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1 Abstract

As high-throughput sequencers become standard equipment outside of sequencing centers, there is an
increasing need for efficient methods for pre-processing and primary analysis. While a vast literature
proposes methods for HTS data analysis, we argue that significant improvements can still be gained by
exploiting expensive pre-processing steps which can be amortized with savings from later stages. We
propose a method to accelerate and improve read mapping based on an initial clustering of possibly
billions of high-throughput sequencing reads, yielding clusters of high stringency and a high degree of
overlap. This clustering improves on the state-of-the-art in running time for small datasets and, for
the first time, makes clustering high-coverage human libraries feasible. Given the efficiently computed
clusters, only one representative read from each cluster needs to be mapped using a traditional readmap-
per such as BWA, instead of individually mapping all reads. On human reads, all processing steps,
including clustering and mapping, only require 11%–59% of the time for individually mapping all reads,
achieving speed-ups for all readmappers, while minimally affecting mapping quality. This accelerates a
highly sensitive readmapper such as Stampy to be competitive with a fast readmapper such as BWA on
unclustered reads.

Availability: TreQ-CG is freely available for download at http://bioinformatics.rutgers.edu/

Software/TreqCG.

2 Introduction

The amount of data produced by current high-throughput DNA sequencing machines such as Illumina
HiSeq 2500, which can generate as much as 100Gb a day, demands enormous computational power for
primary analysis tasks such as read mapping. Although a large body of literature is concerned with
read mapping [21, 20, 19, 33, 14, 11, 26, 12, 42, 27, 1], most approaches map one read at a time. The
order of mapping is arbitrary regardless of similarities between reads which might hint towards the same
mapping location. One notable exception is Masai [37], which jointly maps read prefixes using a radix
tree, but necessarily has to rely on exact prefix matches. In high coverage libraries, reads originating
from the same genomic locus share many bases, which, if processed together, can significantly reduce the
computational effort. However, identifying partial overlap in the presence of sequencing errors, which
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are artifacts of library construction and other experimental errors, is itself a computationally expensive
task.

From a computational point of view, read mappers can roughly be divided in two categories: Programs
such as BWA [20] are very fast at mapping reads with low edit distance to the reference, but become
exponentially slower with increasing edit distance. They often have an internal cut-off to keep running
times in check. More sensitive programs, such as Stampy [26], can handle larger edit distance in the
presence of a high degree of variation, as found in cancer datasets [35], at the price of being slower in
general, typically by one order of magnitude. Interestingly, those two categories roughly correspond to
the two sources of edit operations observed in HTS reads: sequencing errors and intergenomic variation.
BWA is suitable for mapping reads from loci in the sample genome which are almost identical to the
corresponding locus in the reference, and the edit distance is mostly due to a few sequencing errors.
However, for the case of larger variation between sample and reference, read mappers such as Stampy
are tailored towards large edit distance. In that case, mapping reads individually means the algorithm
has to handle the difference between loci in sample and reference as many times as there are reads
covering it, which is wasteful. As the difference between the overlapping segments of reads from the
same genomic locus is solely due to sequencing errors, their mutual edit distance is usually less than
their edit distance to the reference genome in the presence of a high degree of intergenomic variations.
Consequently, identifying similar reads that most likely come from the same sample locus and mapping
them jointly is faster than individual mapping. Unfortunately, Stampy and other sensitive readmappers
do not utilize that observation.

The first step in exploiting the redundancy among reads originating from the same genomic locus is to
identify them through clustering. To compute clusters, we use an incremental greedy approach ensuring
stringent criteria for cluster membership in terms of overlap length and similarity to the anchor read
representing the cluster (see Figure 1). The clustering we use is unusual in two aspects: By design our
number of clusters is very large (5-10% of the number of reads) and different clusters can contain reads
from the same genomic locus. Both conditions are necessary to minimize mis-mappings due to clustering.
Prior works on clustering HTS reads were concerned with detection of clusters in which members either
completely or almost fully overlap with a high degree of similarity between them [3, 36, 6]. Relaxing that
criterion makes clustering computationally feasible, and it is not detrimental to further analysis as the
clusters are not per se focus of the investigation. Assuming that one cluster contains reads sequenced
from the same genomic locus, we only map one anchor read per cluster and align other cluster members
using a local alignment algorithm. Mapping clusters instead of individual reads speeds up computation
irrespective of the readmapper used.

Since clustering large datasets is a fundamental pre-processing step in data analysis, it has been
used extensively for many HTS-related problems. For example, in read compression, some tools exploit
redundancy among reads to achieve higher compression rate without using a reference genome; e.g., Coil
[43] and ReCoil [44] use an approach similar to us for grouping similar reads together before compression.
Similar ideas have also been applied to multiple sequence alignment-based error correction tools such
as Coral [34] and ECHO [16]. Redundancy removal is another application based on clustering, e.g.,
SEED [3] shows that removing redundant reads can improve running time, reduce memory requirement
and improve de-novo assembly quality. Similarly, for RAD-Seq data, Rainbow [5] shows improved de-
novo assembly after clustering. Although many diverse HTS tools exploit sequence redundancy through
clustering, there are very few tools that use clustering as a pre-processing step before read mapping. One
such tool, FreeClu [32], creates an interesting parent-child tree structure based on read frequency and
Hamming distance between reads. They report increased read mapping rate by utilizing the relationship
among reads represented as a tree. Unfortunately, their algorithm is not scalable to large datasets, and
also restricted to full overlap between reads allowing a Hamming distance of at most one. Another tool,
Oculus [40], combines redundancy check and read mapping together in one package. They process one
read at a time in a streaming setting, align a previously unseen read using Bowtie, and store results in
a hash table, thereby skipping expensive alignment step for redundant reads. Like FreClu, Oculus needs
full overlap and, unlike FreClu, requires complete match between reads to declare them redundant. This
approach can achieve moderate speed-up for very high coverage RNA-Seq data, but is unlikely to be
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Figure 1: Schematic view of clustering. Genetic variations do not contribute to the edit distance
between reads from the same genomic location. Thus, the only source of difference in an overlap is
sequencing error. Since the sequencing error rate is small for Illumina-like datasets, in most cases, the
clustering process can overcome the differences in the overlap between reads and group them together
in a cluster. Moreover, to reduce the probability of assigning reads from different genomic locations to
the same cluster, the overlap length has to be sufficiently large.

useful for whole genome sequencing data in presence of sequencing errors. In contrast, we process up to
a billion reads in one batch, and allow reads to partially overlap as well as contain mismatches in the
overlap (similar in spirit to MSA-based error correction approaches), which leads to significant speed-up
in read mapping.

3 Methods

By R = {r1, . . . , rN} we denote the read library. We assume all reads to have a fixed length L. We
also assume R to be produced by an Illumina-like sequencing experiment where substitution errors are
dominant compared to insertion and deletion (indel) errors. In the following, we discuss how we efficiently
cluster R and use these clusters to accelerate read mapping.

3.1 Clustering billions of reads for mapping

Our two main design goals for the clustering are computational efficiency and stringency with respect to
assigning reads from the same genomic locus to one cluster. Stringency and the size of the data imply
large number of clusters, which precludes the use of iterative clustering methods. Note that the clusters
themselves are not the focus of investigation, but rather a computational aid. Consequently, we allow
reads from the same locus to be assigned to distinct clusters. We propose the following greedy approach
based on shared k-mers for clustering reads.

3.1.1 Clustering single-end reads

Given two reads ri and rj with a prefix-suffix overlap of length l, where l′ number of bases match, we

say that they have an overlap of length l with similarity s = l′

l . If l ≥ αL and s ≥ β (α and β are
constants), we assume ri and rj are sufficiently similar to be member of the same cluster. Clusters are
represented by their anchor reads (in contrast to centroids in k-means clusters’ anchors remain fixed)
and reads, which are sufficiently similar to the anchors, are greedily assigned to the clusters (Figure 1).
If a read of sufficient quality—i.e., not a bad read as defined in the following—fails to find a sufficiently
similar anchor it becomes an anchor read itself and thus forms a new cluster.

Specifically, we create a set of anchor reads AR and an array of 4k lists AL = {AL0, . . . , Am, . . . ,AL4k−1},
where Am stores pointers to the anchor reads that contain the k-mer m (note that there is a one-to-one
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relation between k-mers and 2k bit numbers), and perform the following steps for each read ri in the
library.

1. A base ri,j is defined as a bad base if it is ambiguous (represented by ’N’) or it has Phred score
below the threshold f . If there are too many bad bases uniformly distributed in ri we call ri a bad
read and discard it from clustering. In particular, we discard ri if

• ri,s and ri,e are the first and last non-bad bases respectively, and e− s+ 1 < 2k, or

• the maximum length of a contiguous sub-sequence containing no bad base is less than k
2 .

2. For each k-mer in ri, we

(a) compute the corresponding 2k-bit integer representation m and get the list of anchor reads
that share the same k-mer from ALm.

(b) For each anchor read rj in ALm, whose content is already stored in AR, if ri and rj has a
prefix-suffix overlap of at least l ≥ αL bases respecting the position of the shared k-mer, we
compute similarity between ri and rj in the overlapped region.

(c) If at least βl number of bases match in the overlapped region, we declare ri as a member of
the cluster formed around the anchor read rj and halt further computation for ri.

(d) Otherwise, we proceed with the next k-mer.

3. If ri fails to be assigned to any cluster, it qualifies to be an anchor read and forms it’s own cluster.
We store ri in the set of anchor reads AR and for every k-mer m present in ri’s αL-length prefix
and suffix we insert a record in ALm.

3.1.2 Clustering paired-end reads

Although clustering a paired-end read library in single-end mode is acceptable for many applications,
for paired-end read mapping it is necessary to take pairing information into account. Unlike single-end
clustering, where we consider one read at a time, in paired-end clustering, we process a pair of reads
simultaneously and do not allow one end of a pair to be anchor read and the other end to be non-anchor
read. This constraint lets us map anchor reads in paired-end mode using a traditional readmapper. If
the constraint is violated for a pair ri1 and ri2 , where, lets say, ri1 is an anchor read but ri2 is not, we
resolve it in the following order.

1. If ri2 is a bad read, we force it to be an anchor read and form a new cluster.

2. If ri2 is a member of the cluster formed by anchor read rj2 , whose other end is another anchor read
rj1 , we try to find a prefix-suffix overlap of length l ≥ αL

2 between ri1 and rj1 where βl bases match
(since ri2 already provides some evidence for this choice we relax the overlap length restriction
from ≤ αL to ≤ αL

2 ). If such an overlap is found we force ri1 to be a member of rj1 .

3. Otherwise, ri2 is forced to be an anchor read and form a new cluster.

3.1.3 Optimal cluster assignment

The above procedure partitions the read library into three sets; bad reads, anchor reads and member
reads. Since not all anchor reads were known before the completion of the first phase, we defer final
cluster assignment to the second phase of the algorithm. In particular, for each member read ri with
an overlap of length l with it’s current cluster’s anchor read, we try to change the assigned cluster by
finding another anchor read with an overlap l′ > l. We perform this by running only step 2 from the
single-end algorithm and modifying step 2.c to find the best possible cluster assignment.
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Figure 2: Sub-optimal cluster choices. Here Mi is a member read of the cluster formed by anchor
read A3 (relationship shown with a solid red arrow). In addition to A3, Mi also has at least αL length
overlap with A2 and A4, where at least (β′× overlap length) number of bases match (shown with dotted
red arrow). Similarly, some of the anchor reads also have significant overlap among them (shown with
dotted green arrow). These sub-optimal choices are considered in the read mapping step to increase the
probability of accurately mapping non-unique, repetitive reads.

3.1.4 Sub-optimal cluster assignment for repeat resolution

Another crucial aspect to take into consideration is the complexity of the underlying genome from which
sequencing reads originate. Because of the non-uniformity and repetitiveness present in the genome,
sub-optimal cluster assignments are sometimes preferred. Towards this goal, in the second phase, along
with the cluster with highest overlap, we also store at most SM number of sub-optimal (allowing β′ < β)
cluster assignments for each member read (red dotted arrows in Figure 2). We take this idea further
and, for an anchor read, store at most SA number of similar anchor reads by modifying the first phase
of the algorithm (green dotted arrows in Figure 2). Storing these two kinds of sub-optimal choices can
be very useful in resolving ambiguity and repeats in read mapping.

3.1.5 Practical Considerations

Even our greedy two stage clustering strategy can become infeasible already for one billion reads. We
have carefully taken some decisions and made some parameter choices to keep the clustering process
feasible. In particular, smaller values of k increase sensitivity but require more computational resources
due to more frequent k-mer hits. Since our cluster definition is comparatively relaxed, a large k, in
this case 15, is suitable for read libraries with few sequencing errors such as Illumina’s. Additionally,
we have made the following choices: One, we ignore indels introduced by sequencing and perform a
Hamming distance computation on the overlap between two reads only if they share at least two k-mers,
which decreases the probability of spurious hits due to the choice of k and the presence of sequencing
errors; two, since overlapping k-mers in a read are not independent and, hence, considering all k-mers
increases computational demand without significant improvement in optimal cluster assignment, in the
second phase, we abandon the search for best cluster assignment after considering L−k+1

4 equally spaced
k-mers from the read; three, since frequent k-mers are less informative, the size of the list ALm, storing
the anchor reads containing m, is restricted to 256; four, we restrict the number of sub-optimal choices
SM to 16 and SA to 256 and store them in external memory; finally, we set β = 0.95, β′ = 0.8 and
α = max{0.5, 31L }, which restricts the allowed read length to be at least 31 and guarantees that the
clustering algorithm can overcome at least one error (2 · 15 + 1 = 31) in the overlap. See supplement for
a detailed discussion on choosing parameters α and β.
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Figure 3: Schematic view of clustered read mapping. Read mappers map all reads in input
individually to the reference genome (ignoring savings achieved using index structures). In contrast, in
clustered read mapping only the anchor read is mapped to the reference genome. The mapping positions
of individual cluster members are recovered w.r.t. to the position of the anchor read.

3.1.6 Running time and memory usage

For each of the N reads of length L in the library, the clustering process computes Hamming distance
between the read and potential anchor reads found using shared k-mers. Consequently, the running
time complexity of the algorithm is O(NL2). Due to the practical choices from the previous section, in
practice, the total running time is not quadratic in L, and the average running time is approximately
O(NL). For space complexity, lets assume the clustering algorithm finds τN clusters, where 0 ≤ τ ≤ 1.
In that case, the set of 2-bit encoded anchor reads AR needs O(τNL) bytes, the array of lists AL needs
O(τNL + N) bytes and cluster membership information takes O(N) bytes. Thus, the total amount of
space required by these three objects is O(τNL). Including other overhead, specially for multi-threading
support, a 100-bp 1.5 billion human read dataset, where τ = 0.08 (τ = 0.11) for single-end (paired-
end), requires 76GB (91GB) memory. If the read sequences were error free, we would need significantly
less amount of memory since τ would be O

(
G
L

)
. But, unfortunately, HTS libraries contain frequent

sequencing errors, and hence, this large space requirement is unavoidable for de-novo clustering.

3.2 Mapping clusters

In resequencing experiments the first step in the analysis typically is mapping reads to a reference genome.
The choice of a tool depends on the biological question under investigation, the expected genetic variation
between sample and reference genome and the computational resources available. The tools roughly fall
into two categories: fast read-mappers which trade losses in mapping reads for speed such as SOAP2 [21],
Bowtie 2 [18] or BWA [20] or highly-sensitive, but much slower tools such as mrFAST [2], RazerS [41],
LAST [7], Novoalign (http://www.novocraft.com) or Stampy [26]. We will show how we accelerate
read mapping based on the clustering irrespective of the readmapper used.

Our clustering algorithm works under the assumption that members of a cluster originate from the
same genomic locus in the sample genome. We exploit this assumption by mapping the anchors in single-
end or paired-end mode to a reference genome and subsequently use the information about the mapped
position of the anchor read to find good mappings for member reads. As a result the running time
complexity of read mapping reduces to the proportion of clusters found; in practice we need more time
as the cost of mapping a single read varies considerably. Although we can find more than one location
for non-unique, repetitive reads using multiple hits for the anchor reads and utilizing sub-optimal cluster
choices, in this study, for a suitable comparison between clustered vs. individual read mapping, we only
report single best hits for reads. Specifically, given the read library R we perform the following steps to
compute the read alignments assuming fixed costs 3, −3, −40, and −3 for nucleotide match, mismatch,
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gap open, and gap extension.

1. Identify the anchor reads and map them in single best mode using a readmapper. Report the
alignments in a SAM file S.

2. Extract mapping information of the anchor reads from S.

3. For each read r in R,

(a) If r is an anchor read, do nothing.

(b) If r is a bad read, report the read as unmapped in S.

(c) If r is a member read,

• we use the overlap information between anchor read and member read to identify the ge-
nomic position from where the member read may have originated, and compute Hamming
distance.

• If the total cost of mismatches from previous step is greater than a single gap opening
cost (for the tested datasets it happens for approximately 30% of the reads) we run the
Smith-Waterman algorithm [38] to find the best local alignment between the read and
the mapped position of the anchor in the genome (±L bases). We use a modified version
of a SSE based library [46] for Smith-Waterman computation.

• We repeat the above two steps for the sub-optimal cluster choices (Figure 2). In particular,
we increase the search space by following a path, through the dotted red and green links,
of length at most two, from the member read to the anchor reads.

• If the best alignment has score less than min score (default L
3 ) we report the read as

unmapped. Otherwise, we append the alignment information at the end of file S.

• For paired-end reads, if pairs are concordant we do nothing. For discordant pairs, we
use one end’s mapping information to find a better alignment for the other end before
reporting them in S.

Since readmappers often use different kinds of alignments — choice varies among local, global, and
semi-global alignment, score values, heuristics, and strategies to improve paired-end mapping, it is diffi-
cult to select an universal set of criteria which is good for all. The differences in choices and heuristics
used give them distinguishing characteristics which is often desirable by downstream analysis tools. We
believe that the choices we have made here are not necessarily the best for every readmapper, and it
makes sense to have different clustered mapper for different readmappers. However, we will not pursue
that direction in this article.

4 Results and discussion

We have selected four datasets to analyze our method.

• SIM: 2 million simulated 100bp paired-end reads (mean insert length 300 and standard deviation 30)
simulated with a coverage of 50x obtained with the popular read simulator ART [15] from human
chromosome 17 (from the 10Mbp to 14Mbp region) after artificially introducing SNPs (SIM-SNP)
and inserting indels (SIM-INDEL).

• ECOL: 21 million 36bp paired-end E. coli reads (SRX000429) with a coverage of 160x at a genome
size of 5Mb. We estimated the insert length to be 215bp with a standard deviation of 10bp.

• DROS: 48 million 76bp paired-end Drosophila reads (SRR097732) [17] with a coverage of 29x at a
genome size of 120Mb. We estimated the insert length to be 320bp with a standard deviation of
18bp.

• YOR: 1.46 billion 100bp paired-end Illumina reads of a Yoruba individual (ERA015743) (HapMap:
NA18507) with a coverage of 46x at a genome size of 3.2Gb. We estimated the insert length to be
310bp with a standard deviation of 20bp.
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For all datasets we use α = max{0.5, 31L } and β = 0.95. The experiments are performed on a Linux
machine with 48 AMD Opteron cores clocked at 2.2 GHz and 256GB memory. Whenever possible, in
particular for multi-threaded tools, 22-24 cores were assigned, and for both multithreaded and non-multi-
threaded programs total system time is reported.

In the following, we will show the effectiveness of our clustering algorithm and the benefits of us-
ing clusters in read mapping. We will also discuss how the characteristics of the read library affect
performance and parameter choices.

4.1 Clustering performance

Since clustering is a fundamental technique for large data analysis, many tools have been developed
in the past for biological data; i.e. for protein clustering [30, 25, 23], meta-genomics [28, 10, 45, 24],
and expressed sequence tags (ESTs) [29, 4, 31, 13]. Recently, there is a trend of developing alignment-
based (for alignment-free clustering see [39]) fast clustering tools for very large HTS data sets; among
these, CD-HIT [8], DNACLUST [9], UCLUST [6] and SEED [3] are prominent. These four tools use
greedy incremental approaches and apply heuristics to accelerate clustering (our clustering algorithm also
belongs to this group). Except DNACLUST, which uses a suffix array, these tools also use some kind of
hash/seed based data structure. Among them, SEED [3] has been identified as the state-of-the-art in read
clustering. Although it can cluster up to tens of millions of reads given enough time and memory, SEED,
and other tools, are still not very attractive as a pre-processing step before read mapping. There are two
reasons behind that: First, they require highly overlapping reads, usually α > 0.90, and, in some cases,
high similarity in the overlap, which results in a large number of clusters; Second, their algorithms and
data structures are not designed to process billions of reads. While large overlap is absolutely necessary
for very short reads (say < 50bp), for moderate to large sized reads (say > 50bp), α = 0.5 is sufficient
for declaring two reads similar for read mapping purpose since per base error rate for Illumina reads
are small. To overcome these difficulties, and to support particular requirements of read mapping, such
as paired-end support and sub-optimal cluster choices, we have designed our own clustering algorithm
TreQ-CG. As a representative of the fast clustering tools (see [22] for a set of examples) we have selected
UCLUST and SEED, and compared their performance with TreQ-CG (Table 1). We indirectly measure
the quality of the produced clusters by using them for read mapping in a later step. Among the two
tools in consideration, only SEED allows non-overlapping bases (at most 6 bases can be excluded), and
it allows at most 3 mismatches in an overlap which corresponds to parameters (α = 0.83, β = 0.90),
(α = 0.92, β = 0.96) and (α = 0.94, β = 0.97) for ECOL, DROS and YOR respectively. On the other hand,
UCLUST allows a flexible β but it does not allow users to select α. Compared to them, TreQ-CG allows
both parameters to be modified. Taking these differences into consideration we have selected three set
of parameters for comparison: C1 allows UCLUST to run with smallest possible β allowed by SEED, C2

allows smallest possible α and β allowed by SEED, and C3 is the parameter set used by TreQ-CG for
subsequent analysis.

Along with memory requirement and running time, our primary criteria for evaluating clustering

tools is the number of clusters produced, which is normalized as % of clusters =
# of anchor reads

# of reads
.

Since SEED depends on large overlap between reads, it produces 37.79% clusters for DROS in 7.93 hours
and does not complete on the YOR dataset. On the other hand, UCLUST’s use of full overlap and
gapped alignment makes it very slow on large datasets. It takes 52 hours on the ECOL dataset but on
the larger datasets it did not complete in one week. In comparison, TreQ-CG works with a wide range
of parameter choices in both single-end and paired-end mode, produces fewer clusters, and runs faster
than SEED. Additionally, for parameter set C3, TreQ-CG discards 0.3%, 1.6%, and 5.2% reads as bad
reads in single-end mode, and 0.2%, 1.3%, and 4.8% reads in paired-end mode. The clusters produced
by SEED and other clustering tools on smaller datasets such as ECOL are useful for other applications,
for example in meta-genomics. But unless they support smaller overlap length, which is difficult for their
particular choice of data structures and algorithms, they will not be attractive choices for pre-processing
reads before read mapping. We do not consider them for subsequent analysis in the following section.
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Table 1: The performance of three clustering tools, UCLUST, SEED, and TreQ-CG, on three biological
datasets ECOL, DROS, and YOR is shown. Three different parameter configurations are used for compar-
ison. SEED was run with parameters --shift X --mismatch Y --fast --reverse, where X and Y

corresponds to α and β respectively in TreQ-CG. Here, single-end and paired-end are abbreviated as
S.E. and P.E..

Dataset
Parameters

Program
Time Memory Clusters

(α, β) (h:mm) (GB) (%)

ECOL

C1

1.00, 0.90

UCLUST 52:07 2 17.47
SEED 0:32 12 38.97
TreQ-CG (S.E.) 0:24 17 23.86
TreQ-CG (P.E.) 0:30 17 31.21

C2

0.83, 0.90

UCLUST — — —
SEED 0:27 11 5.71
TreQ-CG (S.E.) 0:12 16 4.07
TreQ-CG (P.E.) 0:13 16 5.14

C3

0.86, 0.95

UCLUST — — —
SEED 0:30 11 7:30
TreQ-CG (S.E.) 0:14 16 7.30
TreQ-CG (P.E.) 0:15 16 8.57

DROS

C1

1.00, 0.96

UCLUST — — —
SEED 3:22 25 75.97
TreQ-CG (S.E.) 3:36 34 70.34
TreQ-CG (P.E.) 4:02 35 76.73

C2

0.92, 0.96

UCLUST — — —
SEED 7:56 25 37.79
TreQ-CG (S.E.) 2:00 23 24.50
TreQ-CG (P.E.) 2:30 24 30.09

C3

0.50, 0.95

UCLUST, SEED — — —
TreQ-CG (S.E.) 1:09 20 7.29
TreQ-CG (P.E.) 1:18 20 9.18

YOR

C1

1.00, 0.97
UCLUST, SEED

— — —
TreQ-CG

C2

0.94, 0.97

UCLUST, SEED — — —
TreQ-CG (S.E.) 197:35 196 29.45
TreQ-CG (P.E.) — — —

C3

0.50, 0.95

UCLUST, SEED — — —
TreQ-CG (S.E.) 107:52 76 7.48
TreQ-CG (P.E.) 133:22 91 10.90
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4.2 Read mapping performance

On biological datasets there is no ground truth available for deciding whether a read is mapped correctly.
There are also differences—in particular for low-quality reads and in presence of genetic variations—in
mapping performance between individual readmappers, and likewise we expect some differences between
clustered mapping and individual mapping even with the same readmapper.

We compare clustered and individual mapping for Bowtie 2 [18] version 2.1.10, BWA [20] version
0.5.9, Novoalign (http://www.novocraft.com/) version 2.07.13 and Stampy [26] version 1.0.19. All
mappers, chosen because they are widely used and implement different algorithmic approaches, were run
with default parameters except forcing reporting of a single best hit. We expect other readmappers,
specially highly sensitive computationally intensive ones, to benefit from clustered approach and their
overall performance to follow the performance of the readmappers chosen for comparison.

Including clustering time, clustered read mapping achieves a speed-up compared to the time of
mapping individual reads for all readmappers tested, see Table 2 for single-end reads and supplementary
Table S.1 for paired-end reads. The speed-up ranges from 8.9 using Stampy on YOR to 1.4 using Novoalign
on ECOL. One would expect that the time needed for mapping anchor reads should be proportional to
the number of anchors. But in practice, reads with high sequencing errors form singleton clusters (that
is a cluster without any member except the anchor read) and read mappers take more time to map these
reads. As a result the speed-up is not exactly proportional to the number of clusters. Still, due to the
achieved speed-up, the use of sensitive readmappers like Stampy becomes computationally as feasible as
running BWA.

For qualitative assessment of clustered read mapping we use the following three metrics.

• Accuracy. Since the true originating position of a read is known for simulated data, we define
accuracy as the proportion of reads that map within ±L bases of the true position [12]. We do
not require a strict match because there can be ambiguity in the starting position of the optimal
alignment due to the presence of gaps and exact alignment parameters.

• Alternate mapping rate. Since the ground truth is not known for biological data, we compute
alternate mapping rate between individual mapping and clustered mapping. Alternate mapping
rate is defined as the percentage of reads for which either both approaches report mapping po-
sitions not within ±L bases of each other, or one approach maps the read while the other fails.
This essentially measures how well the clustered read mapping recreates the exact output of the
individual read mapping.

• Concordance. For biological data, another important measure is concordance of read pairs. We
define it as the proportion of read pairs for which the estimated insert size is within the mean insert
length of the library, allowing for ±5 standard deviation. It has been argued in the literature [26]
that the concordance of paired-end reads mapped in single-end mode provides an indirect measure
of mapping accuracy.

4.2.1 Simulated Data

We have tested the effect of SNPs and indels on single-end and paired-end clustered mapping; the results
are reported in Figure 4 (single-end) and S.1 (paired-end). For SIM-SNP we have modified the sample
genome with substitution rate ranging from 0.001 to 0.15 while allowing no indels. For SIM-Indel we
have inserted indels of a particular size I ∈ [1, 20] with an indel rate of 0.01 per base. For each SNP
and indel size configuration we have sequenced 2 million reads using the read simulator ART, which
applies Illumina-specific sequencing errors on top of the genetic variations present in the artificial sample
genome. Since indels are randomly placed in the sample genome before sequencing, approximately 40%
reads in the SIM-Indel dataset do not contain any indel. As expected, Stampy’s performance stays
excellent for the range of variations tested but others do not perform well in presence of high genetic
variation. In case of Stampy, clustered mapping closely follows individual mapping. On the other hand,
clustered mapping performs better than individual BWA, Bowtie 2, and Novoalign. To gain efficiency
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Figure 4: Quality improvements in detecting SNPs and structural variants. Accuracy of
mapping single-end simulated reads between individual and clustered approach is shown. As expected,
BWA and Bowtie 2 do not perform very well in presence of large variations. Clustered read mapping
performs significantly better than individual BWA and Bowtie 2, and generally agrees with the individual
version of the sensitive readmappers.
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Figure 5: Alternate mapping rate between clustered and individual single-end read map-
ping. Alternate mapping rate is shown as a function of MAPQ threshold. Maximum reported MAPQ
value varies between readmappers; for BWA, Bowtie 2, Novoalign and Stampy maximum reported MAPQ
for single-end reads are respectively 37, 42, 150 and 96. The cutoffs used to report alternate mapping
rate in Table 2 are shown with diamond signs in the inset figures.
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Table 2: Running time and memory requirement of individual and clustered read mapping on single-end
datasets are reported. As expected, clustered read mapping achieves significant speed-up for all datasets.
Although running Stampy on YOR dataset in individual mapping mode is prohibitively expensive, clus-
tered approach makes running Stampy as feasible as running BWA.

Dataset
(single-
end)

Mapper
Memory (GB) Time (hh:mm)

Speed-up
Mapping quality

Individual
mapping

TreQ-CG Individual
mapping

TreQ-CG Alternate
mapping rate

Concordance

Clust. Map. Clust. Map. Ind. Clust.

ECOL

BWA 0.1

16

0.9 0:49

0:14

0:12 1.9 0.06 92.93 93.44
Bowtie 2 0.3 0.9 0:43 0:13 1.6 0.06 93.41 93.64
Novoalign 0.0 1.0 0:38 0:14 1.4 0.10 96.59 96.80
Stampy 0.0 1.0 4:17 0:28 6.1 0.08 96.23 96.19

DROS

BWA 0.3

20

1.4 3:29

1:09

0:49 1.8 0.88 71.02 72.07
Bowtie 2 0.4 1.4 2:53 0:39 1.6 1.41 74.82 73.87
Novoalign 0.6 1.4 6:19 1:09 2.8 0.85 71.20 73.87
Stampy 0.3 1.4 28:08 2:59 6.8 1.68 74.06 74.31

YOR

BWA 5.0

76

8.3 477:30

107:52

157:29 1.8 2.43 78.43 77.54
Bowtie 2 3.5 8.2 307:45 75:04 1.7 3.47 82.38 79.75
Novoalign 7.8 8.3 714:07 230:47 2.1 2.55 79.40 78.24
Stampy 2.7 8.2 3203:39 251:40 8.9 3.43 80.51 78.87

these readmappers limit their mapping process through limited edit distance or score cutoff. In contrast,
clustered mapping is more permissive due to low score cutoff (default L

3 ).

4.2.2 Biological Data

It is reasonable to expect that the reads mapped with low alignment quality are those which should
cause the most differences between clustered and individual mapping, and consequently influence the
accuracy measures. We use the MAPQ value reported in the SAM file, where higher value indicates
higher confidence in a particular alignment, as thresholds to limit the read alignments considered to
compute alternate mapping rate. In practice, along with unmapped reads (reported with default MAPQ
value 0), low quality alignments are frequently excluded from downstream analysis. Following [20], we
select MAPQ value of 1 and 2 for BWA and Bowtie 2 respectively, and 4 for Novoalign and Stampy, as
a cutoff to report alternate mapping rate in Table 2 and Table S.1. Alternate mapping rates computed
using different values of MAPQ threshold are reported in Fig. 5 and Fig. S.2. We also report concordance
of reads mapped in Table 2 and Table S.1.

From Figure 5 we observe that the alternate mapping rate among all reads above a MAPQ threshold
strictly decreases as a function of the threshold and eventually drops below 1%. At the selected MAPQ
thresholds, depending on the readmapper used, clustered mapping reports alternate mapping for about
0–1%, 1–3%, and 2–4% reads for ECOL, DROS and YOR datasets respectively. Compared to single-end
reads, there is an 1-2% increase in alternate mapping rate for paired-end mode (see Table S.1). The
observations are consistent with alternate mapping rates when comparing two different readmappers
and are largely explained by differences in alignment parameters (see Fig. S.4). As for concordance of
single-end reads in clustered approach, there is a small gain in concordance for ECOL and DROS, and a
small loss in concordance for YOR (Table 2). On the other hand, for paired-end reads, except for ECOL

dataset, there is always a gain in concordance, which is mostly due to altering mapping locations based
on pairing information (see Table S.1). Increase in alternate mapping rate and gain in concordance for
paired-end reads indicates that our paired-end mapping might be too permissive compared to what is
allowed by an individual readmapper.

5 Conclusions

We propose to cluster high-throughput sequencing reads as a first step in the analysis and show, as a
proof of concept, that our greedy clustering algorithm accelerates read mapping. We observe speed-ups
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for all readmappers tested ranging from 1.4 to 8.9 with very little alternate mapping between individual
and clustered mapping for high-quality reads, and low level of alternate mapping rate for all reads with a
small loss in concordance for some datasets. We do expect even more favorable results for read mapping
if there is a lot of genetic variation in the sample genome, such as in cancer datasets, or the evolutionary
distance between sample and reference genome is large.

There are several areas in which the method can be improved, the most important ones being cluster
quality and size, as running time is inversely proportional to the total number of clusters. It seems
reasonable that the singleton clusters (that is a cluster with cardinality one, which arises either due to high
sequencing error or very low coverage) can be reduced by additional passes, possibly with a smaller value
of k for k-mers. The additional effort in clustering is very likely to be made up in mapping, by net savings
in running time. So far read mapping is performed with anchor reads without any post-processing. An
obvious improvement can be made by considering clusters as an instance of multiple sequence alignment
problem, and correcting errors using the alignment information. Moreover, computing an elongated
consensus sequence and using it instead of the anchor read is also desirable. However, one has to
judiciously choose, based on coverage and within cluster sequence variation, the actual fragment of the
consensus to use for mapping to see further improvements.
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Figure S.1: Quality improvements in detecting SNPs and structural variants.

Table S.1: Running time and memory requirement of paired-end clustered read mapping.

Dataset
(paired-
end)

Mapper
Memory (GB) Time (hh:mm)

Speed-up
Mapping quality

Individual
mapping

TreQ-CG Individual
mapping

TreQ-CG Alternate
mapping rate

Concordance

Clust. Map. Clust. Map. Ind. Clust.

ECOL

BWA 0.2

16

0.9 1:01

0:15

0:13 2.2 0.27 98.77 98.62
Bowtie 2 0.3 0.9 0:49 0:12 1.8 0.28 98.39 98.36
Novoalign 0.0 1.0 0:57 0:15 1.9 0.33 99.57 99.28
Stampy 0.0 1.0 4:08 0:31 5.4 0.33 99.41 99.18

DROS

BWA 0.4

20

1.4 3:57

1:18

1:09 1.6 2.25 84.17 85.62
Bowtie 2 0.5 1.4 5:33 1:05 2.3 2.71 84.56 85.51
Novoalign 0.6 1.4 11:25 1:35 4.0 2.53 82.82 85.24
Stampy 0.3 1.4 38:51 4:17 7.0 3.05 82.52 86.08

YOR

BWA 5.0

91

11.0 533:38

133:22

171:31 1.8 2.82 89.24 90.56
Bowtie 2 3.7 10.9 352:49 89:11 1.6 3.50 90.48 91.46
Novoalign 8.0 10.9 969:19 368:39 1.9 2.98 87.52 90.41
Stampy 2.7 10.9 3397:02 453:59 5.8 3.48 88.38 91.18

Appendix

Results for paired-end datasets

Accuracy of mapping simulated paired-end reads between individual and clustered approach is shown in
Fig. S.1. Running time, memory requirement and mapping quality of individual and clustered paired-end
read mapping are reported in Table S.1. Read mapping agreement is shown in Fig. S.2 as a function of
MAPQ threshold.

Additional points

Coverage and read length

Statistically significant findings in the downstream analysis require high coverage sequencing. For exam-
ple, Illumina’s cancer pipeline recommends 40x coverage for normal and 80x coverage for cancer tissues.
The higher the coverage of the library the more advantageous the clustering becomes, as we expect the
average cluster size to increase. We tested read libraries with reads of 36–100bp and we expect results to
improve for even longer reads. For significantly shorter reads read mapping based on clusters will likely
fail to achieve any significant speed-up or the loss of sensitivity will be non-negligible.
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Figure S.2: Alternate mapping rate between clustered and individual paired-end read map-
ping. Alternate mapping rate is shown as a function of MAPQ threshold. Maximum reported MAPQ
value varies between readmappers; for BWA, Bowtie 2, Novoalign and Stampy maximum reported MAPQ
for single-end reads are respectively 60, 42, 159 and 99. The cutoffs used to report alternate mapping
rate in Table S.1 are shown with diamond signs in the inset figures.

Bias of 15-mer

An overlap of length at least 15 · (E+ 1) +E is guaranteed to overcome E errors in our algorithm. Since
we use a fixed value for α, some reads will not be detected as members and possibly create singleton
clusters. Smaller k will lessen this problem, but to keep the algorithm efficient for large datasets we do
not want to lower k. Instead, if a read library is suspected to contain many reads with large number of
errors α can be increased to deal with the issue.

Parameter choices

If the sequencing error rate ε (typically less than 0.02 for Illumina experiments) can be determined a
priori, we suggest using a similarity cutoff β ≤ (1 − 2ε). Too large a value for β makes it difficult to
assign a read to clusters, thus creating too many clusters, while a value too low might assign reads to
wrong clusters.

For α, if we choose a smaller value, we will get fewer clusters, which will in turn decrease running
time, but unfortunately read mapping sensitivity will drop. On the other hand, a value too large leads to
more clusters. This increases running time of both clustering and mapping, but it also increases mapping
sensitivity. The values we used, α = max{0.5, 31L } and β = 0.95, worked well for three genomes of very
different sizes and we expect that the choice will work well for experiments with similar coverage, read
length and genome size and structure. Should the parameters of the experiment change drastically the
choices might have to be re-evaluated in a preliminary study.

Automatic choice of parameters

It is possible to design a scheme to automatically select the necessary parameters α and β. A small,
randomly selected set of reads can be mapped to the reference genome to compute the error rate ε from
the uniquely mapped reads. Given ε, we can perform a grid search over the possible values of α and β.
A chosen set of parameters should fulfill two criteria: One, a valid overlap, defined by α and β, between
two reads from different genomic locus should only occur with very low probability, and two, the amount
of required memory, which is primarily determined by the number of clusters, should be less than the
available system memory. Next, we show an analysis of the expected number of clusters produced by a
set of parameters.
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Number of clusters: We will assume that the reads are numbered in the order they are processed. Let
r′i 6= r′j means that read ri has an overlap with read rj of length at least αL and their overlapped portion
r′i and r′j has similarity less than β. Let the number of sequencing errors in r′i be s(r′i). Assuming s(r′i)

is binomially distributed with rate ε, Pr[s(r′i) = k] =
(|r′i|
k

)
εk(1− ε)|r′i|−k. Let Ci ⊆ {r1, r2, · · · , ri−1} be

the set of anchor reads with at least αL overlap with ri. Given Ci, the probabity of read ri becoming
an anchor read and forming it’s own cluster is Pi = Pr

[ ⋂
rj∈Ci

r′i 6= r′j
]
. We simplify the analysis by

assuming that all the reads in Ci has overlap of length l′ = (1+α)
2 L, which is the expected length of a

valid overlap. The updated probability is P ∗i ≈ Pi. Since the number of mismatches allowed is at most
m = (1− β)l′, P ∗i is upper bounded by

l′∑
x=0

(
Pr[s(r′i) = x]

∏
rj∈Ci

Pr[s(r′j) ≥ m− x]

)

=

l′∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]|Ci|

=

m−1∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]|Ci| + Pr[s(r′i) ≥ m].

Let Ti−1 be the number of clusters formed after processing i−1 reads. Assuming the reads were sequenced

uniform randomly from the genome, E[|Ci|] =
i−1∑
j=0

2(1−α)L
G Pj = 2(1−α)L

G Ti−1. Now, if we replace |Ci|

with E[|Ci|], P ∗i is approximately equal to

≈
m−1∑
x=0

Pr[s(r′i) = x]Pr[s(r′j) ≥ m− x]
2(1−α)L

G Ti−1 + Pr[s(r′i) ≥ m]

=

m−1∑
x=0

(
l′

x

)
εx(1− ε)l

′−x

(
l′∑

y=m−x

(
l′

y

)
εy(1− ε)l

′−y

) 2(1−α)L
G Ti−1

+

l′∑
y=m

(
l′

y

)
εy(1− ε)l

′−y.

We numerically evaluate the approximate upper bound for the number of clusters TN ≈ TN−1 +P ∗N .
See Figure S.3 for an application of this analysis.

Commands

Here we assume that the read files are named reads 1.fq and reads 2.fq. TreQ-CG is a collection of
three programs - treq-cluster, treq-split, and treq-map. At first we compute clusters, then extract
anchor reads to be mapped by a traditional read mapper, and finally, use the mapping information of
anchor reads to find alignment of the remaining reads. The commands to run these programs are given
below. Appropriate changes were made for single end libraries and for libraries with pre-Illumina 1.8
quality scores.

• Clustering reads:
treq-cluster [-q 0] -t 24 -s 0.95 cluster prefix reads 1.fq reads 2.fq

• Extracting anchor reads:
treq-split cluster prefix anchor prefix reads 1.fq reads 2.fq
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Figure S.3: Expected number of clusters. From an artificially generated sample genome, an i.i.d.
sequence of 1 million bases, we sequence 100bp single-end reads with coverage 25, 50, and 100, and insert
sequencing error at a rate ranging from 0.005 to 0.09. We compare the true number of clusters computed
using the clustering algorithm to the numerically evaluated ones for β = 0.95 and β = 0.9. The total
number of cluster is computed very accurately except for small values of ε. It is evident that β ≤ (1−2ε)
keeps the total number of clusters small.
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• Mapping anchor reads:

– BWA
bwa aln -t 24 index anchor prefix 1.fq > tmp 1.sai

bwa aln -t 24 index anchor prefix 2.fq > tmp 2.sai

bwa sampe -a 1000 index tmp 1.sai tmp 2.sai anchor prefix 1.fq anchor prefix 2.fq

> anchor reads.sam

– Bowtie2
bowtie2 [--phred64] -x index -p 24 -S anchor reads.sam -1 anchor prefix 1.fq -2

anchor prefix 2.fq

– Novoalign
novoalign -F [ILM1.8 | ILMFQ] -e 1 -r Random -o SAM -d index -f anchor prefix 1.fq

anchor prefix 2.fq > anchor reads.sam

– Stampy
stampy [--solexa] -g index -h index -o anchor reads.sam -t 24 -M anchor prefix 1.fq

anchor prefix 2.fq

• Clustered mapping:
treq-map -t 24 genome.fa cluster prefix anchor reads.sam all reads.sam reads 1.fq reads 2.fq

21



0

20

40

60

80

100

A
lt

e
rn

a
te

 m
a
p
p
in

g
 r

a
te

 
 (

w
/ 

S
ta

m
p
y
)

ECOL (single-end) ECOL (paired-end)

BWA
Bowtie 2
Novoalign
Stampy w/ clust.

0

20

40

60

80

100

A
lt

e
rn

a
te

 m
a
p
p
in

g
 r

a
te

 
 (

w
/ 

S
ta

m
p
y
)

DROS (single-end) DROS (paired-end)

0 20 40 60 80 100 120 140 160
MAPQ Threshold

0

20

40

60

80

100

A
lt

e
rn

a
te

 m
a
p
p
in

g
 r

a
te

 
 (

w
/ 

S
ta

m
p
y
)

YOR (single-end)

0 20 40 60 80 100 120 140 160
MAPQ Threshold

YOR (paired-end)

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

0 5 10

5

10

15

Figure S.4: Alternate mapping rate between readmappers compared to Stampy. Alternate
mapping rate is shown as a function of MAPQ threshold.
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