substituting Eq.5.15 into Eq.5.14, we obtain

I(Xu, Xv) =
1

2
log(2πeσ2

Xu
) +

1

2
log(2πeσ2

Xv
)− 1

2
log((2πe)2|ΣXu,Xv |),

and, as |ΣXu,Xv | = σ2
uσ

2
v − (σu,v)2, it follows that

I(Xu, Xv) =
1

2
log

(
(2πe)2

(2πe)2

)
− 1

2
log

(
σ2

uσ
2
v − σ2

u,v

σ2
uσ

2
v

)
,

and hence,

I(Xu, Xv) = −1

2
log

(
1−

σ2
u,v

σ2
uσ

2
v

)
. (5.16)

Note that the mutual information is proportional to the correlation coefficient ρu,v =
σ2

u,v

σ2
uσ2

v
.

That is, it measures the dependence between the two variables; I(Xu, Xv) = 0 if both
variables are independent. Moreover, the mutual information is symmetric (I(Xu, Xv) =
I(Xv, Xu)). Therefore, the estimation method does not determine direction of edges. To
obtain a directed tree, we select one particular edge as root and direct all edges away from
it (as discussed in Section 5.2.1, any direction choice would lead to equivalent DTree
pdfs).

We propose a “treeness” index for evaluating how well a DTree performs in capturing
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dependence in the data. Intuitively, we measure the proportion of the mutual information
represented in the tree edges, in comparison to the total mutual information on all pairs of
variables. That is, for a tree structure pa the treeness index is defined as follows

T (pa) =

∑L
u=1 I(Xu, Xpa(u))∑L

u=1

∑L
v=u+1 I(Xu, Xv)

. (5.17)

A value of zero indicates that no dependence is captured by the DTree and 1 indicates that
all dependence is captured by the DTree.

5.2.4 Dependence Trees and Multivariate Gaussians

There is a close correspondence between the pdfs of multivariate Gaussians and DTrees.
Given that pa(u) = v, a DTree pdf is equivalent to a multivariate Gaussian with mean
vector µ = (µ1, ..., µL), and entries of the covariance matrix (ΣT ) of the form [179]

σT
u,v =

∑

t=pa(v)

wv|tσ
T
u,t + 1(u = v)σv (5.18)

For the example, for the DTree shown in Figure 5.2, the corresponding covariance matrix
ΣT is as follows
{

σ2
A wB|A ∗ σ2

A wC|B ∗ wB|A ∗ σ2
A wD|B ∗ wB|A ∗ σ2

A
wB|A ∗ σ2

A σ2
B|A − w2

B|Aσ2
A wC|B ∗ (σ2

B|A − w2
B|Aσ2

A) wD|B ∗ (σ2
B|A − w2

B|Aσ2
A)

wC|B ∗ wB|A ∗ σ2
A wC|B ∗ (σ2

B|A − w2
B|Aσ2

A) σ2
C|B − w2

C|Bσ2
B wC|B ∗ wD|B ∗ (σ2

B|A − w2
B|Aσ2

A)

wD|B ∗ wB|A ∗ σ2
A wD|B ∗ (σ2

B|A − w2
B|Aσ2

A) wD|B ∗ wC|B ∗ (σ2
B|A − w2

B|Aσ2
A) σ2

D|B − w2
D|Bσ2

B

}
.

This represents a type of covariance matrix parameterization not yet characterized before
(see Section 2.3.3 for a discussion and [10, 37] for others covariance matrix parameteriza-
tions).

5.3 Mixture of Dependence Trees

In order to find clusters of co-expressed genes, we combine several DTrees in a mixture
model. Each DTree is a representation of a cluster or group of genes with co-expressed
developmental profiles, i.e., each DTree models distinct patterns of gene expression in the
course of development (see Figure 5.4 for an example). Throughout this chapter we refer
to the proposed method as MixDTrees.

Formally, we combine a set of K DTrees in a mixture model

p(x|Θ) =
K∑

k=1

αkp
T
k (x|θk), (5.19)
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Figure 5.4: Example of a mixture of four DTrees with the structure defined in Figure 5.2.
Each of these DTrees models distinct developmental profiles found in the
data set employed as example. Furthermore, clusters can have distinct sizes
proportional to their αi’s. Note also that it is not necessary that clusters have
distinct expression values in branching stages. For example, stages C and D
have similar expression values for cluster 3 and 4. This can be interpreted as
the genes being equally expressed in the two alternative lineages.

where αk is the mixture coefficient (see Section 2.2), pT
k (x|θk) is the density corresponding

to the kth DTree as defined in Eq. 5.2, and Θ = (α1, ...,αK , θ1, ..., θK).

5.3.1 MixDTrees with Developmental Tree as Structure

The differentiation of cells in the course of development is conveniently represented as a
developmental tree. The structures of these trees are well-known for most data sets under
investigation. Thus, one approach explored in this work is the use of the developmental tree
as prior knowledge, that is to define all DTrees structures in the mixture to be the same
as in the developmental tree. We will call this method MixDTrees-Dev. For estimating
MixDTrees-Dev, we apply the EM algorithm described in Section 2.3.1. In order to do so,
we need to define the DTree estimates of the M-Step of the EM algorithm. We choose to
use maximum-a-posteriori (MAP) estimates, as these minimize problems related to over-
fitting [80].

5.3.2 Maximum-a-posteriori Estimates

To prevent over-fitting of the DTree, we propose the use of a maximum-a-posteriori point
estimate (MAP) approach, which regularizes the estimates from Eq. 5.7 and Eq. 5.8. In
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5.3 Mixture of Dependence Trees

practice, we define prior distributions for these parameters, penalizing parameters with un-
desirable values. For example, a low σ2

u|v,k is an indication of over-fitting and should be
avoided, unless there is enough data (or evidence) for that particular component. Maximum-
a-posteriori estimates can be used in the EM algorithm. This can achieved by changing
Eq. 2.8 to maximize the expected a posteriori distribution, instead of the complete likeli-
hood function.

More precisely, our aim is to find estimates maximizing the posterior distribution

p(Θ|X,Y) =
p(X,Y|Θ)p(Θ)

p(X,Y)
(5.20)

where X is the observed data, Y indicates which mixture component generated a given
observation and Θ are the model parameters. The pdf p(X,Y|Θ) is the complete data
likelihood (Eq. 2.7), p(Θ) is the prior distribution on the parameters Θ and p(X,Y) is the
prior of the data. We can ignore the last term (p(X,Y)) in our problem, as it is independent
of Θ, and will be constant for a fixed data set.

Since MixDTrees are based on first-order dependencies, it is sufficient to find the param-
eters in a simple bivariate scenario (Xu, Xpa(u)), where pa(u) = v and Xu corresponds to
the observed data from variable Xu. This simplifies Eq. 5.20 to

p(Θ|Xu,Xv,Y) ≈ p(Xu,Xv,Y|Θ)p(Θ). (5.21)

where

p(Xu,Xv,Y|Θ) =
K∏

k=1

N∏

i=1

(αk· pT
k (Xu,Xv|Θk))

rik ,

as shown in Section 2.3.1 and

p(Θ) =
K∏

k=1

p(Θk) =
K∏

k=1

p(wu|v|σ2
u|v,k, αk)p(σ2

u|v,k|αk)p(αk),

where αk =
∑N

i=1 rik/N , and rik = p(yi = k|xi) is the posterior probability (Eq. 2.16)
that observation i belongs to DTree k.

Priors on Parameters. We use conjugate priors to regularize the parameters wu|v,k and
σ2

u|v,k and to avoid over-fitting, when there is low evidence for a given component model
(or low αk).

For simplicity of computation, we work with a precision parameter λu|v,k = (σ2
u|v,k)

−1. We
define the prior of λu|v,k to be proportional to
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p(λu|v,k|νu|v,k, αk) ∼ Exponential
(

λu|v,k

αk

)
=

∑N
i=1 rik

λu|v,k
exp

(
−

∑N
i=1 rik

λu|v,k

)
(5.22)

where νu|v,k is a hyper-parameter. Intuitively, this prior penalizes variables with low vari-
ances and low evidence, enforcing higher σ2

u|v,k.

The prior of wu|v,k is defined as follows

p(wu|v,k|λu|v,k, σ
2
v|k, αk, βu|v,k) = N(0, βu|v,k(λu|v,kαkσ

2
v|k)

−1), (5.23)

which is invariant to the scale of the variables Xu and Xv, and has βu|v,k as a hyper-
parameter. Intuitively, this prior penalizes variables with high covariance and low evidence,
enforcing smaller wu|v,k values.

Derivation of MAP Estimates. By replacing Eq. 5.5, 5.23 and 5.22 into Eq. 5.21 and
taking the logarithm, we obtain

log p(Θ|Xu,Xv, Y ) = −1

2

K∑

k=1

N∑

i=1

rik log(λu|v,k)

−
K∑

k=1

N∑

i=1

rik

(
(xiu − µu|k − wu|v,k(xiv − µv|k))

2λu|v,k/2
)

−1

2

K∑

k=1

log(
βu|v,k

λu|v,kσ2
v|k

∑N
i=1 rik

)−
K∑

k=1

w2
u|v,kσ

2
v|k

∑N
i=1 rikλu|v,k

βu|v,k

−1

2

K∑

k=1

log(
νu|v,k∑N
i=1 rik

)−
K∑

k=1

λu|v,k

∑N
i=1 rik

νu|v,k
.

We can take the derivate of the MAP with respect to wu|v,k as follows

∂ log p(Θ|Xu,Xv, Y )

∂wu|v,k
=

N∑

i=1

rik

(
(xiu − µu|k − wu|v,k(xiv − µv|k))xivλu|v,k

)

−
wu|v,k

∑N
i=1 rikσ2

v|kλu|v,k

βu|v,k
,
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and setting this equation to zero

0 = σu,v|k − wu|v,kσ
2
v|k −

wu|v,kσ̂2
v|k

βu|v,k
,

yields the MAP estimate,

ŵu|v,k =
σ̂u,v|k

σ̂2
v|k(1 + β−1

u|v,k)
. (5.24)

The MAP estimate of λu|v,k can be derived in the following way,

∂ log p(Θ|Xu,Xv, Y )

∂λu|v,k
= −1

2

N∑

i=1

rik(λu|v,k)
−1

−1

2

N∑

i=1

rik(xiu − µu|k − wu|v,k(xiv − µv|k))
2

−
w2

u|v,k

∑N
i=1 rikσ2

v|k

βu|v,k
+

∑N
i=1 rik

νu|v,k
.

Setting it to zero yields

0 = −(λu|v,k)
−1 + σ̂2

u|k − w2
u|v,kσ̂

2
v|k −

w2
u|v,kσ̂

2
v|k

βu|v,k
− 1

νu|v,k
,

(λu|v,k)
−1 = σ̂2

u|v,k = σ̂2
u|k − w2

u|v,kσ̂
2
v|k(1 + β−1

u|v,k)− ν−1
u|v,k. (5.25)

When βu|v,k →∞ and νu|v,k →∞, the prior becomes non-informative, and MAP and ML
estimates are equal. All the estimates make use of the following sufficient statistics

µ̂u|k =

∑N
i=1 rikxiu∑N

i=1 rik

, (5.26)

σ̂2
u|k =

∑N
i=1 rik(xiu − µ̂u|k)2

∑N
i=1 rik

, (5.27)

σ̂u,v|k =

∑N
i=1 rik(xiv − µ̂v|k)(xiu − µ̂u|k)2

∑N
i=1 rik

. (5.28)

Hyper-parameters Estimates via Empirical Bayes. In an empirical Bayes approach [36],
by derivating Eq. 5.21 in relation to the hyper-parameters, we can estimate the maximum
a posteriori values of βu|v,k and νu|v,k from the data as follows
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∂ log p(Θ|Xu,Xv, Y )

∂βu|v,k
=

1

2βu|v,k
−

w2
u|v,k

∑N
i=1 rikσ2

v|k

2β2
kσ

2
u|v,k

,

setting it to zero

0 = −βu|v,k −
σ2

v|k
∑N

i=1 rikw2
u|v,k

2σ2
u|v,k

and by definition of σ2
u|v,k and wu|v,k, this yields

β̂u|v,k =

∑N
i=1 rik

2σ2
u|kσ2

v|k
σ2

u,v|k
− 2

. (5.29)

For νu|v,k, we have

∂ log p(Θ|Xu,Xv, Y )

∂νu|v,k
= − 1

2νu|v,k
−

∑N
i=1 rikλu|v,k

2ν2
u|v,k

,

setting this equation to zero, we obtain

ν̂u|v,k = −
∑N

i=1 rik

2σ2
u|v,k

(5.30)

Both empirical priors penalize variables with large variances or with low evidence enforc-
ing respectively lower wu|v,k and higher σ2

u|v,k.

5.3.3 MixDTrees with Estimated Structure

We do not expect that all genes in a particular developmental process will share the same
dependence structure, nor that the most likely DTree will exactly match the developmental
tree per se. Indeed, we expect that some genes will be particularly correlated in particular
developmental lineages, but not in others. For example, group 1 from Figure 5.5 has genes
tightly over-expressed in the blue lineage ({XD, XE, XF}), as does group 2 in the orange
lineage ({XB, XC}). We also expect that some genes, which are important for earlier
developmental stages, to have similar expression profiles in stages near the root, but not
in mature cell types (leaf vertices of a developmental tree). See for example group 3 in
Figure 5.5, which exhibits over-expression in all earlier stages ({XA, XB, XD}).

To infer these group-specific dependencies, we estimate a mixture of K DTrees, where
each component have its tree structure estimated from the data. We will call this ap-
proach mixture of dependence trees with estimated structure (MixDTrees-Str). Note
that the mixture of dependence trees with estimated structure corresponds to a relaxation of
MixDTrees-Dev (Section 5.3.1), when a single dependence tree structure is assumed.
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5.3 Mixture of Dependence Trees

Figure 5.5: Illustrative example of a developmental tree and its gene expression data (left).
The developmental tree is constituted of a stem cell (stage A), an “orange”
lineage (stages B and C) and a “blue” lineage (stages D, E and F). The red-
green plot depicts the relative expression, where lines corresponds to gene
profiles and columns to developmental stages ordered as in the above tree. In
the right, we depict three groups of genes and their corresponding estimated
tree structure as found by MixDTrees in the gene expression data in the left
(see Section 5.3.3 for complete plot description).

For estimation of MixDTrees-Str, we need to perform the method described in Sec-
tion 5.2.3 for each DTree prior to the M-Step [148]. Once the structure is chosen, DTree
parameters are set with the MAP estimates (see Section 5.3.2).

Visualization of DTree with Estimated Structure. The branches in the estimated tree
structure reflect similarity in expression of developmental stages (stages in a same branch
will share a similar expression profiles). To highlight these similarities, we propose the
following plots. Gene clusters are depicted as a heat-map with red values indicating over-
expression and green values indicating under-expression [71]. In this plot, the lines (gene
profiles) are ordered as proposed in [16]. For the columns (developmental stage profiles),
we compute all possible columns orderings and select the one that has a minimal differ-
ence in the mutual information of adjacent columns. To further help the interpretation of
individual clusters, we compute strongly connected components [46] (SCC) in the graph
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

returned after thresholding the mutual information matrix. An optimal threshold parameter
is obtained by evaluating the resulting SCC with the silhouette index [115]. SCC indicate
within a DTree, which developmental stages in a particular branch have similar expression
profiles.

5.4 Experiments

We describe in the Section 5.4.1 our analyses performed in [50], where MixDTrees with
the developmental tree as structure(MixDTrees-Dev) is evaluated with two detailed stud-
ies covering several stages of the B and T cell development [99, 100]. Also, putative roles
of microRNAs related to lymphoid development are investigated. In Section 5.4.2, we
evaluate the use of MixDTrees with estimated structure (MixDTrees-Str) in a gene ex-
pression compendia containing early hematopoietic development cells and three lineages
of lymphoid cells: B-cells, T-cells and Natural killer cells [3, 156, 165, 220, 229]. The
method performance is compared with other methods via a score based on the enrichment
of biological pathways. In both cases, in order to evaluate general characteristics of the
methods, we use also simulated data sets.

5.4.1 MixDTrees with Developmental Tree Structure

Data

T Cell Development (TCell). This data set contains measurements of gene expression
during the development of T cells in mouse [98]. Based on cell surface markers seven
stages have been distinguished: CD4 and CD8 double negatives (DN2, DN3, DN4), large
double positives (DPL), small double positives (DPS), single positive CD4 (SP4) and single
positive CD8 (SP8) (see Figure 5.1 for the corresponding tree, and the original publication
for details [98]). Affymetrix MU11k chips with four or five replicates are used to measure
the expression levels of 13,104 mouse genes. We perform variance stabilization [104] on
all chips, and compute the median values of replicates. To facilitate comparisons, we use
the same list of 1,318 differentially expressed genes that was used by Hoffmann and col-
leagues [98]. Furthermore, we normalize the expression levels separately for each gene to
mean zero and standard deviation one, as is routine in gene expression analysis. Finally, we
map each probe set to a gene symbol if it exists in the respective chip platform annotation
provided by the GEO database [69].

B Cell Development (BCell). This data set contains expression levels of five consecu-
tive stages of the B cell lineage: Pre-BI, large Pre-BII, small Pre-BII, immature, and mature
B cells [100]. This study was also conducted on Affymetrix MU11k chips. We pre-process
the data exactly as it is described for TCell.
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Lymphoid Development Related microRNAs (LympMIR). We collect 17 microRNAs
that have been found to be involved in Lymphoid development or, at least, differentially
expressed between distinguishable lymphocyte cell types [41, 44, 76, 151, 171]: mmu-
miR-24, mmu-miR-26a, mmu-miR-142-3p, mmu-miR-146, mmu-miR-150, mmu-miR-
155, mmu-miR-181a, mmu-miR-181b, mmu-miR-181c, mmu-miR-191, mmu-miR-221,
mmu-miR-222, mmu-miR-223 and mmu-miR-342. Additionally, we include mmu-miR-
15a, mmu-miR-15b, and mmu-miR-16, as they participate in the regulation of cell prolif-
eration and apoptosis [35, 55]. Since in this work we refer exclusively to microRNAs of
the mouse, the species prefix mmu is omitted throughout the text. The lists of candidate tar-
gets of these microRNAs are obtained in the miRBase Targets database [91] (Version 2.0),
which uses the Miranda algorithm [72] to search for possible microRNA binding sites in
the gene sequences.

Simulated Data (SIM). To generate this data set, we use MixDTrees-Dev with random
parameterizations. All DTrees have theirs structure fixed to the tree represented in Fig-
ure 5.2. Then, we randomly chose µu|v,k from the range [−1.5, 1.5] and σ2

u|v,k from [0, 1].
We create five experimental settings to inspect the performance of the method in the pres-
ence of distinct levels of dependence. For these five settings, we sample wu|v,k from [−ε, ε]
(independent data), [−0.5, 0.5], [−1, 1], [−1.0,−0.5]∪ [0.5, 1] and [−1,−1+ ε]∪ [1− ε, 1]
(tree dependent data), respectively, where ε = 0.001. We set K to five and mixture coeffi-
cients α equal to (0.1, 0.15, 0.2, 0.2, 0.35). For each experimental setting, we generate ten
such mixtures, and sample 500 development profiles from each.

Results

We apply MixDTrees-Dev to two biological data sets: TCell and BCell. We com-
pare our results with the ones obtained in [98, 100], which use Self-organizing maps
(SOM) [120] as clustering method. For estimating MixDTrees-Dev, we perform the
following. The mixture estimation method is initialized with K random DTrees (see
Section 2.3.2). We, then, estimate then the mixture model using the EM-algorithm with
MAP estimates. For both TCell and BCell, we use the same number of clusters (20)
as [98, 100]. For evaluating the results, our analysis is complemented with information
from OMIM [158], the Gene Ontology database [9] and from the literature. Furthermore,
we perform a microRNA enrichment analysis in the clusters founds in both data sets to
investigate putative roles of microRNAs related to lymphoid development.

We resort to simulated data to compare our method with established clustering methods,
such as SOM, k-means and mixture of Gaussians, when inferring tree components in com-
plex mixtures for varying levels of dependence between the individual variates. As we
have class labels in the simulated data, we can evaluate the clusters with the use of external
indices.
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Figure 5.6: Selected clusters from MixDTrees-Dev for TCell. We depict the clusters
5, 8 and 18 found in TCell, expression values on the y-axis, and cell types
on the x-axis. Lines corresponding to developmental profile values between
stages DN2, DN3, DN4, DPL, DPS and SP4 are in green and between DPS
and SP8 in red.

T Cell Development (TCell). TCell is a gene expression data set from seven differen-
tiation stages of the T cell development (see Figure 5.1 for the developmental tree). The
only branch in this tree is the final differentiation of DPS precursors into CD4 single posi-
tive SP4 cells and CD8 single positive SP8 cells. Most clusters found by MixDTrees-Dev
from TCell show a distinctive pattern of differential expression along the developmental
path, but they do not differ between SP4 and SP8 cells (clusters 4, 7, 11, 13, 14, 15, 16,
19, and 20). The most noticeable changes occur at the DPL stage in which the cells are
proliferating and, subsequently, start to rearrange the TCRα-locus. This is also reflected in
the overall correlation matrix1. Although the expression values of all neighboring stages
are positively correlated, the correlation between the DPL stage and the DPS stage is much
smaller in comparison to the double negative stages, all of which show high correlation.
The correlation matrix suggests that SP4 and SP8 cells are more similar to each other than
to their precursor DPS cells, which is expected since the two types of mature T cells share
many cellular functions [98]. The largest differences with respect to SP4 and SP8 are found
in clusters 5 and 18 (Figure 5.6). GO enrichment analysis shows that cell-cycle genes are
clearly enriched in cluster 5. In contrast, cluster 18 mainly contains regulatory proteins
involved in transcription and signaling (see Figure 5.6).

In order to demonstrate that our method is able to extract additional biological informa-
tion, we concentrate our discussion on clusters showing distinct developmental profiles
that could not be detected by the use of SOM [98]. For such a cluster, we assign functions
to genes using the GO term annotation and complementary literature. In our analysis, we
find that genes of cluster 8 are over-expressed in DN3 and DN4 cells 5.6), a developmen-
tal profile that had not been identified by SOM. With SOM, the genes of this cluster are
dispersed over the two clusters (see Table B.1). Out of the 30 genes of cluster 8, seven are
related to vesicle transport or to the Golgi/ER system. Additionally, we find five cell-cycle
related genes, three involved in mitochondrial function, and seven genes of other functions,

1A simple way to check for similarities in the expression between developmental stages is to compute
the correlation matrix of the data set at hand. As discussed in Section 5.2.3, the correlation matrix is
proportional to the mutual information matrix.
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Figure 5.7: Selected clusters from MixDTrees-Dev for BCell. We depict clusters 3,
5, 6 and 20 found in BCell, expression values on the y-axis, and cell types
on the x-axis. Lines corresponding to developmental profile values between
all stages are in red.

which are mainly involved in signaling. These findings agree with the functions of DN3
and DN4 cells, which is the transport of precursor receptor molecules to the cell surface
membrane and the initiation of proliferation. All these facts supports our claims that our
method is able to identify functionally relevant groups of genes.

B Cell Development (BCell). Like in the TCell study, we investigated gene expression
for five consecutive stages during B cell development (Figure 5.1). The correlation matrix
of BCell suggests dependencies between gene expression values of successive stages, with
the largest correlation between pre-BI and large pre-BII cells and between immature and
mature B cells. When we compare, our clustering results to those obtained by SOM [98],
we observe similar average developmental profiles, although the contingency table indi-
cates differences in the cluster compositions (Table B.2). Clusters 3, 5 and 6, for example,
contain genes that are up-regulated in pre-BI and large pre-BII cells and down-regulated
in later developmental stages (Figure 5.7). Consistent with the phenotype of these cells,
the function assigned to the genes of this cluster are mainly related to proliferation. GO
categories that are associated with mitosis, cell-cycle and chromatin remodeling are clearly
over-represented in these clusters.

Cluster 20 shows an average developmental profile that was not detected with SOM [98,
100]. The genes of this cluster are down-regulated in pre-BI cells, in which the first re-
arrangement of the DH and JH segments on the H chain loci has taken place, and up-
regulated in all the following developmental stages (Figure 5.7). With SOM [98], these 23
genes are found distributed over the four clusters 11, 13, 14 and 17 (Table B.2). The most
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miR-142-3p

MicroRNA enrichmentCluster assignment

ORF                 3‘UTR

Figure 5.8: Strategy to identify microRNAs and their target genes over-represented in clus-
ters of co-expressed genes (indicated left) as part of a post-transcriptional reg-
ulatory mechanism. In the middle mRNAs clustered according to our mixture
results are depicted and potential microRNA binding sites in their 3’UTRs are
illustrated.

plausible common function of some genes from cluster 20 is the regulation of survival and
apoptosis during B cell development. The gene products Nfkbia, Traf5 and the Src-family
protein tyrosine kinases Lyn and Syk are known regulators of NF-kappa B activity, which
in turn has been found to be involved in B cell fate decision and survival [2, 97, 152]. Sim-
ilarly, Krupel-like factor 2 (Klf2) protects cells against TNF-alpha induced apoptosis [86].
Furthermore, Icam-2 and Rhoh, whose encoding genes are two other members of cluster
20, regulate the adhesiveness of primary B cells depending on their activation state and
protect them from apoptosis [158, 164].

MicroRNA Target Discovery. LympMIR contains a set of 17 microRNAs that are po-
tentially involved in lymphocyte cell development. It has been proposed that microRNAs
bind target mRNAs specifically via base pairing. This, subsequently, leads to interference
of the translational machinery or mRNA degradation, and thus can control whole groups
of genes simultaneously [17]. Recent microarray studies have demonstrated that the mi-
croRNA expression negatively correlates with mRNA target expression in a tissue specific
manner [129, 133, 200].

Having identified clusters of co-expressed genes with MixDTrees-Dev for the B cell and
T cell data sets, we ask whether a certain microRNA could be a potential regulator of one of
these clusters (see Figure 5.8). For this task, we first obtain lists of potential target genes for
each microRNA from the miRBase Targets database [91], which contains predictions made
by sequence based methods. Given our clustering results, we use an enrichment analysis
to obtain a list of microRNAs, whose potential targets are over-represented in a cluster.
This is an approach similar to finding Gene Ontology terms over-represented in a cluster of
genes, as described in Appendix A. A lower p-value indicates a high count of microRNA
targets in a particular cluster, i.e., higher “microRNA enrichment”. By choosing a p-value
cut-off, we can construct a list of enriched microRNAs for each cluster as well as a list of
target genes related to the enriched microRNAs.
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

For TCell, our target prediction scheme identified, in four out of the 20 clusters, significant
enrichment for eleven out of the 17 initial microRNAs (Table 5.1). In these four clusters,
we detect 35 candidate target genes in total, which is a considerable reduction of the set
of 229 targets that had been previously predicted by sequence based methods alone [91].
For BCell these numbers are respectively, eleven out of the 17 microRNAs, four out of
the 20 clusters, and 29 out of the 273 predicted targets (Table 5.1). In particular, we find
the five microRNA families miR-15, miR-181, miR-221, miR-26, and miR-142-3p to be
enriched in both TCell and BCell. See Table B.3 and Table B.4 for p-values of microRNA
enrichment of all data sets.

As mentioned earlier, the BCell clusters 3, 5, and 6 show a similar expression profile. We
find that cluster 5 from TCell overlaps substantially with clusters 3 and 5 from BCell

(Table 5.1). In TCell cluster 5, we find miR-15a, miR-181a, miR-26a, miR-24, and miR-
221 as potential regulators and 20 potential target genes, seven of which are also present
among the 18 BCell candidate genes of clusters 3 and 5. The developmental profiles of
the clusters of both lineages show similar phenotypical features, namely up-regulation in
the proliferating large cell populations (DN4, DPL, large pre-BII) and from then on strict
down-regulation. In TCell cluster 5 there are eight genes and in the BCell clusters 3
and 5 there are nine target genes that are known to be involved in DNA metabolism, cell-
cycle and mitosis (Table 5.1). This suggests a regulatory role for the identified microRNAs
in reducing the transcript levels of genes that are important for cell proliferation. This is
supported by the fact that a similar role for microRNA was found in Drosophila germline
stem cells [94].

At the individual gene level, we identify some candidate microRNA targets for further
detailed analysis: the three known genes (H2-Eb1, Ltb, Tap2) of BCell cluster 19 are all
involved in the antigen presentation by MHC class II molecules [158, 166]. In the context
of the cell cycle, Chek1 (clusters TCell 5 and BCell 5) and Cdc25a (cluster TCell 5)
are important for the transition between G1/S and G2/M phases [32]. Furthermore, both
genes are candidate targets of the same microRNA, miR-15a, which is related to apoptosis
in chronic lymphoid leukemia cells [44]. Another interesting gene codes for the nuclear
factor Y (Nfyb; cluster BCell 5), which regulates Hoxb4 [85], Cdc34 [170] and the major
histocompatibility complex in mice [237]. These are all important genes for lymphoid
development. The mRNA of the growth factor independence-1 transcription factor (Gfi1;
cluster TCell 10) is a potential target of miR-142-3p. Gfi1 has as function the restriction
of cell proliferation and maintenance of the functional integrity of lymphocyte cells [116].
Moreover, Gfi1 is implicated in the transition from CD4/CD8 double negative to double
positive T cells [188].

Simulated Data (SIM). We used MixDTrees-Dev with MAP and MLE estimates, mix-
ture of Gaussians (MoG), k-means and SOM to compute clusters. We can compare to the
classes used in data generation with cluster results to compute specificity (Eq. 3.14) and
sensitivity (Eq. 3.13) of the clustering solutions. To compare the significance of differ-
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Figure 5.9: We display the mean sensitivity (left plots) and mean specificity (right plots)
against five experimental settings: (1) wu|v,k ∈ [−ε, ε] (independent data), (2)
wu|v,k ∈ [−0.5, 0.5], (3) wu|v,k ∈ [−1, 1], (4) wu|v,k ∈ [−1.0,−0.5]∪ [0.5, 1]
and (5) wu|v,k ∈ [−1,−1 + ε] ∪ [1 − ε, 1]. The dependence increases with
experiment number.

ences, we apply an one tailed paired t-test to evaluate the null hypothesis that two methods
have the same mean specificity (or sensitivity) in a given experimental setting. Hereafter,
for short, we simply state—method M1 has a higher sensitivity than method M2 (p-value
below 0.05)—when the null hypothesis is rejected.

We observe that the MixDTrees-Dev with MAP estimates (MixDTrees-Dev MAP) have
a higher specificity and sensitivity than k-means and SOM in all experimental settings
(Figure 5.9 top) (p-value < 0.005). In the independent case (wu|v,k ∈ [−ε, ε]), this is not
expected, since the data agrees well with the assumptions of k-means and SOM. This also
explains the large standard deviations of MixDTrees-Dev MAP in that case. As expected,
the MixDTrees-Dev MAP clearly improves the cluster recovery in settings with noticeable
dependence structure, while the performance of k-means and SOM deteriorates slightly.

In comparison to others mixture model methods (Figure 5.9 bottom), MixDTrees-Dev
MAP also obtains a significantly higher specificity and sensitivity in almost all experimental
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

settings. The mixture of Gaussians with diagonal covariance matrices performs well in the
independent case (experimental setting 1), which meets the model assumptions, but it has
poor results in experiments with higher dependence (p-values < 0.05 for settings 3, 4 and
5). The mixture of Gaussians with full covariance matrix (MoG-Full) has a reasonable
sensitivity in all settings, but very poor specificity (p-value < 0.05 in settings 3, 4 and 5 for
sensitivity and in all settings for specificity). The reason for these results is that MoG-Full
tends to have some clusters with few data points, as a reflection of over-fitting [143]. Note
that we use a MAP estimate for MoG-Full to minimize this problem. MixDTrees-Dev
with MLE estimates (MixDTrees-Dev MLE) has good overall performance, but it is out-
performed by MixDTrees-Dev MAP in all cases, except for experimental settings 1 and 5
(p-value < 0.05 for settings 2, 3 and 4). In experimental setting 5, where data are highly
dependent, by definition, both methods work similarly.

These results demonstrate that the MixDTrees-Dev is a better alternative than SOM and
k-means in all cases. In relation to other mixture models, MixDTrees-Dev represents a
good trade-off between a complex model class, such as multivariate Gaussian with full
covariance matrices, and the simple Gaussian with diagonal covariance matrices. Further-
more, MAP estimates of the MixDTrees-Dev represent a more robust alternative to the
MLE counterpart.

5.4.2 MixDTrees with Estimated Structure

To evaluate the application of our method in real biological data, we make use of gene
expression from lymphoid cell development. First, we compare a DTree inferred from
the whole data with the lymphoid developmental tree. Then, we apply MixDTrees-Str

to find modules of co-regulated genes, and evaluate the results with GO and KEGG en-
richment analysis (Section 5.4.2). Finally, we compare our method with other unsuper-
vised learning methods. Additionally, to investigate characteristics of MixDTrees-Str
and compare it with other methods, we use simulated data from mixture models with dif-
ferent degrees of variable dependence.

Data

Lymphoid Tree (LymphoidTree). We produce an expression compendium of mouse
lymphoid cell development by combining measurements of wild-type control cells from
several studies [3, 156, 165, 220, 229] based on the Affymetrix U74 platform. Our data
contain four stages of early development hematopoietic cells [3] (hematopoietic stem cell
(HSC), pluripotent progenitor (PPP), common lymphoid progenitor (CLP), common mye-
loid progenitor (CMP)); three B cell lineage stages [220] (pro-B cells (Bpro), pre-B cells
(Bpre) and immature B cells (Bimm)); one Natural Killer (NK) stage [165]; and four T
cell lineage stages (double negative T cells (TDN) [156], cd4 T cells (TCD4), cd8 T cells
(TCD8) and natural killer T cells (TNK) [229]). The developmental tree describing the
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Figure 5.10: We depict in the left the developmental tree with the stages contained in the
Lymphoid data set. The dashed edges represent edges “wrongly” assigned
in the DTree estimated from the Lymphoid data. Such edges connect pairs
of vertices where the path length between these vertices in the developmental
tree and estimated tree differs by one, while the dotted edge represents the
case with path length differs by three. In the right, we have the DTree
estimated from the Lymphoid data.

order of differentiation of the cells is depicted in Figure 5.10 left. We pre-process the data
as follows: we apply variance stabilization [104] on all chips, take median values of stages
with technical replicates, use HSC values as reference values and transform all expression
profiles to log-ratios. We keep genes showing at least a 2-fold change in one developmental
stage. The final data set consists of 11 developmental stages and 3697 genes.

Simulated Data. We generate data from mixtures with four types of variable dependence
ranging from: Gaussians with diagonal covariance matrix (Σdiag), DTree with low variate
dependence (ΣDTree−), DTree with high variate dependence (ΣDTree+) and Gaussians with
full covariance matrix (Σfull). These choices range from the independent case (Σdiag) to
the complete dependent case (Σfull). For each setting, we generate ten such mixtures, and
sample 500 development profiles from each. In all cases, we chose the µ from the range
[−1.5, 1.5], L = 4, K = 5 and mixture coefficients equal to α = (0.1, 0.15, 0.2, 0.2, 0.35).
For Σdiag , diagonal entries are sampled from [0.01, 1.0], and non-diagonal entries are set to
zero. For ΣDTree, we randomly generate tree structures, one for each mixture component,
and then chose σ2

u|v,k from [0.01, 1.0] and wu|v,k from [0.0, 0.5] for ΣDTree− and wu|v,k from
[0.0, 1.0] for ΣDTree+ . The generation of Σfull is based on the eigenvalue decomposition
of the covariance matrix (Σ = QΛQT ) as in [168], where Λ is drawn from [0.01, 0.5]. The
orthogonal matrix Q is obtained by sampling values from a lower triangular matrix M from
the range [20, 40], followed by the Gram-Schmidt Orthogonalization procedure.

We apply MoG with full and diagonal covariance matrices and MixDTrees-Str with
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

MLE and MAP estimates to all data sets. The mixture estimation method is initialized
with K = 5 random DTrees (or Multivariate Gaussians) as described in Section 2.3.2.
Next, we train the mixture model using the EM-algorithm. We also performed clustering
with k-means [146], self-organizing maps (SOM) [221] and spectral clustering [154]. We
compare the class information from the data generation to compute the corrected Rand
index [103] and evaluate the clustering solutions.

Enrichment of Gene Ontology and KEGG Pathways. Gene group validity is assessed
by the results of Gene Ontology (GO) enrichment analysis [24], which helps the indication
of functional roles of genes in a particular group. A more reliable and smaller alternative
is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [114], which has manually
annotated gene pathways. In particular, several pathways related to lymphoid development
such as signal transduction, immune system and cell cycle pathways, are described by
KEGG. For the GO (or KEGG) enrichment analysis, we use the statistic of the Fisher-
exact Test to obtain a list of GO terms (or KEGG pathways), whose participating genes are
over-represented in a group as described in Appendix A.

Results

Inferring the DTree Structure. An initial question is how well we can recover the orig-
inal developmental tree, as agreed upon by developmental biologists (Figure 5.10 left), if
we apply the structure estimation method described in Sec 5.2.3 to the complete gene ex-
pression data (see Figure 5.10 right for the estimated DTree). To quantify the difference
between these trees, we compute the path distance between all pairs of vertices, and calcu-
late the Euclidean distance between the resulting distance matrices [202], which indicates
a distance of 15.74. To assess the statistical significance of this distance, we generate 1000
random trees with the same distribution of out-degrees per vertex as the developmental
tree. For each random tree, we compute the distance with the developmental tree. This
test indicates a p-value of 0.002 of finding a distance as low as 15.74. Looking at these
differences in detail, we can observe that 5 out of the 10 edges are correctly assigned, 4
edges connects vertices pairs with a path distance equal to 1, i.e., PPP and CLP, CLP and
TDN, TDN and TCD8, and TDN and TNK, and one edge connect vertices with a path
distance of 3 (NK is connected to TCD8 instead the CLP). Furthermore, “wrong” edges
have a tendency to be connected to vertices in the same level of the developmental tree
(e.g. TCD8 and TNK both connected with the TCD4).

Another important question is how well does the DTree capture dependence in the data?
One simple way to assess this is to measure the proportion of the mutual information rep-
resented in the tree edges, in comparison to the total mutual information of all pairs of
variables with the “treeness” index (Eq. 5.17).

For example, the score for the developmental tree (Figure 5.10 left) is 0.22, whereas for
the estimated DTree (Figure 5.10 right), the “treeness” index is 0.42. For measuring the
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Figure 5.11: We depict the DTree and expression profiles of groups 1 (a), 4 (b) and 5
(c) from MixDTrees-Str MAP for the Lymphoid data. Dashed shapes
around developmental stages represent the strongly connected components.
See Section 5.3.3 for complete description of the plotting procedure.

statistical significance of this, we generate random data by shuffling values of gene expres-
sion profiles xi and estimating a DTree from this random data, which indicates a p-value
of 0.0001.

Inferring Gene Modules with MixDTrees-Str. We estimate MixDTrees-Str MAP

from the Lymphoid data following the protocol used for the simulated data. The Bayesian
information criteria [145] indicates 13 groups as optimal.

First, we measure the average treeness of the MixDTrees-Str (we calculate Eq. 5.17 and
take the sum weighted by α). For the MixDTrees-Str MAP this value is 0.54, which
indicates an increase of 28% over the treeness index for the single DTree. This supports
our claim that mixture of Dependence Trees with estimated structures is more successful
in modeling dependencies in the data.

In relation to the groups of co-expressed genes found by MixDTrees-Str, in general,
stages from the same developmental lineage are at same branches of the estimated DTree

structure. Furthermore, groups present prototypical expression patterns such as over-expres-
sion in cells from a particular lineage, but not in other lineages (e.g., groups 2 and 5 for B
cells, groups 4 and 6 for T cells and group 11 for Natural Killer cells) or groups displaying
under-expression in particular lineages (e.g., groups 7 and 12 for T cells and groups 10 and
12 for B cells).

In Figure 5.11, we display some of these groups, which we discuss in more details. Group
1 (Figure 5.11 (a)) is an interesting case, where the DTree structure differs considerably
from the developmental tree. On the right branch, we found a SCC (stages PPP, CLP,
CMP, TDN, Bpro) with only early developmental stages, and all of them display high
over-expression patterns. On the other hand, the majority of stages in the SCC on the
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

left branch (Bimm, Bpre, TCD8, NK, TCD4, TNK) are immature developmental stages
(leaves in the developmental tree depicted in Figure 5.10 left). Enrichment analysis using
GO and KEGG shows that group 1 is over-represented for cell cycle and dna repair (p-
values < 0.001). This matches the biological knowledge that earlier differentiation stages
of development are cycling cells, while immature cells are resting [140, 177]. Group 4
(Figure 5.11 (b)) contains a SCC (left branch) with all T cell stages plus the closely related
NK cell. At these stages, genes display an over-expression pattern. Enrichment analysis
indicates over-representation for Gene Ontology terms as T cell activation, differentiation
and receptor signaling; and KEGG pathways such as T cell signaling and NK cell mediated
cytotoxicity (p-values < 0.001). Similarly, group 5 (Figure 5.11 (c)) has a SCC with all
B cell stages. Furthermore, for B cell stages, genes are preferentially over-expressed. GO
analysis indicates enrichment for terms such as B cell activation (p-values < 0.001), while
KEGG analysis indicates enrichment in pathways such as Hematopoietic cell lineage and
B Cell receptor signaling (p-values < 0.05). These results show how MixDTrees-Str

can be used to find groups of biologically related genes, as the associated DTree structure
adds relevant information regarding expression similarity of developmental stages.

Comparison with other Clustering Methods . For comparison purposes, we also per-
form clustering of the Lymphoid data with other methods: k-means, self-organizing maps
(SOM), MoG with full covariance matrix, MoG with diagonal matrix and the bi-clustering
methods Samba [210] and non-negative matrix factorization [31]. Additionally, we eval-
uate distinct variations of MixDTrees: MixDTrees-Str with MAP and MLE estimates,
and MixDTrees-Dev with the developmental tree from Figure 5.10 (left) as structure.

To evaluate the performance of the methods, we use a heuristic of comparing p-values of
KEGG enrichment analysis in a similar way as in [73]. The results of the comparison
of MixDTrees-Str MAP and MoG diag can be see in Figure 5.12. In short, the best
method should present a higher enrichment for a higher number of KEGG pathways. As
illustrated in Figure 5.12, MixDTrees-Str MAP is superior to MoG diag in 9 out of 11
pathways. Furthermore, most of the 11 KEGG pathways enriched with a p-value < 0.05 in
one of the methods (points depicted in Figure 5.12) are directly involved in immune system
and developmental processes. We apply the same procedure for all pairs of methods and
count the events {p-value m1 < p-value m2}, where m1 and m2 are the two methods in
comparison. As can be seen in Figure 5.13 (left), MixDTrees-Str MAP outperforms all
methods, while MixDTrees-Str MLE and k-means also obtained higher enrichment than
other methods. Overall, SOM, MoG Full and Samba obtain poor enrichment results. In
fact, these methods are outperformed by all other methods. We repeat the same analysis
for GO enrichment (see Figure 5.13 right). The result are in agreement with the KEGG
enrichment analysis, that is, MixDTrees-Str MAP has higher enrichment than all other
methods, while SOM and MoG Full obtain poor results.
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Figure 5.14: We depict the mean corrected Rand (top), sensitivity (bottom left) and speci-
ficity (bottom right) of true label recovery for distinct clustering methods (y-
axis) against data generated with distinct model assumptions (x-axis) (1 for
Σdiag, 2 for ΣDTree− , 3 for ΣDTree+ and 4 for Σfull). These choices range
from the independent case Σdiag to the complete dependent case Σfull.

Simulated Data. As expected, every method performs well on the data generated with
the corresponding model assumptions (see Figure 5.14). An exception is the MoG with full
covariance matrices, which has low corrected Rand for all data sets. An analysis of the
specificity index indicates that the poor performance of MoG Full is caused by over-fitting,
since it tends to merge real groups (see Figure 5.14 bottom right). Moreover, spectral clus-
tering presents very low sensitivity values (see Figure 5.14 bottom left), which indicates a
tendency to split real groups. In both data from ΣDTree, MixDTrees-Str MAP has higher
values than MixDTrees-Str-MLE, which indicates a higher robustness of the MAP esti-
mates (a paired t-test indicated superiority of MixDTrees-Str MAP with p-value < 0.05
in both ΣDTree− and ΣDTree+). Also, MixDTrees-Str MAP obtains the highest values in
all settings (p-value < 0.05), outperforming MoG Full, MoG Diagonal, k-means, SOM and
spectral clustering, with the exception of MoG Diagonal in the Σdiag data. These results
show that MixDTrees-Str-MAP has a better performance than compared methods in data
coming from distinct dependence structures, and it is robust against over-fitting.
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Clustering with Constraints for
Integration of Heterogeneous Biological
Data

The transcriptome of cells measured with microarrays gives an important and informa-
tive snapshot of the genetic information flow. However, it only reflects one particular
aspect of the cell control dynamics: the number of specific RNA molecules present in a
cell. Recently, several other large-scale technologies, which explore distinct aspects of the
cell information flow, became available. For example, protein-protein interaction screens
reveal the composition of proteins complexes [83, 108]; chromatin immunoprecipitation
experiments detect where a particular protein binds in DNA genomic regions [128]; and
in-situ hybridization techniques elucidate the spatial patterns of gene expression within an
organism [214]. Other useful sources of large-scale data are biological databases. For
example, Gene Ontology is a controlled vocabulary of biological concepts and gene an-
notations [9]; the Kyoto Encyclopedia of Genes (KEGG) catalogs manually annotated bi-
ological pathways [114]; and PubMed indexes titles and abstracts of most biological and
medical journals [167]. Combining one (or more) biological sources of information with
gene expression data is a natural next step to achieve better functional hypotheses. Indeed,
several methods have been proposed for this problem (see [217] for a general review).
Among others, probabilistic methods have been widely applied in this context, since they
are flexible, can be easily extended to accommodate new data sources, and allow a statisti-
cal evaluation of the results [15, 192–194, 209, 218, 231].

We propose in this chapter the use of a simple, intuitive and mostly assumption-free frame-
work of semi-supervised learning for the joint analysis of data from heterogeneous biolog-
ical sources [39]. Semi-supervised learning is appropriate if there is a number of labels
available for some of the observations, while the majority of data points carry no label.
The main idea is to take advantage of both the labeled (supervised) and unlabeled data
(unsupervised) in order to obtain better estimates than when analyzing each data source
separately. For example, in [187] it was shown that few high quality labeled genes were
able to improve the clustering of gene expression time courses, in comparison to a purely
unsupervised method. One particular type of semi-supervised learning is called clustering
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with constraints, or constrained clustering. It only makes weak assumptions about the la-
bels by encoding secondary information as pairwise constraints. These methods search for
clustering solutions, which violate the fewest number of constraints. We can, for example,
derive constraints from Gene Ontology annotation (GO) [9] by constraining pairs of genes
with similar GO annotation to be in the same cluster. Likewise, we can also constrain pairs
of genes with distinct GO annotations to be in different clusters (negative constraints). The
use of clustering with constraints for integration of heterogeneous data is based on two as-
sumptions not explored by previous approaches [15, 192, 209, 218, 231]: (1) the secondary
information is usually not available for all genes from expression experiments; and (2) gene
expression data sets provide one view of the biological process under investigation, which
is very unlikely to provide the same level of detail as in the secondary information. Us-
ing additional data as secondary information, we simply limit the gene expression based
clustering results to biologically more plausible solutions.

In this chapter, we investigate the use of clustering with constraints for finding groups of
co-expressed genes with the aid of secondary information. First, we describe related work
in Section 6.1. A general formulation of the clustering with constraints problem will be
introduced in Section 6.2. In Section 6.2.1 we describe the method previously proposed
in [123], which we adopt in our biological applications. One contribution of this chapter is
an experimental analysis of data sets commonly used in studies integrating heterogeneous
biological data. The main purpose of this analysis is to evaluate the feasibility of clustering
with constraints in this problem scenario [52]. We apply the clustering with constraints to
yeast cell cycle data [42], using either Gene Ontology [9] or transcription factor location
analysis [128] as secondary information (see Section 6.2.2 for constraints definitions). As
the yeast cell cycle data set has full class labels, we can evaluate the improvements re-
sulting from the addition of the secondary information in the analysis (see Section 6.3.1
for results). The second contribution of this chapter is a novel bioinformatics application
for finding syn-expressed genes [48]. More precisely, we analyze gene expression time
courses of Drosophila development using in-situ RNA hybridization images as secondary
data. The constraints derived from the in-situ data are described in Section 6.2.2 and the
results are presented in Section 6.3.2. Finally, we present a discussion and future work in
Chapter 7.

6.1 Related Work

Semi-supervised learning (SSL) is a topic of great interest in the machine learning com-
munity [39]. SSL methods try to combine characteristics of supervised and unsupervised
learning methods in problem scenarios where only part of the observations are labeled.
Such data arises in many practical applications. For example, in text categorization pro-
blems, it is easy to retrieve thousands of texts from the web, but manually labeling texts is
expensive [45]. Similarly, for gene expression derived from microarrays, we have the mea-
surements of the transcription of whole genomes, but only a small fraction of genes have a
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functional characterization [187]. One can implement semi-supervised learning with dif-
ferent machine learning paradigms [39]: transductive learning, such as transductive support
vector machines [112]; graph-based approaches, such as spectral methods [207]; methods
based on change of representations, which use labeled data to recompute distance matri-
ces [118, 228]; and generative models, such as probabilistic clustering methods [19]. We
are mainly interested in the latter category, as they can be used together with the mixture
model framework used in other chapters of this thesis.

Semi-supervised clustering methods consider SSL from an unsupervised learning point of
view. In particular, one assumes that the total number of classes and the coverage of labels
in these classes are both unknown [19]. With generative models, we view the clustering
problem in a probabilistic setting, and include the constraints in the model prior, in order
to restrict the solution space to clustering solutions respecting the constraints derived from
class labels. The semi-supervised clustering problem can be described in a complete like-
lihood formulation and be solved with extensions of the EM algorithm (see Section 6.2).
One alternative is to use the labels as hard constraints [45, 161, 185]. A more flexible,
simple and assumption free approach is to consider only constraints between pairs of ob-
jects. Most methods of clustering with constraints are based on defining a hidden random
Markov field (HRMF) in the constraints [153]. They employ distinct approximation meth-
ods for estimating the posterior assignment of the EM algorithms. Among other proposals,
there are: chuncklet model [196], iterated conditional modes [19], Gibbs sampling, [137],
mean field approximation [123], and re-sampling chunklet model [153]. The work in [153]
performed a comparative analysis of the previous methods [19, 123, 137, 153, 196] with
benchmarking data sets, and with the inclusion of noise in the constraints. In general,
methods like [19, 123, 153] performed well after the addition of noise, while the exact
method based on hard constraints [196] had poor results. This is explained by the fact that
particular sets of “hard” constraints will have no feasible solutions for a specific number
K of clusters [57]. For example, the constraints in Figure 6.1 (c) cannot be satisfied for
K = 2. Thus, exact methods should be avoided, such the one in [196], when one expects
errors in the constraints. On the other hand, [153] shows that approximate methods, such
as [19, 123, 137], which are based on local update rules of the posterior assignments, can
get easily trapped in local maximum solutions, in particular when large constraint weights
are used. The use of distinct Bayesian classifiers in a semi-supervised clustering with hard
labels was proposed in [45]. The authors investigated the effects of the size of labeled and
unlabeled data on UCI benchmark data sets. Their results showed that unlabeled data can
deteriorate the overall results, if the assumptions of the model do not match the distribu-
tion of the data. They suggest that cross-validation on labels (or constraints) is a relevant
approach for performing model selection.

Analysis of heterogeneous biological data has been tackled with several distinct method-
ologies. See [218] for a broad review of the area. We describe below only those studies
based on semi-supervised methods. In [185, 187], it was shown how a few number of high
quality labels (< 2% of observations), which were used as hard labels in a mixture model,
could improve clustering of gene expression time courses. In [193], a gene expression data
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set was analyzed in conjunction with protein-protein interaction data. The author also pro-
posed a model-based clustering method with a HRMF over the protein-protein interaction
graph. A belief network propagation method was used for estimation of the posteriors.
In [198], pathway information from KEGG was modeled also as a HRMF, which was esti-
mated with the interactive conditional modes method. In [194], gene expression data was
analyzed together with transcription factor binding site (TFBS) data with an EM based
method. Also, a model-based approach similar to [187] was proposed in [161] for cluster-
ing gene expression data with labels derived from functional annotation data. That work,
however, makes an ad hoc selection of few functional classes used as labels, and ignores the
fact that genes can be assigned to multiple functions. The same authors also investigated
the use of a semi-supervised method based on the modification of the distance function
according to the labeled data on similar data sets [102]. Furthermore, [189] performed a
case study using the mean-field approximation for clustering with constraints [123]. They
used a fully labeled yeast cell cycle data set (as in the study described in Section 6.3.1)
and TFBS data for deriving the constraints. They could show that with a more conserva-
tive choice of constraints the TFBS data yielded improvements in the recovery of Gene
Ontology terms.

The work presented in this chapter differs from [102, 161, 185, 187], as they are all based
on hard constraints and ignore the existence of noise in the constraints. In relation to [189,
193, 198], all share a similar computational method with the one used in this thesis, but
they differ in the data used as secondary information.

In the context of syn-expression, [214, 215] performed a large-scale study of gene ex-
pression in the Drosophila embryos by in-situ RNA hybridizations. The images were
manually curated and annotated using a controlled vocabulary—ImaGO—following the
example of the Gene Ontology [9]. The final result was a hierarchical clustering of genes
based on the manual annotations; the gene expression time-courses were not included in
the analysis. Recently, a similar study was performed in Drosophila embryogenesis using
high-resolution fluorescent in-situ hybridization technique [127]. This technique allows
the sub-cellular location of expression. They also extended the vocabulary from ImaGO
to include sub-cellular location terms. Recently, studies investigated pattern formation in
Drosophila based on 3D in-situ images [96, 117] for a small number of genes. Further work
concentrated on mining the image database for genes with a spatial expression pattern sim-
ilar to a query [160, 163] and on the extraction of relevant features in the images [160], for
example by clustering images on an eigenvector based representation [162]. All these syn-
expression studies restricted themselves to the analysis of the images with gene expression
location. In contrast, the application proposed in this chapter is the first one combining
gene expression from microarrays with gene expression location for deriving groups of
syn-expressed genes.

Recently, [181] proposed the use of gene expression time courses of Drosophila develop-
ment as an input for a classifier distinguishing modules of gene expression location. The
modules of expression location were derived from the manual annotation of in-situ patterns
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from [214] and no image processing was performed.

6.2 Mixture Model Estimation with Constraints

The main idea of clustering with constraints is to include additional data in the form of
pairwise constraints in order to restrict or penalize particular cluster solutions. These con-
straints can be of two types: positive constraints, which indicate that two objects should
be in the same cluster, and negative constraints, which indicate that two objects should be
in separate clusters. Moreover, the constraints can be interpreted in two ways: “hard con-
straints”, which have to be fulfilled in the solutions, and “soft constraints”, which might be
violated. For the latter, a penalty violation value can be defined for each pairs of objects.
See Figure 6.1 for an example of how the “hard” and “soft” pairwise constraints can be
used to restrict clustering solutions.

In this chapter, we are interested in probabilistic methods using “soft constraints” [123,
137]. One way to achieve this is to extend the basic EM approach (Section 2.3.1) to include
the constraints. In the following, we describe the basic formalism of this extension. In
Section 6.2.1, we describe one particular method for performing mixture model estimation
with soft constraints.

Formally, for a data set X with N observations, we specify the positive constraints as a
matrix W+, where w+

ij ∈ [0,∞] is the positive constraint penalty for the pair of observa-
tions i and j (1 ≤ i ≤ N and 1 ≤ j ≤ N ). Likewise, we specify a negative constraints
matrix W−, where w−ij ∈ [0,∞]. We use W to denote the pair (W+, W−). Recalling
Section 2.3.1, the EM algorithm is based on maximizing the complete data likelihood
(Eq. 2.7),

P(X,Y|Θ) = P(X|Y, Θ)P(Y|Θ),

where Y indicates the cluster assignments of observations in X.

The constraints can be added into the previous equation making the prior of the cluster
assignments Y to be dependent on W ,

P(X,Y|Θ) = P(X|Y, Θ)P(Y|Θ, W ),

= P(X|Y, Θ)P(Y|Θ)P(W |Y, Θ).

The only term depending on the constraints is P(W |Y, Θ). This can be interpreted as
a weighting function penalizing cluster assignments Y, which violate the constraints W .
As it is common in probabilistic clustering with constraints methods [39], we assume that
the constraints impose a hidden Markov random field (HMRF) on the (hidden) variable Y
representing the unknown cluster assignments. In short, a hidden Markov random field is a
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graphical representation of the joint distribution of a hidden variable. The HMRF assumes
that the conditional distribution of the variables obeys the Markov property, i.e., the prob-
ability of a variable is only dependent on neighboring variables (see [131] for a complete
description of HMRF). In our context, the HMRF graph is represented by a set of nodes,
where node i represents the observation yi, and the neighborhood graph is represented by
the constraints, where wij indicates the weight of the edge between nodes i and j. Hence,
it follows from [92] that the prior probability of a particular cluster assignment Y follows
a Gibbs distributions,

P(W |Θ,Y) =
1

Z
exp

(
N∑

i

N∑

j !=i

−w+
ij1(yj "= yi)− w−

ij1(yj = yi)

)
, (6.1)

where 1 is the indicator function and Z =
∑

Y∈Y P(W |Θ,Y) is the normalizing func-
tion.

In this formulation, however, we cannot assume independence between cluster assignments
Y in the E-step, as it is required by EM algorithm (Section 2.3.1). Exact inference of the
posterior would now require the complete evaluation of the following equation

P(yi = k|X, Θ, W ) =
∑

Y∈Yyi=k

P(X|Y, Θ)P(Y|Θ, W ), (6.2)

where Yyi=k is the space of all cluster assignments Y and yi is fixed to the value k. Sev-
eral approximations have been proposed for estimating the posterior, such as the chunck-
let model [196], iterated conditional modes [19], Gibbs sampling, [137], and mean field
approximation [123]. We adopt the approach in [123], as it allows for modeling soft-
constraints, does not require sparsity of the matrices W+ and W−, and performs well on
benchmarking [153].

Note also that in this formulation, as P(X|Y, Θ) is independent of W , no modification is
required in the M-Step of the EM algorithm. As a result, the component models proposed
in Chapter 4 and 5 can be used in this clustering with constraints setting.

6.2.1 Mean Field Approximation

It was shown in [123] that the distribution in Eq. 6.1. follows the Maxent principle,

P(W |Θ,Y) =
1

Z
exp

(
N∑

i

N∑

j !=i

−λ+w+
ij1{yj "= yi}− λ−w−

ij1{yj = yi}
)

where λ+ and λ− are Lagrange parameters defining the penalty weights of positive and
negative constraint violations.

A mean field approximation is used in the inference of the posterior distributions from
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Figure 6.1: The effectiveness of the use of pairwise constraints, cases (b) and (c), is
shown by contrasting them with the unsupervised case (a). Assuming a two-
dimensional space, it is hard to distinguish the two clusters from the data
points alone, and the boundary between them (a). The addition of positive
pairwise constraints, depicted as red edges, and negative constraints, de-
picted as blue edges (b), indicate the existence of two or more clusters and
possible cluster boundaries, depicted as green dotted lines. In (c), there is no
boundary, which respects all constraints, and methods based on “hard” con-
straints would fail in this scenario. With the use of “soft” constraints, where
the penalty of constraint violation is proportional to the edge widths, there is
an optimal solution (green dotted line), which violates one positive constraint,
in the cost of respecting a negative constraint with higher penalty value (or
edge width).

the given HMRF. Formally, the posterior distribution is approximated with a factorial dis-
tribution q(Y) =

∏N
i=1 qi(yi), by minimizing the relative entropy of the real posterior

distribution P(Y|X, Θ, W ) (Eq. 6.2),

q∗ = argmin
q

∑

Y∈Y

q(Y) log

(
q(Y)

P(Y|X, Θ, W )

)

where
∑K

k=1 qi(yi = k) = 1.

As demonstrated in [123], the posterior assignments is approximated as follows

qi(yi = k) =
αkp(xi|yi = k, θk)∑K

k′=1 qi(yi = k′)
exp

(
∑

j $=i

−λ+w+
ij(1− qj(yj = k))− λ−w−

ijqj(yj = k)

)
.

where αk is defined as in Eq. 2.22 and p(xi|yi = k, θk) is the pdf of the component model
(see Eq. 2.24 for the multivariate Gaussian case).

Note that this formulation allows several alternatives regarding the use of constraints.
When there is no overlap in the annotations, or more precisely w+

ij ∈ {0, 1}, w−
ij ∈ {0, 1},

w+
ijw

−
ij = 0, and λ+ = λ− ∼ ∞, we obtain hard constraints. Alternatively, by fixing

λ+ = 0 (or λ− = 0), we make use of only positive (or negative) constraints.
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6.2.2 Deriving Constraints

We describe in this section how we can derive constraints from biological information.

Gene Ontology

The Gene Ontology (GO) project is a collaborative effort to address the need for consis-
tent descriptions of gene products in different databases [9]. Three structured controlled
vocabularies (ontologies) describe gene products in terms of their associated biological
processes, cellular components and molecular functions in a species-independent manner.
Cellular component describes biological compartments in which genes are active (e.g.,
rough endoplasmic reticulum); molecular function contains concepts related to gene func-
tion (e.g., catalytic activity); and biological process describes the processes that a gene can
take part of (e.g., cellular physiological process).

Formally, a given Gene Ontology (GO) is represented by a directed acyclic graph (DAG),
in which each node ti in a set T = {t1, ..., tM} represents a biological term (controlled
vocabulary or GO term) and the edges stand for relationships among these terms. A re-
lationship R(ti, tj) ∈ R indicates that term ti is a parent of term tj . Such a relation is
interpreted as tj being a subclass of ti, i.e., ti is a more general concept than tj . For in-
stance, the biological term “cell cycle” is related to the more specific terms “mitotic cell
cycle” and “meiotic cell cycle”.

A set of genes G = {g1, ..., gN} is related to a given GO term by an annotation setA, where
A(ti, gn) ∈ A indicates that gene gn is annotated with term ti. Genes often have multiple
biological roles, hence they are usually annotated with several GO terms. Furthermore,
the parent-child relation of GO implies that genes annotated with a term are also annotated
with all parents of this term. That is, for all R(ti, tj) ∈ R, given a gene gn, A(tj, gn)
implies that A(ti, gn).

The intuition for the use of Gene Ontology as a secondary data is that genes participating
in the same biological process should be co-expressed [71]. Hence, we positively constrain
genes annotated with the same GO terms, and negatively constrain pairs of genes annotated
with distinct GO terms.

More formally, let D(gi) = {t|A(t, gi) ∈ A, t ∈ T} be the set of GO terms annotating
gi. We can define constraints by calculating the number of GO terms common to a pair of
genes. That is, for all pairs of genes gi and gj (corresponding to the observations xi and xj

in X), we define the following constraints

w+
ij =

#D(gi) ∩D(gj)

#D(gi) ∪D(gj)
, (6.3)

and
w−ij =

#D(gi) $D(gj)

#D(gi) ∪D(gj)
. (6.4)
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where w+
ij will take values in [0, 1] with w+

ij = 1 indicating perfect agreement for positive
constraints and w−

ij = 1 perfect disagreement for negative constraints. Non-annotated
genes have constraints equal to zero.

Location Analysis

Location analysis allows the detection of the binding sites of transcription factors (TF) in a
genomic scale [128]. The binding of a TF to an upstream region of a gene is a pre-requisite
and indicator that regulation occurs. Similarly as in the case of Gene Ontology, pairs of
genes being bound by the same transcription factor are likely to be co-regulated [212].

For a set of transcription factors F = {f1, ..., fM}, location analysis will return relations
A′(fl, gi) ∈ A′, which indicates that factor fl binds to gi. Let D(gi) = {fm|A′(fm, gi) ∈
A, fm ∈ F} be the set of TFs bound to gi. Then, we can use Eq. 6.3 and Eq. 6.4 to obtain
constraints.

In-Situ Images

An important aspect of gene expression, which has been studied in great detail in em-
bryonic development of Drosophila melanogaster [214], is its precise localization. While
the initial motivation for these sensitive experiments is to understand the role of individ-
ual genes in organ development, we can incorporate spatial expression patterns with gene
expression time courses from microarrays for improving the generation of functional hy-
potheses.

In fact, genes that share the same temporal-spatial expression pattern are more likely to
form a functional module [157]. If they are synchronously co-expressed in one tissue, or in
multiple tissues, this is refereed to as syn-expression [157]. The spatial expression patterns
can be determined with in-situ experiments where a mRNA-specific stain is produced by
mRNA-binding oligonucleotides and a suitable dye [211]. Then, image analysis produces
either 2D or 3D images of spatial patterns of gene expression. Drosophila embryos are
morphologically rather simple, however the image analysis task is not trivial as in-situ
images are taken of many subjects with large fluctuations in shape. In addition, the staining
intensity has higher, gene-specific error rates compared to DNA microarrays [214].

To compare in-situ hybridization patterns of a pair of registered embryo images [159], we
compute the Pearson correlation as a co-location index, as proposed in [159]. This index
takes both the spatial distribution and the strength of hybridization into account. Despite its
simplicity, this index had comparable performance to a more complex method previously
described in [163].

More formally, let Z be an L-dimensional continuous random variable defining the pixel
intensities of an image with L pixels. For a data set of images Z, where zi and zj describe
the pixel intensities of two registered embryo images; and zi is an L-dimensional vector
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(zi1, ...zil, ..., ziL), the Pearson correlation coefficient is calculated as follows

PC(zi, zj) =
Cov(zi, zj)√

V ar(zi)
√

V ar(zj)
, (6.5)

where V ar(zi) =
∑L

l=1(zil − µi)2/L, Cov(zi, zj) =
∑L

l=1(zil − µi)(zjl − µj)/L, and
µi =

∑L
l=1 zil/L.

Note that there is no annotation of the orientation of the embryo. Furthermore, automatic
registration of the image is a difficult task. Hence, for each pair of images, we estimate the
correlation between all possible orientations and take the maximum correlation value.

For a given gene, we have in-situ images for several developmental periods, and for each
period and gene we have zero or more in-situ images. Formally, let Ii = {I1

i , ..., I t
i , ..., I

T
i }

indicate the sets of in-situ images related to gene i and time periods 1 to T , and let I t
i =

{z1, ..., zm, ..., zM} be the set of images related to gene i at period t. For a pair of genes
and a developmental period, we compute the Pearson correlation (Eq. 6.5) for all pairs of
images in sets I t

i and I t
j ; and keep the maximum value. This yields the co-location index

(CL)

CL(I t
i , I

t
j) = maxzm∈It

i ,zn∈It
j
PC(zm, zn). (6.6)

By an inspection of the distribution of the co-location index, we select a value s of gene
pairs to constrain. In other words, for all pairs of genes (i, j) at period t, the sth highest
CL(I t

i , I
t
j) values are positively constrained (wt+

ij = 1). Similarly, the pairs (I t
i , I

t
j) with

sth lowest CL values are negatively constrained (wt−
ij = 1). Using this criterion, we obtain

a constraint matrix W t+ (or W t−) for a particular developmental period t.

As a last step, we need to combine the constraints from the distinct developmental periods.
See Figure 6.2 for an example. We require that a pair of genes is only constrained if it is
constrained in at least p developmental periods

w+
ij =

{
1,

∑T
t=1 wt+

ij ≥ p
0, otherwise

, and (6.7)

w−
ij =

{
1,

∑T
t=1 wt−

ij ≥ p
0, otherwise

. (6.8)

6.3 Experiments

In this section, we describe the application of clustering with constraints in two different
data sets. In the first case, for a proof of concept evaluation, we use a simple benchmarking
data set—yeast during cell cycle—, which is also analyzed in Chapter 4. We use either
Gene Ontology or location analysis information as secondary data. For the case of the
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Figure 6.2: Time course expression (top) and registered in-situ images (middle) of 4 genes
twi, CG12177, Ef2 and RhoGAP71E indicate the gene expression patterns.
From left to right, the embryo images are categorized into the time periods
0-3, 3-6, 6-9, 9-12, 12-15 and 15-18h. The time-courses display similar ex-
pression patterns with maximal expression after 3 hours for all genes, but
weakly diverging pattern at later time points. The in-situ images indicate that
twi and CG12177 have syn-expression at time periods 3-6, 6-9 and 9-12h;
while Ef2 and RhoGAP71E have syn-expression at time periods 0-3, 3-6, 6-9,
9-12 and 15-18h. At the bottom, we display how positive constraints are de-
rived from in-situ hybridization patterns. Heat-maps display the correlation
coefficients between all pairs of in-situ images of the corresponding time pe-
riod (red values indicate positive correlations). A constraint matrix for each
time period is obtained by thresholding the corresponding correlation ma-
trix. For example, constraint matrices from periods 3-6 and 6-9h indicate
syn-expression of pairs (twi, CG1217) and (Ef2, RhoGAP71E), whereas the
constraint matrix from period 9-12h indicates that (CG1217, RhoGAP71E)
are syn-expressed. Matrices are combined into one, which constrains genes
that display syn-expression in at least 3 periods, as indicated in the matrix at
the bottom.

99



Chapter 6 Clustering with Constraints for Integration of Heterogeneous Biological Data

second data set, we present a more detailed and exploratory analysis of Drosophila devel-
opment. In this context, we use gene expression time courses as the main data set and
information from in-situ images as secondary data.

6.3.1 Yeast Cell Cycle with Gene Ontology and Location Analysis

We use the expression profiles of 384 genes during Yeast mitotic cell division assigned to
one of the five cell cycle phases classes [42], which we refer to as YCC. See section 4.5.1
for a detailed data description. Although this data set is biased towards profiles showing
periodic behavior, and some of the class assignments are ambiguous, it is one of the few
data sets with a complete expert labeling of genes.

The relation between regulators and target genes are obtained from large-scale location
analysis, comprising data from 142 candidate TFs [128]. Relations A′(fl, gi) ∈ A′ are ob-
tained after thresholding the confidence that the TF binds to a particular gene as performed
in the source literature [128]. We will refer to this data as TR.

In relation to GO, the SGD Saccharomyces cerevisiae annotation [195] is used, and for
simplicity, we only included the DAG molecular process in our analysis.

Results

Multivariate normal distributions with diagonal covariance matrix are used as component
models of the mixture model (see Section 2.3.3). We initialize the EM algorithm with
random models, as described in Section 2.3.2. For all experiments, we vary values of λ+

and λ−. We use the class labels to compute sensitivity (Eq. 3.13), specificity (Eq. 3.14) and
corrected Rand (Eq. 3.12).

As a proof of concept, we use the class labels from YCC to generate pairwise constraints
for 5% of all pairs of genes—positive if the genes belong to the same class, negative
otherwise—and observe the performance of the method with distinct constraints settings
(Figure 6.3 top). In all cases, CR, Spec and Sens tend to one for λ near ten, with the
exception of the experiments with positive constraints. In this case, one of the five clusters
always remains empty, and two classes are joined in one single cluster. Furthermore, the
use of positive constraints only has a stronger effect on the sensitivity, while the negative
constraints affect the specificity. This is expected since positive (negative) constraints only
penalize false negatives (false positives). It also explains the merged classes in the experi-
ments with positive constraints, since the secondary data gives no penalty for merging two
classes.

We observe similar results with GO and TR as secondary data. There is a slight but signif-
icant increase of CR and Sens for the methods with positive constraints (t-test indicates an
increase at λ+ = 0.5 with p-value = 2.38e − 10). However, for high λ+ values (> 0.7),
CR and Sens values decrease. No improvements are obtained with the use of positive and
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Figure 6.3: We depict the CR, Sens and Spec after clustering YCC with positive (left),
negative (middle) and positive and negative (right) constraints. We used either
real class labels (top), GO (middle) or TR (bottom) as secondary information.

negative constraints, and the negative constraints alone only deteriorate the results.

In order to understand these results, we repeat the experiments with real labels, but this
time including also random labels. In total, we generate constraints for 5% of gene pairs.
As seen in Figure 6.4, the addition of random labels have a great impact on the recovery
of the clusters. The inclusion of 20% of random labels deteriorate the results considerably.
For λ = 5, we have a CR near 0.45 for the data with 20% of noise and a CR near 0.75 for
the data with no noise in the constraints. For 60% of random labels, the corrected Rand
displays a behavior similar to TR and GO, obtaining low CR values (< 0.2) for high λ
(> 5.0). This indicates that (1) the method is not robust with respect to noise in the data,
and (2) indicates the presence of noise or non-relevant information in TR and GO.

This is not too surprising, therefore we attempt to estimate the maximal positive effect one
can obtain from this secondary data. We perform the computation of enrichment analy-
sis [24] for GO term and TR enrichment, a procedure commonly used in cluster validation,
to obtain informative terms from the true classes. We repeat the experiments described
before with the most informative TF (or GO terms) only. However, we observe only a
slight improvement for the negative constraints and a relevant improvement with the use
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Figure 6.4: We depict the CR obtained by clustering YCC with positive constraints from
5% of real labels with the inclusion of 0%, 20%, 40%, 60% and 100% random
labels.
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Figure 6.5: We depict CR, Sens and Spec after clustering YCC with positive (left), negative
(middle) and positive and negative (right) constraints after filtering of relevant
TR.

both positive and negative constraints in the TR data set (a CR from 0.454 to 0.472). On
the other hand, no improvement is obtained after filtering terms in GO (data not shown).

These results indicate that secondary data has little power for clustering, unless it is of
very high quality, free of errors and have no ambiguities. Furthermore, only as few as
20% of error in labels deteriorate the CR by more than 40%. The results for GO and
TR indicate that this is the case for both biological data, and unless the procedures for
obtaining constraints for GO and TR can be improved, we are more likely to deteriorate
results by integrating these data. Note also that we can only obtain the best choice of λ,
because the data sets are fully annotated, which is not the case of most biological data sets.
Furthermore, high values of λ deteriorate results.

6.3.2 Drosophila Syn-Expression

Data

Time Courses of Drosophila Development. For twelve consecutive one-hour time win-
dows of embryogenesis mRNA levels are measured using the Affymetrix GeneChip Dro-
sophila Genome array. This array targets about 14,000 genes. Results were processed
with the standard Affymetrix tool suite [214]. We use the median from three biological
replicates. Expression values are transformed to log-ratios by using time point 1 hour as
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reference. We remove genes not exhibiting at least a two-fold change, which leaves us with
2,684 genes.

In-situ Image Processing. Embryos of Drosophila Melanogaster were collected and
aged to produce embryos 0-3, 3-6, 6-9, 9-12, 12-15 and 15-18 hours old [214]. The in-situ
reactions were based on a cDNA library of 2,721 clones; in the end images were collected
for 1,388 genes. The difference is caused either by a failure of in-situ reactions or by a lack
of tissue-specific expression. Images were taken with a dissecting microscope in different
focal planes and different orientations.

We use the procedure proposed in [159] for pre-processing the in-situ images. We sum-
marize below the main steps of this image processing pipeline. The majority of in-situ
hybridization images in the BDGP database contain the projection of exactly one centered
embryo [22]. However, there is a noticeable portion of images with multiple touching em-
bryos. To exploit as many data as possible, the goal of image pre-processing is to locate
and extract exactly one complete embryo from each image, even for touching embryos.

To distinguish between embryo and non-embryo pixels we estimate the local variance of
gray level intensities for each pixel in a 3 × 3 neighborhood, following [163]. It suffices
to apply a fixed predefined threshold for segmentation using variance estimates because
of a homogeneous background in contrast to the embryo. To eliminate erroneous embryo
regions, a sequence of morphological closing and opening using a circular mask of radius
four is applied [87]. Next, the largest connected component is extracted. The resulting
region may be the projection of a single complete or partial embryo or the projection of
a set of multiple touching embryos. To distinguish these different cases we apply a series
of simple filters based on ellipticity, compactness and area of the extracted region. For
regions of multiple touching embryos we introduce a procedure to separate the individuals
and to extract a single complete high quality embryo. Further details are given in [159].

The final step of image processing is to register the embryos extracted to a standardized
orientation and size to allow for comparison of different expression patterns. The embryo
is rotated to align horizontally to the principal axis. Then, the bounding box is scaled to a
standard size. Figure 6.6 shows the steps of the image processing pipeline for one example
image.

We obtain constraints as described in Section 6.2.2. The 18 developmental stages of the
embryo are divided into six developmental periods (0-3, 3-6, 6-9, 9-12, 12-15 and 15-
18). Given the results obtained in Section 6.3.1, we would like to have only high qual-
ity constraints. Hence, we use conservative thresholds in the procedure for deriving the
constraints. More specifically, we select the value s (Section 6.2.2) so that only a small
percentage of gene pairs should be constrained (less than 2% of genes with in-situ images).
We observe a correlation coefficient exceeding our threshold in at least three or four devel-
opmental periods, i.e., we set p = 3 or p = 4 in Eq 6.7. See Figure 6.2 for an example of
how the constraints are obtained. With support of at least three periods, there are 1,756 pos-
itive constraints within 170 genes and 2,544 negative constraints within 360 genes. With

103



Chapter 6 Clustering with Constraints for Integration of Heterogeneous Biological Data

original in-situ image extracted embryo registered embryo

Figure 6.6: The image pipeline combines registration, morphological operations and fur-
ther processing steps to automatically process raw images, even if they in-
clude multiple touching embryos. Shown here is the image in-situ8784
from gene CG5353. Image reproduced from [159]

support of at least four stages, there are 270 positive constraints within 66 genes and 640
negative constraints within 151 genes.

ImaGO Term Enrichment. A controlled vocabulary, which follows the Gene Ontol-
ogy standard [9], is used to annotate spatial gene expression patterns [214]. All images
deposited in BDGP are annotated with at least one of these terms. Like with Gene On-
tology enrichment analysis described in Appendix A, we can use a statistical test to list
ImaGO terms that are over-represented in a cluster. Lower p-values indicate an enrichment
in ImaGO terms and, consequently, better results.

This strategy is useful for evaluating the biological quality of a single cluster, but it gives
no global assessment for comparing the results obtained by two clustering solutions. A
heuristic to perform such an analysis is to compare the p-values obtained for two solu-
tions [73]. A method is said to be better than another method if it has a larger number of
ImaGO terms with lower p-values.

Results

We use multivariate Gaussians with diagonal covariance matrices [145] as our components
in all mixture estimations. We refer to the results of the unsupervised method as MoG and
to the clustering with constraints method as cMoG. We initialize the EM algorithm with
random models, as described in Section 2.3.2. In the unsupervised setting, we estimate the
optimal number of clusters with the BIC (Section 2.3.5), which indicates 28 clusters. We
use this number for all other runs described below.

Clustering of Gene Expression Data using Mixture of Multivariate Gaussians (MoG).
The gene expression time-courses cover the period from 1 to 12 hours of the embryo devel-
opment and expression values are given as log-ratios. Overall, our clustering results reflect
two typical classes (see Figure 6.7): the maternal and zygotic genes [68]. Maternal genes
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appear strongly expressed in the first three hours, usually followed by a decline. Clusters
18 to 28 clearly follow this pattern. These transcripts are deposited in the oocyte; typically
the embryo does not transcribe these genes in early development. They are responsible for
the determination of body axes and the first phases of the cell cycle and other functions.
The period from 2 to 3 hours coincides with the cellularization and the formation of three
germ layers following gastrulation, when primary tissues start to develop [130].

On the other hand, genes actively transcribed in the embryo are not expressed in the early
time points and expression rises to significant levels only in later stages (3 hours and later).
Many of these genes are important to organogenesis. Transcripts in clusters 1 to 4, and
8 to 11 follow the pattern of embryonic activation unambiguously. The functional associ-
ation can be observed in the over-represented GO terms For other clusters shapes cannot
be matched to the maternal or the zygotic expression patterns. Several cluster have max-
imal expression in the midst of embryonic development. Note that those clusters are less
populated than the ones in the maternal and in the zygotic classes.

Using in-situ Images as Secondary Information. We use semi-supervised learning to
obtain better solutions for the maximum-likelihood estimation. In order to do so, we restrict
the mixture estimation with constraints between pairs of genes. The principle underlying
this is shown in Figure 6.1. These constraints will, ideally, differentiate between genes
showing co-expression only by chance from those temporal co-expression supported by
spatial co-expression (syn-expression).

We use the ImaGO enrichment analysis (Section 6.3.2) to select the best parameterization
for cMoG. More precisely, we evaluate the use of constraints shared by either three or
four developmental periods, the use of positive constraints and both positive and negative
constraints, and four choices of the parameter λ+ (and λ−) (0.5, 1.0, 1.5 and 2.0) with
λ+ = λ− . There is no theory guiding the choices of λ+ and λ−, neither is there a definitive
“gold standard” or class labels to optimize them. Hence, we made the simple choice to
give positive and negative constraints equal weights.

As shown in Table 6.1, all constraint combinations lead to an increase in ImaGO term
enrichment, except the use of positive and negative constraints from three stages. Further-
more, values of λ around 1 lead to an improvement, while higher values tend to deteriorate
the results. Thus, we choose to use the cMoG results with only positive constraints derived
from three developmental periods and a constraint weight of λ+ = 1.0.

Changes in the Biological Annotations with cMoG. To investigate the effects of the
constraints in the clustering, we compare the results of MoG with cMoG (see Figure 6.8 for
cMoG clusters). As explained in the previous section, we choose to use positive constraints,
which are supported in at least three developmental stages, as they yield a good recall of
in-situ image annotations.

As a sanity check, we inspect the number of constraints satisfied in the final solutions.
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Figure 3: Clustering result: Mixture of Gaussians.Figure 6.7: We display the 28 clusters from MoG.
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Figure 4: Clustering result: Constrained solution.Figure 6.8: The 28 clusters from cMoG show tightly co-regulated pattern and a refinement
of the clustering solution of MoG.
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Table 6.1: We compare the performance of distinct constraints and parameter choices
with the ImaGO enrichment analysis. More specifically, we show the propor-
tion of ImaGO terms with lower p-values in cMoG compared to MoG for con-
straints derived from a 3 or 4 stages, and distinct weights λ+ and λ−. Values
exceeding 50% indicate an advantage of cMoG

Proportion of terms with lower p-values
λ+ λ− # stages ≥ 3 ≥ 4

0.5 0.0 51% 48%
1.0 0.0 60% 56%
1.5 0.0 57% 49%
2.0 0.0 43% 46%

0.5 0.5 49% 44%
1.0 1.0 49% 52%
1.5 1.5 40% 59%
2.0 2.0 43% 47%

With MoG, a sizable proportion of the constraints are already satisfied (656 out of 1,756
pairwise positive constraints), as part of the expression data agrees with the constraints.
With cMoG, 1,127 out of 1,756 pairwise positive constraints are satisfied. This value is
nearly twice the number found with MoG. This demonstrates that cMoG benefits from the
constraints in deriving the clusters of genes exhibiting syn-expression.

Another helpful analysis is the comparison of enrichment of in-situ image annotations
(ImaGO), as described in Section 6.3.2. We display in Figure 6.9 a scatter plot of all
ImaGO terms, which has an enrichment with a p-value lower than 0.01 in at least one
cluster from cMoG or MoG. Based on Figure 6.9, we observe that cMoG has a higher en-
richment than MoG in 67 out of 112 relevant ImaGO terms. A binomial test for testing
the event of having 67 successes in 112 trials is rejected with a p-value of 0.0232, which
indicates that the counts of ImaGO terms with higher enrichment for cMoG is significantly
higher than expected by chance. Furthermore, if we take only ImaGO terms with a higher
enrichment gain for one of the methods into account (points distant from the diagonal line
in Figure 6.9), the advantage of cMoG is even greater (see Figure 6.10 and Figure 6.11).
This indicates that even without direct use of the annotation information from ImaGO,
cMoG has a greater sensitivity in grouping syn-expressed genes.

Overall, the individual clusters of MoG and cMoG differ only partially. Mainly, cMoG
has fewer clusters a smaller amount of genes. One way to quantify the distinctions is to
calculate the sensitivity and specificity of cMoG taking the results from MoG as the ground
truth. These values are respectively 0.53 and 0.97, which indicate that cMoG has a tendency
to subdivide clusters from MoG.
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Figure 6.9: We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis) in
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in cMoG clusters, and points below in MoG clusters. The distance from the
diagonal is proportional to the increase in enrichment. For 67 out of 112
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Figure 6.10: For each threshold τ (x-axis), we depict the proportion of ImaGO terms for
which we observe a smaller p-value in cMoG than in MoG (y-axis). The
threshold τ discards ImaGO terms, where the difference in the log of the
p-value of cMoG and MoG in smaller than τ . As can be observed, the pro-
portions are higher than 0.5 for all τ values, which indicate an advantage of
cMoG. Furthermore, the proportions have an increasing tendency for higher
τ values.
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Figure 6.11: We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis)
in a scatter plot for τ = 0.3. We use −log(p)-values, thus larger values
indicate a larger degree of enrichment. Points above the red line indicate
a higher enrichment in cMoG clusters, and values below in MoG clusters.
Green points between the dotted lines represent ImaGO terms not satisfying
the threshold τ = 0.3, where τ indicates the distance from the diagonal line
to the dotted lines. We clearly observe a higher proportion of non-filtered
ImaGO terms (points in blue) above the diagonal line (32 ImaGO terms)
against (12 ImaGO terms) below the diagonal. A binomial test is rejected
with a p-value of 0.0018, which indicates an significant advantage of cMoG.
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(a) C2 dorsal

(b) C2 lateral

(c) C3 dorsal

(d) C3 lateral

(e) C10 dorsal

(f) C10 lateral

Figure 8: Averaged in-situ images of clusters C2, C3 and C10 from lateral and dorsal views.Figure 6.12: Averaged in-situ images of clusters C2, C3 and C10 from lateral and dorsal
views.

Functional Annotations in cMoG. Even for a well characterized genome like Drosophila,
the high dimensionality in the annotation data provides only limited information for any
single gene. For evaluating the results, we need to identify the corresponding functional
modules in the unconstrained and the constrained sets. It is also necessary to show im-
provements rather than simple correct functional assignments in either solution. In the
following, we will refer to the ith cluster from cMoG and MoG as Ci and Ui respectively.

For some cases, the mapping from clusters of cMoG to MoG is simply one to one (e.g.,
C1 to U1, C5 to U5, C11 to U11 and C12 to U10). However, the majority of clusters
show larger differences. For simplicity, we focus the functional analysis on clusters with
zygoticly expressed genes (i.e., C1 to C4 and C9 to C12 in Figure 6.8).

Cluster C2 represents a good example of the changes resulting from the introduction of
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constraints. It contains most of the genes from U2 (135 genes) and 16 genes from U3.
Out of the seven genes, which show similar expression patterns and have co-location con-
straints (CG6930, E2f, Iswi, neur, Set, RhoGAP771e, trx), only four (G6930, E2f, Iswi, trx)
are found in U2. All these genes have ImaGO annotations related to ventral nerve cord
primordium and related terms (see Figure 6.12 (a) and (b) for mean in-situ images of these
genes). Related genes that have no constraints but are annotated as part of the embryonic
central nervous system are included in C2 (CG7372, CG14722, fzy). The analysis of GO
term enrichment returns terms such as nervous system development (p-value of 3.38e-23)
and system development (p-value of 9.54e-21) (similar term enrichment is found for cluster
U2). It should be noted that clusters U2 and U3 have a similar mean expression pattern.
They mainly differ in the time when genes reach the plateau of maximal expression.

An example for larger changes is cluster C3, which is mainly composed of genes origi-
nally found in U3 (101 genes) and U8 (63 genes). C3 has constraints between three genes
(rhea, Rsf1 and vig) of which rhea and vig come from cluster U8 and Rsf1 from U3 (see
Figures 6.12 (c) and (d) for mean in-situ images of C3). This cluster presents higher enrich-
ment for ImaGO terms related to muscle primordium (genes CG5522, CG9253, Dg, Mef2,
betaTub60D, htl, mbc, vig) than U3 and U8. Furthermore, GO term analysis reveals that
this cluster shows enrichment for nervous system development (p-value of 1.33e-11) and
axis specification (p-value of 9.31e-05). For the latter term, seven genes are originally from
U3 (Dfd, Lis-1, sti, Syx1A, sqd, Ras85Dm, tup) and five from U8 (baz, Dg, pnt, Rac2, tok),
demonstrating that the changes introduced increase the number of syn-expressed genes
within C3.

The cluster C9 represents only a subset of U8 (59 out of the 126 genes) but has no genes
with constraints. It consists of genes from U8 that are not constrained to genes from C3
(see previous paragraph). Still, it is enriched in the ImaGO term embryonic central ner-
vous system and related terms (genes HLHmbeta, NetB, Oli, lin-28, scrt, sd, tap, uzip and
zfh2). The cluster is also enriched in the terms organ (p-value 2.66e-05) and ectoderm
development (p-values 8.54e-05), which are significantly enriched in U8. In other words,
this cluster is a specialization of U8, whose genes are specific to organ development.

C10 is formed by the addition of most genes in the U4 cluster (39 genes) to U10 (118
genes). There are seven genes constraining this cluster (CG6751, CG18446, CG13912,
CG10924, CG8745, dm, Klp61F) (see Figures 6.12 (e) and (f) ). ImaGO term enrichment
relates this cluster to yolk nuclei and amnioserosa. It is also enriched in the GO term
nervous system development (p-value 1.06e-08), all of which are insignificantly enriched
in the U10 cluster.

It is also worthwhile to look at those few cases where MoG performs better. From Fig-
ure 6.9, two ImaGO terms with higher enrichment increase in MoG are maternal and pro-
cephalic ectoderm anlage in statu nascendi. The former term is enriched in cluster C22
and U21, where MoG has some more genes related to the term maternal (34 genes in MoG
compared to 31 genes in cMoG). For the latter term, clusters U2 and C2 are both enriched,
and there was only one annotated gene in U2 not in C2. As none of these annotated groups
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of genes has pairwise constraints, we cannot detect any direct effect of the clustering with
constraints on these results.

In summary, the refined clusters improve the generation of testable hypotheses for the role
of uncharacterized genes. Overall, we observe improvement in annotation of genes related
to development of the Drosophila, in particular with respect to the ImaGO annotations,
which increases our confidence in the delineation of syn-expressed functional modules.

113



114



Chapter 7

Discussion

Clustering is a crucial first step in the analysis of large-scale gene expression experiments.
Peculiarities of gene expression data from microarray experiments, require the develop-
ment of novel clustering methods. While mixture models provide a statistical framework
to perform clustering, the specification of proper component density functions, which take
characteristics inherent to the multi-variate data at hand, remains an open problem. In this
thesis, we propose two novel component models for analyzing gene expression measured
over time or developmental processes. Furthermore, we approach the problem of integrat-
ing additional sources of biological data to enhance the analysis of gene expression. This
is done by using a semi-supervised method for estimating the mixture model.

In the next sections, we present the final remarks and future work of each specific contri-
bution of this thesis.

Mixture Models and Cluster Validation

We introduce, in Chapter 3, a novel validation index for comparing overlapping partitions
obtained by mixture model based clustering algorithms. This index is an extension of
the well known corrected Rand (CR). In the context of mixture models, our experimental
work shows that the extended corrected Rand index yields significant improvements when
compared to the results obtained by the traditional corrected Rand. Finally, it is important
to point out that there are still many theoretical and practical aspects of cluster validation in
the context of mixture models. The definition of the extended Corrected Rand represents
an initial contribution to these problems.

Analysis of Gene Expression Time Courses

We present in Chapter 4 an application of mixture models and linear HMMs for the analysis
of gene expression time course data. We take advantage of several characteristics of this
robust statistical model, which is of great value in the analysis of gene expression time
course data. With a benchmark data set, we show that mixture of HMMs have better class
recovery than model-based clustering methods with splines or autoregressive models as
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components. We also evaluate different methods for model initialization. In this context, a
Bayesian approach exploring the linear topology of the HMMs obtained the best practical
results. Moreover, we show that the Viterbi decomposition is able to enhance the mixture
of HMMs for the yeast cell cycle data set. In an anedoctal analysis with HeLa cell data, we
also show that the Viterbi decomposition refines clusters in a biological meaningful way.
The use of the entropy threshold for discarding ambiguous cluster assignments improve
the specificity of Gene Ontology annotation, which reassures the usefulness of the soft
assignments of the mixtures in detecting unambiguous clusters. Our flexible framework,
combined with an effective graphical user interface implemented in the GQL application,
supports interactive and exploratory knowledge discovery of gene expression time course
data.

There are several aspects still to be explored in the use of linear HMMs and mixtures of
linear HMMs. First, the use of other pdfs as emission functions such as the Gamma pdf, as
explored in [235], could produce better results for gene expression data. One issue that have
been recently explored is the fact that most data sets have few time points [73]. This can
be addressed by biasing the topology learning method towards models with fewer number
of states. Furthermore, an extension of our framework to perform simultaneous topology
learning and mixture estimation should also improve the performance of the mixture of
linear HMMs. Recently, a great deal of data sets with multiple time courses of a given
species have been made available. These data sets present time course measurements over
distinct gene knockouts [236], environmental conditions [82, 174] or patients [225]. In
fact, such data sets pose new methodological questions about conditions at which genes
are differentially expressed, or what are the temporal dynamics of these differences? For
such tasks, we could extend the linear HMM to multiple linear HMM models. Then, we
could apply structural learning methods to explore issues concerning detection of time-
lag relationships, temporal dynamics of these differences, and finding groups displaying
similar differential expression profiles.

Analysis of Gene Expression in Lymphoid Development

The regulatory processes underlying cell proliferation and differentiation are of central
interest to developmental biologists and clinicians. They are frequently the focus of large-
scale studies in which gene expression along paths of differentiation are investigated. To
make use of these data in a principled manner, as the main contribution of this thesis, we
presented in Chapter 5 a novel statistical framework, called DTrees, that models gene
expression in the course of development. By combining DTrees in a mixture model
(MixDTrees), we facilitate interactive querying and visualization of data and, more im-
portantly, the detection of clusters of co-expressed genes, which provide a basis for the
identification of key players in the regulatory mechanism and their mode of action.

In particular, with MixDTrees with structure set to the developmental tree as provided by
biologists (MixDTree-Dev), we detect groups of genes not found by classical clustering
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methods such as Self-organizing maps (SOM). By incorporating microRNA binding data,
we show how to identify complex regulatory relationships. In comparison to an analysis
based only on sequence data, we predict a manageable number of plausible microRNA
targets [91]. Moreover, by the inspection of the developmental profiles of gene targets
associated with microRNAs, our method offers some insights into the biological role of
the predicted microRNAs.

We show that the DTree inferred from the complete Lymphoid data set approximates the
dependencies intrinsic to Lymphoid development well. Furthermore, by combining the
methods for mixture estimation and for the inference of the DTree structure, we find
DTrees structures specific to groups of co-regulated genes. These groups display dif-
ferent differentiation pathways reflected by the distinct estimated dependence structures.
Furthermore, groups have a lineage specific expression pattern. Enrichment analyses of
gene annotation using KEGG and GO indicate development-specific function of the groups
found.

For simulated data, MixDTrees compares favorably to other methods widely used for find-
ing groups of co-expressed genes, even for data arising from variable dependence struc-
tures. In particular, our method is not susceptible to over-fitting, which is otherwise a
frequent problem in the estimation of mixture models from sparse data.

Interesting extensions to our analysis are possible, even when one only considers gene ex-
pression data and the basic method. None of the currently publicly available data sets offer
both a tree with a large number of branches and a detailed view of all development stages.
An interesting compendia of gene expression data from lymphoid cells [105], concentrates
on mature and immature cells in final development stages. The creation of an expression
compendium such as the one in [105], where many intermediary stages of differentiation
of the developmental tree are present, will be of great value as computational methods can
exploit characteristics intrinsic to cell development.

It is also important to point out that developmental biologists are still redrawing devel-
opmental trees with the discovery of new intermediary stages and “alternative” paths of
development [25, 140, 177]; a particular developmental stage might also be formed by
a mixture of distinct cell types not yet well-characterized. An example of an alternative
path is the fact that DN1 T cells can be originated not only from the lymphoid progenitor
as depicted in Figure 5.1, but also from the earlier multi-potent progenitor cells [25]. It
is an interesting prospect to extend the structure estimation approach to infer confidence
values for branches and stages of a developmental tree from gene expression; as well as to
estimate graphs of arbitrary structures. The estimation of graphs with arbitrary structures
has already been explored. For example, see [40, 213] for approaches based on graphical
models and [182] for an approach based on estimation of covariance matrices. However, in
contrast to the method used for the estimation of DTree structures, those methods do not
provide an efficient and exact solutions for inferring dependence graphs.
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Chapter 7 Discussion

Clustering with Constraints for Integration of Heterogeneous Biological Data

If high-quality secondary data is available, semi-supervised learning is an effective frame-
work for the analysis of heterogeneous data as previous experiments using class labels
demonstrate [185, 187]. In our experiments based on yeast cell cycle data set (Chapter 6),
we use biological information routinely used to support cluster validity as secondary data,
i.e., GO annotation and location analysis. Surprisingly, this data can deteriorate cluster
quality drastically, if parameters are not chosen properly. Furthermore, we can show that
the addition of noise can drastically reduce the performance of clustering with constraints.
Although there are other parameter choices to explore, further theoretical questions to ad-
dress, and more data sets to perform experiments, a main point of our analysis remains
valid and clear: secondary data can have little power for clustering, unless it is of good
quality, free of errors and have no ambiguities.

These issues discussed in the previous paragraph indicate the need for methodological im-
provements in clustering with constraints methods. One possible solution for the selection
of parameters is the use of cross-validation procedures, as suggested in [45]. Moreover,
the inclusion of a step to evaluate the constraint “quality” during clustering execution can
be an interesting strategy for preventing problems related to noise in the constraints.

For the Drosophila development case study, we show how to automatically fuse temporal
and spatial gene expression patterns by clustering with few high quality constraints derived
from in-situ data. Our results demonstrate that the clusters found are biologically meaning-
ful and that we can improve the detection of syn-expressed genes. In particular, the cluster
results, obtained after applying the constraints, are better at recovering the functional an-
notation of ImaGO terms than the clustering solution without constraints. Inferred groups
are worthwhile targets for further investigation, either with classical biological analysis or
as input for methods to infer gene networks.

There are several open questions regarding the detection of syn-expressed genes. One
direction is to improve the image processing pipeline by, for example, using higher quality
images, such as 3D models from [96, 117] or images with sub-cellular localization [127].
In relation to the constraints it would be desirable to model the temporal nature of the
constraints derived from the in-situ images. A quite challenging problem is to combine an
automatic image annotation of expressed cellular compartments with a tree describing the
Drosophila development. This would allow us to obtain a detailed developmental profile
of genes for this complex multicellular organism, i.e., at which tissues a particular gene is
expressed. Hence, we could use Mixture of Dependence Trees, as proposed in Chapter 5,
to analyze gene expression of Drosophila development.
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Appendix A

Gene Ontology enrichment

In order to find GO terms with annotations related to a given group (or cluster) of genes,
one should look for annotation terms that are over-represented in this group. The proba-
bility that this over-representation is not found by chance can be measured with the use
of a hyper-geometric Fisher exact test [199]. This test returns for each cluster and gene
ontology term a p-value describing how statistically significant a GO term is for describing
genes in a particular cluster.

Let n be the total number of annotated genes in GO (reference group), and m be the number
of genes annotated with a specific GO term. This will give us m positive genes and n−m
negative genes. If we draw k genes from the reference group (or analogously obtain a
cluster with k genes), we obtain q positive genes and k − q negative genes, see Table A.1
for a 2X2 contingency table representation of these terms. We are interested in observing
how unusually large this value q is, given n, m and k. This can be achieved by calculating
a p-value defined by p(X ≥ q), where X is defined by {P(x = i)}1≤i≤k, and P(x = i) is
defined as below:

P(x = i) =

(
m
i

)(
n−m
k−i

)
(

n
k

)

In the thesis, when a particular GO term is over-represented for a given cluster, we state
GO Term X is enriched in cluster Y, or we found enrichment for GO Term X in cluster
Y.

A later correction of the p-values is necessary, because of the effects of multiple testing.
For example, if we have 1000 GO terms, and a p-value of 0.1 is used, at least 100 false

Table A.1: 2x2 Contingency Table for genes annotated or not annotated by a given GO
term

Annotated Genes Non-annotated Genes Total

in cluster q k − q k
not in cluster m− q (n− k)− (m− q) n− k

Total m n−m n
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Appendix A Gene Ontology enrichment

positives are expected. To correct this, we apply a false positive discovery ratio proposed
in [175].
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Appendix B

Analysis of Gene Expression of
Lymphoid Development

Table B.1: Contingency Table comparing results from MixDTrees-Dev (columns) ver-
sus SOM (lines) for TCell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 41 24 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4
3 6 38 14 1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
6 2 1 1 14 2 11 2 2 0 6 0 0 0 0 0 0 0 0 0 1
2 4 12 31 32 25 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 0 1 10 0 13 1 0 0 1 0 0 0 1 0 0 0 0 3 0 2
5 0 0 0 35 8 88 3 34 0 4 0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 1 15 6 9 1 0 0 0 1 0 0 1 3 0 0
14 0 0 0 0 0 0 10 7 2 23 9 0 0 0 0 0 3 0 0 0
15 0 0 0 0 0 0 0 0 19 0 0 16 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 3 35 0 49 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 17 0 12 21 1 2 0 0 1 0 0 0
18 0 0 0 0 0 0 0 0 4 0 0 47 18 2 0 0 1 0 0 0
12 2 0 0 0 0 0 0 0 1 0 0 4 11 5 7 4 8 5 2 1
17 0 0 0 0 0 0 0 0 5 0 4 0 7 4 7 1 8 0 2 0
19 0 0 0 0 0 0 0 0 0 0 0 6 15 35 40 4 27 0 0 0
13 2 0 0 0 0 0 0 0 0 0 0 0 0 4 7 34 21 0 6 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 24 23 0 0 0

4 4 0 5 2 0 0 5 0 3 0 0 1 0 0 0 0 0 11 0 0
11 1 0 2 0 3 0 0 1 0 0 1 0 0 0 0 6 2 0 3 10

7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 12 1 0 11 13

Table B.2: Contingency Table comparing results from MixDTrees-Dev (columns) ver-
sus SOM (lines) for BCell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 52 0 0 0 0 4 5 4 0 0 0 3 0 0 0 0 0 0 0 0
4 0 20 12 10 0 4 0 0 1 14 0 0 0 0 0 0 0 0 0 0
7 0 6 64 5 25 2 0 0 22 0 0 0 0 0 0 0 0 0 0 0
2 14 3 8 4 2 40 0 0 0 0 0 1 0 0 0 0 0 0 0 0

15 0 0 1 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0
6 0 7 43 5 10 42 2 0 3 0 0 0 0 0 0 0 0 0 0 0
5 4 1 0 0 0 1 4 1 0 2 1 0 0 0 0 0 0 0 0 0
3 5 3 0 1 0 5 0 7 0 5 0 0 0 0 0 0 0 0 0 0
8 0 7 3 0 0 0 0 0 9 13 0 0 1 0 0 0 0 0 0 0
9 0 1 1 10 0 0 0 7 1 17 0 0 3 0 0 0 0 0 0 0

16 0 0 0 0 0 0 4 1 0 0 4 2 0 2 1 1 18 0 0 0
20 1 0 0 0 0 1 1 3 0 0 7 14 0 0 0 0 0 0 0 0
10 0 0 0 3 0 0 0 0 8 6 0 0 18 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 7 0 0 0 0 2 6 18 2 6 1 0 1
13 0 0 0 0 0 0 0 1 0 0 1 0 0 0 20 13 1 0 0 8
14 0 0 0 0 0 0 0 2 0 0 2 0 0 0 3 28 3 8 4 6
17 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3 25 24 0 0 3
19 0 0 0 0 0 0 2 0 0 1 5 12 0 0 0 4 0 35 18 0
18 0 0 0 0 0 0 0 0 0 0 14 9 0 0 0 24 8 3 18 0
11 0 0 0 0 0 0 0 3 0 1 0 0 14 1 19 0 1 0 0 8
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Table B.3: MicroRNA enrichment per cluster for TCell for MixDTrees-Dev

Cluster ID MicroRNA p-value

3 miR-222 0.0006906
5 miR-15a 0.0019456

miR-26a 0.0369906
miR-24 0.0369906
miR-221 0.0051746
miR-181a 0.0244306

7 miR-342 0.0200686
8 miR-26a 0.0013526
10 miR-150 0.0012176

miR-142-3p 0.0000056
11 miR-16 0.0049776

miR-146 0.0011936
miR-181b 0.0049776

Table B.4: MicroRNA enrichment per cluster for BCell for MixDTrees-Dev

Cluster ID MicroRNA p-value

3 miR-26a 0.0358116
miR-181c 0.0025866
miR-181b 0.0358116

5 miR-15b 0.0029956
miR-15a 0.0029956
miR-223 0.0029956
miR-221 0.0323296

6 miR-191 0.0486736
miR-155 0.0271276

19 miR-342 0.0402686
miR-142-3p 0.0088346
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Appendix C

Notation

All chapters

1(e) indicator function, which takes value 1 iff e is true
αk mixture coefficient of the kth mixture component

E[X] expectation of a random variable X

L likelihood function
K number of clusters or components in a mixture model
µx mean value of random variable X

p(x | θ) a probability density function over variable X and parameterized by θ

rik posterior probability that observation xi is assigned to the kth mixture component,
i.e., p(yi = k | xi, Θ)

Σx covariance matrix of random variable X

Θ set of parameters of a mixture model
θk set of parameters of the kth mixture component
X an L dimensional continuous random variable
x an observation vector (x1, ..., xL) from X

X a data set represented by a N × L matrix, where entry xij denotes the values of the
jth variable from the ith observation

Y an one dimensional discrete random variable
y an observation of Y , where y ∈ {1, ..., K} indicates the mixture component (or

cluster) the observation belongs
Y a set of N observations from Y , where yi = k denotes that the ith observation

belongs to the kth mixture component (or mixture)
Y space of all possible values of Y

Chapter 4

A transition matrix of a HMM, where auv represents the probability of going from state
u to state v

du duration parameter representing the expected number of visits to state u
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Appendix C Notation

M number of states of the HMM
µu mean parameter of the emission function of the uth state
πu probability of visiting state u at time t = 1

Q an L-dimensional discrete variable representing the sequence of visited states
q observation from Q, where q = (q1, ..., qt, ..., qL) and qt ∈ {1, ...,M} represents the

HMM state visited at time t.
σ2

u standard error parameter of the emission function from the uth state
θL parameters of a linear HMM

Chapter 5

D(p||p∗) relative entropy between the pdfs p and p∗

H(X) entropy of variable X

I(Xu, Xv) mutual information of variables Xu and Xv

pT (x|Θ) dependence tree pdf
p(xu|xv, τu) conditional Gaussian pdf

pa parent map defining the dependence tree structure
σ2

u|v standard error of the conditional Gaussian pdf
τu parameters of a conditional Gaussian pdf

wu|v regression parameter of the conditional Gaussian pdf

Chapter 6

λ+ parameter defining the penalty weights of positive constraint violations
λ− parameter defining the penalty weights of negative constraint violations
W pair (W+, W−) representing the positive and negative constraint matrices

W+ positive constraints matrix, where w+
ij is the positive constraint value for observations

i and j

W− negative constraints matrix, where w−
ij is the negative constraint value for observa-

tions i and j

Z an L-dimensional continuous random variable
z an observation (zi1, ...zil, ..., ziL) of Z representing the pixel intensities of an image
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Appendix D

Abbreviations

BCell B cell development data
Bimm immature B cells
BMC Bayesian model collection
Bpre pre B cells
Bpro pro B cells
BIC Bayesian information criteria
CL co-location index

CLP common lymphoid progenitor
CMP common myeloid progenitor

CR corrected Rand index
DAG directed acyclic graph

DN CD4-/CD8- double negative cells
DPL CD4+/CD8+ double positive large cells
DPS CD4+/CD8+ double positive small cells

DTree dependence tree
ECR extended corrected Rand index

ED equal density
EM expectation-maximization algorithm

E-Step expectation step
FACS fluorescence activated cell sorting
GQL Graphical Query Language

GO Gene Ontology
ImaGO Image Gene Ontology

HemoMIR hematopoiesis related microRNAs data
HMM hidden Markov model

HMRF hidden Markov random fields
KEGG Kyoto encyclopedia of genes and genomes
KMC k-means model collection

lHMM linear hidden Markov model
MAP maximum-a-posteriori
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Appendix D Abbreviations

MCMC Monte Carlo Markov Chain
mir microRNA

MixDTrees mixture of dependence trees
MixDTrees-Dev MixDTrees with the developmental tree as structure
MixDTrees-Str MixDTrees with estimated structure

MLE maximum likelihood estimation
MM probe mismatch

MoG mixture of multivariate Gaussians
MoG Full MoG with full covariance matrix

MoG Diag MoG with diagonal covariance matrix
M-Step maximization step

NK natural killer cells
NMF non-negative matrix factorization

PC Pearson correlation
pdf probability density function

pHSC pluri-potent, self-renewing hematopoietic stem cells
PM probe match
PPP pluripotent progenitor

RMC random model collection
SCC strongly connected components
Sens sensitivity index
SIM simulated data

SOM self-organizing maps
SSL semi-supervised learning
Spec specificity index
SP4 single positive CD4
SP8 single positive CD8

TCell T cell development data
TCD4 cd4 T cells
TCD8 cd8 T cells
TDN double negative T cells

TF transcription factor
TFBS transcription factor binding site
TNK natural killer T cells

TR transcription regulation data
YCC yeast cell cycle

VD Viterbi decomposition
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