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ABSTRACT

Machine learning algorithms are very successful in solving classification and regression
problems, however the immense amount of data created by digitalization slows down
the training and predicting processes, if solvable at all. High-Performance Computing
(HPC) and particularly parallel computing are promising tools for improving the per-
formance of machine learning algorithms in terms of time. Support Vector Machines
(SVM) is one of the most popular supervised machine learning techniques that enjoy
the advancement of HPC to overcome the problems regarding big data, however, effi-
cient parallel implementations of SVM is a complex endeavour. While there are many
parallel techniques to facilitate the performance of SVM, there is no clear roadmap for
every application scenario.

This thesis is based on a collection of publications. It addresses the problems regard-
ing parallel implementations of SVM through four research questions, all of which are
answered through three research articles. In the first research question, the thesis inves-
tigates important factors such as parallel algorithms, HPC tools, and heuristics on the
efficiency of parallel SVM implementation. This leads to identifying the state of the art
parallel implementations of SVMs, their pros and cons, and suggests possible avenues
for future research. It is up to the user to create a balance between the computation time
and the classification accuracy. In the second research question, the thesis explores the
impact of changes in problem size, and the value of corresponding SVM parameters that
lead to significant performance. This leads to addressing the impact of the problem size
on the optimal choice of important parameters. Besides, the thesis shows the existence
of a threshold between the number of cores and the training time. In the third research
question, the thesis investigates the impact of the network topology on the performance
of a network-based SVM. This leads to three key contributions. The first contribution is
to show how much the expansion property of the network impact the convergence. The
next is to show which network topology is preferable to efficiently use the computing
powers. Third is to supply an implementation making the theoretical advances practi-
cally available. The results show that graphs with large spectral gaps and higher degrees
exhibit accelerated convergence. In the last research question, the thesis combines all
contributions in the articles and offers recommendations towards implementing an ef-
ficient framework for SVMs regarding large-scale problems.
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CHAPTER 1

INTRODUCTION

In recent years, we have seen a dramatic increase in the amount of data created by digi-
talization. Over 90% of digital data in the world was generated over the years 2015-2017,
i.e., 2.5 quintillion bytes of data every day (Domo, 2018a). It is estimated that by 2020,
1.7 MB of digital data will be generated per person/per second (Domo, 2018b). Social
media and search engines are examples of fieldswith exponentially growing data. Conse-
quently, the need for tools that can automatically learn, analyze, and predict has grown.
Machine learning provides such tools that can automatically understand data and draw
conclusions as needed. In order to harness the power of machine learning methods for
large-scale problems, High-Performance Computing (HPC) (Yang and M. Guo, 2005)
and particularly parallel programming are necessary.

One of themachine learningmethods that have beenmost widely used is Support Vector
Machines (SVM) (V. N. Vapnik, 1999). SVM can take advantage of parallelism, however
an efficient parallel implementation of SVM is a complex endeavor (H. P. Graf, Cosatto,
et al., 2004). While there are many parallel techniques to improve the performance
of SVM, there is no clear roadmap for every application scenario. Existing parallel ap-
proaches may become inefficient for solving large-scale problems or using a large num-
ber of computing nodes, i.e., theymay not scale well to a large number of samples or pro-
cessors. Problems such as communication overhead, computationally dependent steps,
and memory limitations degrade the efficiency of parallelism (G.-X. Yuan, Ho, and C.-J.
Lin, 2012). Besides, coding part of a parallel SVMs algorithm is difficult and requires
considerable skills (Byun and Lee, 2002a). Due to the high space and time complexity
of SVM algorithms, it is important to identify and use appropriate algorithms and effi-
cient heuristics that fit the characteristics of the given problem along with the parallel
settings. To identify the appropriate parallel approaches that have potentials to obtain
the peak performance for the given large-scale problem, a key issue is to thoroughly
study the efficiency of existing parallel approaches. Although some attempts have been
conducted to identify the parallel approaches (Tyree et al., 2014; Byun and Lee, 2002a),
to our knowledge, there is no work that thoroughly reviews and identifies the parallel
algorithmic approaches along with parallel tools for efficient implementations of SVM.
Distributed optimizations, parallel incremental learning and a parallel cascade of SVMs
are examples of algorithmic approaches. Distributed HPC architecture, distributed big
data architecture, shared memory and GPU-based parallelism are examples of parallel
tools. Another key issue in the application of machine learning algorithms is to supply
efficient implementations making the theoretical advances practically available. This
helps to identify the limitations of theoretical principles in practice and new settings.
For instance, the high dimensionality of problems and a large number of training sam-
ples that lead to computationally expensive tasks are some of the hurdles in the imple-
mentations of machine learning algorithms. In order to implement efficient algorithms
and to harness the power of parallelism, the role of empirical studies and investigation
of efficient methods/heuristics in parallel settings is important.

This thesis aims to address the issues regarding parallel implementations of SVM for
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Figure 1.1: Important elements of efficient parallel implementations

large-scale problems in practice. In this regard, the important elements of efficient im-
plementations of SVM have been identified. These elements are shown in Figure 1.1. In
addition, two empirical studies are designed and conducted to address issues regard-
ing the overhead and efficient communication between computational nodes. Beside,
corresponding implementations are provided to make theoretical advances practically
available.

1.1 PARALLEL SVMS - CHALLENGES
Simple SVM classification problems comprise two processes, training and predicting.
The training phase of SVM involves a denseQuadratic Programming (QP) problem (Wood-
send and Gondzio, 2009a) and solving such a QP is computationally expensive since
it involves computations of a large Hessian/kernel matrix. Kernel evaluations include
computationally expensive tasks, i.e., matrix-vector and matrix-matrix multiplications,
gradient function and optimality condition updates. The old and general-purpose QP
solvers are no longer suitable for solving the QP resulting from SVMs since many of QP
solvers require computing and storing the kernel matrix in the memory, which is not
always possible due to the memory limitations. One efficient approach to improve the
performance of SVM algorithms is parallelism, however, the parallel approach used in
the general-purpose QP solvers may not take the advantage of the special characteristics
of SVMs (see article I) or they may not be easily parallelizable. Besides, the immense
size of real-world data can cause problems as follows,

• Memory. The whole data may not fit into the memory or inefficient memory
access slows down the training and testing phases.

• Speedup. The matrix operations might take too long time to be performed due
to the computationally expensive tasks, e.g., matrix-vector, matrix-matrix multi-
plications, and overheads.

2
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• Scalability. Algorithms may not scale well to a large number of processors or a
large number of samples.

• Accuracy. Approximation methods for reducing the size of the problem or di-
viding the original problem into several small problems may lead to poor classifi-
cation accuracy.

Besides the important points in parallelism mentioned above, several common heuris-
tics, e.g., caching (Matsushima, Vishwanathan, and Smola, 2012), shrinking (Joachims,
1998), data reordering (Durdanovic, Cosatto, andH.-P. Graf, 2007) and data movement
(Liao et al., 2009), are used to further improve the performance of SVM algorithms. As
mentioned in article I, one of the challenges in parallel implementations of SVMs is how
and to what extent these heuristics can be used.

1.1.1 RESEARCH PROBLEM

The immense amount of data generated by digitalization necessitates using HPC tools
and particularly parallel computing for improving the performance of machine learn-
ing algorithms. The well-studied tools in this regard are shared memory parallelism
(H. Zhao and Magoules, 2011; Didiot and Lauer, 2015; Eitrich and Lang, 2005; Mar-
zolla, 2011; Gonçalves, Lopes, and Ribeiro, 2012; P. Chang, Bi, and Feng, 2014; Eitrich
and Lang, 2006), distributed HPC architectures (Brugger, 2006; L. Cao et al., 2006;
Athanasopoulos et al., 2011; Narasimhan et al., 2014; Vishnu et al., 2015; Ferreira,
Kaszkurewicz, and Bhaya, 2006), hybrid shared-distributedmemory parallelism (Doan,
Do, and Poulet, 2013; Woodsend and Gondzio, 2009b), distributed big data architec-
tures (H. Zhao and Magoules, 2011; Caruana, M. Li, and Qi, 2011; Alham, M. Li, and
Liu, 2014; Q. He et al., 2011), Field Programmable Gate Arrays (FPGA) (Papadoniko-
lakis, Bouganis, and Constantinides, 2009) and most popular GPU-based parallelism
(Do, Nguyen, and Poulet, 2008; Peng, Zhang, and Y. Zhao, 2011; Carpenter, 2009a;
Athanasopoulos et al., 2011). Nevertheless, the efficient parallelization of SVM algo-
rithms is far beyond an easy task (H. P. Graf, Cosatto, et al., 2004) due to challenges as
follows,

1. Dependencies between the computation steps. This concerns the paralleliz-
ability of SVM algorithms. For instance, in order to obtain the results in the current
step of the Sequential Minimal Optimization (SMO) algorithm (Platt, 1998), the
result from the previous step is required (H. P. Graf, Cosatto, et al., 2004). As an-
other example, an SVM algorithm may be implemented in a way that the modern
processor technologies, e.g., SSE, AVX, or optimization options are not applicable
(Tavara, Sundell, and Dahlbom, 2015). In most cases, re-implementing the algo-
rithms is a hurdle and not straightforward. Therefore, it is important to identify the
algorithms that have good parallelizability.

2. High latency in memory access. Careful access of data from memory, in which
it follows the appropriate pattern of the underneath architecture, is significant. An
access pattern that does not follow the architecture leads to high latency and if an
algorithm is a memory bound, the memory access cost will be high and then multi-
threading leads to memory contention (You, Song, et al., 2014). For instance, GPUs
have certain restrictive memory access patterns which can cause high latency if the
patterns are not followed properly (Cotter, Srebro, and Keshet, 2011).

3. Limited memory. This concern mostly regards to the shared memory and GPU-
based parallelism, albeit it can also relate to the distributed memory parallelism for

3



UNIVERSITY OF SKÖVDE

large-scale problems in which the data do not fit in the available memory. Approxi-
mation methods play an important role to reduce the size or dimension of the data,
however, they may cause deterioration of the classification (You, Song, et al., 2014).

4. Overheads. Communication and synchronization overheads are hurdles in paral-
lel implementations of machine learning algorithms (E. Y. Chang, 2011). Many par-
allel implementations exhibit accelerated performance in each core while combin-
ing or exchanging results from several cores leads to higher overhead, hence lower
speedups. In this regard, how to exchange data and results between distributed
cores affects the efficiency of parallelism. Therefore, the network topology of nodes
plays an important role in the efficiency of parallel implementations (Chow et al.,
2016; H. T. Cao et al., 2016).

5. Dedicated hardware. Dedicated hardware for performing computationally ex-
pensive tasks has been used for parallel implementations of machine learning al-
gorithms. FPGA for example leads to accelerated performance, however expertise
in the dedicated architecture/hardware is required to efficiently perform the tasks.
Furthermore, the hardware may not be always available. This motivates developing
parallel implementations on standard workstations.

Consequently, how andwhichHPC and parallel tools along with algorithmic approaches
can be employed will impact the performance of the algorithm in question and the ap-
plied computing power. To approach these issues and overcome some of the mentioned
hurdles, this thesis aims to 1) investigate the efficiency of HPC and parallel tools on
the performance of SVM algorithms (addresses challenge 1-5), 2) to improve the per-
formance of a SVM algorithm by conducting simple and important changes that allows
usingmodern processor technologies, besides introducing a threshold between time and
the number of cores (addresses challenge 1-4), 3) study the impact of network topology
in a distributed consensus-based SVM in order to get the maximum possible advantage
of parallelism (addresses challenge 1-4), and 4) suggest constructive approaches towards
developing an efficient parallel framework.

1.2 RESEARCH QUESTIONS
In order to address the problemsmentioned in 1.1.1, themain objectives of this thesis are
elaborately presented in the form of four research questions all of which are answered
by three research articles.

1. What are the efficient HPC and parallel programming tools for improving an
SVM algorithm regarding large-scale problems?
Today, while there are many HPC and parallel computing tools employed for im-
proving the performance of machine learning algorithms, there is no clear roadmap
or suggestion for every application scenario. Besides, parallel settings may not fit
or have the maximum possible performance on different algorithms, e.g., an Se-
quential Minimal Optimization (SMO) (Platt, 1998) algorithm for solving SVM
problems may not be as efficient as an Interior Point Method (IPM) (E. Y. Chang,
2011) algorithm in parallel distributed settings. This causes inefficient use of com-
puting powers without significant gains, i.e., using few computing cores may have
the same performance improvement as using many cores. This research question
aims to present three key characteristics as follows,

a Which SVM algorithms do fit the parallel settings better?
b What are the efficient HPC tools and parallel programming and their pros and

cons in the context of SVM?
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c What are potential avenues for future research in order to achieve high-performance
SVMs?

2. How can simple changes such as memory allocation, de-allocation, and alternat-
ing problem size and the number of computing cores impact the performance of
an IPM-based SVM implementation in terms of the training time and the classifi-
cation accuracy in parallel settings?
Based on the Amdahl’s law (Null, Lobur, et al., 2014), the maximum speedup of a
program using parallel computing with multiple processor is limited regardless of
the number of processors. The maximum speedup is limited by sequential parts
in the program, therefore parallelizing even small fractions of sequential parts
can lead to significant improvement. Several SVM algorithms suffer from sequen-
tial parts, e.g., SMO. The sequential parts cannot always be performed in parallel,
due to the dependencies between sequential steps in the algorithms. However, re-
designing the algorithms can solve this issue in many cases. IPM-based SVMs have
shown high-performance in parallel and distributed settings (E. Y. Chang, 2011;
Woodsend and Gondzio, 2009a; T. Li et al., 2013; Jin, Cai, and Xiaola Lin, 2013;
Chatterjee, Fermoyle, and Raghavan, 2010; Gertz and Griffin, 2010). The following
research questions present some key characteristics as follows,

a How can small changes, e.g., memory allocation, de-allocation, and using mod-
ern processor technologies, lead to significant improvement on the performance
of an IPM-based SVM in terms of time and the classification accuracy?

b How does the number of computational cores relate to the training time in an
IPM-based SVM?

c How does the size of the approximated kernel matrix in an IPM-based SVM
affect the choice of the other parameters as well as the accuracy?

3. What are the impacts of network topology on the performance of SVM algorithms
in terms of convergence?
Network topology and the connectivity of the underlying graph have an impact on
the performance of network-based SVMs in terms of convergence and the number
of iterations until convergence. This research question investigates how network
topology affects a distributed SVM algorithm. The elaborated sub-questions are as
follows,

a How much does the expansion property of expander graphs influence the con-
vergence of a distributed consensus ADMM-based SVM algorithm?

b Which topology is preferable in the context of expander graphs?
c How to supply an implementation making these theoretical advances practically

available?

4. What recommendations of possible avenues for future research can be given for
development of an efficient parallel framework that takes the maximum possible
advantage of parallelism for solving SVM problems?
This research question aims to provide recommendations that facilitate the devel-
opment of an efficient parallel framework for solving SVM problems. Potential rec-
ommendations can help scientists and developers to use the efficient approaches
based on their demands and preference. Besides, these recommendations can
make it possible to develop a framework that gathers all the efficient approaches
under the same roof. These recommendations are given based on the findings in
research questions 1, 2, and 3.
Figure 1.2 shows the research design of the thesis regarding the research problem,
research questions, objectives, and the corresponding research articles.
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Paper IIPaper I Paper III

Research Question 3Research Question 2ResearchQuestion 1

Research Question 4

An efficient parallel framework for SVM

Efficiency of HPC for SVM

Aim of the thesis

Objective 1 Objective 2 Objective 3

Objective 4

Figure 1.2: The research design regarding research problem, research questions, objectives, and
research articles

1.3 CONTRIBUTION TO THE PUBLICATIONS
In this section, the author’s contribution to each publication presented in this thesis is
briefly described. The author has been themain driver of all the publications listed in this
thesis, including defining the research problems, planning and designing the empirical
studies and the experiments, conducting the experiments, analyzing the data and results,
and writing the articles. Detail of the contributions is as follows,

1. Article I. Tavara, Shirin. (2018) Parallel Computing of Support Vector Machines:
A Survey. Accepted in ACM Computing Surveys (CSUR) journal, 2018.

• I have reviewed over 200 relevant articles to conduct the survey. I have had
the sole responsibility of summarizing, structuring, analyzing, and comparing
methods in the subject area. Besides, I have had the responsibility of identify-
ing the gaps in the existing literature and suggesting constructive recommen-
dations.

2. Article II. Tavara, Shirin, Sundell Håkan, and Dahlbom, Anders. (2015) Empir-
ical Study of Time Efficiency and Accuracy of Support Vector Machines Using an
Improved Version of PSVM. Proceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA), Vol. 1, p.
177-183. The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), 2015, July. Printed
in the United States of America: CSREA Press, 2015.

• I am the main driver of this article and my contribution to this article in-
cludes; planning and designing the empirical study and the experiments, per-
forming the experiments, analyzing data and results, and writing the article.
My former supervisor and co-supervisors provided expertise in the field and
feedback.

3. Article III. Tavara, Shirin, Schliep, Alexander. (2018) Effect Of Network Topology
On The Performance Of ADMM-based SVMs. High Performance Machine Learning
Workshop, HPML 2018, September 24, Lyon, France.
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• I am the main driver of this article and my contribution to this article is 1)
the planning and designing of the empirical study and the experiments, 2)
performing the experiment, and 3) writing the article. My current supervisor
has provided expertise in expander graphs along with giving the constructive
feedback to improve the quality of the article.

1.4 SCOPE OF THIS WORK
This thesis focuses on a particular machine learning algorithm, SVM. This algorithm is
one of the most popular, successful, and widely used algorithms for classification and
regression algorithms (Byun and Lee, 2002b; V. Vapnik, 2013; Bin, Yong, and Shao-
Wei, 2000). Some of the special characteristics of SVM are as follows,

• The strong statistical theory underneath SVM (V. Vapnik, 2013)

• Good generalization performance on unseen data (Byun and Lee, 2002b)

• The contribution of only a few samples in the decision boundary (Carpenter,
2009b). This makes SVM to be a powerful technique to handle large-scale prob-
lems

• Performing nonlinear mapping without any knowledge of the mapping function
(Ivanciuc, 2007a)

• A wide and successful range of applications (Ivanciuc, 2007a).

Other machine learning methods can follow some of the approaches used in SVM to
improve the performance of the algorithm in parallel settings, albeit some of the ap-
proaches are adjusted to fit the special characteristics of SVM to reach the pick perfor-
mance.

1.5 THESIS OUTLINE
This thesis includes five chapters. The introduction of the research area, including the
challenges in the parallel implementations of SVM, is described in Chapter 1 and it is
continued by addressing the research problem. In addition to that, the chapter includes
the description of the research questions as the objectives of this thesis. Besides, the
contribution of the author to the presented publications along with the scope of the the-
sis is presented in this chapter. A brief overview of the employed algorithmic techniques,
methods, and parallel models are presented in Chapter 2. The research methodology of
the thesis is described in Chapter 3. It includes the literature review process and thema-
terial, followed by the description of our conducted empirical studies and experiments.
It also briefly discusses the research design used in this thesis. The results of all the re-
search articles and how they answer the corresponding research questions are presented
in Chapter 4. Finally, a brief summary of research articles and their contributions to
the research questions are mentioned in Chapter 5. The chapter further includes the
concluding remarks and the contribution of the thesis in the field of machine learning.
Moreover, it mentions the suggested possible avenues for future research.
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CHAPTER 2

BACKGROUND

This chapter briefly summarizes the background knowledge used in the research pre-
sented in this thesis.

2.1 SUPPORT VECTOR MACHINES
SVM is one of the popular and successful supervised learning methods that are widely
used for classification and regression problems (Cortes and V. Vapnik, 1995). SVM fits
data by maximizing the margin around the seperator. This leads to good generalization
performance regarding new unseen data, i.e., training data are classified into classes
with the given labels with a separator that is farthest as possible to both classes of points
and this generalize well to new data. The maximum margin of the separator of classes
leads to the strong upper bound of the generalization error. SVM minimizes this upper
bound (Byun and Lee, 2002a).

In a simple binary classification in SVM, the machine is trained to find a linear sepa-
rator that classifies the given training data into two classes with known labels, this is
the training phase. After the machine is trained, the model is extracted to predict which
class label a new unseen data belongs to, this is the testing or predicting phase.

SVM has special characteristics that are used to implement efficient parallel algorithms
in terms of time and memory. One characteristic is that the solution to a classification
problem is obtained by only a few samples called Support Vectors (SV) (V. Vapnik, 2013;
Carpenter, 2009a) that determine the maximum margin separating hyperplane (Ivan-
ciuc, 2007b). Another characteristic of SVM is to perform the nonlinear mapping with-
out knowing the mapping function using predefined functions called kernels for calcu-
lating the inner product of mapping functions (Ivanciuc, 2007b). Other characteristics
of SVM are the simple structure of constraints and the especial definition of the kernel
function in a linear case, i.e., the inner product is a simple dot product (Zanghirati and
Zanni, 2003).

Hard-margin linear SVM. In this case, a linear separator classifies data into given
classes with the maximum margin from the closest points (see Figure 2.1). The closest
data points to the separator are SVs. A linear separable SVM or a hard-margin linear
SVM solves the optimization problem,

min
1

2
∥w∥2 subject to yi(wT

xi + b) ⩾ 1 for i = 1, 2, ...,N . (2.1)

Here, w is the weight vector for the hyperplane, xi is a vector of observations, yi is the
class labels, b is the bias parameter.
Soft-margin linear SVM. Real-world data are not always completely separable. In
this case, a linear separator separates data into the given classeswith amaximummargin
while minimizing the misclassification errors (Platt, 1998)(see Figure 2.1 b). To do so,
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Margin
Margin Margin

(a) (b) (c)

Missclassified samplesSupport Vectors

Linear separator Kernel separator

Figure 2.1: a) Hard-margin linear SVM classifier, b) Soft-margin linear SVM classifier, and c) Kernel
SVM classifier

positive slack variables, ξi, enter the primal optimization problem, i.e.,

min
1

2
∥w∥2+C

N

∑
i=1

ξi s.t. yi(wT
xi+b) ⩾ 1−ξi & ξi ⩾ 0 for i = 1, 2, ...,N . (2.2)

Kernel SVMclassifier. A linear classifier cannot always classify real-world data (Byun
and Lee, 2002a). In this case, data can be mapped into a higher dimensional space us-
ing a non-linear transformation function,Φ, and then in the feature space data can be
linearly separated. The non-linear transformation is done through a function called the
kernel function. Figure 2.1 c shows a non-linear kernel SVM classifier. SVM is a good
example of kernelmethods that uses a kernel trick in which an inner product of themap-
ping function is replaced by a kernel function. A non-linear soft-margin SVM solves the
same primal optimization problem as in (2.2), however in order to use a kernel trick, it
transforms the primal optimization into the Lagrange dual optimization (2.3),

max 1
T
α − 1

2
α

T
Qα s.t.

N

∑
i=1

yiαi = 0 & 0 ⩽ αi ⩽ C for i = 1, 2, ...,N . (2.3)

Here, α is the vector of Lagrangian multipliers and α = {α1,⋯, αN}, 1T is a vector of
ones and Q is a matrix of size N ×N , where Qij = yiyjΦT (xi)Φ(xj).
Kernel functions. In order to compute matrix Q, it is sufficient to compute the inner
product of Φ(xi) and Φ(xj) without knowing the Φ(x) function. This is done through
a pre-defined kernel function, K(xi,xj) = ΦT (xi)Φ(xj). The kernel matrix measures
the similarity or the distance between vectors xi and xj (Platt et al., 1998). Examples of
well-known kernel functions are presented in table 2.1.

The kernel function defines the feature space where the training samples are classified,
therefore the selection of an appropriate kernel function is important (T. Li et al., 2013).

10



UNIVERSITY OF SKÖVDE

Kernel Function Inner Product Kernel Type

Linear kernel K(xi,xj) = x
T
i xj linear

Gaussian/RBF K(xi,xj) = exp(−γ∥xi − xj∥
2
) non-linear

Polynimial K(xi,xj) = (xi.xj + const)
d non-linear

Laplacian K(xi,xj) = exp(−γ∣xi − xj ∣) non-linear

Table 2.1: Examples of well-known kernel functions

Multi-class classification. SVM can solve multi-class classifications either by em-
bedding it in the optimization problem or through decomposing the multi-class classi-
fication into a series of binary class classifications (Doan, Do, and Poulet, 2013). The
latter group is popular and includes the methods as follows,

• OVO. In One-Versus-One (OVO) (Hwu, 2011) classification, also known as one-
against-one, all binary combinations of classes are created. This means that if N
different classes are available for the classification, then N(N−1)/2 classifiers are
built (Doan, Do, and Poulet, 2013). For instance, if 5 different classes with labels
1, 2, 3, 4, 5 are available for the multi-class classification, then 5(5 − 1)/2 binary
classifiers, (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5) and (4, 5), are
built.

• DAGs. Directed Acyclic Graphs (DAGs) (Vural and Dy, 2004; Doan, Do, and
Poulet, 2013) is a directed graph that combines the results of OVO classifiers
(Vural and Dy, 2004).

• OVA. In One-Versus-All (OVA) (Hwu, 2011), also known as one-against-all, the
samples of a specific class (class i) will be considered as the positive class and all
the remaining samples will be considered as the negative class. This leads to gen-
erating N different classifiers (Doan, Do, and Poulet, 2013). For instance, if 5 dif-
ferent classes with labels 1, 2, 3, 4, 5 are available for the multi-class classification,
then 5 binary classifiers, (1, all others), (2, all others), (3, all others), (4, all others)
and (5, all others) are built.

Multi-class classifications are computationally expensive and lead to long training time
due to involving many classes in the classification and passing through the training data
many times (L. Cao et al., 2006). For a large number of classes, OVO is more com-
putationally expensive than the OVA (Doan, Do, and Poulet, 2013), since OVO builds
N(N − 1)/2 classifiers versus N classifiers in the OVA.

2.2 INTERIOR POINT METHOD
Different mathematical solvers are utilized to solve the primal (2.2), the dual (2.3), or
the primal-dual optimization problem resulting from SVM. In this context, an Interior
PointMethod (IPM) (E. Y. Chang, 2011) has shownhigh-performance in parallel and dis-
tributed settings (E. Y. Chang, 2011; Woodsend and Gondzio, 2009a; T. Li et al., 2013;
Jin, Cai, and Xiaola Lin, 2013; Chatterjee, Fermoyle, and Raghavan, 2010; Gertz and
Griffin, 2010). IPM starts from an initial point located in the interior feasible region and
moves towards the optimal point(s) in an iterative manner. One of the advantages of
IPM is its high degree of inherent parallelism compared to other solvers. However, IPM
may suffer from numerical unstableness or it may require computing the inverse of a
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largematrix resulting fromSVMwhich is computationally expensive. To overcome these
hurdles, IPM uses 1) Cholesky Factorization (CF) (K. Zhu et al., 2008) for achieving nu-
merical stableness and 2) Incomplete Cholesky Factorization (ICF) (K. Zhu et al., 2008)
for reducing the size of the corresponding large matrix. To do this, CF factorizes matrix
Q ∈ Rn×n in (2.3) into a lower triangular matrix, i.e., Q = LLT , where L ∈ Rn×n. ICF is a
truncated formof CF, i.e.,Q ≈ L̂L̂T , where L̂ is an×p sparse lower triangularmatrix close
toL, where p is the rank of L̂. In ICF approximation, only p column vectors are calculated
which makes this approximation quick and economical to compute since p ≪ n. How-
ever, calculating the appropriate column rank value, p, is non-trivial. A lower value of p
degrades the accuracy and a higher value of p increases the computational time. In arti-
cle II, we study the trade-off between the class-prediction accuracy and time efficiency
for different p settings and different kernel functions. Furthermore, we study the corre-
lation between the choice of p and the hyperparameters C and the γ value in SVM, with
respect to the effect of the Gaussian and Laplacian kernels on the class-prediction accu-
racy and the training time. In Gaussian and Laplacian kernel functions (see table 2.1),
γ determines the influence of training samples on the decision boundary. A large value
of γ determines that the decision boundary depends only on the training points close
to the boundary and the points far from the boundary do not have an influence on the
boundary while a low value of γ shows that even far away training points have the high
influence on defining the decision boundary. This means that The γ parameter has an
inverse relationship with the radius of influence of support vectors (scikit-learn, 2015).
The hyperparameter Cmakes a balance between themisclassification and themaximum
margin. A low value of Cmakes the decision surface smoothwhile a large value of C gives
freedom to the model to choose more support vectors among the samples that results in
more precise and accurate classification of the training samples (scikit-learn, 2015). One
of the common ways to find a suitable hyperparameter C and γ is cross-validation (Hsu,
C.-C. Chang, C.-J. Lin, et al., 2003), however finding the best value of these parameters
are still unclear. In article II, we have improved an IPM-based SVM implementation,
PSVM software (E. Y. Chang, 2011), in terms of the training time and the classification
accuracy (see empirical study 1).

2.3 ALTERNATING DIRECTION METHOD OF MUL-
TIPLIERS

SVM classification problems can be formulated as the optimization problem

min
w

N

∑
i=1

fi(w). (2.4)

The optimization problem, (2.4), may not be solvable for large-scale problems on a sin-
gle node. To overcome this hurdle, distributed optimization settings play an important
role. To solve the optimization problem in a distributed manner, the training data is
stored and processed on a connected network of computational nodes which of all solve
the optimization problem collaboratively. In the network, the distributed optimization
problem is treated as a consensus optimization in which interconnecting nodes need to
reach a consensus to obtain the global optimal. The distributed consensus optimization
problem can be solved using an arbitrary connected network of computational nodes (Q.
Li et al., 2017). How these nodes connect and communicate with each other impact the
performance of the underlying optimization problem.

To solve the optimization problem (2.4) in an aforementioned consensus and distributed

12



UNIVERSITY OF SKÖVDE

𝑁𝑖

𝑖3

𝑖1

𝑖4

𝑖2

𝑖
𝑤𝑖1

𝑤𝑖3
𝑤𝑖4

𝑤𝑖2

𝑤𝑖 𝑤𝑖

𝑤𝑖
𝑤𝑖

𝑣

Figure 2.2: Centralized (left) and decentralized (right) settings in ADMM. In the left figure, the outgoing
arrows from themiddle node show that the global variable is broadcast to all nodes and incoming arrows
show that the local variables are sent from all nodes to update the global variable. In the right figure, this
is done locally in the neighborhood of each node.

manner, it is re-formalized as the optimization form

min
wi

N

∑
i=1

fi(wi) s.t. wi = v for i = 1, 2, ...,N . (2.5)

Here, the optimization problem is implemented on a network of N nodes and v is the
consensus variable across the nodes, i.e., each local variable wi is forced to agree with
the global consensus variable v. A consensus optimization can be solved in a centralized
(Boyd et al., 2011) or decentralized (Forero, Cano, and Giannakis, 2010a) settings. This
is shown in figure 2.2.

In the centralized settings, the local constraints are forced to satisfy the global con-
straints. This is shown in equation (2.5) in which each node’s local constraintwi should
satisfy the global constraint v. In this case, a node failure may hurt the functionality
of the parallel implementation. Besides, the communication between all nodes to reach
the agreement with the global consensus causes the overhead. To solve this issue, decen-
tralized settings have drawn attention in which computational nodes only communicate
with their one-hop neighboring nodes and they only need to agree to the consensus vari-
able in their neighborhood. The decentralized consensus optimization problem trans-
forms (2.5) into form

min
wi

N

∑
i=1

fi(wi) s.t. wi = wj , for i = 1, 2, ...,N, j ∈ Si. (2.6)

Here, Si is the one-hop neighborhood of node i and Si ⊆ I ∶= {1, 2, ...,N}.
In order to facilitate the decoupling ofwi from its neighboring variablewj in a decentral-
ized and distributed setting, an auxiliary variable wij can be introduced which imposes
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the consensus between node i and j (Q. Li et al., 2017; Forero, Cano, and Giannakis,
2010a). In this case, the constraints of optimization problem (2.6) are transformed into

min
wi,wij

N

∑
i=1

fi(wi) s.t. wi = wij , wij = wj for i = 1, 2, ...,N, j ∈ Si. (2.7)

Several distributed optimization methods such as Alternating DirectionMethod of Mul-
tipliers (ADMM) (Forero, Cano, and Giannakis, 2010b), distributed gradient descent
(Tao, Wu, and X. Lin, 2014), dual averaging methods (Duchi, Agarwal, andWainwright,
2012), belief propagation (Bickson, Yom-Tov, and Dolev, 2008), can solve the optimiza-
tion problem (2.6) (Q. Li et al., 2017). Among all these methods, ADMM has been pop-
ular since it performs well in the distributed and particularly decentralized settings (Q.
Li et al., 2017). Besides, it has properties such as 1) robustness, 2) scalability, 3) easily
distributable and parallelizable, 4) reduced communication overhead, 5) decentralized
network operation, 5) convergence guarantees to the centralized settings, and 6) privacy
preservation (Forero, Cano, and Giannakis, 2010b). The robustness of ADMM refers of-
ten to no requirement of differentiability of the objective function. ADMMsolves the op-
timization problem (2.7) in an iterative manner in which the local primal and Lagrange
multiplier of node i are updated using ADMM instructions. To do so, ADMM uses the
augmented Lagrangian function

L(wi,wij , αijk) =
N

∑
i=1

fi(wi) +
N

∑
i=1
∑
j∈Si

α
T
ij1(wi −wij) +

N

∑
i=1
∑
j∈Si

α
T
ij2(wij −wj)

+1
2

N

∑
i=1
∑
j∈Si

∣∣wi −wij ∣∣2 +
1

2

N

∑
i=1
∑
j∈Si

∣∣wij −wj ∣∣2.
(2.8)

Here, αij1 and αij2 are the Lagrange multipliers regarding constraints wi = wij and
wij = wj , respectively. ADMM solves the optimization problem (2.7) through the dis-
tributed iterations (Forero, Cano, and Giannakis, 2010a)

{wi(t + 1)} = argmin
wi

L({wi},{wij(t)},{αijk(t)}), (2.9)

{wij(t + 1)} = argmin
wij

L({wi(t + 1)},{wij},{αijk(t)}), (2.10)

αij1(t + 1) = αij1(t) + η(wi(t + 1) −wij(t + 1)) ∀i ∈ I,∀j ∈ Si, (2.11)

αij2(t + 1) = αij2(t) + η(wij(t + 1) −wj(t + 1)) ∀i ∈ I,∀j ∈ Si. (2.12)

Here, η is ADMM’s tuning constant and η > 0. For detailed information, refer to Boyd
et al. (2011) and Forero, Cano, and Giannakis (2010a).

Equation (2.9) can be solved through its dual which forms the dual optimization result-
ing from SVM and that can use a kernel function for calculating the inner product of
the mapping function. In order to update the Lagrangian multiplier α, wi is retrieved
from the dual of (2.9) and to reduce the dimensionality of the feature space Forero et al.
(Forero, Cano, and Giannakis, 2010a) implement the consensus of the local classifiers
on a subspace of reduced rank.

ADMMguarantees the convergence of convex functions using the quadratic penalty term
∣∣wij − wj ∣∣2 which is the case in SVMs. The convergence rate of ADMM is O(1/t) for
convex functions, where t is the iteration number (B. He and X. Yuan, 2012; Deng et
al., 2017). Note in practice the convergence rate of ADMM is still not well-understood
(França and Bento, 2017).
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2.4 NETWORK TOPOLOGY
Network topology and the connectivity of the underlying graph have an impact on the
performance of network-based distributed algorithms in terms of convergence and the
number of iterations until convergence (see article III). In article III, we explore the
impact of network topology and the connectivity of the underlying graph on the per-
formance of ADMM-based SVMs in terms of convergence. Here, we briefly describe
the basics of the network topology. A network of distributed nodes can be represented
as an undirected and connected graph, G(V,E) with V as nodes and E ⊆ (V × V ) as
the corresponding edges between the nodes with no multiple edges between any two
nodes. The network topology of graph G is shown by the corresponding adjacency ma-
trix A(G) = [aij]n×n. An element of the adjacency matrix, aij , is 1 if there is an edge
between node i and node j and 0 otherwise, i.e.,

aij = {
1 for(i, j) ∈ E
0 otherwise.

(2.13)

The Laplacian matrix of an adjacency matrix, denoted L(A) = [lij]n×n, and has −1 for
connected pair nodes and the degree of each node on its diagonal, i.e.,

lij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 for(i, j) ∈ E & i ≠ j
ki fori = j
0 otherwise.

(2.14)

Here, ki is the degree of node i.

The connectivity of a graph can be defined by its spectral gap. In order to know the
spectral gap of a graph, we need to know the eigenvalues regarding the adjacencymatrix
of the graph and/or the eigenvalues of the Laplacian matrix of the adjacency matrix.
By definition, the adjacency matrix of an undirected graph is symmetric and has real
eigenvalues. The eigenvalues of A(G) satisfy

kmax = µ
′
1 ⩾ µ

′
2 ⩾ ... ⩾ µ

′
n, (2.15)

and the eigenvalues of L(A) satisfy

0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2kmax. (2.16)

Here, kmax is the largest degree of all nodes.
The first smallest eigenvalue of L(A) is trivial and it is not interesting, i.e., λ1 = 0 and

corresponds to the first largest and trivial eigenvalue of A(G), i.e., µ
′
1 = kmax. Here, by

the largest eigenvalue, we mean the largest absolute value since the eigenvalues ofA(G)
can be negative, i.e., in some cases ∣µ

′
n∣ = kmax (Chow et al., 2016).

The spectral gap or algebraic connectivity of a graph is related to the non-trivial eigenval-

ues ofA(G) or L(A), i.e., it relates to µ2 =max{µ
′
2, ∣µ

′
n∣} inA(G) or λ2 in L(A) (Donetti,

Neri, and Muñoz, 2006). A large spectral gap leads to the better connectivity of the un-
derlying graph. How to design well-connected graphs that have high spectral gaps is an
interesting topic discussed in the following section.

2.4.1 EXPANDER GRAPHS

A group of well-studied connected graphs are expander graphs, in which any subset of
graph nodes expands through all nodes in a robust manner, i.e., any subset of the graph
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S

V\S

A few connections between two arbitrary

subsets shows that the graph has a bottleneck

Figure 2.3: Poor expandability of a graph since few edges connect the two sets. Circles are the nodes and
lines are the edges in the graph. S and V ∖ S are two large arbitrary sets of nodes.

nodes efficiently connects to many nodes. Properties such as effective communication,
high- and well-connectivity, and sparseness make expander graphs good choices for de-
signing efficient networks. Expansion properties of this type of graphs provide good in-
sights about the structure and connectivity of the underlying graph (Malliaros andMega-
looikonomou, 2011). The expansion property of an expander graph can be measured by
an expansion factor, also known as the Cheeger or isoperimetric constant (Donetti, Neri,
and Muñoz, 2006), and it shows that whether the graph has bottlenecks, i.e., whether
there are two large subsets of vertices connected by only a few edges. A large Cheeger
constant indicates many edges between the two large subsets of vertices. In contrast, a
small constant shows that there is a bottleneck between the two subsets of vertices which
are connected with only a few edges. Figure 2.3 shows a graph with poor expandability.
The Cheeger constant of graph G is denoted h(G) and it is defined as follows,

h(G) =min
S⊆V,∣S∣≤ ∣V ∣

2

∣∂S∣
∣S∣ . (2.17)

Here, ∂S = {(e, e
′
) ∈ E ∶ e ∈ S, e

′
∈ V ∖S}. The Cheeger constant is related to the spectral

gap by Cheeger inequalities,
λ2

2
≤ h(G) ≤

√
2dλ2. (2.18)

Here, G(V,E) is a graph with V as nodes and E as the edges between the nodes and λ2
is the spectral gap. The expansion properties can be enhanced towards increasing the
spectral gap. In this regard, d-regular random graphs in which each node is connected
to d other nodes are expanders if and only if the corresponding spectral gap is lower
bounded (Donetti, Neri, and Muñoz, 2006). In this thesis, we have used this type of
expander graphs, i.e., d-regular, to study the impact of network topology on a distributed
SVM implementation.

2.5 PARALLEL TOOLS
The most widely used parallel programming tools in machine learning are as follows;
sharedmemory parallelism, distributed HPC architecture, distributed big data architec-
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ture, FPGA, and the most popular GPU-based parallelism. Here, we briefly summarized
their approaches in machine learning and particularly in SVM.

Shared-memory parallelism. In this type of parallelism, the training task is split
across multi-threads which of all access the full data from a single instance in memory
(Díaz-Morales, Harold Y Molina-Bulla, and Navia-Vázquez, 2011). This leads to a neg-
ligible communication overhead since all computing cores can access the data from the
shared memory, however, for large-scale problems, training data might not fit into the
limited shared memory. One of the simple and common tools used for a parallel im-
plementation of SVM is OpenMP that supports shared memory multiprocessing. One
of the key issues in the shared memory parallelism is to handle the synchronization be-
tween threads, i.e., in the cases that concurrent threads conduct the read and the write
operations at the same time in the same memory location (Chandra, 2001).

Distributed HPC architecture. In the distributed memory parallelism, data are
moved from the address space of one process to the address space of another process
using cooperative operations in each process. In Message Passing Interface (MPI) (No-
cedal andWright, 2006), this is done by the send and receive message passing. MPI can
be used both in the shared memory and distributed memory parallelism. However the
application of MPI in the shared memory parallelism is rare. Unlike the shared mem-
ory parallelism, insufficient memory is not an issue even for large-scale problems in the
distributed memory parallelism. In this type of parallelism computing nodes with addi-
tional memory can be added on demand. One of the key issues in the distributed mem-
ory parallelism is to reduce the communication and synchronization overheads (Mat-
loff, 2011). This can be done by the effective input/results communications between the
computational nodes that fits better the distributed architecture. Consequently, network
topology can impact the performance of the machine learning algorithm in question.

Distributed big data architecture. One of popular distributed big data architec-
ture used in SVM is MapReduce that allows processing large data on the parallel and
distributed systems (Dean and Ghemawat, 2008). Map-reduce refers to two tasks, so-
called map and reduce functions and both are written by the user. The map function
takes the input data and processes the data to produce key/value pairs. Map-reduce li-
brary groups the output coming from the map functions and send them to the reduce
functions. The reduce function combines key/value pairs with identical keys coming
from map functions to create the final results (Dean and Ghemawat, 2008). One of the
key issues in map-reduce is the choice of the number of map and reduce functions (W.
Guo et al., 2015).

GPU-based parallelism. Today, Graphics Processing Units (GPU) contain immense
number of cores that can be used to harness their computational power for solving com-
putation intensive tasks. For instance, NVIDIA has newly announced the NVIDIA TI-
TAN V GPU for a desktop PC which has 5120 CUDA cores (Corporation, 2018). General
purpose computing on GPUs is an efficient parallel tool thanks to the characteristics as
follows; the computational capabilities, relatively low cost, quick and high-performance
improvements of GPUs per year. In the last decade, the general purpose computing
power of GPUs has been very popular for parallel implementations of SVM regarding
large-scale problems. Some of these parallel implementations have achieved over 1000
times speedups against the sequential implementations (Lu et al., 2014).

FPGA. The computationally expensive tasks in machine learning can be implemented
in hardware using FPGAs (Reyna-Rojas et al., 2003; Venkateshan, Patel, and Varghese,
2015; Biasi, Boni, and Zorat, 2005; H. P. Graf, Cadambi, et al., 2009; Papadonikolakis,
Bouganis, and Constantinides, 2009). FPGAs are digital integrated circuits that con-
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tain programmable blocks of logic and programmable interconnects between the blocks
(Maxfield, 2011). One of the reasons for a growing interest in employing dedicated archi-
tectures for computing intensive operations is that those architectures can be designed
with the aim of reducing power dissipation. For instance, more compact circuits can be
built for the fixed-point arithmetic (H. P. Graf, Cadambi, et al., 2009). With this choice
of arithmetic, faster computations trade off accuracy, albeit a slight deterioration of the
accuracy might be acceptable. One of the key issue regarding FPGA implementations is
the limited RAMblocks (Papadonikolakis, Bouganis, and Constantinides, 2009). A ded-
icated coprocessor consisting of a grid of cores can compute several columns of a large
kernel matrix in parallel (Venkateshan, Patel, and Varghese, 2015). Therefore, one may
need to perform adjustments and modifications to fit the corresponding algorithm for
the hardware characteristics. For instance, one may use strategies to reduce the num-
ber of iterations at the expense of more cost per iteration and the cost per iteration can
be reduced using FPGA at each iteration. In order to take the advantage of FPGAs, one
should think about the availability of the cached kernel values and a fast convergence
criterion (Venkateshan, Patel, and Varghese, 2015).

FPGA versus GPU. A comparision between an implementaion of SVM on a didicated
high-performance architecture using FPGA and the GPU-based parallelism shows that
FPGA outperforms GPUs only for the data that fit in the FPGA’s RAM blocks and not
otherwise (Papadonikolakis, Bouganis, and Constantinides, 2009). This is due to trans-
fer of the data from the global memory on the device (i.e., GPU) to the shared memory
on CPU which causes high overhead for the GPU-based parallelism (Papadonikolakis,
Bouganis, and Constantinides, 2009).
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CHAPTER 3

RESEARCH METHODOLOGY

This chapter briefly describes the research methodology used in this thesis.

3.1 LITERATURE REVIEW
The foundation of our research has been built based on an extensive reviewing of over
200 relevant articles. The literature review helped me to 1) gain deeper knowledge in
the field of my research, 2) know what has already studied in the field, 3) identify im-
portant approaches that have potential to reach the peak performance, 4) address the
existing gaps, 5) initiate the research ideas later used in this thesis, and 6) come up with
constructive recommendations for future works. I categorized the reviewed approaches
and tools based on their contribution in the field of parallelism. The summary of the
literature review is going to be published as a survey in ACM computing surveys (article
I).

Material. Thematerial for the surveywas gathered based on reviewing the publications
and information in technical books, journals, conference proceedings, technical reports,
authentic websites and libraries used for parallel implementations of SVMs. The selec-
tion of journal and conference articles was based on searching articles in well-known
and authentic databases. Parallel SVM implementations that use parallel algorithmic
approaches, parallel models and frameworks were chosen regardless of their applica-
tions. In addition to the parallel approaches, the heuristics and strategies that improve
the performance of the SVM algorithms with respect to the four focus lines memory,
speedup, scalability, and accuracy have been explored (figure 4.2). While the parallel
implementations of SVMs using FPGA were briefly mentioned, customized and dedi-
cated hardware for computational purposes have not been the focus of our research in
this thesis. A review of publications regarding the sequential implementations of SVMs
was excluded from this survey. As a result of literature review, I identified the impor-
tant elements of efficient parallel implementations of SVM, i.e., algorithmic approaches
along with efficient parallel tools and heuristics that have potential to reach pick per-
formance. This is shown in figure 1.1. The parallel SVM algorithms were identified and
categorized and within each category, parallel models used for the parallel implementa-
tions of SVMs have been reviewed (for more detail see article I).

3.1.1 RELATED RESEARCH

This subsection comprises the related research for each article included in this thesis.
Article I. As an initial step, it is important to identify the appropriate parallel SVM
approaches that have potential to obtain peak performance for solving large-scale prob-
lems. To do so, we explored surveys which have thoroughly studied the efficiency of
existing parallel SVM approaches. For instance, Tyree et al. (Tyree et al., 2014) cate-
gorize the approaches used for the parallelization of SVM into the implicit and explicit
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parallelization. In the implicit parallelization (Tyree et al., 2014), an algorithm is written
as a series of operations that can be computed using highly optimized parallel libraries,
e.g., Intel Math Kernel Library (MKL) (2011-2013, 2011-2013) and cuBLAS (Corpora-
tion, 2015). In the explicit parallelization (Tyree et al., 2014), programmers parallelize
the computationally expensive tasks using parallel programming, e.g., shared memory,
distributedmemory, and GPUs. The review conducted by Tyree et al. covers most of the
existing parallel implementations of SVM and it shows the importance of the implicit
parallelism. Despite many advantages of their review, it fails to consider the important
parallel algorithmic approaches and parallel tools, e.g., the cascade andmap-reduce, and
it only considers SMO-type optimization methods. As another example, Lu et al. (Lu et
al., 2014) review the mathematical optimization approaches used for accelerating the
training process of SVM. The survey only considers the GPU-based parallel implemen-
tations of SVM. Unlike the aforementioned approaches, Masih and Tenwani (Masih and
Tanwani, 2014) have conducted a generic review of data mining techniques in the dis-
tributed settings. In spite of many interesting issues presented in the survey, it lacks to
consider the important algorithmic approaches to take the advantages of parallelism and
it only mentions very generic advantages of some of the parallel tools without any focus
on SVM or other data mining techniques. There are many interesting surveys that have
reviewed SVM approaches, i.e., (Byun and Lee, 2002a), however they lack considering
the parallelism. To our knowledge, there is no survey that thoroughly reviews the parallel
algorithmic approaches along with parallel tools for implementations of SVM. The lack
of a thorough survey of parallel SVMapproaches including parallel algorithms andparal-
lel tools motivated us to conduct an extensive survey that 1) reviews the efficient parallel
approaches in SVM both from parallel algorithmic and parallel tools point of view, and
2) studies various optimization methods, including SMO, IPM, SGM, ASGM, and other
methods, used for solving the optimization problem resulting from SVM (themotivation
of article I). Note, the Primal Estimated sub-Gradient SOlver (Pegasos) (Shalev-Shwartz
et al., 2011) is considered as the state of the art solver for solving the primal optimization
resulting from SVM, however, due to limited space in the survey and the sequential im-
plementation of Pegasos we have not mentioned it in article I. Although there are a few
numbers of parallel implementations of Pegasos (Do and Tran-Nguyen, 2016; Takác et
al., 2013) that we have not mentioned in article I, there are several parallel sub-gradient
solvers that have used Pegasos only for the benchmarking purpose and they have not
implemented Pegasos in parallel.

Article II. In the last decade, many parallel SVMs have been implemented to take the
advantage of parallelism and they have achieved considerable performance in terms of
accuracy, speedup, scalability and memory. One of the parallel algorithmic approaches
that has drawn attention is IPM that solves the optimization problem resulting from
SVM using Cholesky factorization to reduce the problem size. One example of this kind
is the parallel SVMdeveloped by Chang et al. (E. Y. Chang, 2011). They improve the scal-
ability of an Interior Point Method (IPM)-based SVM (PSVM) and reduce the memory
use. To do this, they have employed a row-based and approximate matrix factoriza-
tion. Besides, to perform the distributed parallelism, only the important data have been
loaded to each computing machine (E. Y. Chang, 2011). Although PSVM has exhibited
high-performance using distributed parallelism, it still deals with the communication
and synchronization overheads, thereby we further improved PSVM through the inves-
tigation of 1) simple changes that can lead to significant improvement in terms of time
and the classification accuracy, 2) the impact of the problem size on the important pa-
rameters, 3) existence of a threshold between the training time and the number of com-
puting cores. We further studied and improved PSVM in terms of time and accuracy (the
motivation of article II).
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Article III. As the result of the advance of distributed memory parallelism, network-
based algorithms have drawn attention for implementing parallel and large-scale SVMs.
In this regard, network topology and the connectivity of the underlying graph are the key
issues in the network-based distributed algorithms. They impact the performance of the
algorithm in question in terms of convergence and the number of iterations until conver-
gence. One example of this kind is shown by Cao et al. (H. T. Cao et al., 2016) in which
the impact of network topology is studied in solving only linear equations. Another ex-
ample is presented by Francca et al. (França and Bento, 2017) in which the impact of
network topology is explored in an ADMM framework with a specific optimization prob-
lem not related to SVMs. The importance of network topology motivated us to study the
effect of network topology on the performance of a network-based ADMM-based SVM
algorithm considering a non-linear classification. Our contribution is summarized in 1)
studying the effect of a family of well-known high connected graphs, expander graphs,
on the performance of a decentralized ADMM-based SVM algorithm, 2) supplying an
implementation making the theoretical advances practically available, and 3) to solve
the problem in a parallel setting. Note we have not compared our work with the work
conducted by França and Bento, 2017 due to the optimization problem not related to
SVM since our main focus is on SVM related algorithms.

3.2 EMPIRICAL STUDIES
In order tomake theoretical advances practically available alongwith analyzing and eval-
uating the theoretical principles in practice and parallel settings, we have designed em-
pirical studies. This type of studies including quantitative methods is one of the most
common research methods used in the field of machine learning. In particular, we have
conducted empirical studies to 1) test our hypothesis addressed in research question II
and III, 2) derive knowledge from the designed experiments, and 3) analyze and inter-
pret the results from conducted experiments. Two empirical studies are presented in
article II and III.

Material. We have designed experiments for two empirical studies in article II and III
with datasets gathered by LIBSVM Data (C.-C. Chang and C.-J. Lin, 2011) from several
machine learning data repositories such as UCI (Dheeru and Karra Taniskidou, 2017).
UCI is one of the most common data repositories used by many academic works in the
field ofmachine learning and it is cited over 1000 times in articles in the field of computer
science (Dheeru and Karra Taniskidou, 2017).

3.2.1 EMPIRICAL STUDY 1

In the empirical study presented in article II, we have explored an SVM algorithm using
the PSVM software (E. Y. Chang, 2011). PSVM solves the optimization problem result-
ing from SVM using Interior Point Method (IPM) (E. Y. Chang, 2011) as its inner solver
and MPI for the distributed memory parallelism. In the first step, we identified the ar-
eas of interest in the algorithm based on their computational time relative to the total
calculation time using profiling. The identified areas of interest had potential to benefit
fromHPC improvements in awaywhich affect the total calculation time. MinorHPC im-
provements on heavy computational parts had a large impact on the total computation
time for large-scale problems and if the calculation time was not the issue of interest, we
improved the classification accuracy for the same calculation time.

Empirical study 1 includes three experiments in order to study the impact of HPC im-
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provement on the performance of an SVM algorithm. The objectives of the three exper-
iments are as follows,

• Experiment 1; Sensitivity of PSVM regarding C and γ in parallel settings. One
of the challenges of SVM implementations using Gaussian and Laplacian ker-
nels is to find appropriate values of parameters, C and γ, that impact the perfor-
mance in terms of the training time and the classification accuracy (Hsieh, Si,
and Dhillon, 2014). Intuitively, γ means how far the influence of training sam-
ples reaches the decision boundary (scikit-learn, 2015) (more information in
2.2). One of the common way to find a suitable hyperparameter C and γ is cross-
validation (Hsu, C.-C. Chang, C.-J. Lin, et al., 2003), however finding the best
value of these parameters are still unclear. Within this context, the aim of this
experiment is to study the impact of important parameters, C and γ, on the per-
formance of an SVM algorithm in terms of total training time and at the same
time maintaining the target accuracy, i.e., how much the training time varies by
changing these parameters. To do this, we chose a range of different values of C
and γ and measured the training time and the classification accuracy. Besides
we identified the best values of these parameters through an extensive cross-
validation via grid search.

• Experiment 2; The impact of the matrix dimension on the classification accu-
racy. An IPM-based SVM can reduce the memory use through approximation of
the large matrix resulting from SVM optimization problem (E. Y. Chang, 2011).
One example of the approximation methods is the matrix factorization, such as
Incomplete Cholesky Factorization (ICF) (E. Y. Chang, 2011). The approximate
matrix factorization can lead to reducing the memory use and faster training
time, however, it might deteriorate the classification accuracy. In this regard,
the size of the approximate matrix is important and has an impact on the accu-
racy (E. Y. Chang, 2011). This has motivated the design of our second experiment
in which we have investigated the impact of the approximate matrix dimension,
p, on the performance of the SVM algorithm in terms of the training time and
the classification accuracy. We aimed to find an optimal value of p considering
a target classification accuracy since finding an appropriate value of p in ICF is
non-trivial. To do this, we divided this experiment into sub-experiments as fol-
lows, 1) we chose a range of different values of p for the fixed values of C and γ
and we measured the class-prediction accuracy, 2) we investigated the perfor-
mance of PSVM by choosing the best C and γ parameters for each p setting using
grid search and we measured the class-prediction accuracy, 3) we studied the im-
pact of p settings on the total training time and the training time on the heavy
computational parts of SVM algorithm, and 4) we compared the original PSVM
with the improved PSVM and we did a short study of how the changes that we
did affected the proportions.

• Experiment 3; Existence of a threshold. HPC tools and particularly parallel pro-
gramming are promising for higher performance, however due to communica-
tion overheads choosing the appropriate number of the computational nodes is
still non-trivial. Based on the Amdahl’s law (Null, Lobur, et al., 2014), the maxi-
mum speedup of a program using parallel computing with multiple processor is
limited regardless of the number of processors. This has been the motivation for
the third experiment in order to study and evaluate the existence of a threshold
between the number of computational nodes and the training time. To do this,
we have conducted a complexity analysis on the algorithm in question. Besides,
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Figure 3.1: Five different 3-regular graphs with 8 nodes that have different connectivity. The dash lines
divide the graphs into two subsets with 4 nodes in each subset. The number of edges/links between the
two subsets shows the expander property of the graphs.

in this experiment, we studied the relation between the complexities we found in
aforementioned experiments and the actual values when running the datasets.
We ran the experiment on our improved version of PSVM with 8, 16, 32, 64, 128,
and 256 computational nodes and we measured the total training time and the
training time regarding the identified computationally expensive parts in the al-
gorithm. For clarity, we measured the proportional training time on the heavy
computational parts of SVM algorithm and we also measured the time for com-
munication in those parts.

3.2.2 EMPIRICAL STUDY 2

In the empirical study 2 presented in article III, we have designed experiments to empir-
ically evaluate our hypothesis addressed by research question III. We have studied the
impact of network topology on the performance of a distributed consensusADMM-based
SVM in terms of the number of iterations until convergence. To do so, we have imple-
mented several random d-regular graphs with a fixed given number of graph nodes. For
instance, wehave implemented two groups of randomregular expander graphs. The first
group, denoted G1, contains 3-, 5-, 7-, 9-, 11-, 13- and 15-regular graphs with 16 graph
nodes and the second group, denoted G2, contains 10-, 20-, 30-, 40-, 50-, 60-, 70-,80-
,90-, and 100-regular graphs with 128 graph nodes. G1 is designed for training the small
datasets and G2 is designed for training the large datasets.

As mentioned in section 2.4, the connectivity of a graph can be measured by its spec-
tral gap and since several d-regular graphs with the same number of nodes, but different
spectral gaps might be generated, we calculated the possible upper and lower bounds
of the spectral gap for an arbitrary random d-regular expander graph using the formula
given by Joel Friedman (Friedman, 2004). For instance, figure 3.1 shows that one can
design several different 3-regular graphs with 8 nodes that have different spectral gap-
s/connectivity. The formula is given for the second largest eigenvalue of the adjacency

matrix µ2 = max{µ
′
2, ∣µ

′
n∣}. For simplicity, we adapted the formula for calculating the

second smallest eigenvalue of the Lagrangianmatrix λ2. The upper and lower bounds of
the spectral gap λ2 are as follows. For ε > 0,

d − 2
√
d − 1 − ε ≤ λ2 ≤ d + 2

√
d − 1 + ε. (3.1)

This holds for every random d-regular graph of size N for sufficiently large Ns.
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To take the advantage of expander property, we added an extra condition for implement-
ing the d-regular graphs, i.e., we implemented an efficient type of regular graphs called
Ramanujan graphs. A d-regular graph is Ramanujan if and only if µ2 ≤ 2

√
d − 1 holds.

Methods. In this empirical study, we explored the impact of network topology on a
consensus ADMM-based SVM using random regular expander graphs. In this algo-
rithm, the classification accuracy is influenced by parameters such as η in ADMM (see
chapter 2.3 equations (2.11) and (2.12)) and C and γ in SVM (see chapter 3.2.1). To
estimate sufficiently good values of the parameters, we used cross-validation via a grid
search. To further improve the classification accuracy, we used normalizing and stan-
dardizing scaling techniques. To evaluate the results, we used standard statistics such
as true positive/negative rate, positive/negative predictive rate, and accuracy metrics.
Tomeasure the impact of expander graph topology, the algorithm trains the datasets for
each d-regular expander graph using sharedmemory parallel programming. Thereafter,
the number of iterations and the corresponding elapsed time aremeasured until conver-
gence. To stabilize our analysis for some of the datasets, we shuffled the training data 10
times. Each shuffled data are trained and the number of iterations and the elapsed time
are measured and then we calculated the average value for the final analysis.

In this empirical study, we focused on the binary SVM classifications since a multi-class
SVM classification can be transformed into several binary classifications, for example
using the one-versus-all technique (see section 2.1).
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CHAPTER 4

RESULTS

In this chapter, we briefly describe the results and findings of the research articles con-
tributed to each research question presented in this thesis.

4.1 THE RESULTS OF ARTICLE I
Article I contributes to the objectives addressed in research question 1 which is the foun-
dation of the research in this thesis. The goal of this article was to explore and identify
the efficient parallel implementations for improving the performance of SVMalgorithms
regarding large-scale problems. In this chapter, we briefly summarize the main results
of this article.

4.1.1 DOMINANT APPROACH

Here, we briefly describe the dominant and well studied approaches for implementing
parallel SVMs.

• The most popular and efficient SVM algorithms used for the parallelization are;
decomposition-based algorithms, e.g. Sequential Minimal Optimization (SMO)
(Platt, 1998), incremental SVM (Do, Nguyen, and Poulet, 2008), the cascade
(H. P. Graf, Cosatto, et al., 2004), IPM (E. Y. Chang, 2011), Kernel-focused SVMs
(Díaz-Morales, H. Y. Molina-Bulla, and Navia-Vázquez, 2011), distributed-based
SVMs (Shrivastava, Saurabh, and Verma, 2011), and combinational methods
(You, Demmel, et al., 2015; Du et al., 2009) (see figure 4.1). The detail of the
specification, pros, and cons of each method are described in article I through
the online tables.

• Among all aforementioned methods, the most well studied and popular algo-
rithms are as follows, 1) parallel optimizations and particularly Stochastic Gradi-
ent Descent (SGD) (Z. A. Zhu et al., 2009), 2) IPM-based, and 3) SMO. Table 4.1
shows the specifications, pros, and cons regarding each method.

• Among all the well studied methods, the decomposition methods and particu-
larly SMO, are the most employed approaches. The reason is that decomposition
methods and in the extreme case, the standard SMO use only a small fraction of
training data in the working set (see article I, section 5.2). This helps to handle a
large amount of training data, however these methods are inherently sequential
due to the dependent computation steps. Thus, often they are not the best option
for parallelization. In order to decrease the number of dependent steps, parallel
decomposition methods use large working sets at the expense of increased cost
per step. The cost per iteration can then be reduced by parallelizing each step.
The size of the working set has an impact on the training time and accuracy (see
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Figure 4.1: Important parallel computing of SVM including algorithms and tools. SMP: Shared Mem-
ory Parallelism, DHPC: Distributed HPC Architectures, HP: Hybrid shared-distributed memory Paral-
lelism, GPUs: GPU-based Parallelism, DBD: Distributed Bid Data architectures, and FPGA: Field Pro-
grammable Gate Arrays.

Algr Diff Type Pros Cons

SGD-
based
SVMs

Focus on
primal
optimization

Non-linear
and multi-
class classi-
fications

It is the fastest for linear
SVMs on a single ma-
chine, easier to be par-
allelized

A large number of iter-
ations until convergence,
accuracy fluctuates

IPM-
based
SVMs

Focus on
dual opti-
mization or
dual-primal
optimiza-
tions

non-linear
and binary
classifica-
tions

Requires few iterations
until converges, has the
lowest communication
cost

The Cholesky factoriza-
tion lacks theoretical
error bound and may
be inaccurate for some
datasets, slow conver-
gence, difficult to be
parallelized

SMO-
based
SVMs

Focus on
dual opti-
mization

Non-linear Good accuracy, fastest
for non-linear SVMs on
a single machine

Slow convergence, needs
modification to be paral-
lelized

Table 4.1: The comparison of well-studied SVM algorithms.
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Figure 4.2: Four focus line of parallelism, i.e., parallel implementations have at least one of these focus
lines as their goal of parallelism.

section 4.1 in article I). There are different strategies for choosing an appropriate
size of the working set, however, there is a lack of agreement on the optimal size.
An empirical study of the efficiency of different working set size is needed to bet-
ter understand the possible improvements in terms of the speed of convergence
and the accuracy.

4.1.2 FOUR FOCUS LINES

In article I, memory, speedup, scalability, and accuracy, are identified as the focus lines
of parallelism, i.e., all the parallel implementations reviewed in the article had focused
on at least one of these elements based on their application scenarios (figure 4.2).

Memory. Parallel approaches, including parallel algorithms and parallel tools, have
focused on reducing the memory requirements for solving large-scale problems so that
data can fit into the available memory. This is particularly important for the shared
memory and GPU-based memory parallelism due to the limited memory or restricted
memory access pattern on GPUs. In this regard, the parallel incremental SVMs and
parallel IPMs were themost promising approaches. This is because parallel incremental
SVMs gradually use a batch of training data at a time and can adjust the increment size
as memory allows. Parallel IPMs use approximations to deal with memory restrictions,
i.e., they reduce the problem size or dimension using approximation of the kernel matrix
that can fit into the available memory.

Speedup. Parallel approaches have focused on improving the performance of SVMs
through accelerating the training and/or predicting processes. This has beendone through
two approaches; One is solving the problem through training a single SVM in which only
the computationally expensive tasks are performed in parallel. In the second approach,
a large SVM problem is divided into several smaller SVM sub-problems, all of which are
performed in parallel. On one hand, solving one single SVM problem leads to higher ac-
curacy since the original optimization problem stays unchanged, however, the speedup
deteriorates due to the sequential parts of the algorithm. Another issue is that a single
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problem-based algorithm may suffer from memory limitations since the algorithm may
require the whole training dataset to proceed. On the other hand, solving multiple SVM
sub-problems can address thememory issues, but since the problem is divided intomul-
tiple simpler problems, the original problem is changed and this may cause the deterio-
ration of the accuracy. Article I emphasize that the parallel SVM implementations have
a tendency towards training multiple SVMs alongside distributed parallelism in which
several independent sub-problems are solved in parallel and the computing powers are
added on demand.

Scalability. This has been one of the key issues in the implementation of efficient par-
allel SVMs. Scalability has been considered in terms of the number of computational
nodes/cores and the number of samples. Within the first context, the naive increase of
the number of computers does not lead to better performance due to communication
and synchronization overheads therefore, efficiently handling the overhead is one of the
challenges regarding scalability. Within the second context, the increase of the num-
ber of samples confronts the memory limitation. While memory issue can be solved by
adding more computing power as demanded, this circles back to the overhead problem
mentioned earlier. Further to the second context, memory might not be an issue for
the increasing number of samples, but the complexity of the problemmight grow which
leads to larger computationally expensive tasks. This raises the question of howwell can
a parallel SVM perform for an increasing number of samples? In this regard, there is a
lack of empirical studies to supply implementations of large-scale problems considering
scalability in both contexts.

Accuracy. Parallel SVMs employ strategies to reduce problem size in order to fit data
into the available memory, albeit this comes at the expense of the poor or deterioration
of the accuracy. Article I shows a trade-off between the training time and accuracy re-
garding how much data can be reduced. To improve the accuracy, parallel SVMs often
require iteratively updating or re-training the algorithms. The key issue in this regard is
that the promising models such as the standard Hadoop implementation of map-reduce
has no support for iterative or the sequential natured algorithms. Consequently, imple-
menting a parallel iterative SVM on this efficient framework is still an open question.

4.1.3 PROMISING APPROACHES

Here, we present the parallel approaches that have shown promising performance and
efficiency for solving large-scale problems. These approaches are chosen based on the
four focus lines described in 4.1.2.

Parallel incremental SVMs. Incremental learning has been one of the efficient and
promising approaches to handle limitedmemory restriction for training large-scale prob-
lems on standard workstations. On this subject, the size of increments and the dimen-
sion of the input space impact the efficiency of the parallel incremental SVMs. Reviewing
literature shows that the high dimensionality of input space is a hurdle for this technique,
albeit the incremental SVMs use dimension reduction techniques to overcome the hur-
dle and harness the power of this technique for training the large-scale problems.

ADMM. It is one of the successful distributed methods since it is robust, distributedly
parallelizable, and it has convergence guarantees. In decentralized ADMM through a
network, distributed agents/nodes with the knowledge of local data solve local optimiza-
tion problems and only communicate with their neighboring nodes with the common
goal of reaching consensus. Another advantage of ADMM framework is the adaptability
to other machine learning algorithms alongside SVM. ADMM has shown a promising
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performance considering all the four focus lines of parallelism for solving large-scale
problems. However, it may suffer from slow convergence in specific circumstances. Be-
sides, the convergence speed of ADMMconcerning graph topology is poorly understood.

Map-reduce. Parallel SVM implementations using map-reduce scale well to a large
number of machines. In spite of that, they may not perform well for sequential or it-
erative nature algorithms. To solve this problem, an extension of the Hadoop (Apach-
eSoftwareFoundation, 2014) implementation of map-reduce called Twister is created.
Notwithstanding the support for iterative methods in Twister (Ekanayake et al., 2010),
only a few SVM algorithms use it for the parallelization. One of the key issues in map-
reduce-based parallel SVM is the impact of the number of mappers and reducers on the
performance of the parallel implementations.

Combinational methods. Parallel incremental learning, map-reduce, the cascade
and distributed approaches, particularly ADMM are promising to reduce memory re-
quirements and accelerate the training process for large-scale problems. The results
derived from article I confirm that combination of these approaches lead to higher per-
formance since they complement each other and overcome the weaknesses.

Network architecture and topology. These play important roles in the efficiency of
network-based parallel implementations. The dominant architecture in the literature is
mostly based on centralized networks inwhich amaster node has the duty of distributing
data among distributed nodes and also gathering local results to obtain the final one. A
drawback regarding a centralized network is that the communication and synchroniza-
tion can be a hurdle for efficient parallel implementations. In contrast, decentralized
computing and peer-to-peer (P2P) computing models exhibit accelerated communica-
tion and reduced overhead. Network topology and the connectivity of the underlying
graph have also impact on the performance of network-based distributed algorithms in
terms of convergence and the number of iterations until convergence. This has not been
investigated and been poorly understood in the parallel network-based SVMs.

4.1.4 RECOMMENDATIONS OF POTENTIAL AVENUES FOR FUTURE
RESEARCH TOWARDS DESIGNING EFFICIENT FRAMEWORKS

Article I outlines that still, there is space for further improvement regarding computation
time, accuracy, scalability andmemory issues due to the immense and increasing size of
real-world data requiring judicious choice for end users. Having the existing challenges
and trade-offs in mind, designers have a great deal of flexibility in designing and imple-
menting SVMs by taking their goals of parallelism into the consideration. For instance,
considerable speedups canbe achievedby a slight deterioration of the classification accu-
racy which might be acceptable in some applications. One important point is to identify
the efficient parallel tools, heuristics, and strategies that fit the characteristics of SVM
algorithms in mind, otherwise one should be prepared for modifications and manipu-
lations of the corresponding algorithms or strategies to take the maximum advantages
of parallelism. In the current trend of parallelizing SVMs, it seems that the parallel im-
plementations of SVM solvers are still not sufficient to handle large-scale problems and
their challenges open up directions for future work. In this regard, article I provides
several recommendations towards implementing efficient parallel SVMs. These recom-
mendations are briefly summarised as follows,

Use of the four identified focus lines. Memory, speedup, accuracy, and scalability
has been identified as the fourmain focus lines of parallel implementations in this thesis,
i.e., parallel approaches improve the efficiency of the algorithm in mind in terms of one
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or more of these four focus lines. They are not independent and there are trade-offs
between them. Based on the line of reasoning in article I, in order to implement efficient
parallel SVM, developing algorithms that are capable of addressing all the focus lines
leads to a robust implementation.

Reproducibility. Another aspect to consider is improving the transparency of the par-
allel implementations by focusing on the reproducibility, replicability, and reliability of
the results. This gives the possibility of reproducing the results and improving the exist-
ing weakness in different application scenarios and problem settings. Besides, it makes
it possible to conduct a fair comparison of similar empirical approaches and identify the
potential for future research.

Use of combinational approaches. Combinational approaches have been success-
ful in handling large-scale problems since the matching techniques can complement
each other and improve the possible weaknesses. To take the maximum possible advan-
tages of parallelism, a future direction likely to be successfulwould be the development of
an integrated framework that gives the possibility of combining several complementing
techniques. Suggestions such as combining incremental SVMwith ADMM-based SVMs
and combining ADMM-based with map-reduce for solving multi-class and non-linear
classification are given in article I.

Use of the available modern technologies. Modern processors already contain
technologies that designers of parallel algorithms can take advantage of. These technolo-
gies are employed by high-performance and parallel libraries and software, e.g., MKL
(2011-2013, 2011-2013). Indirectly, using these tools helps the users to improve the per-
formance of developed algorithms. In addition to that, one can directly usemodern pro-
cessor technologies in SVM algorithms to further improve the performance. However,
a restrictive design of algorithms is a hurdle and may not allow using these technolo-
gies to the fullest extent. Article II confirms that one should always take the use of the
already developedHPC tools into the consideration to avoid developing restrictive paral-
lel SVMs. A future research direction can be to implement non-restrictive parallel SVMs
that allow using the available modern processor technologies, e.g., SIMD instructions
such as SSE and AVX.

Network architecture and topology. Solving large-scale problems requires a large
amount of memory which can be provided by adding more computing resources from
different physical locations. The majority of the parallel SVMs has their main focus on
a centralized computing in which the distributed computing nodes communicate more
or less regularly with a master to obtain the final results. This can cause overheads, thus
a hurdle for effective parallel implementations. An interesting future research direc-
tion is to develop algorithms that are suitable for decentralized computing that take the
advantage of distributed computing resources without major overhead or loss of perfor-
mance. Another direction to reduce the communication overhead is to design networks
with good connectivity.

4.2 THE RESULTS OF ARTICLE II
In order to reach the objectives of this thesis in research question 2, we have conducted
the empirical study 1 and the experiments described in 3.2.1. Article II investigates that
how simple changes to SVM implementations can have significant improvement in par-
allel settings. In article II, we improved the PSVM implementation concerning the struc-
ture, memory allocation, de-allocation and parallelism point of view. In addition, by
finding appropriate values of parameters, we got 20% improvement on the calculation
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Figure 4.3: The classification accuracy with respect to different column size for fixed values of C and γ

(4.3a) and for the best values ofC and γ (4.3b). Here, r = log(p)
log(n)

, where p is the column size and n is the

number of training samples for webspam dataset with 300000 samples and 254 features.

of one of the computationally expensive tasks. In continuation of this chapter, we briefly
describe the details of the findings in article II.

Experiment 1; Sensitivity of PSVM regarding C and γ. To reach a target classification
accuracy, the total training time of the PSVM was not sensitive to changing the value of
C and γ. Besides, no interesting trend was found in the training time by changing these
parameters, albeit this experiment gives better insight about experiment 2.

Experiment 2; The impact of the approximate matrix dimension, p, on the accuracy.
In experiment 2, we show the impact of changing the column size of the approximated

matrix on the accuracy using a logarithmic scale, i.e., we use r = log(p)
log(n) , where p is the col-

umn size and n is the number of training samples. Experiment 2 showed that changing p
affected the choice of important parameters,C and γ in SVM, in which choosing the best
values of the parameters for special column size p was not necessarily the best value for
another p. For instance in Figure 4.3a, the best C and γ (C = 64 and γ = 2) for r = 0.6 are
not good values for r = 0.5. In the original software, a fixed number of columns related
to the number of training samples is recommended, i.e., p =√n, where n is the number
of training samples. In contrast, article II points out that the recommended size was not
optimal for different cases. Figure4.3a shows an example of poor accuracy for choosing
the recommended size (p =√n or r = 0.5) for the fixed values of C and γ. This is also an
example of unstable accuracy by increasing the number of columns for the fixed values
of C and γ. In Figure 4.3b, we observed an improvement in the classification accuracy
while increasing the number of columns of the approximation matrix and choosing the
best values ofC and γ for each value of r. Article II mentions that replacingC and γ with
the best C and γ for each column size led to the stable classification accuracy. As an-
other observation, figure 4.4 shows that the best C and γ stayed close when the value of
p was changed. The result of this experiments confirms the performance improvement
of the improved PSVM versus the original version. Figure 4.5 shows this comparison for
different p size and shows 4 times improvement of performance by our modification on
PSVM for a large value of p. Even for the smaller value of p we got 20% improvement on
the calculation of one of the computationally expensive task, denoted E.

Experiment 3; Existence of a threshold. In this experiment, we exhibited the existence
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of a threshold between the training time and the number of computing cores using the
complexity analysis. Existence of such threshold is important since it can suggest a cor-
rect number of computing cores to be used without wasting the computational power
due to overhead. In addition, this experiment investigates how training time regard-
ing computationally expensive tasks in PSVM changes while increasing the number of
nodes. In Figure 4.6, the upper sub-plots indicate the decrease of the training timewhile
increasing the number of nodes. This trend stops for the number of node more than 128
in figure 4.6 (a) and 64 in figure 4.6 (b). Thereafter, increasing the number of nodes
shows no remarkable improvement in (a) and even the increase of the time in (b). This
is due to the overhead. The lower sub-plots give a better insight about the proportion of
the training time for the most computationally expensive tasks in PSVM.

4.3 THE RESULTS OF ARTICLE III
Article III is based on the empirical study 2 and it contributes to answering research
question 3 with the aim of investigating the impacts of network topology on the perfor-
mance of SVM algorithms in terms of convergence. Networks with good connectivity
perform well in terms of convergence (H. T. Cao et al., 2016; França and Bento, 2017).
In this regard, complete graphs are well-known for their connectivity, however, high
connectivity does not come cheap in particular using distributed memory parallelism,
i.e., all nodes need to communicate with each other and this may increase the number
of iterations until convergence and increase the communication complexity. Random
regular expander graphs are good sparse approximations of complete graphs in which
good connectivity alongside efficient communication between nodes is inherited. The
result of the empirical study in article III confirms that the performance of a network-
based ADMM implementation of SVM is improved based on the efficient connection on
the neighboring nodes using expander graphs. Furthermore, it confirms that the graphs
with good expander property have faster communication between the nodes. We have
used Newton-based algorithm from NLopt optimization package (Johnson, 2008) to
solve the optimization problem resulting from ADMM in (2.9). The details of the find-
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Figure 4.7: The upper and lower bounds of the spectral gap for random d-regular expander
graphs. a) Graphs with 16 nodes and d = {3,5,7,9,11,13,15}, b) Graphs with 128 nodes and
d = {10,20,30,40,50,60,70,80,90,100}.

ings of this article are as follows,

• The connectivity of a regular graph increases as the degree of the graph and the
corresponding spectral gap become larger. The bound of the spectral gap ex-
pands as the degree of the graph and consequently the connectivity increases for
a fixed number of nodes. Albeit, increasing the degree of a graph will not neces-
sarily lead to better connectivity if its spectral gap does not become larger. Figure
4.7 shows the upper and lower bounds of the spectral gap for 16 nodes in (a) and
128 nodes in (b).

Miller et al. (Miller, Novikoff, and Sabelli, 2008) conjectured that the probabil-
ity that a random d-regular graph is Ramanujan is 27% as the number of graph
nodes grows. Hooray et al. (Hoory, Linial, and Wigderson, 2006) mention that
this probability may get larger than 50%. For a fixed number of graph nodes and
considering the randomizing, e.g., 16 nodes, we can with probability 27% get a
11-regular graph that is Ramanujan and in the same way we can with probability
73% get a 13-regular graph that is not Ramanujan. Hence, there is a small proba-
bility that a lower degree graph may have a higher connectivity.

• Graphs with higher connectivity exhibit accelerated convergence, i.e., the num-
ber of iterations decreases as the connectivity of the graph increases. This is
shown in figure 4.8 (top). Furthermore, the computing time of the solver de-
creases as the connectivity of the graph increases. This is shown in the lower sub-
plots of the same figure. Note the decrease in the number of iterations saturates
or becomes negligible as the degree of the graphs is close to the number of graph
nodes.

• Shuffling increases the classification accuracy and leads to a stable classifier
while keeping the trend of decreasing the number of iterations and time for d-regular
graphs. This is shown in figure 4.9.

• The findings in article III is consistent with other similar approaches in (H. T.
Cao et al., 2016; França and Bento, 2017), whose theoretical analysis suggested
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Figure 4.8: Impact of d-regular graphs on the number of iterations and time.

high mean degree for graphs. Despite the fact that those approaches were not
tested for a network-based ADMM nor for nonlinear systems.

• The impact of many communicating neighboring nodes is minor in the shared
memory parallelism. In contrast, in the distributed memory parallelism, the
communication between many nodes reaching the consensus might cause com-
munication overhead. Thereby, increasing the degree of graphs close to complete
graphs may not be efficient as in the shared memory parallelism.

In addition to the impact of network topology on the performance of a network-based
SVM, several factors showed their importance for the classification accuracy in article
III. Some of them are briefly mentioned here.

• Class imbalance. To keep a balance between classes while keeping the trend of
decreasing the number of iterations and time, we randomly shuffled the data and
consequently it exhibited higher classification accuracy versus unshuffled data.
Besides the advantages of shuffling, it addresses an issue regarding privacy, i.e.,
networks that supply their data from distributed sources may not allow combin-
ing and shuffling the data due to privacy issues.

• Data cleansing. The finding in article III confirms that simply removing the
missing and corrupted data exhibits higher accuracy. This shows the importance
of preprocessing of data before conducting the training process.

Finally, based on the line of reasoning in article III, we provided several suggestions for
future work.

• Find an appropriate degree of regular graphs concerning the number of graph
nodes in which the degree should be sufficiently high that leads to effective com-
munication and sufficiently low that leads to good connectivity.

• Investigate the impact of expander graphs on the performance of the algorithm
using distributed parallelism.
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Figure 4.9: Several rounds of shuffling data. Shuffling increases the classification accuracy while
keeping the trend of decreasing the number of iterations and time for d-regular graphs.

4.4 RESEARCH QUESTION 4
In this section, we present recommendations as a guideline for the development of an
efficient parallel implementation of SVM.These recommendations are based on the find-
ings from all the research articles included in this thesis and they contribute to answer-
ing research question 4. Based on the line of reasoning in article I, II, and III, we believe
that these recommendations make developing an efficient framework possible and give
judicious choice for scientists as well as developers to balance the existing trade-offs.

In article I, we conducted literature review and identified three general phases used for
learning large-scale problems in machine learning. These tasks may not be explicitly
mentioned in the literature, but we have identified them being used. These phases are
pre-processing of data, main processing of training, and post-processing of results.

Pre-processing phase. This phase includes initial tasks that are conducted on data
before the training of an algorithm starts. These tasks aim to cleanse, integrate, trans-
form, normalize and/or reduce data (Garcı́a, Luengo, and Herrera, 2015). Feature se-
lection, instance selection, data compression, filtering, shuffling, scaling, dimension re-
duction, initial clustering of data are examples of pre-processing that are used in the
literature regarding SVM. Strategies used in this phase can solve issues regarding class
imbalance, missing, noisy, redundant, and inconsistent data.

Main processing phase. This phase includes the actual training of the algorithm and
it is the main contribution in most of the research works, i.e., they mainly focus on im-
proving the performance of the algorithm in mind in the training process, nevertheless
pre- and post-processing phases alongside main processing play an important role for
efficient implementations of SVMs in practice regarding large-scale problems. In the
main processing phase, SVM trains data coming from the pre-processing phase. In the
main processing phase, we provide the following recommendations to improve the per-
formance of a parallel SVM implementation.

• Framework foundation. Distributed optimization frameworks such as ADMM
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give a possibility of divining a large training problem into independent smaller
sub-problems each of which has its independent objective function and con-
straints. These frameworks perform independent of their inner optimization
solver, i.e., one can use a variety of different optimization solvers to solve the
sub-problems. ADMM can be adapted to other machine learning algorithms
alongside SVM. To improve the accuracy and reach the global optimal, a consensus-
based optimization can be added to the framework (see article I and III).

• Scalability in terms of the number of computing nodes. The advantage of a dis-
tributed optimization as the foundation of our recommended framework is that
it can employ computing power on demand, i.e., computing nodes can be added
in order to perform computationally expensive tasks in a distributed manner. As
recommended in article II, it is helpful to find a theoretical bound for the scala-
bility since it suggests the optimal number of cores to take the maximum possible
advantage of parallelism considering overhead. In article II, we have shown that
such theoretical bound exists using the complexity analysis.

• Scalability in terms of the number of samples. To handle immense amount of
data, as article I suggests, incremental learning and online learning can be added
to our recommended framework. This can also be efficient in the case of learning
of streaming data.

• Decentralized learning. Employing peer-to-peer networks or consensus-based
optimizations in which nodes communicating with only neighboring nodes re-
duce overhead. Furthermore, this assures that the algorithm remains functional
in the case of node failure.

• Parallel computation. Map-reduce improves the performance of a parallel SVM
in terms of time when it is performed in a distributed manner. The framework
can employ map-reduce to perform ADMM in parallel. In this regard, the au-
tomated and controlled number of mappers and reducers can be added toward
further improvement of map-reduce.

• Network topology. Expander graphs and particularly regular graphs improve
the quality of the communication between the neighboring nodes. As article III
outlines, this type of graphs offers an efficient communication pattern for the
nodes employed in the framework.

Post-processing. This phase includes the tasks that are conducted after training the
algorithm using machine learning techniques. These tasks aim to interpret, explain
and evaluate the results acquired from the training. Examples of post-processing are
1) strategies for testing and evaluating the results, 2) strategies for improving the inter-
pretation of the results, 3) methods for making the results understandable for humans,
and 4) strategies to improve the quality of the prediction.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE
WORK

The objectives of this thesis have been formalized in the form of four research questions
which of all are answered through three research articles. In this section, we summarize
each research article and the drawn corresponding conclusion.

5.1 SUMMARY AND CONCLUSION
To answer the first research question, article I has explored the important factors on the
efficiency of parallel SVM implementations regarding large-scale problems. This led to
identifying important steps towards developing efficient parallel implementations such
as the choice of 1) underlying SVM algorithm, 2) HPC tools and parallel programming,
and 3) additional heuristics to overcome issues regarding big data (figure 1.1). In ad-
dition, we have identified four focus lines of parallelism, memory, speedup, scalability,
and accuracy, each of which has given a better understanding of the objectives of par-
allelism in different application scenarios. Our extensive exploration of the state of the
art parallel implementations and their pros and cons helped to find the efficient parallel
algorithms, HPC tools and heuristics that fit better the parallel settings. As the result of
that, we provided clear suggestions for several application scenarios.

Aligned with the goal of this thesis in the second research question, article II contributes
to the exploration of simple changes leading to significant improvement in parallel set-
tings. In this article, it is shown that a restrictive design of algorithms is a hurdle and
may not allow using the modern technologies to the fullest extent. The article further
investigates the impact of the problem dimension on the choice of important parame-
ters. In addition to that, the existence of a threshold between the training time and the
number of computing cores is elaborated. A strength of the existence of the aforemen-
tioned threshold is to help to employ the correct number of machines without wasting
the computational power.

Towards the objective in the third research question, article III contributes to the investi-
gation of the impact of network topology on the performance of a parallel SVMalgorithm
along with supplying an implementation making theoretical advances practically avail-
able. This led to the conclusion that the networks with good connectivity, large spectral
gap, and higher degree exhibits accelerated convergence.

All the findings of the research articles presented in this thesis contribute to the objective
of research question 4. This led to several recommendations towards developing an ef-
ficient parallel framework for SVMs considering three key steps, namely pre-processing
of data, main processing of training and post-processing of results.

As a final note, we believe that our contribution in this thesis 1) clarifies the existing chal-
lenges, 2) addresses trade-offs, and 3) suggests a roadmap/guideline, all of which facil-
itate judicious decision for the end users to have a great deal of flexibility in designing

39



UNIVERSITY OF SKÖVDE

and implementing parallel SVMs by taking their goals of parallelism into the considera-
tion. Besides, our recommendations can 1) make it possible to develop a framework that
gathers all the efficient parallel approaches under the same roof, and 2) suggest potential
avenues for future research.

5.2 THE CONTRIBUTION OF THIS THESIS IN THE
FIELD OF MACHINE LEARNING

The research presented in this thesis is the marriage between the theoretical and practi-
cal advances regarding parallel SVMs for large-scale problems. The combination of the
reviewed state of the art research works, conducted empirical studies, and designed ex-
periments in this thesis widen the understanding of which and how parallel approaches
lead to higher performance. Based on the findings in research question 1, 2, 3, and 4, we
briefly summarize the thesis contributions to the field of machine learning.

5.2.1 RESEARCH QUESTION 1

Through the extensive survey of previous research works, this thesis contributes to un-
derstanding the current state of knowledge in the field, along with identifying the state
of the art research works. Moreover, through a comparative study, it provides new in-
sights into the efficiency of parallel approaches, their challenges, and trade-offs. Having
the existing challenges and trade-offs in mind, it provides a great deal of flexibility for
designers in implementing efficient SVMs by taking their goal of parallelism into the
consideration. The knowledge obtained to answer research question 1, highlights and
identifies the key focus line of parallelism in the literature which has not been explicitly
done before. In regard to novelty, to our knowledge, it is the first extensive survey that
thoroughly reviews the parallel algorithmic approaches along with the parallel tools for
the implementations of SVM. It also offers new ideas and clear suggestions of possible
avenues for future research. This knowledge contributes to practice since it facilitates
judicious decisions for scientists as well as developers to design efficient parallel SVMs
and make theoretical advances practically available for different application scenarios.

5.2.2 RESEARCH QUESTION 2

Through the designed empirical study 1, this thesis contributes to the field of practice
by presenting the existence of a new threshold between the number of computational
cores and the training time. In practice, this is important since it gives a possibility for
correctly using the available resources without wasting the computational power, i.e., it
gives a new insight and an idea of an optimal number of computational cores that can
be used to take the advantage of parallelism. In addition, the knowledge acquired from
this empirical study suggests that how simple changes lead to higher performance in
practice. Another novelty of this research is that it shows how changing the problem
size impact the optimal value of important parameters, whereas the original software
suggests a fixed problem size. This contributes to the field of practice, as it relates to
adjusting the problem size based on the available memory and the target classification
accuracy, all of which are important in the practical implementations.
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5.2.3 RESEARCH QUESTION 3

With the help of empirical study 2, the contribution of this thesis is the marriage be-
tween the theoretical and practical advances regarding a network-based SVM. From the
theoretical point of view, we reviewed the efficiency of the expander graphs and their
connectivity. From the practical point of view, we implemented one of the well-known
expander graphs in order to study the impact of network topology in practice. In regard
to novelty, we implemented a parallel consensus ADMM-based nonlinear SVM in a new
setting, i.e., employing expander graphs for the communication between the nodes. This
is an important contribution to the field of practice since designing a network with effi-
cient communication pattern, high and good connectivity leads to higher performance,
i.e., the same number of computational nodes with efficient communication between the
graph nodes exhibits a faster convergence.

5.2.4 RESEARCH QUESTION 4

The fourth contribution of this thesis is the acquired recommendations for developing
an efficient framework for the parallel implementations of SVM. This knowledge con-
tributes to the field of practice since it provides a possibility of developing a framework
that integrates all the efficient approaches under the same roof in order to take the max-
imum possible advantage of parallelism. To do so, key steps are introduced and the
possible recommendations are provided. This research highlights the importance of the
distributed computing for not only SVMs also for other machine learning techniques.
Besides, it provides new ideas for combining several efficient methods to improve the
performance of SVMs regarding large-scale problems.

5.3 FUTURE WORK
In the era of digitalization, the parallel computing of SVM is becoming a necessity for
improving the performance of SVM for big data. In the current trend of parallelization,
it seems that the parallel implementations of machine learning solvers are still not suf-
ficient to handle large-scale problems and their challenges open up directions for future
work. In this section, we suggest several possible avenues for the future research direc-
tion.

• A distributed framework. The results from the articles included in this thesis
verify a tendency towards training large-scale SVM problems using distributed
frameworks. A future direction can be to design an efficient and distributed
framework such as ADMM that can integrate many of the efficient approaches
under the same roof considering the pre-processing, main processing and post-
processing phases. Another future direction is to use ADMM for proximal meth-
ods, non-smooth techniques and non-convex optimizations.

• Decentralized settings. Many of the existing distributed frameworks are per-
formed in a centralized setting in which one central node has the duty of dis-
tributing data among other nodes or accumulating results from the nodes. In
order to reduce the concerning overhead caused by the centralized communica-
tion setting, a future direction can be to further investigate decentralized settings
in which each node only communicates with the neighboring peers using efficient
network topology.
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• Efficient network topology, improving the convergence of ADMM and com-
munity selection. The effect of network topology on the performance of dis-
tributed network-based SVM algorithms has not sufficiently explored. A future
research direction can be to explore the effect of different network topologies on
the performance of network-based distributed SVM algorithms. For instance, by
adding or removing links between graph nodes, one can create an adaptive net-
work topology that may result in fast convergence of network-based distributed
algorithms. Besides the adaptive connection between graph nodes, a future re-
search direction can be further investigation of community selection in which the
graph nodes that play important roles for efficient communication are identified.

• Mapping distributed algorithms on distributed physical computational nodes/-
cores. To perform a distributed optimization algorithm in parallel, the network
topology used in the algorithm can be mapped to the distributed physical compu-
tational nodes/cores, albeit it will not improve the convergence speed, the com-
putation speed can be significantly improved. As article III suggests, a future
direction can be conducting the aforementioned mapping of a distributed opti-
mization to a distributed memory parallelism for solving large-scale problems.

• Approximation methods. In distributed parallelism, as article I and II highlight,
strategies such as approximation methods are used to further reduce the prob-
lem size, memory requirement and the computational complexity. For instance,
Cholesky factorization, subsampling, approximated kernel matrix, and incre-
mental training are used to accelerate the computationally expensive tasks. A fu-
ture research direction can be to investigate the effect of different approximation
methods on the performance of a decentralized and consensus-based ADMM im-
plementation of SVM and identify the possible trade-offs.

• A threshold for the number of computational cores. In article II, we showed the
existence of a threshold for the number of cores using the complexity analysis. A
future research direction can be to theoretically prove it. This helps to determine
the correct number of computational cores that can be used without wasting the
available computational power due to overheads.

• Pre-processing. Besides the importance of main processing phase, pre-processing,
i.e., initial tasks before training, can also affect the performance of an SVM al-
gorithm. A further investigation can be done to reduce the problem size in the
pre-processing. Most of the strategies to reduce problem size are performed in
a sequential manner. As article I and II suggest, a future research direction can
be exploring strategies such as data cleansing, prototype and feature selection in
parallel settings in distributed decentralized-based SVM algorithms.

• Problem characteristics. In the articles included in this thesis, we have men-
tioned several strategies to handle large training samples and improve the classi-
fication accuracy. While there are many strategies to handle big data, there is no
clear suggestion/roadmap for training problems with different characteristics of
training samples such as,

– The number of samples is significantly larger than the number of features,

– The number of samples is significantly smaller than the number of features,

– The number of samples and features are both large.
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A future research direction can be to identify strategies that are efficient in every
application scenario and investigate how they can be implemented in a parallel
manner.
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5.3.1 ONGOING RESEARCH

At the current state, we have implemented the base framework and are working on in-
vestigating the impact of network topology on the performance of a consensus-based
distributed SVM in terms of convergence and the training time using distributed HPC
architecture, MPI. We aim to compare impact of expander graphs with other type of
networks. The ongoing research will likely lead to a journal article. Our plan is to add
more features to the framework such as prototype selection and community selection.
Prototype selection helps to clean the data and identify the important training samples
that contribute to the separating hyperplane. Community selection helps to identify the
graph nodes that are important for an efficient communication in the consensus-based
distributed optimization. Additionally, we are working on evaluating the implemented
algorithm on real-world data. For instance, there is a possibility of using real-data from
Astra Zeneca.
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Parallel Computing of Support Vector Machines: A Survey
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�e immense amount of data created by digitalization requires parallel computing for machine learning methods. While
there are many parallel implementations for support vector machines, there is no clear suggestion for every application
scenario. Many factors including optimization algorithm, problem size and dimension, kernel function, parallel programming
stack, hardware architecture impact the e�ciency of implementations. It is up to the user to balance trade-o�s particularly
between computation time and the classi�cation accuracy. In this survey, we review the state of the art implementations of
SVM, their pros and cons, and suggest possible avenues for future research.
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1 INTRODUCTION
High-Performance Computing (HPC) [1] and parallel computing are promising tools for improving the perfor-
mance of machine learning algorithms in terms of time, especially for large-scale problems. Support Vector
Machines (SVM) [2] is a supervised machine learning technique that can take the advantage of HPC. SVM is a
popular technique because of the good generalization performance on many real-life data [3, 4]. Generalization
performance shows how accurately unseen data can be classi�ed by a pa�ern classi�er [3, 5]. Despite the advan-
tages of SVM, it su�ers from a long training process and limited memory for solving large-scale problems [3, 6–10].
�e reason is that the �adratic Programming (QP) [11] problem addressed by SVM contains computationally
expensive tasks [11, 12] including matrix related operations [11] for kernel computations, checking optimality
conditions [13] and gradient updating tasks [14, 15].

In the digital era, the size of data has been growing exponentially, thus the computation time and memory
requirements regarding very large problems have been increasing and using HPC tools has become even more
important [16]. �e published results show that parallel SVMs can achieve considerable speedups compared to
sequential SVM algorithms that use only a single CPU [10]. Parallelism has potential to improve the performance
of SVM in terms of time and memory, however, parallel implementations of SVM are far beyond easy tasks [17]
and may become ine�cient for solving very large problems or using a large number of processors, i.e., they
�is work is supported by Universities of Borås and Skövde in Sweden.
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may not scale well to a large number of samples or processors. Problems such as communication overheads,
computationally dependent steps, and memory limitations degrade the e�ciency of parallelism [6]. Besides,
coding part of a parallel SVMs algorithm is di�cult and requires considerable skills [3]. Due to the high space
and time complexity of SVM algorithms, it is important to use the right and appropriate algorithms and e�cient
heuristics for the given problem. �ereby, to identify the appropriate parallel approaches that have potentials to
obtain the peak performance for the given large-scale problem, it is helpful to thoroughly study the e�ciency of
existing parallel approaches.

Tyree et al. [18] categorize the approaches used for the parallelization of SVM into the implicit and explicit
parallelization. In the implicit parallelization [18], an algorithm is wri�en as a series of operations that can be
computed using highly optimized parallel libraries, e.g., Intel Math Kernel Library (MKL) [19] and cuBLAS [20].
In the explicit parallelization [18], programmers parallelize the computationally expensive tasks using parallel
programmings, e.g., shared memory, distributed memory, and GPUs. �e review conducted by Tyree et al. covers
most of the existing parallel implementations of SVM and it shows the importance of the implicit parallelism.
Despite many advantages of their review, it lacks to consider the important parallel algorithmic approaches and
paradigms, e.g., the cascade and map-reduce, and it only considers SMO-type optimization methods. Lu et al.
[21] review the mathematical optimization approaches used for accelerating the training process of SVM. �e
survey only considers the GPU-based parallel implementations of SVM. To our knowledge, there is no survey that
thoroughly reviews the parallel algorithmic approaches along with parallel tools for implementations of SVM.

�e objective of this paper is to provide a summary of the parallel algorithmic approaches and parallel tools that
have been used for implementations of SVM in order to provide insights into e�cient and potential approaches
for solving large-scale problems. Besides, the paper provides a brief summary of promising heuristics, their
advantages, and challenges in the parallelism. In this paper, the dominant and promising parallel approaches that
can be the target of future studies for further improvements are identi�ed. We review parallel implementations
of SVM with respect to four focus lines that we have identi�ed as the important goals of parallelism.

Two of the focus lines are speedup and memory, i.e., the parallel implementations of SVM may focus on
improving the performance of SVM algorithms in terms of time and memory for large-scale problems [18, 21].
Parallel approaches that reduce the problem size and handle the memory issues, may face deterioration in
the classi�cation accuracy. �ereby, another focus line is the accuracy, i.e., parallel approaches may focus on
improving accuracy or maintaining accuracy while reducing the computation time. �e fourth focus line is the
scalability, i.e., parallel algorithms may focus on scaling well for a large number of training samples and a large
number of processors or more focus on minimizing overheads.

�e outline of the paper is as follows. An overview of SVM is described in section 2. �e methodology for
choosing and reviewing the publications regarding parallel SVM and the corresponding taxonomy are described
in section 3. A review of the parallel algorithmic techniques and models that have been used for SVM is brie�y
described in section 4. A brief summary and some of the remarkable works along with the discussion are
mentioned in section 5. �e conclusion and potential future works are mentioned in section 6.

2 WHAT ARE SUPPORT VECTOR MACHINES
SVM is a supervised machine learning technique developed by Vapnik et al. [2] from statistical learning theory
to solve classi�cation and regression problems [2, 11, 22]. �e basic idea of SVM in a simple binary classi�cation
problem is to search for the hyperplane that is the farthest to the closest training data points from both sides of
the hyperplane [23, 24]. �is process has two phases, training and testing. In the training phase, the machine is
trained to �nd a hyperplane that separates the given data samples into two classes with known labels, negative
or −1 and positive or +1. A�er the machine is trained, the training model is extracted and then the testing
phase is carried out. In the testing phase, the SVM model predicts which class label a new unseen test sample
should have [25]. As mentioned in section 1, SVM gives a good generalization performance [25] and minimizes
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Table 1. Examples of well-known kernel functions

Kernel Function Inner Product Kernel Type
Linear kernel K(xi , xj ) = xTi xj linear
Gaussian/Radial-Basis Function (RBF) K(xi , xj ) = exp(−‖xi − xj ‖2/2σ 2) non-linear
Polynimial K(xi , xj ) = (xi .xj + const)d non-linear
Laplacian K(xi , xj ) = exp(−γ |xi − xj |) non-linear

the upper bound of the generalization error [3]. SVM has special characteristics that are used to implement
e�cient parallel algorithms in terms of time and memory. One characteristic is that the solution to a classi�cation
problem is obtained by only a few samples called Support Vectors (SV) [2] that determine the maximum margin
separating hyperplane [26]. Another characteristic of SVM is to perform the nonlinear mapping without knowing
the mapping function using prede�ned functions called kernels for calculating the inner product of mapping
functions [26]. Other characteristics of SVM are the simple structure of constraints and the especial de�nition of
the kernel function in a linear case, i.e., the inner product is a simple dot product [27]. �e sparsity of solutions is
the next characteristic of SVM [28]. �e primal optimization problem addressed by SVM is as follows,

min
1
2w

Tw +C
N∑
i=1

ξi

s .t . ∀i : yi (wTΦ(xi ) + b) ≥ 1 − ξi , i = 1, 2, ...,N
∀i : ξi ≥ 0 , i = 1, 2, ...,N

(1)

Here, w is the weight vector for the hyperplane, x is a vector of observations,yi is the class labels andyi ∈ {+1,−1},
b is the bias parameter and Φ(x) is the map function. In cases that data can be classi�ed by a linear classi�er,
thus Φ(x) = x, but real-life data cannot always be classi�ed by a linear classi�er [3]. In non-linear cases, one can
map the data from the input space into a high dimensional feature space using a non-linear transformation, i.e.
Φ(x) maps the input vector x to the feature space [3]. In the feature space, the data can be linearly separable.
Consequently, the dual form of equation (1) is represented in equation (2).

min D(α) =
1
2α

TQα − 1Tα

s .t .
N∑
i=1

yiαi = 0 , i = 1, 2, ...,N

∀i : 0 ≤ αi ≤ C , i = 1, 2, ...,N

(2)

Here, α is the vector of Lagrangian multipliers (αi ∈ α ), 1T is a vector of ones, Q is a matrix of size N × N and
Qi j = yiyjΦ

T (xi )Φ(xj ).
Kernel functions. In order to compute matrix Q , it is su�cient to compute the inner product of Φ(xi ) and Φ(xj )

without knowing the Φ(x) function. �is is done through a pre-de�ned kernel function, K(xi , xj ) = ΦT (xi )Φ(xj ).
�e kernel matrix measures the similarity or the distance between vectors xi and xj [25]. Examples of well-known
kernel functions are presented in table 1. �e kernel function de�nes the feature space where the training samples
are classi�ed, therefore the selection of an appropriate kernel function is important [29].
Multi-class classi�cation. SVM can solve multi-class classi�cations either by considering the multi-class

classi�cation in the optimization problem or though decomposing the multi-class classi�cation into a series

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:4 • Shirin Tavara

of binary class classi�cation [30]. �e la�er group is popular and includes One-Versus-One (OVO) [31] (also
know as One-against-One), One-Versus-All (OVA) [31] (also known as One-against-All), and Directed Acyclic
Graphs (DAGs) [30, 32]. In OVO, all binary combinations of N classes are created, thus N (N − 1)/2 classi�ers
are built, where N is the number of classes [30]. DAGs is a directed graph that combines the results of OVO
classi�ers [32]. In OVA, the samples of a speci�c class (class i) will be considered as the positive class and all
the remaining samples will be considered as the negative class. �ereby, N di�erent classi�ers are built [30].
Multi-class classi�cations are computationally expensive and they su�er from long training time due to involving
many classes in the classi�cation and passing through the training data many times [33]. For a large number of
classes, OVO is more computationally expensive than the OVA [30].

2.1 Challenges
�e training phase of SVM involves a dense QP and solving such QP is computationally expensive since it involves
computations of a Hessian/kernel matrix [34, 35]. Kernel evaluations include computationally expensive tasks
[14, 36], i.e., matrix-vector and matrix-matrix multiplications, gradient function updates [14] and optimality
condition updates [33, 37]. �e old and general purpose QP solvers are no longer suitable for solving the QP
addressed by SVMs [3, 11, 25, 34] since many of QP solvers require computing and storing the kernel matrix in
the memory which is not always possible due to the memory limitations [38]. One e�cient approach to improve
the performance of SVM algorithms is parallelism, however, the parallel approach used in the general purpose QP
solvers may not take the advantage of the special characteristics of SVMs mentioned in section 2 [14, 27, 39, 40]
or they may not be easily parallelizable [27]. Besides, the immense size of real-life data can cause problems
regarding computationally expensive tasks as follows.

– Memory. �e whole data may not �t into the memory [35] or ine�cient memory access slows down the
training and testing phases [41].

– Speedup. �e matrix operations might take too long time to be performed due to the computationally
expensive tasks, e.g., matrix-vector, matrix-matrix multiplications [14], and overheads [42].

– Scalability. Algorithms may not scale to a large number of processors or a large number of samples [27].
– Accuracy. Approximation methods [43] for reducing the size of the problem may lead to poor classi�ca-

tion accuracy [44].
Some e�cient heuristics along with parallel approaches have been used to speed up the optimization addressed

by SVM and to further handle the issues mentioned regarding memory, speedup, scalability, and accuracy. A
brief overview of the common heuristics and the corresponding challenges are mentioned as follows.

– Grid Search And Cross-Validation. One can improve the accuracy of an SVM model by selecting
appropriate values for the model’s parameters. �is is done through grid search and cross-validation [45]
in which a grid of di�erent value sets of parameters is generated and in each value set, cross-validation is
conducted. In n-fold cross-validation, the training set is randomly divided into n subsets with almost
equal sizes. In each fold, one subset is used as the validation set for testing the model and (n − 1)
subsets are used as the training set [46]. �e cross-validation process is computationally expensive
due to recomputing kernel matrix values at each iteration [45]. �e process gets more computationally
expensive for multi-class classi�cations since recomputations of the kernel elements may be repeated for
each fold.

– Caching. Kernel evaluations are computationally expensive and every evaluation of K(xi ,x j ) requires at
least O(d) �ops, where d is the number of features [15]. Consequently, computing a submatrix of size
s ×m requires at least O(smd) �ops at each training step, where s is the number of rows and m is the
number of columns [15]. Many computations in kernel evaluations are repeated or unused, therefore
one can reduce the memory requirements and the computation time by avoiding recomputations of
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the kernel evaluations and only storing the previously computed values in the memory using caching
[15]. To do so, caching stores a number of rows of the kernel matrix as the memory allows. One of the
common updating strategies for caching is Least Recently Used (LRU) [47] technique [47, 48]. Caching
has been well studied and been a popular heuristic in parallel implementations of SVMs [27, 28, 48–54].
Beside the advantages, caching is di�cult and system dependent [3, 37] and it might be ine�cient for a
large number of training samples [55, 56]. �e reason is that the number of the cached rows of the kernel
matrix is small due to limited memory, thereby, the size of the active sets will not be large enough to
achieve fast optimization [55, 57] or if an algorithm is memory bound, the memory access cost will be
high and multi-threading might cause memory contention due to limited bandwidth [56].

– Shrinking. Based on empirical studies and in practice, the number of SVs is much less than the total
number of training samples. In order to solve the QP faster in each iteration, one can �nd SVs in advance
and perform the training only on the SVs and discard the non-SVs in the optimization process. �is makes
the QP smaller and faster than the QP for all the training samples in each iteration and it obtains the
same optimal result [58, 59]. Joachims et al. [58] proposed a strategy called shrinking that temporarily
eliminates points that are unlikely to be selected in the working set in each iteration. To do this, Joachims
et al. [58] temporarily discard samples that the corresponding Lagrangian multipliers reach a pre-de�ned
upper or lower bound. Shrinking reduces the computations regarding kernel evaluations since only parts
of the Hessian matrix that correspond to SVs are calculated [49, 60]. Although shrinking has been used
in parallel implementations of SVMs [13, 17, 47, 49, 56, 61, 62], except in a very few number of articles,
the process of shrinking has not been parallelized [63]. Despite the advantages, shrinking requires
rearranging index, marshaling, and reconstruction, which may cause signi�cant overheads and therefore
it may lead to the performance loss. �erefore, one should get enough information from datasets and the
problem parameters to decide how to carefully use shrinking [56].

3 METHODOLOGY
�is survey is based on reviewing the publications and information in technical books, journals, conference
proceedings, technical reports, authentic websites and libraries used for parallel implementations of SVMs. �ere
has been no special focus on applications of SVMs in a speci�c �eld such as medicine, biomedical or �nance. �e
selection of journal and conference articles were conducted using well-known databases, e.g. IEEE, Elsevier, ACM
digital library, and the Google Scholar search engine. Parallel SVM implementations that use parallel algorithmic
approaches, parallel models and frameworks are chosen regardless of their applications. In addition to the parallel
approaches, the heuristics and strategies that improve the performance of the SVM algorithms with respect to
the four focus lines are mentioned in this survey. Besides, the parallel implementations of SVMs using FPGA are
brie�y mentioned, although the customized and dedicated hardware for computational purposes is not the main
focus of this survey. A review of publications regarding the sequential implementations of SVMs is excluded
from this survey. �e body of research regarding parallel computing of SVMs can be studied considering two
aspects, i.e., parallel algorithms and parallel models related to parallel architectures. In this survey, the parallel
SVM algorithms are identi�ed and categorized and within each category, parallel models used for the parallel
implementations of SVMs are reviewed. �e resulting taxonomy of parallel SVMs is illustrated in �gure 1.

4 PARALLEL ALGORITHMIC APPROACHES AND PARALLEL MODELS
Parallelization of SVM algorithms is far beyond an easy task due to problems such as dependencies between the
computation steps [17], high latency in memory access [41, 56], and limited memory [56]. In this section, the
most common techniques and heuristics used for parallel implementations of SVM are brie�y described, each of
which improves the e�ciency of SVM algorithms in terms of memory, speedup, scalability and accuracy.
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Fig. 1. The parallel computing of SVMs, including algorithms and tools. SMP: SharedMemory Parallelism, DHPC: Distributed
HPC Architectures, HP: Hybrid shared-distributed memory Parallelism, GPUs: GPU-based Parallelism, DBD: Distributed
Bid Data architectures, and FPGA: Field Programmable Gate Arrays.

4.1 Parallel Decomposition Techniques
Parallel decomposition implementations are popular for large-scale SVM problems since at each iteration, it uses
only a few samples in the working sets and skips the rest. However, decomposition techniques are inherently
and essentially sequential. �is is because the selection of working sets at each iteration depends on the results
of the previous iteration, albeit some of the computationally expensive tasks/operations can be performed in
parallel. In this section, the parallel decomposition-based SVMs are brie�y described.

4.1.1 Parallel Decompositions Using Shared Memory Parallelism (SMP). SMP has been used for performing
decomposition techniques in parallel [13, 15, 37, 61, 64–66]. To do so, computationally expensive tasks such as
kernel evaluations, gradient updates and working set selections [15, 66] are performed in parallel.
Memory and speedup. �e advantage of parallel implementations of decomposition algorithms using SMP is

that one copy of data is stored and shared between di�erent processors/threads, avoiding multiple copies of data
or communication overheads for transferring data [13]. Eitrich and Lang [66] use a simple loop-based parallelism
for e�ciently performing kernel evaluations, gradient updates, and selection of the working set in parallel. �ey
employ BLAS routine libraries to accelerate matrix-vector and matrix-matrix multiplications. �e advantage of
parallel decomposition techniques is that depending on the size of the working set, only a small subset of the
large kernel matrix is computed in parallel [15]. However, if the appropriate size of the working set is large, the
data may not �t in the limited shared memory. Going beyond a binary classi�cation, Didiot et al. [15] reduce the
memory requirements for multi-class classi�cations using kernel caching in which kernel elements are shared
across all the processors/threads. �e proper data alligenment in [15] allows to vectorize the kernel functions
in which Single Instruction Multiple Data (SIMD) [67] instructions are used to apply the same operation on
multiple components of large vectors. Unlike previous work, You et al. [56] remove the caching and reduce the
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shrinking frequency in SMO and focus on memory coverage using a two-level parallel mechanism in which
tasks with independent computations and memory requirements, e.g., kernel evaluations, are computed through
task parallelism and tasks with dependency in the computations, e.g., partial kernel evaluations, are computed
through data parallelism. Unlike the previous works, this two-level parallelism supports both dense and sparse
data formats. �ey were the �rst to introduce the use of modern processor technologies for the vectorization.

Scalability and accuracy. Eitrich et al. [37] introduce a data transformation in which an expensive operation in
the kernel function is transformed into a less expensive operation, i.e., a division is transformed to a multiplication.
�e data transformation along with the largest possible working set that �t in the memory leads to a speedup
of 5.5 times using 7 threads for a binary classi�cation. �e data transformation allows using a Gaussian kernel
without additional cost. However, the algorithm does not scale well to a large number of processors. In contrast,
Gonccalves et al. [64] use Universal Kernel Function (UKF) [64] that has less computationally expensive operations
than a Gaussian kernel. It yields a be�er speedup and a be�er or equal accuracy compared to a Gaussian kernel
[64]. However, the impacts of using the UKF kernel on di�erent applications are unknown. Chang et al. [65]
take a step further and parallelize a decomposition-based algorithm for a multi-class classi�cation, but, they only
report experiments using a linear kernel. Unlike previous work, Marzolla [61] parallelizes a decomposition-based
algorithm using a speci�c multi-core processor called the cell processor. �e algorithm obtains low speedups on
datasets with few a�ributes due to transferring many small data blocks.

4.1.2 Parallel Decompositions Using Distributed HPC Architectures. Parallel implementations of SVMs using
SMP can achieve considerable speedups. Still, due to the limited capacity of the shared memory, data may not �t
in the memory. To overcome the limited shared memory, distributed HPC architectures have been employed in
which local memory is used without a single global memory space shared between processors. To do so, the
computationally expensive tasks in a decomposition technique are distributed across multiple processors to be
performed in parallel [14, 33, 45, 63, 68, 69]. In this regard, a particular decomposition algorithm called Sequential
Minimal Optimization (SMO) [22] has been popular [13, 26, 28, 33, 48, 65, 70–72] since it can analytically solve
the QP addressed by SVM. �e basic idea in SMO is that a large QP problem is divided into the smallest possible
QP subproblems each of which is solved using only two variables in their working set. SMO has been a target
of distributed memory parallelism since around 90% of the total computation time is spent on updating the
gradient function [33]. �e most common approach for parallelization of SMO is to divide the training dataset
into smaller subsets and then distribute the subsets into multiple processors where the local gradient functions
can be calculated and updated in parallel [33, 73]. Shrinking [63, 63, 68, 68], caching [14] and two-level parallelism
[56] are the most common strategies used for reducing the problem size and memory requirements.

Scalability and accuracy. �e parallelization of SMO-based algorithms might achieve satisfactory speedups [33],
however, they may not show good scalability in terms of the number of processors and training samples. �is is
because that those algorithms o�en require to go through the entire samples to select appropriate working sets
[63] or processors may o�en need to communicate with each other to obtain the �nal result. �is causes overheads.
Narasimhan et al. [63] overcome scalability issues by adding an adaptive shrinking in which non-contributing
training samples are eliminated, thus the algorithm deals with only a part of the samples. Shrinking reduces
the memory requirements along with accelerating the training process. �e time complexity of the shrinking
process is further reduced by performing the shrinking in parallel. In [63], the adaptive shrinking allows fast
convergence. However, incorrect eliminations of samples in shrinking result in an inaccurate classi�cation.
Vishnu et al. [68] overcome this problem using several shrinking strategies ranging from early to late elimination
of non-contributing samples, in which important data structures are synchronized using distributed memory
parallelism to avoid false elimination. �eir proposed algorithm shows good scalability, i.e., it scales up to 4096
cores (256 nodes), for a problem with 2.3 million samples. Besides the advantages of decomposition techniques,
they may not converge if SVs do not �t in the memory due to a phenomenon called thrashing in which a correction
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on a working set is canceled by the correction of another working set [74]. Yom-Tov [74] overcomes this problem
using batch mode in which every Lagrangian multiplier is updated at each iteration. Scalability of the proposed
algorithm is unclear and the experiments report the performance for only 3 to 4 processors.

Memory and speedup. Shrinking might cause overheads if it is not handled carefully (section 2.1). One may skip
ine�cient shrinking and use caching instead (section 2.1). For instance, Brugger [14] uses parallel and distributed
caching along with a sparse data presentation and large working sets in an SMO-based algorithm. �e results of
experiments show the linear and in some cases superlinear speedups for large problems. �e approach in [14]
supports di�erent formulations of SVMs for classi�cation and regression problems.

Speedup. While SMO is one of the most common decomposition methods used in SVMs, it may su�er from the
existing dependencies between the computation steps. To overcome this problem, Hazan et al. [75] proposed
a di�erent decomposition technique using Fenchel duality that is more suitable for the distributed memory
parallelism and for computing clusters of independent nodes with independent memory. �e proposed algorithm
uses a parallel block-update approach that can update and send back the results of all processors in an iterative
manner with low communication overheads [75]. �is leads to a speedup of k

2 using k processors.

4.1.3 Parallel Decompositions Using Distributed Big Data Architectures. �ese architectures have been used for
parallel implementations of SMO [13, 44, 76] .

Memory and scalability. �e parallel algorithm proposed by Zhao et al. [13] reduces the memory requirements
using a map-reduce implementation of SMO along with caching and a sparse matrix representation. Caching
reduces memory requirements since a unique copy of the cache is shared between all mappers, and the sparse
data representation compresses the sample vectors to occupy as less memory as possible. Nevertheless, the
sample vectors need to be reformed back into the dense format to compute the corresponding dot product. �e
combination of caching, sparse data representation and parallel implementation using map-reduce leads to 4 fold
speedup compared to Libsvm. Concerning the memory usage, the algorithm could use a larger size of cache and
concerning the scalability, the algorithm shows only slight time improvement for increasing number of cores.
�e reason is that the memory is not fully and e�ciently used.

Accuracy. Distributed training of SVM may cause accuracy degradation. One can improve the accuracy using
an ontology-based enhancement in which an end-user corrects and modi�es the training data [44]. To do so, the
user adds some optimized instances (intelligence) as feedbacks to the weighted training data chunks and then all
the local SVMs are re-trained in parallel. For instance, Caruana et al. [44] design a feedback-based approach for
training and classi�cation processes in which the optimized instances are added into the feedback loops leading
to an average of 5% accuracy improvement. �e classi�cation accuracy of this approach depends on the quality
of provided intelligence by the end-user which requires expert knowledge in the domain.

�e previous approaches mostly take homogeneous computing environments into the consideration in which
machines load equal sizes of data. �e reason can be that the most of the approaches perform the parallelism via
Message Passing Interface (MPI) [77], and MPI was primarily designed for homogeneous computing environments
[76]. In contrast, Hadoop implementation of map-reduce could use a cluster of distributed heterogeneous
computers. However, it does not handle load balancing. One can balance loads for distributed heterogeneous
computers using resource aware algorithms. Alham et al. [76] balance the loads using a genetic algorithm scheme
which distributes data chunks of di�erent sizes into heterogeneous computers using map-reduce in which the
processing times for all data chunks are equalized and the communication overheads are reduced.

4.1.4 Parallel Decompositions Using GPUs. �e computational power of GPUs has been used to speed up
the computationally expensive kernel evaluations in decomposition techniques [10, 12, 28, 45, 50, 52, 78–84]. In
GPU-based parallelism, using a sparse data format [79, 80, 82], selecting appropriate working sets [12, 48, 79] and
adjusting data precision [28, 45, 48] are the most common strategies used for overcoming the limited memory
bandwidth in GPUs and accelerating training/predicting processes for SVM.
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Memory and accuracy. �e �rst GPU-based parallel SVM, gpuSVM, is implemented by Catanzaro et al. [48].
�ey reduce the memory requirements in gpuSVM and consequently accelerate the training/testing process in
SVM using single precision �oating point arithmetic. Note that the 32-bit arithmetic deteriorates the accuracy
[28, 45]. Carpenter [28] propose a solution, cuSVM, to improve the accuracy using the mixture of single and
double precision arithmetic. Although this mixture boosts the performance on dense samples, it does not duplicate
the accuracy achieved by Libsvm and does not support the cross-validation for improving the accuracy [45].
Besides, cuSVM in many cases performs slower than gpuSVM.

Memory reduction through reducing precision may not lead to the desired results. �erefore, one may reduce
memory requirements using a sparse format for storing large samples [79, 80, 82]. Sopylaya et al. [80] show that
simply using a compressed sparse row format leads to a speedup of 35 times, however, the algorithm in [80]
only supports cases with sparse input data and not dense ones [29]. Co�er et al. [41] mention that the sparse
format of data can reduce memory requirements, but it may not follow the certain restrictive memory access
pa�erns on GPUs and therefore they use coalesced memory access for sparse data that �ts the GPU architecture
[41]. Di�erent from the previous works that focus on the parallelization of matrix-vector multiplication for
updating the gradients, Vanek et al. [83] introduce an Optimized Hierarchical Decomposition SVM (OHD-SVM)
[83] in which kernel values are computed via matrix-matrix multiplications that �ts be�er the GPU architecture.
OHD-SVM achieves signi�cantly be�er performance than in [18, 41, 85] and it achieves the speedup up to 12 times
over the fastest published GPU-based SVM for binary classi�cations, gpuSVM [48]. It is the only implementation
that supports both sparse and dense data formats with the e�cient loading of data from the memory.

Cross-validation. It is used to enhance the accuracy by �nding appropriate values of corresponding parameters
(section 2.1). It is computationally expensive and therefore only a few parallel implementations support this
process. Cross-validation contains independent tasks that can be computed in parallel using GPUs [45, 52, 54].
Kernel caching is used to accelerate the cross-validation albeit it needs to be performed carefully to avoid
recomputation of the kernel at every iteration of the cross-validation. One can avoid the recomputing of the
kernel values by calculating the kernel matrix only once for every fold of the cross-validation [45, 52, 54, 78, 81].
�is speeds up the process n times, where n is the number of folds in n-fold cross-validation [45]. Athanasopoulos
et al. [45] parallelize the cross-validation process using the combination of CPU and GPU parallelism which
results in one order of magnitude faster processing time than using only CPU parallelism. One drawback of the
proposed approach is that the algorithm loads the input data on the GPU memory and due to the limited onboard
memory on the GPU, a large dataset may not �t in the memory [45, 81].
Speedup. Size of working sets impact training/testing time in decomposition techniques [12, 48, 79]. �e

standard SMO chooses only two points for the working set. It is not clear that this is the best choice for the
GPU-based parallelism. One of the major di�erences of the work proposed by Liao et al. [79] with the standard
SMO-based algorithms is that Liao et al. empirically choose around 16-32 points in the working set. �e reason is
that the proposed size is large enough to �t in the memory and small enough to accelerate the training process,
and it gives a good balance between the accuracy and solution time. Another di�erence is that a di�erent kernel
function called Tanimoto is used which shows a higher classi�cation performance over widely used kernels for
applications in molecular �ngerprints. �e algorithm can solve both classi�cation and regression problems. �e
sparse format of storing input data, the data movement between GPU and CPU, caching and mainly the change
of working set size may describe why [79] achieves be�er speedups than in [48], even though the la�er uses a
highly parallel map-reduce model for binary classi�cations. Going beyond binary classi�cations, Herrero-Lopez
et al. [78] implement the �rst OVA-based parallel SVM that improves the work proposed by Catanzaro et al. [48]
for multi-class classi�cations and supports dense data formats.
Data storage format. One of the issues in parallel SVMs is that they mostly support one type of data format.

For instance, the state-of-the-art SVM implementations in [82] and [48] support only compressed sparse row
and dense data formats, respectively. You and Demmel [84] show that employing a uni�ed data format for all
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datasets may signi�cantly deteriorate the performance of the corresponding parallel algorithm in terms of storage,
computation, and memory bandwidth. In [84], they use auto-tuning techniques to employ di�erent formats for
the same dataset. �eir approach leads to the speedup of 4 (worse case scenario) to 14 times (best case scenario).
Multi-class classi�cation. A multi-class classi�cation is computationally expensive (section 2) and has been a

target of GPU parallelism in decomposition techniques [50, 78, 82]. Herrero-Lopez et al. [78] use OVA to solve the
N-class classi�cation through N binary classi�cations in which a single SMO is solved similar to [48] and N(N× P)
classi�ers are constructed, where N is the number of class and P is the subsets. In [78], di�erent tasks evoke only
a single kernel and this causes task-controlling overheads due to many memory transactions between the global
memory. In contrast, Lin and Chien [82] use OVO (section 2) in which N(N-1)/2 classi�ers are constructed. To
overcome the task-controlling overheads in [78], Lin and Chien use a di�erent caching strategy in which every
di�erent task evokes a kernel at each iteration. Although this caching approach along with sparse matrix format
gives a speedup of around 134 times over Libsvm, the sequential computation of the operations in each task is less
e�cient than those if computed in parallel. Unlike the previous works, Zhang et al. [50] reduce data transaction
for a binary classi�cation by simply moving data from the global memory to the shared memory since data access
from the shared memory on GPUs is faster than the global memory. To further reduce the computational time,
they use sca�er-parallel-reduce-gather reduction method. �is simple modi�cation signi�cantly improves the
access speed on GPUs, however, the limited shared memory can still be an issue for large working sets.

Prediction. Unlike previous works that focus on the training process, Peng et al. [12] mention that an appropriate
size for working sets accelerates the predicting process more than the training process. �is is because that
the training process is more complicated and its time depends on many factors other than the working set
size. Besides, some parts of the training process may not be parallelizable, whereas the predicting process is
computationally intensive in which almost all parts are easily parallelizable. Peng et al. [12] improve the work
initiated by Liao et al. [79] for parallelization of both training and predicting processes in SVMLight. We highlight
the �ndings, pros, and cons of the parallel decomposition-based SVMs mentioned in this subsection in online
table Decomposition.

4.2 Parallel Incremental SVMs
Incremental learning is another approach that has been used for parallel implementations of SVMs [10, 30, 86–95].
�e basic idea in an incremental learning is that a partition of data is processed and corresponding SVs are
identi�ed. At each step, the SVs of the previous step together with a new data partition are added as inputs of the
current step. �e process is terminated when no partitions of data are le�. Incremental learning can be used for
on-line SVM training when new data are added [9]. Note, one may consider online learning as a solution for
incremental learning [92] and in a few cases, they have been used interchangeably [86]. Incremental learning
has potential to solve problems regarding scalability and memory for large-scale problems since it divides large
samples into several subsets, each of which �ts into the main memory [9, 94]. �e main focus line considered in
incremental learning is memory handling for large-scale problems.

4.2.1 Parallel Incremental SVMs Using SMP. An incremental learning approach has been used for data that
arrives in a streaming fashion. To our knowledge, the algorithm proposed by Matsushima et al. [89] is the only
SMP-based incremental learning of SVM for a linear classi�cation. �ey use POSIX multi-threaded programming
for streaming data. �e algorithm identi�es insigni�cant data, i.e., non-SVs, as data is added. �e memory
requirements are further reduced by processing data in blocks and by trading o� the �le I/O using data expand
on the �y; i.e., features are generated on demand. Furthermore, data is cached using so�ware that provides
a thread-safe in-memory hash table called Kyoto Cabinet [96]. One drawback is that the proposed algorithm
requires multiple passes through the data to achieve the optimal performance. �is may cause considerable
overhead, although a�er one or two passes a close to the optimal performance is achieved.
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4.2.2 Hybrid Parallelism. SMP may be unable to handle multi-class classi�cations due to the limited memory,
although incremental learning to some extent handles the limited memory issues by processing a partition of
data at a time. To overcome the limited memory issues, Doan et al. [30] use a hybrid of shared and distributed
memory parallelism for implementing a multi-class classi�cation problem. �is is because using only distributed
memory via MPI requires loading the whole subset into the memory for the learning process, and this may not
be possible for very large subsets. �ey add SMP to avoid loading the whole subset for each MPI process. �e
algorithm handles the class imbalance problem that happens when the number of examples in classes is very
unbalanced. �ey overcome the problem using a balanced bagging incremental approach in which the number of
samples in the majority class is reduced, known as undersampling.

4.2.3 Parallel Incremental SVMs using Distributed HPC Architectures. Incremental learning of SVM has been
performed in parallel using distributed HPC architectures [87, 90, 91, 95].
Scalability. One of the e�ective strategies for training large SVM problems is using row- or column-based

distributed algorithms in which data is split into blocks of rows or columns and then the corresponding matrix
multiplications are computed incrementally in parallel. Do and Poulet [90] study both row- and column-based
block distribution of data. �e row-based approach has linear dependencies on the number of examples, the
number of machines, and a second order depending on the number of dimensions. �erefore, the row-based
approach is suitable for a large number of samples with a small enough number of dimensions. �is is opposite for
the column-based approach. To adapt the row-based algorithm in [90] to solve problems with high dimensional
input space, Sherman-Morrison-Woodbury (SMW) [97] formula has been applied in which the inverse of a large
matrix is computed in an e�cient and inexpensive way that reduces memory requirements and the runtime. To
our knowledge, [90] is one of a few algorithms that can handle the biggest samples reported in the experiments.

Incremental learning can be further accelerated by avoiding re-training old data when a new data is added
[86, 87], i.e., the classi�er is incrementally updated only when a new point is added. Unlike in [90], Tveit and
Engum [87] use a tree-based structure to allow the distributed nodes access their input data e�ciently [87, 91].
�ey use a heap-based tree topology for the e�cient data access for linear classi�cations. �e heap-numbering
of the nodes creates e�cient communications between the nodes in which each node of the tree e�ciently
calculates the addresses of the corresponding child and parent nodes. �e results of experiments regarding the
proposed algorithm show that the reading on all nodes in the tree outperforms the reading on only leaf nodes.
�e algorithm scales linearly with the number of cores. �is is because that increasing the increment size leads
to increasing speedups and each node deals with heavy processing with minor communications [87].

Scalability for di�erent network topologies. Incremental learning is an e�cient technique to reduce the commu-
nications between processors by avoiding re-training of old data. In this regard, choosing an appropriate network
topology with e�cient communications of processors can reduce the overheads. Incremental learning of SVM
has been implemented using various networks, namely, a centralized network [94], a fully decentralized network
[91], and a strongly connected network [92].

Centralized networks. In this type of networks, distributed nodes solve their associated local SVMs independently
and then the resulting local SVs are aggregated in a central processing center. �e parallel algorithm proposed
by Syed et al. [94] uses this approach, but it does not succeed to obtain the global optimum. Caragea et al. [95]
improve upon the work in [94] through sending SVs back from the center node to the distributed nodes and repeat
the process until the global optimal solution is achieved. �e centralized network may su�er from communication
and synchronization overheads if the slave nodes regularly need to communicate with the master.
Decentralized networks. In this type of networks, data are distributed across several nodes, each of which

only communicates with its neighboring nodes without needing to communicate with the master or central
node. �e advantage of a decentralized network is that, if a node, including the master, fails for any reason,
the network remains connected, thus the algorithm remains operational [91]. To further reduce overheads,
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Alternating Direction Method of Multipliers (ADMM) [91] has been designed to handle exchanging messages
only between neighboring nodes (section 4.6.2). To do this, Forero et al. [91] cast a centralized SVM as a set of
decentralized optimization sub-problems using consensus constraints. One of the advantages of this approach
is that the proposed SVM is fully distributed in which nodes do not exchange training data. �is leads to
minor communication overhead and good scalability in terms of the number of computing nodes. Note that the
topology of the network can a�ect the e�ciency of the algorithm. Although the convergence of this method is
guaranteed, poor choices of values for the corresponding parameters have negative impacts on the convergence
and the algorithm may require many iterations to obtain the desired result. �e algorithm only supports binary
classi�cations and has not been evaluated for large samples.
Strongly connected networks. In this type of networks, each node receives its input data from its ancestor.

�e received data together with the new data are used to train the local sub-problems and then the resulting
SVs are sent to the descendent nodes. For instance, Lu et al. [92] show that their incremental learning on a
strongly connected network converges in a few number of iterations and the computing time is independent of
the number of SVs at each iteration, thus the algorithm scales to a large size of training samples. One should take
into the consideration that increasing the size of the network causes high communication overheads [92].

4.2.4 Parallel Incremental SVMs Using Distributed Big Data Architectures. Map-reduce has been used for the
parallelization of kernel computations and it has been combined with incremental learning to reduce memory
requirements and accelerate the corresponding processes. For instance, He et al. [86] use incremental learning
along with a map-reduce technique to handle large-scale problems in which the computations regarding new
data are performed without re-doing the computations regarding the old data. �e computational complexity of
the proposed algorithm increases linearly in terms of the number of new data, where the size of the new data
is much smaller than the size of the training samples. �e proposed algorithm does not take the multi-class
classi�cations into consideration and it does not scale to a large number of cores due to the overhead.

4.2.5 Parallel Incremental SVMs Using GPUs. GPUs have been used for the parallelization of incremental
learning of SVM [10, 93]. In this regard, one may need to minimize the memory requirements due to the limited
memory on GPUs. To do so, one can avoid loading the entire training samples into the main memory and update
the solution with a growing set. In each incremental step, a block of rows/columns is loaded into the CPU
memory and then the block is copied from the CPU memory into the GPU memory. A�er all the results are
computed in parallel using GPU, they are uploaded from the GPU memory back to the CPU memory. Do et al.
[93] use Newton SVM formulation which requires only the solution of a system of linear equations instead of
QP. �ey incrementally compute the corresponding gradient function and the Hessian matrix for each iteration.
�e algorithm in [93] linearly classi�es billions of data points on a standard workstation, if the dimension of the
input space is small enough, i.e., less than 103. For problems with large training samples and high dimensional
input space, one may �rst use dimension reduction strategies such as Principle Components Analysis (PCA)
[98]. However, reducing the dimension of large-scale problems is di�cult and computationally expensive. Do
et al. in [10] improve the algorithm in [93] by exchanging the Newton SVMs optimization into a least square
optimization formulation (LS-SVM) since the proposed LS-SVM converges faster than Newton method, thus leads
to be�er performance. �e proposed LS-SVM is 1000 times faster than Libsvm for linear classifying 5 million
data points. We show brief comparisons of the parallel incremental SVMs in online table Incremental.

4.3 The Cascade
�e cascade [17, 99] is a parallel scheme that has been used for the parallelization of SVMs [99–111] in which
SVM sub-problems are trained in di�erent layers. In the �rst layer, training samples are split into smaller subsets,
each of which is individually and independently trained by an SVM sub-problem to �nd the corresponding SVs.
�e results of sub-problems are combined pairwise and sent as the input for the next layer of the cascade. �is
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process continues until only one set of training samples remains. In order to check the global convergence, SVs
together with non-SVs in the last layer of the cascade are fed back into the �rst layer. �e cascade �nds the global
solution if SVs that are fed to the �rst layer are the same as the SVs coming out of the �rst layer [17].

4.3.1 Parallel Cascade Using SMP. SMP has been used for the parallelization of the cascade of SVMs [99, 101].
Memory and accuracy. �ree points impact the training time and accuracy of the cascade; 1) how a problem

can be e�ciently divided into smaller sub-problems, 2) how SVs are identi�ed in each layer [99], and 3) how and
which feedbacks can be given to get the maximum improvement in accuracy and time [99, 101]. Regarding the
second point, Zhang et al. [99] and Hu and Hao [101] �lter out insigni�cant data using the distance mean of
samples so that if the distance of a data point from the hyperplane is less than the mean, the point is chosen as an
SV [99, 101]. Zhang et al. [99] improve the accuracy of the cascade using various feedbacks. �ey use alternating
feedback strategy in which the feedback is not added to each subset of the �rst layer and instead, it is added in a
crossed way (for more information refer to [99]). Hu and Hao [101] follow the same approach, but using .NET
for the parallelization of the algorithm which achieves a superlinear speedup compared to the standard cascade,
however, it is unclear that how many passes through the cascade is needed to achieve the desired accuracy.

Scalability. �e parallel cascade-based SVMs scale to large numbers of training samples [17] and the required
communication between processors is minor since processors only need to exchange the SVs, thus latency is low
[51]. Low latency makes the cascade suitable for parallelization using a loosely coupled network of processors
[112]. One drawback of the cascade is the poor scalability in terms of the number of processors, i.e., speedup
saturates for a small number of processors, around 16 processors. �e reason is that one machine should combine
all SVs in the last layer, thus overheads are increased [112]. Another drawback is the poor performance of the
cascade for highly imbalanced samples [113]. �ese problems still exist in [99] and [101].

4.3.2 Parallel Cascade Using Distributed HPC Architectures. Distributed HPC architectures have been used for
performing the cascade in parallel [102–105, 114].
Accuracy and the number of SVs. �e classi�cation accuracy of the cascade can be improved using feedbacks

(section 4.3.1). One strategy that has been used is feedbacking in a crossed manner [99, 101, 102]. For instance,
Yang et al. [102] add the resulting SVs of each sub-problem of the �rst layer as feedbacks to the rest of the samples
in the �rst layer. New sub-problems are trained until the last layer of the cascade. �is leads to improved accuracy
and faster training process compared to the standard cascade. Meyer et al. [100] go a step further and improve
the accuracy and minimize communication overheads in [102]. In the proposed cascade, instead of generating
one single SVM in the last layer of the cascade, they use a bagging SVM in which SVs regarding one of the
sub-problems are chosen as the �nal results using vote aggregation between the sub-problems. �is combination
approach is promising for accelerating the cascade process, however, it does not achieve optimal results for all
the evaluated datasets and it misses an e�cient parameter tuning. Unlike the previous works, Wen et al. [114]
improve the accuracy and reduce the number of SVs in the cascade for multi-class classi�cations. �ey use a
hierarchical approach similar to a 3-layer cascade in which the samples of each class are divided into k partitions
and instead of the pairwise combining of resulting SVs, they combine SVs regarding k subproblems. �e number
of SVs obtained by the algorithm is less than that in the traditional cascade. �e training time in [114] is reduced
when the value of k increases. But, it is unclear that how large the value of k can be, i.e., how many partitions
a dataset can be divided into without degrading the accuracy. �is work is one of the few ones that study the
impact of the number of partitions in the performance of the cascade.

Scalability. �e previously mentioned cascade SVMs may deal with a large number of SVs that may not �t in
the memory for large-scale problems. To overcome this problem, the cascade has been combined with approaches
such as incremental learning [105] and a divide and conquer scheme [104]. �e combination approaches can
handle large problems without requiring a large amount of memory. For instance, Du et al. [105] combine a
cascade SVM with incremental learning in which the new training data together with the resulting SVs in the last
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layer are fed back to the �rst layer. �eir combination approach achieves considerable speedups compared to the
standard cascade since the number of SVs in the proposed cascade is fewer than those in the standard cascade.
You et al. [104] combine the cascade with a divide and conquer scheme to make the balance between the accuracy
and training time. Di�erent from the previous works, they minimize the communication between distributed
computing nodes using initial clustering of data in which large samples are divided into subsets using k-means
clustering. �e algorithm in [104] removes the inter-node communication and this overcomes the scalability
issue of the cascade. Consequently, it scales well to large numbers of processors with a good load balance.

Peer-To-Peer environment (P2P).�e cascade has a potential for further improvements in terms of communication,
computations and memory costs. For instance, Ang et al. [103] introduce the �rst P2P network for training a
cascade SVM in which an upper bound on the communication overhead is identi�ed. �ey further improve the
communication between peers and reduce the overhead of sending SVs from a peer to another peer using a
reduced-SVM strategy. �e basic idea of the reduced-SVM strategy is that the number of SVs is reduced as much
as possible. To do so, Ang et al. [103] generate a small random subset of the training samples as the representative
of the entire samples [115]. In the proposed algorithm, the accuracy is not degraded as the number of peers
increases and the algorithm scales well with the size of the network.

4.3.3 Parallel Cascade Using Distributed Big Data Architectures. Hadoop implementation of map-reduce has
been used for the parallelization of the cascade SVMs [108–110, 116, 117] in which each map function trains
a sub-problem and each reduce function combines the resulting SVs from two sub-problems. A map-reduce
implementation of the cascade reduces the overhead as the number of mappers increases [108], but it may
not balance loads of di�erent computers. Guo et al. [116] propose a solution for load balancing issues using
a genetic-based algorithm in a heterogeneous environment. Despite the advantages, the proposed solution is
complicated to implement and it may lose performance due to the fact that the computation time in the genetic
algorithm may get longer than the time spent on training the sub-problems [118, 119].

Accuracy. One may further reduce the memory requirements and accelerate the training process in the cascade
using feature selection/extraction strategies in which important features of samples are selected while the others
are discarded [109, 110], however, these strategies may lead to the deterioration of the accuracy [110]. One
can improve the accuracy of the cascade by combining it with other strategies (section 4.3.2). For instance,
Pouladzadeh et al. [117] combine the cascade with incremental learning in which database is periodically updated
to improve the accuracy in each step. �ey further improve the accuracy using ontology-based enhancement in
which an end-user con�rms the classi�cation results. �is approach has been suitable for small-scale problems.

Multi-class classi�cations. Map-reduce has been used for parallelization of the cascade for multi-class classi�-
cations [108, 109]. �e algorithms used for multi-class classi�cations may require iterative map/reduce tasks,
however, Hadoop-based map-reduce may not support iterative algorithms and iterative map/reduce tasks. To
overcome this problem, Sun et al. [109] use Twister implementation of map-reduce that supports iterative tasks.

4.3.4 Parallel Cascade Using GPUs. �e computational power of GPUs has been used for accelerating the
cascade of SVMs for large-scale problems [106, 107, 111]. Data reduction and data chunking are employed to
overcome the limited memory on GPUs [107]. �e parallel cascade algorithm proposed by Li et al. [107] along
with data chunking and data reduction, shows superior performance in terms of training time. �e basic idea of
data reduction is that insigni�cant samples are eliminated in order to �t signi�cant ones in the memory. �e basic
idea of data chunking is that the number of training samples is reduced by grouping them into chunks/groups
based on their similarities. In the proposed algorithm in [107], data reduction with a single GPU outperforms,
in terms of training time, data chunking with multi-GPUs when the accuracy is not an issue. �e proposed
algorithm reduces the memory requirements for large-scale problems with slight deterioration of the training
accuracy. Unlike the previous works, Tarapore et al. [111] study the impact of di�erent numbers of partitions on
the training time, speedups and the accuracy. �e results of experiments in [111] show that the number of SVs
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may decrease as the number of partitions increases, thus the communication cost between processors gets more
dominant than the training time. �e speedup increases as the number of partitions increases while maintaining
a high accuracy. �is trend deteriorates as the number of partitions increases and the speedup is reduced. �e
reason again can be described as the increase of communication overheads.

Di�erent from the above approaches that use public datasets from well-known repositories, Wimer et al. [106]
use parallel cascade SVMs for a speci�c application, i.e., video-based pedestrian recognition and tracking at
intersections. �e detection rate of the corresponding algorithm is the same as other similar published articles
for the pedestrian detection, but the computation time of their approach is much less than that of others. Online
table Cascade summarizes the �ndings, pros, and cons of parallel cascade SVMs mentioned in this subsection.

4.4 Parallel Interior Point Methods
One of the popular solvers used in parallel SVM implementations is the Interior Point Method (IPM) [11, 29, 62,
120, 121] in which an interior point traverses on the feasible region until reaching the optimal solution of the
optimization problem. IPM has been an a�ractive method for solving SVM problems for reasons as follows. It �ts
the special formulation of the kernel function in the linear case and it uses the simple structure of the optimization
constraint addressed by an SVM problem [27]. �e number of iterations in IPM is constant or increases very
slowly as the problem dimension grows [29]. IPM has polynomial time complexity and the major computations
in IPM involve solving one or two systems of linear equations with constant and predictable structures [29]. �e
primal-dual IPM is the most e�ective IPM algorithm in which the inequality constraints are removed using a
barrier function and the iterative Newton method is used to solve the linear system corresponding to a Hessian
matrix [29]. �e computational cost and memory requirements of the standard dual-primal IPM algorithms are
O(n3) and O(n2), respectively. High computational costs and large memory requirements of the algorithm limits
the use of IPM for training large-scale problems. To overcome these problems, approximate matrix factorizations
along with parallelization approaches have been used [11, 29, 34, 42, 62, 88, 121–123]. Incomplete Cholesky
factorization (ICF) in which the kernel matrix is approximated by low-rank approximations and Kronecker are
two factorization schemes that have been used in IPM [88]. ICF and Kronecker have the computational cost
of O(p2n) and O(2n2), respectively, where p is the reduced matrix dimension a�er factorization and n is the
number of samples [88]. �e e�ciency of other approximate matrix factorizations that can reduce the memory
requirements without signi�cant trading o� the accuracy is still an open question.

4.4.1 Parallel IPM Using SMP. Parallelization of IPM using SMP can improve training time, however, one
may need to employ strategies to further reduce computational costs for solving large-scale problems. �ese
strategies o�en confront trade-o�s between speedups and accuracy [88].

Accuracy and speedup. Coarse-grained and �ne-grained approximate algorithms are two examples of strategies
for reducing computational costs. Coarse-grained approximations achieve good speedups at the expense of
poor training accuracy, whereas �ne-grained approximations achieve good training accuracy at the expense
of long training time. In order to �nd a balance between the accuracy and speedups, Wu et al. [88] combine
two approximations in a parallel incremental approximate matrix factorization in which the approximate IPM
solution of a coarse-grained factorization initiates the IPM of a �ne-grained factorization. �e warm start for an
IPM algorithm leads to fast convergence, thus high speedups. One can further reduce computational costs in
IPMs by only one-time computing of approximate matrix factorizations before IPM iterations are started. A�er
the factorization, only a reduced matrix needs to be stored at each iteration. Wu et al. [88] parallelize the ICF
matrix factorization scheme using SMP in which the memory requirement is reduced from O(n2) to O(np), where
p is the reduced matrix dimension a�er factorization, n is the number of training points and p � n.

4.4.2 Parallel IPM Using Hybrid Parallelism. �e computational capabilities of shared and distributed memory
parallelism have been combined for the parallelization of IPM algorithms in which the distributed HPC architecture
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handles the communication between processors and SMP handles the computations inside processors. For instance,
Woodsend et al. [34] use BLAS routines for computing matrix-vector and matrix-matrix multiplications in the
shared memory and they handle communications between the processors using the distributed HPC architecture.
�e proposed algorithm achieves high classi�cation accuracy compared to LibLinear for linear classi�cations
(LibLinear is an open source library for linear SVMs [124]). A drawback of the proposed algorithm is that it
requires loading all the samples into the memory. �erefore the algorithms cannot tackle large-scale problems.

4.4.3 Parallel IPM Using Distributed HPC Architectures. IPM-based SVMs have been performed in parallel
using distributed HPC architectures [11, 42, 121–123] in which training samples are distributed across multiple
processors. Approximate matrix factorizations have been used to speed up the process [121, 123].

Memory and speedup. One of the computationally expensive tasks in IPM-based algorithms is the calculation
of the inverse of a large matrix. SMW formula has been used to compute the inverse of a large matrix in an
inexpensive way that reduces memory requirements and the runtime of IPM [42, 121–123]. For instance, Gerts
et al. [121] employ SMW for an iterative technique called preconditioned linear conjugate gradient method.
�is method does not explicitly require the computation of the kernel matrix, but it requires the computation of
matrix-vector products. �e results of experiments in [121] show that the proposed parallel IPM outperforms
the standard IPM algorithms. However, it only supports linear kernels for problems with a limited number of
features. In contrast, Woodsend et al. [11] mention that SMW can cause numerical instabilities and to overcome
this problem, they use the Cholesky decomposition. �e proposed decomposition is applied to all the features at
once and this made the memory cache of processors to be used e�ciently.

To further reduce memory requirements for large-scale problems, linear algebra operations have been used to
exploit the block structures of the matrix addressed by SVMs [11, 34]. In this regard, the order of distributing the
matrix across machines has an impact on memory usage, i.e., one should take into the consideration that which
of row- or column- wise distributing of the matrix �ts the model chosen for the parallelization [42, 123, 125].
Column- and row-based data partitioning. A column-based approach is more suitable for SMP than the

distributed memory. �e reason is that in the distributed memory parallelism, each machine needs to reach
all the training data to perform its corresponding computations and therefore it should store a local copy of
all data that is ine�cient and memory intensive. Moreover, in the column-based approach, only calculations
regarding the inner product can be parallelized [123]. Chang et al. in [123] and [42] propose a parallel IPM-based
algorithm using parallel row-based ICF in which only essential data are loaded into multiple machines and each
machine performs the corresponding computations in parallel. �ereby, the memory requirements are reduced
from O(n2) to O(np/m) and the computational time is reduced from O(n3) to O(np2/m), where p is the reduced
matrix dimension a�er factorization, n is the number of training samples,m is the number of machines and p is
much smaller than n [42, 122, 123]. �e results show that the computation time of parallel ICF is reduced as the
problems size increases since the communication overheads are low. �e computation speedup is sublinear due
to the unparallelizable step in ICF that has the computation time of O(p2) [123] and according to Amdahl’s law,
even a small sequential part can deteriorate the speedup. One should consider that communication overheads are
minor for problems that use only a few machines for the parallelization [42, 122, 123].

4.4.4 Parallel IPM Using GPUs. Despite the fact that the computational powers of GPUs make this hardware
a�ractive for solving computationally expensive tasks, GPU-based parallelism is used only in a few IPM-based
SVMs [29, 62, 126]. In those algorithms, low-rank matrix approximations and SMW have been the target of GPU
parallelism. For instance, Li et al. [29] use GPUs to perform the computationally expensive tasks such as ICF
matrix factorization, matrix-matrix and matrix-vector multiplications in parallel. �ey perform the Cholesky
factorization on CPU using the master process in a serial code and optimize the data transfer between the host
and the device by allocating a contiguous memory space for transferring the matrix in the host memory. �e
matrix is copied from the host to the global memory of the device by only one function call, thus communication
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and synchronization overheads are reduced as the size of samples increases. �e algorithm outperforms the
CPU-based parallel IPM, however, it does not take the maximum advantage of new GPU features, e.g., the pinned
memory that provides transfer speed and enlarges memory space of the GPU and uni�ed virtual address that
provides one address space for CPU and GPU memory. In another work, Li et al. [126] improve the data transfer
and memory access speed in [29] by exploiting the heterogeneous hierarchical memory on a CPU-GPU cluster
using the dual bu�er 3-stage pipeline mechanism and the pinned memory. In the dual 3-stage pipeline stream
scheduling, data send, calculation, and receive operations are performed concurrently. We brie�y mention the
comparisons of the parallel IPM-based algorithms in online table IPM.

4.5 Parallel Kernel Computations
Kernel matrix calculations contain calculating dot products regarding large vectors in linear classi�cations and
a Hessian matrix in non-linear classi�cations [34, 35]. �ese computations dominate the total computation
time in training and testing/predicting processes [112]. One straightforward approach to accelerate these
processes for large-scale problems is to parallelize the kernel computations and kernel matrix factorizations
[43, 47, 55, 112, 127, 128].

4.5.1 Parallel Kernel Matrix Using SMP. Kernel matrix calculations contain computationally expensive tasks.
Memory. One can reduce the memory requirements for the kernel matrix calculations using matrix approxima-

tions via block diagonal matrices [47, 55] and reduced-set SVMs [43]. In the matrix approximation strategy, the
kernel matrix is approximated with block diagonal matrices that can be computed in parallel. Dong et al. [55]
propose parallel and sequential optimization steps in a parallel algorithm in which non-SVs are eliminated in
the parallel optimization step, thus with only remaining SVs, the training time for the sequential optimization
step is reduced. Regarding the scalability, the analysis of the algorithm proposed by Dong et al. shows that the
runtime complexity linearly scales with the size of the datasets and the number of classes. Unlike the previous
strategy, Diaz et al. [43] use the reduced-SVM strategy to eliminate non-signi�cant samples, i.e., non-SVs. In this
method, the kernel matrix is approximated and the training samples are reduced based on the sparse greedy rule
in which only candidates with the highest possible error descent are chosen at each iteration. Diaz et al. propose
a parallel reduced-set SVMs along with a matrix decomposition and a block matrix scheme for computing the
kernel matrix inversion in multiprocessors [43]. �e results show that almost twice speedup is achieved by
doubling the number of cores, note that the e�ciency deteriorates around 10%. �is is because launching parallel
processes on the increasing number of cores may take longer time than the actual computation time. One should
take into the consideration that a parallel reduced-set SVMs using SMP may not perform well for small-scale
problems or problems with fewer SVs since the time for launching the tasks for/from di�erent cores may take
longer time than computing parallel tasks [43].
Accuracy. One needs to consider that reducing the size of datasets in the previous works may cause class

imbalance problems, i.e., the number of samples in one class may get much larger (the majority class) or smaller
(the minority class) than those in the other class. To overcome the class imbalance, Severyn and Moschi�i [127]
use a re-sampling strategy in which examples corresponding to the importance-weights are chosen iteratively,
thus no important information is lost as it may in [43, 55]. �ey de�ne weights using the cost-proportionate
rejection re-sampling strategy in which examples from both the majority and minority classes are chosen in the
desired proportion. �e SVM algorithm proposed by Severyn and Moschi�i [127] is a modular algorithm that
is easy to be performed in parallel and it uses tree-based kernels. �ey use a Cu�ing Plane Algorithm (CPA)
[127] in which the constraints of the original optimization problem are replaced with linear combinations of
the constraints from the original optimization problem. Although the algorithm is parallel friendly, the kernel
evaluations at each iteration are computationally expensive for nonlinear SVMs regarding large problems. To
reduce the kernel evaluations in a tree-based kernel, they use an approximate CPA along with DAGs (mentioned
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in multi-class classi�cation in section 2) in which a fraction of training examples is chosen and many examples
share the common sub-structures in the tree. �is reduces the number of kernel evaluations at each iteration
from O(tn2) to O(tr 2/p), where p is the number of processors, r is the number of chosen examples and n is the
number of total training examples.

4.5.2 Parallel Kernel Matrix Using Field Programmable Gate Arrays (FPGAs). Kernel computations can be imple-
mented in hardware using FPGAs [57, 129–132]. FPGAs are digital integrated circuits that contain programmable
blocks of logic and programmable interconnects between the blocks [133]. �e disadvantage is that FPGA may
su�er from limited RAM blocks [132].
Low power dissipation. One of the reasons for a growing interest in employing dedicated architectures for

computing intensive operations is that those architectures can be designed with the aim of reducing power
dissipation. For instance, Graf et al. [131] build more compact circuits for the �xed-point arithmetic. With this
choice of arithmetic, faster computations trade o� the accuracy, albeit a slight deterioration of the accuracy might
be acceptable.

Algorithm adjustments. A dedicated coprocessor consisting of a grid of cores can compute several columns of
the kernel matrix in parallel [57]. In this regard, one may need to perform adjustments and modi�cations to �t the
corresponding algorithm for the hardware characteristics. For instance, for the parallelization of a decomposition
technique, one may use strategies to reduce the number of iterations at the expense of more cost per iteration
and the cost per iteration can be reduced using FPGA at each iteration. In order to take the advantage of FPGAs,
one should think about the availability of the cached kernel values and a fast convergence criterion [57].

FPGA versus GPU. Papadonikolakis [132] compares the dedicated high-performance architecture using FPGA
to the GPU-based parallelism for training SVMs. �e results show that FPGA outperforms GPUs only for datasets
that �t in the FPGA RAM blocks and not otherwise. �e reason is that GPU needs to transfer data from the device
global memory to the CPU’s shared memory which may cause high overheads [132].

�e parallel implementations of kernel computations using distributed memory parallelism (section 4.4.3),
GPU-based parallelism (sections 4.1.4 and 4.4.4) and map-reduce (section 4.1.3 and 4.2.4) have been excluded
from this subsection since their main contributions �t be�er the other sections. We show the brief comparisons,
pros and cons of the parallel kernel algorithms in online table ParallelKernel.

4.6 Parallel Distributed Algorithms
A large SVM problem can be performed in parallel by dividing the problem into multiple smaller problems using
approaches as follows. One approach is training of the combined results of individually trained sub-problems
[27, 39, 69, 118, 134–138]. Other approaches are combining the results of ensembles SVMs [119, 139, 140] and
initial clustering of data before the training [41, 139, 141].

4.6.1 Parallel Distributed Algorithms Using SMP. One can use initial clustering of data to �t large-scale
problems into the limited shared memory before the training phase starts. To do so, large training samples can
be clustered into smaller chunks of similar data, all of which are trained in parallel [141].
Memory. �e advantage of initial clustering is that the memory requirements are reduced by reducing the

number of data into clusters of data and then each data cluster becomes a representative of a group of samples
that have pre-de�ned similarities. In this regard, k-means clustering has been used to train many local SVMs
instead of one global SVM [139, 141]. One may expect that the training time of n clusters using n machines is
dropped by the factor of n times, but this may not be achieved due to the overhead. For instance, Shrivastava et
al. [141] use parallel k-means clustering in order to use the minimum number of training examples as abstracts
of a large dataset. �e proposed algorithm achieves a speedup of 3 times using SMP compared to the sequential
SVMs, but detailed information is needed to analyze the experiments more clearly, e.g., it is unclear that the
algorithm can support non-linear or multi-class classi�cations.
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Accuracy. �e results of experimenst in [141] show that there is a trade-o� between the number of clusters
and the training accuracy. One may control the accuracy by selecting an appropriate starting point for k-means
clustering. Do et al. [139] follow the similar approach for parallelizing Libsvm for non-linear and multi-class
classi�cations. Another approach for solving SVMs regarding large-scale problems is to use ensemble SVMs. For
instance, Claesen et al. [119] employ ensemble learning to train several SVMs. Unlike in [139, 141], the ensemble
SVM [119] gives higher accuracy competitive with Libsvm using ensembles of SVMs with a bagging strategy in
which local SVMs are trained on bootstrap subsamples and the results of all local SVMs are aggregated based on
majority voting. �is approach reduces the training complexity.

4.6.2 Parallel Distributed Algorithms Using Distributed HPC Architectures. Two key points play a signi�cant
role in the e�ciency of parallel distributed SVMs using distributed HPC architectures. One point is to �nd an
e�cient strategy to minimize the overheads with regard to combining the results of sub-problems [142]. �e
second point is to �nd an e�cient strategy to divide the data into subsets or to distribute data across processors.
Scalability. One strategy to reduce overheads is that the number of computations that need to be sent to the

processors is reduced at each optimization iteration. For instance, Bickson et al. [135] reduce the communication
overheads for problems with high dimensions by reducing the number of messages sent between processors
from O(n2) to O(n), where n is the number of samples. To do this, they shi� from an algebraic to a probabilistic
domain using Gaussian distribution. At each iteration, a message which contains only two real numbers is sent
to neighboring nodes through mutual edges, if available. �e algorithm is the largest parallel implementation of
the belief propagation algorithm that scales up to 1024 computing nodes for 150000 data points with comparable
accuracy to a well-known SVMs so�ware called SVMl iдht . One drawback is that they use an implementation of
MPI, i.e., MPICH2, that lacks the support of asynchronous communications for heterogeneous systems. Besides,
the scalability in terms of the number of samples is questionable and it is unclear that whether the algorithm can
solve large-scale problems due to the fact that the full kernel matrix needs to be computed.
Divide and conquer. Note that the way of dividing a large dataset into subsets and the way of aggregating

results have impacts on accuracy. One can use a divide and conquer strategy to break down a large problem into
smaller problems. �e basic idea is that multiple local SVMs are trained and the results are combined based on an
aggregation scheme [69, 118, 119, 134–137, 139]. A parallel mixture of SVMs [134], parallel modular SVMs [118]
and parallel ensemble SVMs [119] are examples of divide and conquer. Collobert et al. [134] use a mixture of
SVMs in which each SVM is trained on a part of samples and the results of sub-problems are aggregated using a
neural network. Although it leads to high prediction accuracy, the corresponding computation time is longer
than the time spent on training the sub-problems [118, 119]. Huang et al. [118] improve the work in [134] using
a region-computing modular network to train several SVMs, each of which is only trained on a small subregion
of the sample space. �is approach is easy to be performed in parallel because of its modular nature and it does
not have the overheads and complications of [134] since the neural network is replaced with neural quantizer
modules. �ese modules allow the local SVMs to be �red if their inputs belong to their specialized sub-region,
otherwise, the neural quantizer modules inhibit the output of the local SVMs [118]. In contrast, Claesen et al.
[119] use a much simpler aggregation model than in [134] and [118] with competitive performance (section 4.6.1).
Accuracy. Another approach to partition data is to randomly partition and distribute the data in order to

solve class imbalance that happens when the local data contain mostly the same label [143]. Qiu and Lane [142]
distribute training samples across processors using a dimension-wise data partition in a distributed memory
parallelism. �is strategy is simpler than the previous ones and it reduces the communication overheads between
the nodes since it follows the memory access pa�ern in the distributed memory parallelism, thus reduces the
data transfer. �ey further reduce the communication overheads using an approximation of the kernel matrix.

ADMM. It is a popular distributed scheme for solving SVM problems in networks of interconnected nodes [144]
in which each node has a private cost function and private constraints [91, 113, 143–146]. �e goal is to minimize
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the sum of all the cost functions with respect to the intersection of all the constraints [144]. Despite the fact that
ADMM is a promising scheme for reducing memory requirements, it may su�er from slow convergence and
high time complexity [146, 147]. In ADMM, one can reduce the communication between local processors using a
coloring scheme of networks [144] and hash table [143]. A coloring scheme of networks is to assign colors to the
nodes of networks so that no adjacent nodes have the same color. Coloring controls the order of communications
between nodes and the nodes with the same color can asynchronously perform their computations in parallel.
For instance, Mota et al. [144] use a generalization of distributed ADMM with a coloring scheme that leads to less
communication between nodes than that in the state-of-the-art algorithms. �e theoretical explanation of why
this algorithm is more e�cient than the similar algorithms is still unclear. Di�erent from the work in [144], Zhang
et al. [143] use the combination of e�cient strategies in which the algorithm integrates random sampling, a warm
start of the sub-problems, inexact minimization, normalizing test data, over-relaxation, and cross-validation of
multi-class classi�cations. One requirement of the algorithm is that data should �t in the distributed memory,
otherwise one should use batching strategies to do so. �is algorithm outperforms similar approaches in [148] and
[149] in terms of training time and convergence rate, respectively. In a similar fashion, Deist et al. [146] introduce
a systematic multi-centric data sharing framework based on ADMM with the application in personalized medicine
in which the patient data privacy is preserved. To do this, SVM models are learned on data from separated and
distributed databases using a customized IT infrastructure in which di�erent sites communicate via �le-based and
asynchronous messaging [146]. Although the ADMM approaches are promising for solving large-scale distributed
SVMs, they may su�er from slow convergence, weak global consensus, supporting only linear classi�cations, and
high time cost. To overcome the slow convergence, Wang et al. [150] divide the slave nodes into groups. �e
local results of the salves are gathered in the corresponding group to update the global result. �e group-based
ADMM converges faster and saves up to 30% of the total time compared to the non-grouped ADMM [150].

Unlike the previous algorithms that only focus on the linear classi�cations, Chen et al. [113] combine ADMM
with multiple kernel learning [113] for accelerating the parallel implementation of SVM using multiprocessors.
In multiple kernel learning, the global SVM problem with multiple kernels is divided into multiple local problems,
each of which is optimized with a single kernel in a local processor. �e approach in [113] is the �rst hybrid
ADMM and multiple kernel learning implementation that coordinates the communications between processors
to obtain the global solution. �e algorithm outperforms the standard cascade [17] and SVM ensembles [108].

4.6.3 Parallel Distributed Algorithms Using Distributed Big Data Architectures. Considering memory, these
architectures reduce memory requirements by dividing a large training dataset into many smaller subsets. �e
strategy that divides the dataset into subsets can have an impact on the training/testing accuracy [44, 140]. For
instance, if the distribution of samples in each sub-set is very di�erent, the accuracy is degraded [140].
Accuracy. Parallel balanced bootstrapping has been used to improve the classi�cation accuracy in which

training samples are re-sampled into sub-sets so that each sample appears the same number of times in all
bootstrap sets. For instance, Alham et al. [140] use this strategy to re-sample data for ensembles of SVMs in
which multiple weak learners are combined to create a strong learner. �e proposed approach only supports
binary classi�cations and it does not balance loads for heterogeneous computing environments.
Memory and speedup. Di�erent from [140] which supports non-linear classi�cations, Pechyony et al. [151]

use block minimization to reduce memory requirements and accelerate map-reduce based parallel distributed
algorithms for linear classi�cations in which a kernel matrix is divided into blocks and the optimization regarding
each block is performed in parallel by map functions. At each iteration, all the distributed blocks are computed in
parallel by slave nodes and the results coming from slaves are combined in a master node (centralized computing)
using averaging and line search strategies. �e results of the experiments concerning the scalability focus line
regarding a line search strategy show that the algorithm can solve large problems containing training and testing
samples around 80 million each, in only 11 minutes. �e communication complexity of the proposed algorithm is
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independent of the number of training data points. Besides the advantages, the algorithm only conducts linear
classi�cations and the global convergence is not proven.

4.6.4 Parallel Distributed Algorithms Using GPUs. One can take the advantage of GPU parallelism if the
algorithm in use is designed for GPU architectures. Two drawbacks of the previous GPU-based SVMs are as
follows; 1) they perform the matrix multiplications addressed by the standard SVM algorithms using GPU-based
libraries without paying extra a�ention for modifying the algorithms to be�er �t the GPU architectures. 2) they
o�en do not support sparse datasets [41]. �e problem regarding sparse datasets is that they may not follow the
certain pa�ern of memory access on GPUs and this is a hurdle to get the maximum performance from GPUs.
One needs to employ techniques such as coalescing for e�ciently accessing data from the memory [36, 41].
In this regard, Co�er et al. [41] propose a novel sparsity clustering that takes the advantages of the sparsity
of datasets and GPU parallelism. �e sparsity clustering groups the training examples of the similar sparsity
pa�ern thus overcomes the limited memory in GPUs. �e algorithm in [41] is specially designed for GPUs and
it supports both dense and sparse datasets. At the time of publication, it was the only GPU-based algorithm
that supported both binary and multi-class classi�cations. �e algorithm improves the runtime from O(n2) to
O(nk) for a small k , where n is the number of examples and k is the number of active clusters. Active clusters
are candidate clusters that are considered for each training example. �e results show that further decreasing k
can improve the runtime with only minor deterioration of accuracy. In a similar fashion, Codreanu et al. [36]
show that changing the uncoalesced memory access to coalesced memory access results in 3 times speedup.
Furthermore, they show that the algorithms similar to [41] can achieve around 10-fold speedups by changing the
input data structure from arrays of structures to structures of arrays. �is is because that structures of arrays
�t be�er the memory access pa�ern on GPU architectures and it leads to higher memory throughput [36]. �e
algorithm is the fastest GPU-based SVM for problems with high dimensional input spaces. Note, the scalability
has not been discussed in any GPU-based implementations of SVMs. �e comparisons of the parallel distributed
SVMs are shown in online table DistributedSVMs.

4.7 Other Parallel Optimizations
Gradient-based [69, 137], gradient projection-based [27, 39, 53], Gaussian belief propagation [135], Iterative Re-
Weighted Least Squares (IRWLS) [152, 153] and semiparametric [154] algorithms are another types of algorithms
used for solving SVMs that have been parallelized to accelerate the training and testing/predicting processes.

4.7.1 Parallel Optimizations Using SMP. SMP has been used for performing IRWLS methods for training SVMs
in parallel [152, 153]. IRWLS reformulates the primal optimization addressed by SVMs in the form of weighted
least squares that can be independent of slack variables which provide tolerance for missclassi�cations. IRWLS
solves one linear system in every iteration in which the inverse of a large matrix containing kernel evaluations is
calculated. �is is computationally expensive for large-scale problems. �erefore, Morales and Vázquez [152]
use the Cholesky factorization to reduce the kernel evaluations for solving full SVMs in IRWLS. Solving full
SVMs for large-scale problems is computationally expensive. To solve this problem, Morales and Vázquez use
semiparametric IRWLS in which the complexity of the resulting model is under control. �is results in the
speedup of the classi�cations of new examples. In another work, Morales and Vázquez [153] improve their work
in [152] using the budgeted IRWLS to control the number of SVs in which a set of basis elements is chosen and the
approximation of the weight vector is calculated using sparse greedy matrix approximation and random sampling.
Comparing the results of the two papers shows that the �rst algorithm PSIRWLS outperforms the second algorithm
LIBIRWLS for the same datasets. One possible explanation is the e�ciency of the Cholesky factorization in
PSIRWLS for reducing the kernel evaluations. PSIRWLS outperforms the similar parallel semiparametric SVM
called PS-SVM [154] in which quadtrees, a parallel block matrix inversion, instead of Cholesky factorization is
used. We show the detailed comparisons in online table IRWLS.
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4.7.2 Parallel Optimizations Using Distributed HPC Architectures. �ese architectures have been the most
common parallel architectures used for performing the optimization algorithms in parallel.
Gradient-based algorithms. �ese algorithms are the standard SVM algorithms that have been parallelized

using distributed HPC architectures [69, 137]. Gradient-based algorithms o�en compute the gradient using the
whole training samples and this is a hurdle for solving large-scale problems. To overcome this problem, Zhu et al.
[137] propose P-packSVM, a Stochastic Gradient Descent (SGD) algorithm in which the gradient is stochastically
approximated using only a single training example. �e advantage of P-packSVM is that it handles an arbitrary
kernel and develops the parallelism using a distributed hash table. �e table stores the key-value pairs and then
the computationally heavy tasks are performed in parallel via distributed storage of inputs. Gradient-based
SVMs o�en require a larger number of iterations than those for IPM-based SVMs before convergence happens
and this causes higher communication cost for gradient methods. To reduce the communication cost, Zhu et
al. [137] use a packing strategy in which the communication overheads are minimized by packing a number of
iterations into a single iteration. �is reduces the number of times that processors need to communicate by the
factor of O(r ), where r is the number of iterations packed into a single iteration. Considering memory, packing
along with hash table makes the algorithm highly parallelizable with the memory requirements of O(m/p) for
each processor, while the memory requirements for PSVM [42] that is IPM-based is O(m3/2/p), wherem is the
number of input space dimension and p is the number of machines. Considering speedup, Zhu et al. [137] have
shown that stochastic gradient-based SVM algorithms outperform the IPM and SMO based SVMs in which the
training time for a dataset with 800k samples reduces to only 13 minutes with 95% accuracy, while the parallel
IPM-based PSVM proposed by Chang et al. [42] trains the same dataset in 5 hours with 92% accuracy. �is shows
that packing may compensate a large number of iterations required by gradient-based methods to converge.
Other advantages of the algorithm proposed by Zhu et al. is that it scales to a large number of examples, i.e., 8
million data points for multi-class classi�cations, while PSVM focuses mainly on binary classi�cations with fewer
samples. As mentioned in section 2, the multi-class classi�cation procedure is computationally expensive and to
reach considerable speedups, one may need to avoid training on a full dataset. To do so, a parallel bagging SVMs
with a sampling strategy has been used. For instance, Nghi et al. [155] propose an under-sampling strategy in
which the majority class is re-sampled to get the equal size the same as the other class(s). �is approach achieves
more than 1000 times speedup compared to Libsvm, but it requires to load the whole training data into memory.

In a di�erent manner, Ferreira et al. [69] ease the parallelization of linear and non-linear SVMs with gradient-
based neural networks that only computes the lower triangular matrix addressed by QP in which each processor
only computes a part of the lower triangular matrix needed for its local computations. Although the parallel
algorithm proposed by Ferreira et al. outperforms Libsvm and SVMlight for datasets with around 50k samples in
non-linear and binary classi�cations, the work by Nghi et al. [155] performs be�er for large-scale problems. �e
article lacks the details of implementations for the fairer comparisons with previous algorithms.
Gradient projection-based algorithms. �ese algorithms are the standard SVM algorithms that have been

performed in parallel using distributed HPC architecture [27, 39, 53] in which sub-problems are optimized based
on an iterative projection of the gradient. Caching, shrinking, a sparse format for storing data, and block-wise
distribution of kernel matrix are some of the e�cient approaches used in these algorithms [27, 39]. Although
the existing gradient projection-based algorithms are e�cient, they su�er from some issues. For instance, the
algorithm proposed by Zanghirati et al. [27] is e�ective only for a speci�c kernel function, i.e., the Gaussian
kernels. In the algorithm proposed by Zanni et al. [39] the speedup deteriorates for the increasing number
of processors. �is happens due to the increased communication overhead. Gradient projection-based SVMs
algorithms are iterative methods and they are based on chunking techniques in which strong data points, i.e., SVs,
are retained from chunk to chunk in an iterative manner [138]. At each iteration, the chunks can be computed
by multiple processors. If the number of SVs is large, the communication overheads will be increased since SVs
from di�erent processors need to be combined to obtain the �nal result [138, 156]. To overcome the overheads,
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Winters et al. [156] reduce the number of SVs for each chunk by forcing some of the corresponding low-value
multipliers to zero, i.e., cu�ing down the SV vector and force some of SVs to be a non-SV. �e proposed algorithm
handles both the regression and the classi�cation problems, however, it only considers binary classi�cations.

4.7.3 Parallel Optimizations Using Distributed Big Data Architectures. �e process of multi-class classi�cation
is computationally expensive (section 2). In this regard, one can extract important features to reduce the data size.
Extracting features for large problems, such as large-scale image classi�cations with 1000-class SVM classi�ers,
is computationally expensive. To reduce the computational costs, Lin et al. [157] propose a parallel feature
extraction using map-reduce in which the Hadoop distributed �le system (HDFS) [158] distributes the images
through all machines, all of which can perform the extraction tasks independently on the local images. �e
feature extraction process is easily parallelizable since the extraction task on each machine is independent. A�er
the feature extraction, they use Averaging Stochastic Gradient Descent (ASGD) [157] to train SVMs. Concerning
the speedup focus line, adding the averaging scheme to SGD leads to fast computation for large redundant
samples. �e reason is that the averaging is much simpler to compute than the second-order SGD which requires
computing the inverse of a computationally expensive matrix. Lin et al. [157] reduce the tra�c for loading a
large training dataset by minimizing the �le I/O. To do so, the memory is shared on each multi-core machine.
�e memory sharing enables the algorithm for loading a non-sparse training dataset containing 1.37 terabytes
of data and it reduces memory requirements since multiple programs, that train the same data chunk, only
once need to load data for a multi-class classi�cation. Besides the advantages, the algorithm in [157] may su�er
from communication overheads and the update of the corresponding parameters one by one. To reduce the
communications between computing units, Chu et al. [159] modify the optimization problem addressed by SVMs
in order to obtain computations that can be performed independently and in parallel. Chu et al. re-write the
summation formula addressed by the Batch Gradient Descent (BGD) [159] in a certain summation form in which
each piece of the summation can be easily and independently performed in parallel and the results are averaged
to form the �nal results. �e advantage of the BGD in the proposed algorithm is that the data are combined in
batches, thus the communications between the processors are minimized since the result corresponding each
batch needs to be communicated instead of communicating the result of a single data. Concerning the scalability
focus line, the proposed algorithm by Chu et al. [159] does not scale to a large number of cores, i.e., it only gets
around 13% speedup using 16 cores. Another disadvantage of a BGD is that it uses the whole examples in each
iteration and this is a hurdle for solving large-scale problems. �ereby, Tao et al. [160] use a Mini-Batch Gradient
Descent (MBGD) [160] in which a part of examples is used in each iteration. Unlike the earlier algorithms, while
MBGD is suitable for solving large-scale problems, it may su�er from the curse of dimensionality that causes
unbounded linear growth for model size and the update time with data size [160]. To overcome this problem, Tao
et al. use a budget maintenance strategy for MBGD to keep the number of SVs under the control by removing some
of SVs, this results in constant space and time complexity in each update. Another advantage of the algorithm
proposed by Tao et al. is that they use the Spark data processing engine for solving the iterative algorithm in
which the working set is saved and cached in memory. �is overcomes the problem of reading and writing data
repeatedly from the Hadoop distributed �le system. Table 2 shows a brief comparison of gradient-based SVMs.
We highlight the �ndings, pros and cons of the parallel optimization algorithms in online table OtherParallelAlg.

5 DISCUSSION
One of the challenges we have faced for comparing parallel SVM implementations is the di�culty of reproducing
and replicating the results. Except for a few cases, the source codes are not publicly available or the se�ings of the
experiments are not clari�ed. Some of the pressing issues are the size or the dimension of samples, user-de�ned
values of parameters, the number of processors, the type of classi�cations, and the e�ciency of algorithms for
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Table 2. The comparison of gradient-based approach

Algorithms Di�erences Pros Cons
SGD-based
SVMs

Uses one example in
each iteration

Trains only one example Updates parameters one by
one, cannot be applied for
large-scale problems

BGD-based
SVMs

Uses the whole exam-
ples in each iteration

Cumulates the update of the param-
eters in a batch

unsuitable for large-scale
problems

BMBGD-
based SVMs

Uses a part of exam-
ples in each iteration,
Parallelized on Spark

Suitable for large-scale problems,
fewer calculation and higher ac-
curacy, solves iterative algorithms,
faster than Hadoop, constant space
and time complexity per update,
higher accuracy compared to SGD

non-linear classi�cations, or the type of parallelism. In the following subsections, we summarize and further
highlight some of the other challenges in parallel SVM implementations.

5.1 Summary
We survey parallel SVM implementations, including parallel algorithms and architectures that have been used for
solving large-scale problems. Our discussion generated from this survey is with respect to the goals of parallelism,
including the four mentioned focus lines. Figure 1 shows our categorization of parallel SVM implementations
that we have reviewed. We have also brie�y surveyed e�cient heuristics, including grid search, cross-validation,
caching, shrinking, sparse formats, feature extraction/selection, working set size/selection, data movement, data
reordering, and memory access pa�ern in this paper. Table 3 shows a brief comparison of the well-studied SVM
algorithms. Table 4 summarizes the characteristics of parallel SVMs with top 10 largest training examples and
table 5 summarizes the characteristics of parallel SVMs with top 5 largest speedups reported in the experiments.

5.2 The Dominant Approach
Among the parallel SVMs reviewed in section 4, the parallel decomposition is the dominant approach for parallel
implementations of SVM. �e reason is that the decomposition methods use only a fraction of input data in the
working set. For instance, the standard SMO as the most common decomposition technique has the working set
size of 2, i.e., SMO only calculates two rows/columns of the kernel matrix. One drawback of the decomposition
methods is that they are inherently sequential due to the dependent computation steps, thus they are not the
best option for parallelization. In order to decrease the number of dependent steps, parallel decomposition-based
SVMs use large working sets at the expense of increased cost per step. �e cost per iteration can then be reduced
by parallelizing each step. �e size of working sets has an impact on the training time and accuracy (section
4.1). In this regard, parallel decompositions have had di�erent strategies for choosing an appropriate size of
the working set, however, there is a lack of agreement on the optimal size and partitioning data on available
memory. An empirical study of the e�ciency of di�erent working set sizes is needed to be�er understand possible
improvements of decomposition methods in terms of the speed of convergence and the accuracy.
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Table 3. The comparison of well-studied SVM algorithms

Algorithms Di�erences Problem Type Pros Cons
SGD-based
SVMs

Focus on pri-
mal optimiza-
tion

Non-linear and
multi-class clas-
si�cations

It is the fastest for linear
SVMs on a single machine,
easier to be parallelized

A large number of iterations
until convergence, accuracy
�uctuates

IPM-based
SVMs

Focus on dual
optimization

non-linear
and binary
classi�cations

Requires few iterations un-
til converges, has the low-
est communication cost

�e Cholesky factorization
lacks theoretical error bound
and may be inaccurate for
some datasets, slow conver-
gence, di�cult to be paral-
lelized

SMO-based
SVMs

Focus on dual
optimization

Non-linear Good accuracy, fastest for
non-linear SVMs on a sin-
gle machine

Slow convergence, needs
modi�cation to be paral-
lelized

Table 4. Characteristics of parallel SVMs with top 10 largest training examples that are evaluated in the experiments.

Settings Approach Tool #Samples Reference
Block partitioning, LS-SVM, lin-
ear and non-linear

Parallel incremental DMPa 1 billion Do et al. [90]

Block minimization Map-Reduce Hadoop 80 million Pechyony et al. [151]
Random sampling, inexact min-
imization, normalization, cross-
validation, multi-class

ADMM DMP ∼20 million &
30 million fea-
tures

Zhang et al. [143]

Caching, dual coordinate descent Parallel incremental SMPb 20 million Matsushima et al.
[89]

Newton SVM Parallel Incremental GPU 10 million Do et al. [93]
Multi-class, gradient-based, pack-
ing, arbitrary kernel, hash table

Parallel Optimization DMP 8 million Zhu et al. [137]

LS-SVM Parallel Incremental GPU 5 million Do et al. [10]
Data reordering, SMO Parallel Kernel Com-

putation
DMP 4 million Durdanovic et al.

[112]
Various shrinking Parallel Decomposi-

tion
DMP 2.3 million Vishnu et al. [68]

Gradient Projection-based Parallel Optimization DMP 2 million Zanni et al. [39]

aDMP denotes Distributed Memory Parallelism
bSMP denotes Shared Memory Parallelism

5.3 Four Focus Lines
We have identi�ed four main focus lines that have been investigated in the parallel approaches reviewed in this
paper. In this section, we brie�y discuss aspects of these focus lines.
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Table 5. Top 5 Speedups. Characteristics of parallel algorithms with top 5 largest speedups in the experiments.

Settings Parallel Approach Parallel
Tool

Speedups Reference

Multi-class, balanced class,
bagging SVMs

Parallel Incremental Hybrid
SMPa-DMPb

1193× LibLinear, and
732× original algo-
rithm, 160 cores

Doan et al.
[30]

Block partitioning, LS-SVM,
linear and non-linear classi�-
cations

Parallel incremental GPU 1000× Do et al. [10]

LS-SVM , column incremental Parallel incremental SMP 190× over LibSVM Do et al. [161]
Data reordering Parallel Kernel Com-

putation
DMP 100× with 48 ma-

chines
Durdanovic et
al. [112]

Random sampling, inexact
minimization, normalization,
cross-validation, multi-class

ADMM DMP 60×with 8 machines
over LibLinear

Zahng et al.
[143]

aSMP denotes Shared Memory Parallelism
bDMP denotes Distributed Memory Parallelism

5.3.1 Memory. One focus line of parallel approaches is reducing the memory requirements for large-scale
problems so that data can �t into the available memory. �is is particularly important for shared memory and
GPU-based memory parallelism due to limited memory or restricted memory access pa�ern on GPUs. While there
are e�ective approaches to reduce memory requirements (section 2.1 and 4), there is still no clear suggestion for
every SVM implementation. Besides, the resulting speedup magnitude and parallelizability of these approaches
need further investigation.
Parallel incremental SVMs. Incremental learning among parallel SVM implementations is one of the e�cient

and promising approaches to handle limited memory restriction on standard workstations. Factors including the
size of increments and the dimension of the input spaces impact the e�ciency of the implementations (section
4.2.5). �e e�ciency and scalability of parallel incremental SVMs are still open questions for large-scale problems
with high dimensional input spaces. For such problems, although one can use dimension reduction techniques,
these techniques are di�cult to perform [98].
Parallel IPMs. �e large size of input data requires employing approximate matrix factorizations for IPM-

based algorithms in order to reduce memory requirements (section 4.4). �e e�ciency of approximate matrix
factorization schemes is studied on sequential IPM-based algorithms in [120]. However, to our knowledge, there
is no benchmarking and empirical study of the schemes for parallel se�ings. A computational comparison of these
schemes would be bene�cial to identify possibly simple, computationally inexpensive and easily parallelizable
schemes for improving the performance of IPM-based algorithms. One suggestion could be a Jacobi factorization
since it is easy to compute and parallelize.

�e parallel IPM-based SVMs in section 4.4 agree that there is a trade-o� between the training/testing time
and training/testing accuracy due to approximations. One challenge is the number of samples that can, through
the approximation, be reduced without the deterioration of accuracy. Although some suggestions for an optimal
size of reduced ICF have been given, they are only optimal for a few scenarios [125]. To our knowledge, there is
no clear suggestion for an optimal size of reduced data without trading o� the accuracy. It seems that an optimal
size depends on the problem size and dimension of input spaces, opening the opportunity for future research.
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5.3.2 Speedup. Another focus line of parallel approaches is accelerating the training and testing processes
using available parallel architectures. �is can be done through two approaches; One is solving the problem
through training a single SVM in which only the computationally expensive tasks are performed in parallel. �e
second approach is to divide the large SVM problem into several smaller SVM sub-problems, all of which are
performed in parallel (section 1). On one hand, solving one single SVM problem leads to higher accuracy since the
main optimization problem stays unchanged, however, due to the sequential parts of the algorithm, the speedup
deteriorates. Another issue is that a single problem-based algorithm may su�er from memory limitations since
the algorithm may require computing the sequential parts using the whole training samples (section 4.1 and 4.4).
On the other hand, solving multiple SVM sub-problems can solve the memory issues, but since the problem is
divided into multiple simpler problems, the original problem is changed and this may cause the deterioration of
the accuracy (section 4.3). To our knowledge except for the cascade approach, the e�ciency and the possible
trade-o�s of training a single SVM versus training multiple SVMs have not been explicitly investigated for parallel
se�ings. Albeit, distributed approaches of parallel SVM implementations show a tendency towards training
multiple SVMs in which several independent sub-problems are solved in parallel and the computing powers are
added on demand.

5.3.3 Scalability. One can consider the scalability both in terms of the number of machines employed for the
parallelization and/or the size of samples.

Scalability in terms of the number of machines. Increasing the number of computing machines does not always
lead to be�er performance due to communication and synchronization overheads. For SMP, while there are
many strategies for reducing the overheads (section 4), there are very few implementations that investigate
synchronization between threads and measure the scalability. For the distributed memory parallelism, although
more works take the scalability into the consideration, only a very few parallel SVM approaches have evaluated
the scalability for a large number of machines (e.g. [68, 104, 135]). In addition to measuring scalability, it would be
bene�cial to �nd a theoretical bound for the scalability in order to �nd the optimal number of machines usable in
parallel. For instance, [125] shows that such theoretical bound exists, albeit, it lacks the proof. To our knowledge,
[125] is the only parallel SVM that investigates the theoretical bound for the scalability.

�e parallel implementations of SVMs using P2P networks have shown good scalability in terms of the number
of peers (section 4.3.2). P2P networks are promising for solving large-scale problems since more peers can be
added when a large amount of memory and computing powers are demanded. However, a few parallel SVMs
have explored the impact of P2P networks on the e�ciency of SVM implementations. A further investigation
of e�ciency and minimizing corresponding overheads would be bene�cial to exploit the computing power of
distributed networks.
Scalability in terms of the number of samples. Parallel SVM implementations have considered the scalability

(section 4), but only a few parallel implementations have been evaluated for large training or testing samples
with/without high dimensional input spaces. Besides, most of the parallel SVMs focus on large training samples
rather than large testing samples. Except in incremental learning, very few parallel SVMs use samples that do
not �t into the memory. It would be useful to investigate the scalability of parallel implementations regarding
both training and testing samples and the dimension of the input spaces for large-scale problems. �is would
allow us to handle a wide range of datasets without limited size range.

5.3.4 Accuracy. �ere are many strategies to reduce data in order to �t them into the available memory
(section 4.6.2). �e bene�t comes at the expense of the poor or a slight deterioration of the accuracy. �e parallel
SVMs reviewed in this paper show a trade-o� between the training time and accuracy regarding how much
data can be reduced (section 4.4). Besides, parallel SVMs o�en require updating or re-training the algorithms to
iteratively improve the accuracy. �e promising models such as a Hadoop implementation of map-reduce may
not support algorithms with the iterative manner or the sequential nature (section 4.3.3). �e sequential nature
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algorithms require updating at each iteration and updating may lead to high communication overheads. Iterative
algorithms may require moderate numbers of iterations to reach the global solution. Each iteration is solved
using a map-reduce job. �us many iterations require many map-reduce jobs which are expensive to launch
[162]. �erefore, starting up the parallel routines at each iteration is ine�cient and if the problem is not large
enough, it leads to high overheads. In this regard, it would be useful to implement a map-reduce framework for
iterative algorithms and investigate the possible trade-o�s between the accuracy and training time.

5.4 Promising parallel approaches
In this section, we mention the parallel approaches that have shown promising performance and e�ciency for
solving large-scale problems (for detailed information refer to section 4).

5.4.1 Map-reduce. As we discussed in 5.3.1, map-reduce based algorithms have good scalability in terms of
the number of machines and samples. Nevertheless, they may not perform well for sequential or iterative nature
algorithms. �ere is an extension of the Hadoop implementation of map-reduce called Twister that supports
iterative algorithms [162]. To our knowledge, only few parallel map-reduce-based SVMs including [109] use
Twister. Further exploration of map-reduce framework in Twister can be useful for SVM algorithms that solve
large-scale problems in an iterative manner. Another point that has not been explored su�ciently is the impacts
of the number of mappers and reducers on the performance of parallel SVMs since, a�er some numbers, the
execution time for an increasing number of mappers/reducers is saturated [116]. A further investigation of
optimal numbers of mappers and reducers is required to improve the e�ciency of a map-reduce framework.

5.4.2 Incremental learning. It can overcome memory limitations for large-scale problems. Incremental learning
shows good scalability in terms of the number of samples and the number of machines because of low overheads.
In spite of that, good scalability happens to samples with small enough dimensional input spaces [93] and reducing
dimensions for large-scale problems is di�cult (section 4.2.5). �erefore, it seems that the size of samples is not
an issue for the scalability of incremental learning, but the dimension is. Incremental learning can be further
explored in order to �nd possible avenues for solving problems with high dimensional input spaces.

5.4.3 Combination approaches. Parallel incremental learning, map-reduce, the cascade and distributed ap-
proaches, particularly ADMM are promising to reduce memory requirements and accelerate the training process
for large-scale problems. A combination of these approaches may lead to further improvements since they can
complement each other (section 4.1.3, 4.2, 4.3 and 4.6.2). It would be interesting to �nd out which combinations
match and give the optimal results and performance.

One suggestion can be a combination of ADMM with map-reduce for multi-class and non-linear classi�cations
of large-scale problems. ADMM is one of the promising distributed schemes for reducing memory requirements.
In spite of that, it su�ers from slow convergence and high time complexity [147]. A combination of ADMM with
methods that reduce the time complexity and accelerate the convergence rate is bene�cial. Map-reduce has this
potential and it matches the distributed structure of ADMM.

5.4.4 Network Architecture. �e dominant architectures used for parallel SVMs are centralized networks. On
these networks, a master node o�en has the duty of distributing data among slaves, each of which o�en needs
to communicate or to be synced by the master to obtain the �nal result. One drawback is that communication
and synchronization overheads in centralized networks reduce the e�ciency of parallel implementations. In
contrast, decentralized computing or P2P computing models can minimize the overheads and reduce memory
requirements (section 4.2.3). In these models, each node receives a part of data only from neighbors, thus skips
communicating with the master. �e parallel algorithms proposed by Bickson et al. [135], Fei et al. [136] and Ang
et al. [103] show the a�ractiveness and potentials of P2P models in which large-scale problems can be solved
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with a classi�cation accuracy comparable to the centralized model. A further research is required to solve issues
such as handling asynchronous communications for decentralized networks.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
Parallel computing of SVMs is becoming a necessity for improving the performance of SVMs for big data and
already has demonstrated promising results for improving large-scale problems. �is survey presents a summary
of state-of-the-art techniques and tools used to solve SVMs in parallel. As we outline, still, there is space for
further improvement regarding computation time, accuracy, scalability and memory issues due to the immense
and increasing size of real-life data requiring judicious choice for end users. Having the existing challenges
and trade-o�s in mind, designers have a great deal of �exibility in designing and implementing SVMs by taking
their goals of parallelism into the consideration. For instance, considerable speedups can be achieved by a slight
deterioration of the classi�cation accuracy which might be acceptable in some applications. One important point
is to identify the e�cient parallel tools, heuristics, and strategies that �t the characteristics of SVM algorithms in
mind, otherwise one should be prepared for modi�cations and manipulations of the corresponding algorithms or
strategies to take the maximum advantages of parallelism. In the current trend of parallelizing SVMs, it seems
that the parallel implementations of SVM solvers are still not su�cient to handle large-scale problems and their
challenges open up directions for future work. Here, we mention some of the potential open questions that result
from our review of parallel approaches of SVMs on large-scale problems.
Use of the four focus lines. We have identi�ed the four focus lines of parallelism that have been targeted

in the parallel SVM implementations, i.e., memory, speedup, accuracy, and scalability. �ese four focus lines
of parallelism are not independent and there are trade-o�s between them. Consequently, there has not been
much work addressing all four focus lines at the same time. One direction of the future work is to develop
robust algorithms that are capable of addressing all four focus lines of parallelism and their possible impacts.
Another aspect is improving the transparency of the �eld by focussing on the reproducibility and reliability of
the experiments. �ese give the possibility of comparing the performance of the developed algorithms with the
existing ones independent of the speci�c size of data and dimension of the input spaces.
Use of combinational approaches. As shown in table 4, combinational approaches have been successful in

handling large samples since the matching techniques improve the possible weaknesses. To take the maximum
advantages of parallelism, a future direction likely to be successful would be the development of an integrated
framework that combines the complementing and matching techniques and gives the possibility of combining
several techniques. A thorough investigation of combining the state-of-the-art techniques can open up new
frontiers for solving large-scale problems.
Use of the available modern processor technologies. Modern processors already contain technologies that

designers of parallel algorithms can take advantage of. �ese technologies are employed by high performance and
parallel libraries and so�ware, e.g., MKL. Indirectly, using these libraries and so�ware helps the users to improve
the performance of developed algorithms. In addition to that, one can directly use modern processor technologies
in SVM algorithms to further improve the performance, e.g., in [56, 125, 163]. However, the restrictive design of
algorithms is a hurdle and may not allow using these technologies to the full extend [125]. A future research
direction can be to implement non-restrictive parallel SVMs that allow using the available modern processor
technologies, e.g., SIMD instructions, SSE and AVX.
Use of decentralized computing. Solving large-scale problems requires a large amount of memory which can

be provided by adding more computing resources from di�erent physical locations. But, the majority of the
parallel SVMs has their main focus on a centralized computing in which the slaves communicate more or less
regularly with a master to obtain the �nal results. �is can cause overheads, thus a hurdle for e�ective parallel
implementations. An interesting future research direction is to develop algorithms that are suitable for P2P and
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decentralized computing to take the maximum advantages of distributed computing resources without major
overheads and loss of performance.
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Abstract—We present a significantly improved implementa-
tion of a parallel SVM algorithm (PSVM) together with a com-
prehensive experimental study. Support Vector Machines (SVM)
is one of the most well-known machine learning classification
techniques. PSVM employs the Interior Point Method, which
is a solver used for SVM problems that has a high potential
of parallelism. We improve PSVM regarding its structure and
memory management for contemporary processor architectures.
We perform a number of experiments and study the impact of
the reduced column size p and other important parameters as
C and γ on the class-prediction accuracy and training time. The
experimental results show that there exists a threshold between
the number of computational cores and the training time, and
that choosing an appropriate value of p effects the choice of
the C and γ parameters as well as the accuracy.

Keywords: Parallel SVM; Processor Technology; Training Time

I. INTRODUCTION

High Performance Computing (HPC) tools are promising
for improving performance in respect of time efficiency. As
more computational power can be spent on less time, this
enables the accuracy of results to be improved as well. The
importance of utilizing HPC tools has been growing and
parallel computing as the underlying method of HPC plays
an important role for improving the time efficiency. Message
Passing Interface (MPI) is one of the well-known parallel
library standards that was originally designed for distributed
memory systems, although it can handle shared and hybrid
(combination of shared and distributed) memory architectures
as well. The advantages of using the MPI library standard is
well-known, albeit the efficiency of the parallel processing
can be degraded due to data dependency, memory bandwidth,
synchronization and communication bottlenecks.

Digital data is growing exponentially and hence analysis
and calculation processes regarding big data are becoming
computationally expensive. Within this context, machine
learning is one of the fields that can take advantage of using
HPC tools for improving the performance. Support Vector
Machine (SVM) [17] is one of the classification machine
learning techniques that has a wide area of applications and
has got considerable attention during the last decade. The
SVM problem is set up as a minimization problem and can
thereafter be solved using classical optimization algorithms.
Interior Point Method (IPM) [18] is a popular choice thanks

to the high degree of parallelism inherent in it. However,
IPM requires computing the inverse of a matrix which is
computationally expensive. Besides, in most of cases the
coefficient matrix derived from the system is ill-conditioned,
meaning that the matrix is either singular or close to singu-
larity which makes the problem computationally unstable.
Therefore approximation and preconditioning methods are
applied to prevent the ill-conditioning and to reduce the
computational costs.

Cholesky Factorization (CF) [20] is one of the techniques
that is used for achieving stable numerical solutions. CF
factorizes matrix A ∈ Rn×n into a lower triangular matrix,
i.e., A = LLT , where L ∈ Rn×n. Incomplete Cholesky
Factorization (ICF) [20] is a truncated form of CF, i.e.,
A = L̂L̂T , where L̂ is a n×p sparse lower triangular matrix
close to L, where p is the rank of L̂. In ICF approximation,
only p column vectors are calculated which makes this ap-
proximation quick and economical to compute since p� n.
However, calculating the appropriate column rank value, p,
is non-trivial. A lower value of p degrades the accuracy and
a higher value of p increases the computational time. In this
paper, we study the trade-off between the class-prediction
accuracy and time efficiency for different p settings and dif-
ferent kernel functions. Furthermore, we study the correlation
between the choice of p and the hyperparameters C and the γ
value, in respect to the effect of the Gaussian and Laplacian
kernels on the class-prediction accuracy and the training time.

The advantage of using distributed parallelism as MPI on
SVM problems is well-known, although how to choose the
appropriate numbers of computational cores is still unclear
and non-trivial. In theory, increasing the number of ma-
chines from 1 to 10 will enhance the time efficiency 10
times, although this is way too idealistic. The reason for
that is due to data communication, memory bandwidth and
synchronization between different machines. In this paper,
we investigate when the data communication part overtakes
the parallel computation part in SVM, i.e., when increasing
the number of cores no longer is beneficial. As Chang
et al. [20] mention in their paper, due to communication
and synchronization overheads, the speed-up is not linearly
increased by increasing the number of cores, and after a
specific number of cores the time efficiency even degrades.
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In this respect, it is interesting to study the existence of a
threshold that can give an idea of the appropriate number of
cores. We theoretically show that there exists a threshold that
suggests a minimum number of computational cores, while
the maximum number of cores depends on the machines
used.

In the following sections, we briefly describe SVM using
PSVM software. We mention important processor technolo-
gies and then describe the preparation for experiments includ-
ing the complexity analysis of SVM algorithm using PSVM.
We continue with the experiments and the results and finally
we discuss the obtained results.

II. SUPPORT VECTOR MACHINES

The basic idea in SVM is to search for a bipartite hy-
perplane that has a furthest possible distance to the closest
training data points from both sides of the hyperplane. In
order to find the optimal bipartite hyperplane, a simple
SVM problem can be formulated as an primal quadratic
optimization problem as following,

min P (w, b, ξ) =
1

2
wTw + C

n∑
i=1

ξ

s.t. yi(w
T Φ(xi) + b) ≥ 1− ξi , i = 1, 2, ..., n

ξi > 0 , i = 1, 2, ..., n

(1)

Where w is the weight vector for the hyperplane, x is the vec-
tor of observations, yi is the class label and yi ∈ {+1,−1}, b
is the bias parameter, Φ(x) is the map function that maps the
input vector x to the feature space, ξi is a classification error
for sample i, and C is the parameter that makes a balance
between the classification error and maximum margin.

With the help of Lagrangian multipliers, the primal op-
timization problem (1) can be reformulated into another
optimization problem called dual optimization problem. La-
grangian multipliers relax the constraints of the primal opti-
mization problem and reformulates the problem into a new
quadratic optimization problem with simpler constraints as
follows:

min D(α) =
1

2
αTQα + 1Tα

s.t.
n∑

i=1

yiαi = 0 , i = 1, 2, ..., n

0 ≤ αi ≤ C , i = 1, 2, ..., n

(2)

Where α is Lagrangian multipliers and αi ∈ α, 1T is
a vector of ones and Q is a matrix of size n × n where
Qij = yiyjΦ

T (xi)Φ(xj). Equation (2) is known as dual
equation. We reformulate Qij as Qij = yiyjK(xi,xj),
where K(xi,xj) = ΦT (xi)Φ(xj) is called a kernel function.
The advantage of using kernel function is that we can
compute Q with out knowing the map function Φ(.) explicitly
and instead we can choose an appropriate kernel function to
calculate Q. Four well-known kernel functions are as follows:

• Linear kernel that is an inner product or dot product
of input vector and is used for linear classification, i.e.,
K(xi,xj) = xT

i xj ,

• Gaussian kernel that is used for non-linear classification,
i.e., K(xi,xj) = exp(−γ‖xi − xj‖2),

• Laplacian kernel that is used for non-linear classifica-
tion, i.e., K(xi,xj) = exp(−γ|xi − xj |),

• Polynomial kernel that is used for non-linear classi-
fication, i.e., K(xi,xj) = (xi.xj + const)d, where
const = 0 for homogeneous polynomial kernels and
const = 1 for inhomogeneous kernels.

Different mathematical solvers are utilized to solve the
primal, the dual, or the primal-dual optimization problem.
Interior Point Method (IPM) starts from an initial point
located in the interior feasible region and moves towards the
optimal point(s) in an iterative manner. One of the advantages
of IPM is its high degree of inherent parallelism compared to
other solvers. IPM can use approximation methods such as
Incomplete Cholesky Factorization (ICF) to approximate the
original matrix Qn×n to a smaller matrix as Hn×p, where
p � n. This approach can improve the time efficiency of
the computations. In this paper, we have chosen the PSVM
software that solves the SVM problem by utilizing IPM
solver.

A. Parallel Support Vector Machines

We have conducted our experiments using the Parallelizing
Support Vector Machines (PSVM) software that is originally
written by Chang et al. [20]. PSVM uses ICF to reduce the
problem size and IPM to solve the primal-dual optimization
problem (1) and (2). ICF approximates the original n × n
linear system Q to the smaller n × p linear system H ,
i.e., Q ≈ HTH where n is the number of samples or
instances, p is the reduced column size and p � n. The
parallel ICF (PICF) is computed by a row-based round-robin
algorithm and distributed evenly to the machines. The primal-
dual problem is then solved by a parallel implementation of
IPM and makes use of PICF. All the parallelization is done
by utilizing the MPI library standard. Chang et al. claim that
based on their empirical results when the reduced column
size p is chosen as

√
n, then the error ε is negligible, where

trace(Q−HTH) < ε. On the one hand they show the class-
prediction accuracy obtained with some different values of p
smaller than

√
n in table 1 in their paper [20], albeit on the

other hand they do not discuss further the impact of varying
the p value for different kernel functions in a SVM problem.
Therefore we further study the impact of different value of
p on the class-prediction accuracy.

III. RELATED WORKS

SVM problems has got considerable attention in the last
decade and the optimization problem derived from SVM
problems are well studied. Challenges in SVM problems can
be mentioned as the need for a large amount of memory
for training samples [8][19] and the intense training time [1]
when the problem size is large. This gives a motivation to
use optimization methods along with HPC tools and parallel
programming to involve more computational power to spilt
the original problem into smaller sub-problems in order to
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fit into memory [19]. Decomposition methods [12][6][16]
are one of the highly invested methods in SVM. In the
decomposition methods only a subset of variables is updated
[16]. Based on this idea software as LIBSVM [4], SVM light

[10] have been implemented. Although software as LIBSVM
and SVM light using decomposition methods are efficient to
solve SVM problems however when the problem size is large
their performance is degraded since their computations are
done in serial manner.

IV. TECHNOLOGIES FOR HIGH PERFORMANCE
COMPUTING

In this section, we briefly describe the technologies needed
for the study of the PSVM communication and the improve-
ment of the code.

A. Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) is an architecture
of parallel machines that use multiple processing elements
to operate a single instruction on multiple data elements
simultaneously. Today most compilers can automatically op-
timize simple code structures using vectors to take benefit
from SIMD instructions. A common mistake is to make
data dependent whereby the compiler can’t optimize it [14].
In such cases the code needs to be restructured to make
use of SIMD. The gain from SIMD is dependent on CPU
architecture where the old SSE instructions gives a two fold
improvement while the newest AVX with FMA can give up
to 8 times improvement.

V. PREPARATION FOR EXPERIMENTS

Before we describe the conducted experiments, we do a
study of the SVM algorithm using the PSVM software and
point out areas of interest that we have our main focus on.
These parts are chosen based on their computational time
relative to the total calculation time. The areas we focus
on can benefit from HPC improvements which affect the
total calculation time. Minor HPC improvements on heavy
computational parts can have a large effect on the total
computation time when the size of the problem is very large,
and if the calculation time is not the issue of interest, we can
improve accuracy for the same calculation time.

A. Used Factorizations

CF function calculates the Cholesky factorization of the
original matrix A, i.e., CF calculates a lower triangular
matrix G such that A ≈ GGT . CF solves a linear system
by forward and backward substitutions. ICF approximates
the original n × n matrix Q to a smaller n × p matrix H ,
i.e., (Q−HTH) ≤ ε, where p� n and ε is the error.

B. Algorithm

The solving process regarding (1) is done in two steps,
first create,

Q ≈ HTH + ε (3)

then solve by IPM which is similar to solve by Newton steps
[18]. The detailed information about Newton method used in
IPM is mentioned by Boyd [3] and Mehrotra [15].

4λ = −λ + vec(
1

t(C − αi)
) + diag(

λi
(C − αi)

)4x (4)

4ξ = −ξ + vec(
1

tαi
)− diag(

ξi
αi

)4x (5)

4ν =
yTΣ−1z + yTα

yTΣ−1y
(6)

D = diag(
ξi
αi

+
λi

C − αi
) (7)

4x = Σ−1(z− y4ν) (8)

Minimize P (w, b, ξ) and D(α) along 4ξ and 4α respec-
tively (9)

Σ = Q + diag(
ξi
αi

+
λi

C − αi
) (10)

z = −Qα + 1n − νy +
1

t
vec(

1

αi
− 1

C − αi
) (11)

To compute Σ−1z the Sherman-Morrison Woodbury formula
is used:

Σ−1z = (D +Q)−1z ≈ (D +HHT )−1z

= D−1z −D−1H(I +HTD−1H)−1HTD−1z

= D−1z −D−1H(GGT )−1HTD−1z
(12)

The equation above containing Σ−1 is the most interesting
parts of the algorithm with respect to amount of computations
and therefore it is divided up into sub steps as following,

E = I +HTDH (13)

GGT = E (14)

C. Complexity

By going through the SVM algorithm using the PSVM
software, we calculate the complexity of both the computa-
tion and the communication. We denote the amount of rows
on each CPU by η where η is calculated by the amount of
training samples divided by the amount of cores, i.e., η = n

k .
Notice that all equations are solved once per iteration except
equation (3) which is only solved once. Equation (3) needs
O(p3 + ηp2) computations and O(log(k)(p+ f)) communi-
cation where f is the number of features, p is the amount
of columns on each CPU, η is the amount of rows on each
CPU, and k is the amount of cores. Equation (4), (5) and (7)
are just vector operations and therefore has a complexity of
O(η) computations. Equation (6) is solved by using the result
from (13) and (14). Since the system is solved by backward
and forward substitution with GGT for both Σ−1z and Σ−1y
therefore we get a complexity of O(pη + p2) computation
and O(log(k)p) communication. In a similar manner we
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calculate the corresponding complexities for equation (8),
i.e., O(pη + p2) for computation and O(log(k)p) for com-
munication. The line search (9) has a complexity of O(p2)
computations. The equation (13) is a matrix multiplication
and therefore has the complexity O(ηp2) for computations
and O(log(k)p2) for communication. The last equation (14)
which is the CF is done serially on the master and has
complexity O(p3).

Among the above mentioned equations, i.e., equations
(3) to (14), we focus mainly on equations (13) and (14),
since they are the most computationally expensive functions
relative to the total computation time and thus they are more
interesting for further study and investigation for potential
improvements.

VI. EXPERIMENTAL DESIGN

Our goal is to explore, and study the behaviour of the
SVM algorithm regarding high performance computing point
of view. In this respect, we choose an exploratory approach
to discover new insights regarding SVM algorithm that can
affect the class-prediction accuracy and the training time
using PSVM. PSVM is implemented by Chang et al.[20].
We improve the PSVM code regarding structure, memory
allocation, de-allocation and parallelism point of view as
mentioned in section IV-A. We conducted experiments 1)
to study the impact of changing hyperparameter C and γ
on total training time by considering target class-prediction
accuracy, 2) to study the impact of changing the number of
columns p on the training time and the class-prediction accu-
racy using Gaussian and Laplacian kernels and to study the
trade-off between the class-prediction accuracy and the time
efficiency by changing p settings, 3) to evaluate the existence
of a threshold for the appropriate number of computational
nodes in order to get the advantage of parallelism as much
as possible.

We measure the class-prediction accuracy of the models
based on the number of correct predictions among all the
correct and incorrect predictions.

Accuracy = T−+T+

T−+T++F−+F+

Where T+, T−, F+ and F− are true positive, true negative,
false positive and false negative respectively.

The reduced number of columns in ICF is denoted by
p = nr where n is the number of samples and r is the
reducing ratio between 0 and 1. For all the experiments
unless stated otherwise, we use the improved PSVM and
the publically available cod-rna, covertype, webspam and
url datasets provided by UCI data repository for machine
learning [11] and by Fan et al. [5].

A. Experiment 1: Sensitivity of PSVM Regarding C and γ

One of the challenges of SVM problems using Gaussian
and Laplacian kernels is to choose appropriate values for
hyperarameter C and γ [8][7], since the class-prediction
accuracy and time efficiency [13] are influenced by these
parameters. Intuitively, γ means how far the influence of a

single training sample is. A large value of γ shows the low
influence of a single training sample while a low value of
γ shows the high influence. The γ parameter has an inverse
relationship with the radius of influence of support vectors
[2]. The hyperparameter C makes a balance between the
misclassification and the maximum margin. A low value of
C makes the decision surface smooth while a large value
of C gives freedom to the model to choose more support
vectors among samples that results in more precise and
accurate classification of the training samples [2]. One of
the common way to find a suitable hyperparameter C and
γ is cross-validation [9], however finding the best value of
these parameters are still unclear.

In the first experiment, we study the impact of C and γ
parameters on the sensitivity of training time meaning how
much the training time varies by changing the C and γ
parameters. In this experiment, we chose C between 0.1, 1, ...
, 100000 and chose γ between 0.1, 1, ... , 1000. We conduct
this experiment on two datasets, cod-rna and covertype and
we study the total calculation time for training the samples.

B. Experiment 2: Reduced Column p

The reduced number of columns p in ICF has impact on the
class-prediction accuracy and the training time and finding an
appropriate value for p in ICF is non-trivial and controversial.
Larger value of p results in higher class-prediction accuracy
but slower total training time while smaller value of p results
in fast training of samples but poor class-prediction accuracy.
Although Chang et al. [20] suggest p =

√
n based on their

experimental results, however the trade-off between the class
prediction accuracy and the time efficiency by changing p has
been unclear. It is also unclear how the value of p influences
different kernels.

In experiment 2, we study the impact of different p settings
on the class-prediction accuracy and the training time. To
study the performance of PSVM for different p settings, we
divide the second experiment into sub-experiments. In the
first sub-experiment, we have chosen a range of different
p from n0.3 to n0.6 for the fixed values of C and γ and
we measure the class-prediction accuracy. In the second sub-
experiment, we have improved the first sub-experiment by
choosing the best C and γ parameters for each p settings
and we measure the class-prediction accuracy. In the third
sub-experiment, we study the impact of p settings on total
training time and training time on heavy computational parts
of SVM algorithm as calculation of E, CF, ICF, Updating
variables and other parts. In addition, we compare the training
time regarding the original PSVM with the improved PSVM
and do a short study of how the changes that we did affect the
proportions. We conduct experiment 2 for webspam dataset
with 300000 samples and 254 features and covertype datasets
with 500000 samples and 54 features. We use both Gaussian
and Laplacian kernel functions in this experiment.

C. Experiment 3

Although using HPC tools is promising for higher perfor-
mance, however due to communication overheads choosing
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appropriate number of computational powers such as num-
ber of computational nodes are still non-trivial. Based on
the Amdahl’s law , the maximum speed up of a program
using parallel computing with multiple processor is limited
regardless of the number of processors.

In experiment 3, we study the relation between the com-
plexities we found in earlier chapter and the actual values
when running the datasets. We run the experiment on im-
proved PSVM with 8, 16, 32, 64, 128, and 256 compu-
tational nodes and we measure the total training time and
the training time regarding E, CF, updating variable. For
clarity, we measure the proportional training time on heavy
computational parts of SVM algorithm as calculation of E,
CF, ICF, Updating variables and other parts and we also
measure the time for communication as the communication
in E and the communication for Updating variables.

VII. RESULTS

In this section we present the results of all three experi-
ments and the corresponding sub-experiments.

A. Experiment 1

The results of first experiment are presented in Tables I and
II. Table I represents the total time for training 59535 samples
with 8 features for cod-rna dataset. In the first experiment, we
choose a target class-prediction accuracy inside 10 percentage
point of the best accuracy obtained. The red cells in table I
shows that for the given C and γ the target accuracy is not
achieved. Table I shows no trends between different settings
of C and γ and the total training time. As the table shows the
lowest total training time is 8 times slower than the highest
total training time. The results of the first experiment on
covertype dataset is shown in table II and it represents the
total training time for 500000 samples with 54 features. In
table II the target accuracy for γ = 0.1, γ = 1 and γ = 10
is not achieved. As the table shows the lowest total training
time is 5.5 times slower than the highest total training time
and same as table I, we do not detect any trends between
C and γ and total training time. The kernel function that is
used during this experiment is Gaussian kernel.

TABLE I
NUMERICAL RESULTS OF TOTAL TRAINING TIME WITH RESPECT TO
DIFFERENT C AND γ SETTINGS FOR COD-RNA DATASET WITH 59535

SAMPLES AND 8 FEATURES USING GAUSSIAN KERNEL

Parameter γ=0.1 γ=1 γ=10 γ=100 γ=1000
C=0.1 3.33 1.83 1.28 1.25 0.73
C=1 1.87 1.23 1.06 0.79 0.68

C=10 9.2 1.09 1.07 0.77 0.7
C=100 9.24 1.35 1.59 1.13 1.04

C=1000 8.91 9.11 8.69 0.99 9.02
C=10000 8.99 8.95 9.18 1.27 8.98

C=100000 9.17 8.96 9.24 1.96 10.41

B. Experiment 2

Figure 1 is related to the first sub-experiment in experiment
2 and it shows the class-prediction accuracy with respect to

TABLE II
NUMERICAL RESULTS OF TOTAL TRAINING TIME WITH RESPECT TO

DIFFERENT C AND γ SETTINGS FOR COVERTYPE SCALED DATASET WITH
500000 SAMPLES AND 54 FEATURES USING GAUSSIAN KERNEL

Parameter γ=0.1 γ=1 γ=10 γ=100 γ=1000
C=0.1 332.45 300.26 225.48 241.24 133.39
C=1 85.25 96.55 90.96 137.25 95.99

C=10 42.81 55.24 77.88 104.35 106.94
C=100 52.27 63.12 77.5 71.31 135.23

C=1000 68.58 80.54 92.37 42.99 178.69
C=10000 88.54 137.79 171.65 141.97 415.62

C=100000 284.75 178.96 367.56 417.05 414.29

different column sizes. We have selected C and γ parameters
as C = 64 and γ = 2 mentioned by Hsieh, Si and Dhillon
[8] for webspam dataset. As figure 1 shows by increasing the
number of columns, p from n0.3 to n0.5, the class-prediction
accuracy degrades drastically, where for p =

√
n the accuracy

reaches it’s lowest value, by increasing the value of p more
than n0.5, the class-prediction accuracy increases. We observe
that the class-prediction accuracy is unstable by increasing
the number of columns and for the fixed values of C and γ
for all p columns.
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Accuracy with respect to p for C=64 and gamma=2

Fig. 1. The class-prediction accuracy with respect to different column
numbers (p) for webspam dataset with 300000 samples and 254 features
using C = 64, γ = 2 and Gaussian kernel function.

Figure 2 shows the second sub-experiment results for both
Gaussian and Laplacian kernel functions. This figure gives
a better insight that we can observe that replacing C and γ
parameters with the best C and γ for each r results in stable
class-prediction accuracy where r = log(p)/log(n).
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Fig. 2. The class-prediction accuracy with respect to different r (r =
log(p)/log(n) ) for webspam and cod-rna datasets using best C and γ
for each r.
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Figure 3 shows that the best C and γ stays close when p
is changed. Figure 4 is related to the third sub-experiment
of experiment 2 and shows the elapsed training time for
E, CF, updating variables and other part of SVM algorithm
regarding different p settings in webspam dataset. The upper
sub-plot shows the elapsed time in seconds and the lower sub-
plot shows the proportion time of each parts. The increased
proportion of CF and E follows the results of the complexity
analysis earlier. The difference between original and the
improved PSVM can be seen in figure 5. As figure 5 shows
the elapsed time regarding parts E and CF decreases in
improved PSVM compared to the original PSVM when r
increases.
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Fig. 4. The elapsed time for different parts of SVM algorithm with respect
to different column numbers (p) for webspam dataset with 300000 samples
and 254 features using Laplacian kernel function and best C and γ for each
p.
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Fig. 5. The comparison between the original PSVM (Old) and the improved
PSVM (New) software with respect to r.

C. Experiment 3

Figure 6 shows the training time and the time for calcu-
lating E, CF, updating variables of the SVM algorithm with
respect to the number of computational nodes for covertype
dataset. The upper sub-plot shows how the corresponding
training time decreases by increasing the number of nodes
from 8 to 64 while increasing the number of nodes more
than 64 nodes does not show further improvement in training
time. The lower sub-plot gives a better insight about the
proportion of training time in E, CF, updating variables, ICF,

and other parts of PSVM algorithm for covertype dataset
along with communication time for E and communication
time for updating variables. With this dataset, 128 nodes were
enough to reach the threshold predicted in the complexity
analysis.
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Fig. 6. The elapsed time for different parts of SVM algorithm with respect
to the number of nodes, N for covtype dataset with 500000 samples and 54
features. Note the large proportion of communication at 128 nodes.

Figure 7 shows the same experiment as above for URL
dataset. The upper sub-plot in figure 7 shows how the corre-
sponding training time decreases by increasing the number of
nodes from 8 to 128 while increasing the number of nodes
more than 128 shows not remarkable improvement in the
training time. The lower sub-plot gives a better insight about
the proportion of training time in E, communication in E,
CF, update variables, communications for updating variables,
ICF, and other parts of the PSVM algorithm for URL dataset.
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Fig. 7. The elapsed time for different parts of SVM algorithm with respect to
the number of nodes N for URL dataset with 2150000 samples and 3231961
features.

VIII. CONCLUSION

In experiment 1, we study the impact of C and γ param-
eters on the training time considering the target accuracy.
We did not find any interesting trend in the training time by
changing these parameters. However this experiment helped
us to get better insight about experiment 2 where we ob-
served an improvement in the class-prediction accuracy while
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Fig. 3. The training time and accuracy with respect to different column numbers (p) for cod-rna considering different C and γ settings for Laplacian
kernel.

increasing the number of columns. The result of experiment
2 showed that choosing appropriate value of p affects the
choice of C and γ, this is clearly shown by figure 1. The
common way to choose C and γ is done by cross-validation.
The result of experiment 2 showed that choosing the best
values for C and γ for special column size p is not necessarily
the best value for another p. The complexity analysis for CF
did predict a fast growth of calculation time for CF when p
is increased which could clearly be seen by experiment 2. In
figure 5, the original software was tested against the improved
software for different p and showed 4 times improvement of
performance by our modification on PSVM at large p because
of the CF calculation. Already at smaller p we got an 20%
improvement on the calculation of E. In experiment 3, we
showed the existence of a threshold between the training
time and the number of cores as predicted in a complexity
analysis.
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Abstract—Alternating Direction Method Of Multipliers
(ADMM) is one of the promising frameworks for training
Support Vector Machines (SVMs) on large-scale data in a
distributed manner. In a consensus-based ADMM, nodes may
only communicate with one-hop neighbors and this may cause
slow convergence. In this paper, we investigate the impact of
network topology on the convergence speed of ADMM-based
SVMs using expander graphs. In particular, we investigate how
much the expansion property of the network influence the
convergence and which topology is preferable. Besides, we supply
an implementation making these theoretical advances practically
available. The results of the experiments show that graphs
with large spectral gaps and higher degrees exhibit accelerated
convergence.

Index Terms—ADMM, SVMs, Expander Graphs, Distributed
Optimization, Convergence

I. INTRODUCTION

Distributed optimization methods are key for solving large-
scale machine learning problems due to the exponential growth
of digital data. Serial methods are no longer capable of
solving today’s large problems due to the lack of scala-
bility. Even centralized parallel optimization methods may
perform poorly due to communication overheads. Therefore,
decentralized distributed optimization methods play an im-
portant role in solving problems with big data. Alternating
Direction Method Of Multipliers (ADMM) is one of such
successful distributed methods since it is robust, distributedly
parallelizable, and it has convergence guarantees. However,
even ADMM may suffer from slow convergence in specific
circumstances [1, 2]. In decentralized ADMM through a net-
work, distributed agents/nodes with the knowledge of local
data solve local optimization problems and only communi-
cate with their neighboring nodes with the common goal
of reaching consensus. Franca and Bento [2] point out that
the network topology has impact on the convergence rate of
ADMM in the context of a specific consensus problem. This
leads to the natural question, whether their observation also
arises in different circumstances. In this paper, we investigate
the impact network topology has on ADMM-based Support
Vector Machines (SVMs) [3]. In particular, we investigate how
much the expansion property and connectivity of the network
influence the convergence and which topology is preferable.
We also supply an implementation making these theoretical

advances practically available. The outline of the paper is as
follows. We briefly discuss the basics of network topology in
section II. In section III, we explain expander graphs and their
properties followed by a brief summary of SVMs and ADMM
in section IV and V. We in section VI describe the method
and corresponding materials used in this article. The results
of the experiments are presented in VII and we analyze the
results in section VIII. Finally, the summary and conclusion
of the paper are briefly described in section IX.

II. NETWORK TOPOLOGY

Network topology and the connectivity of the underlying
graph have impact on the performance of network-based
distributed algorithms in terms of convergence and the number
of iterations until convergence. Such impact is shown for
solving linear equations [1] and for ADMM with a specific
optimization problem not related to SVMs [2]. In this paper,
we investigate the impact of the network topology and the
connectivity of the underlying graph on the performance of
ADMM-based SVMs in terms of convergence. Consider the
network of distributed agents/nodes as a graph G(V,E), where
V = {1, 2, 3, . . . , n} is the set of the nodes and E ⊆ V × V
is the set of edges between nodes. We assume that G is
an undirected and connected graph and that there are no
multiple edges between any two nodes. The network topology
of the graph is shown by the corresponding adjacency matrix
A(G) = [aij ]n×n, where

aij =

{
1 for(i, j) ∈ E
0 otherwise. (1)

By definition, the adjacency matrix of an undirected
graph is symmetric and has real eigenvalues. The spectral
gap/connectivity of a graph is related to the expansion property
of the graph. In order to define the spectral gap and con-
nectivity of a network, we first define the Lagrangian matrix
corresponding the adjacency matrix A(G). The Laplacian
matrix of an adjacency matrix, denoted L(A), and has −1
for a connected pair nodes and the degree of each node on its
diagonal, i.e.,

lij =

 −1 for(i, j) ∈ E & i 6= j
ki fori = j
0 otherwise.

(2)



Here, ki is the degree of node i. The eigenvalues of A(G)
satisfy

kmax = µ
′

1 > µ
′

2 > ... > µ
′

n, (3)

and the eigenvalues of L(G) satisfy

0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2kmax. (4)

Here, kmax is the largest degree of all nodes.
The algebraic connectivity or the spectral gap of a graph
network is related to the non-trivial eigenvalues of A(G) and
L(G), i.e., it relates to µ2 = max{µ′

2, |µ
′

n|} and λ2 [4].
The first smallest eigenvalue of L(G) is trivial (λ1 = 0) and
corresponds to the first largest and trivial eigenvalue of A(G),
i.e., µ1 = kmax and in some cases |µn| = | − kmax| [5].

A small spectral gap relates to a small number of edges
required to be taken away to generate a bipartite graph. In
contrast, a large spectral gap relates to non-modularity of the
corresponding graph. For details refer to [4].

III. EXPANDER GRAPHS

A group of well-studied connected graphs are expander
graphs, in which any subset expands through all nodes in a
robust manner, i.e., any subset of the graph efficiently connects
to many nodes. Properties such as effective communication,
high- and well-connectivity, and sparseness make expander
graphs good choices for designing efficient networks. The
expansion property of an expander graph can be defined by the
Cheeger or isoperimetric constant [4]. The Cheeger constant
shows that whether the graph has bottlenecks, i.e., whether
there are two large subsets of vertices connected by only few
edges. A large Cheeger constant indicates many edges between
the two large subsets of vertices. In contrast, a small constant
shows there is a bottleneck between the two subsets of vertices
and they are connected with only few edges. The Cheeger
constant of graph G(V,E) is denoted as h(G) and it can be
defined as follows,

h(G) = min
S⊆V,|S|6 |V |

2

|∂S|
|S|

. (5)

Here, ∂S = {(e, e′) ∈ E : e ∈ S, e′ ∈ V \ S}. The Cheeger
constant is related to the spectral gap by Cheeger inequalities,
i.e.,

λ2
2
≤ h(G) ≤

√
2dλ2. (6)

The expansion properties can be enhanced towards increas-
ing the spectral gap. In this regard, d-regular random graphs in
which each node is connected to d other nodes are expanders
if and only if the corresponding spectral gap is lower bounded
[4]. In this paper, we study the impact of d-regular graphs on
the convergence performance of the ADMM-based SVMs.

IV. SVMS

SVMs are a set of supervised machine learning techniques
developed from statistical learning theory to solve classifi-
cation and regression problems. The basic idea of SVMs
in a simple binary classification problem is to search for a

hyperplane that is the farthest to the closest training data
points from both sides of the hyperplane. This process has two
phases, training and testing. In the training phase, the machine
is trained to find a plane that separates the given data samples
into two classes. After the machine is trained, the training
model is extracted and then the testing phase is carried out. In
the testing phase, the SVMs model predicts which class label
a new unseen test sample should have [6]. SVMs give a good
generalization performance [7] and minimize the upper bound
of the generalization error [8]. SVMs have special characteris-
tics that can be used to implement efficient parallel algorithms
in terms of time and memory. One characteristic is the sparsity
of solutions [9], i.e., the solution is obtained by only a few
samples called support vectors that determine the maximum
margin separating hyperplane [10]. Another characteristic of
SVMs is to perform the nonlinear mapping without knowing
the mapping function using predefined functions called kernels
for calculating the inner product of mapping functions [10].
Other characteristics of SVMs are the simple structure of
SVMs constraints and the definition of the kernel function
in a linear case, i.e., the inner product is a simple dot product
in a linear case [11]. The optimization problem addressed by
SVMs can be written as follows,

Primal :

min
1

2
wTw + C

N∑
i=1

ξi

s.t. ∀i : yi(w
T Φ(xi) + b) ≥ 1− ξi , i = 1, 2, ..., N

∀i : ξi ≥ 0 , i = 1, 2, ..., N.
(7)

Here w is the weight vector for the hyperplane, x is a vector
of observations, yi are the class labels with yi ∈ {+1,−1},
b is the bias parameter and Φ(x) is the map function. In the
case that data can be classified by a linear classifier, Φ(x) =
x, but real-life data cannot always be classified by a linear
classifier [8]. In non-linear cases, one can map the data from
the input space into a high dimensional feature space using
a non-linear transformation, i.e., Φ(x) maps the input vector
x to the feature space [8]. In the feature space, the data can
be linearly separable. Consequently, the dual form of equation
(7) is represented in equation (8),

Dual :

min D(α) =
1

2
αTQα− 1Tα

s.t.
N∑
i=1

yiαi = 0

∀i : 0 ≤ αi ≤ C , i = 1, 2, ..., N.

(8)

Here α is Lagrangian multipliers and αi ∈ α, 1T is a
vector of ones and Q is a matrix of size N × N and
Qij = yiyjΦ

T (xi)Φ(xj).



V. ADMM

Distributed methods are one of the important approaches
for solving large-scale machine learning problems. One of the
popular distributed methods is ADMM since it has properties
such as robustness, scalability of solving problems with big
data, easily distributable and parallelizable. The robustness of
ADMM refers often to no requirement of differentiability of
the objective function. ADMM guarantees the convergence
of convex functions [2] which is the case in SVMs. The
convergence rate of ADMM is O(1/N) for convex functions,
where N is the number of iterations [12, 13]. Note in practice
the convergence rate of ADMM is still not well-understood
[2].

The optimization problems of the following form can be
solved using ADMM.

min f(w)

s.t. w − v = 0
(9)

In order to solve the problem (9) in a distributed manner,
one can reformalize the optimization problem in the form
of (10). This problem is solvable using ADMM because of
the decomposability of ADMM in which each node in a net-
work has own independent objective function and constraints.
ADMM can solve consensus optimization in which nodes
only communicate with one-hop neighboring nodes. To do
this, consensus constraints are defined to force local variables
to agree across neighbors. The distributed consensus-based
optimization can be formalized as follows,

min
∑
i=1

fi(wi)

s.t. wi − w = 0, i = 1, 2, ..., n.

(10)

Here, w is the consensus variable across the neighboring
nodes. For detailed information, refer to [14, 15]. In this paper,
we have followed the approach given by Forero, Cano and
Giannakis in [14] for solving consensus ADMM-based SVMs.

VI. MATERIAL AND METHOD

We designed experiments with datasets gathered by LIB-
SVM Data [16] from several machine learning data repos-
itories such as UCI [17]. Table I shows the datasets with
the corresponding number of training and testing instances
and features we used in the experiments. In order to study
the impact of network topologies on the number of iterations
until convergence, we implemented several random d-regular
expander graphs. For each graph, upper and lower bounds of
the spectral gap are calculated using the formula given by Joel
Friedman [18]. The formula is given for the second largest
eigenvalue of the adjacency matrix µ2 = max{µ′

2, |µ
′

n|}. We
adapted the formula for the second smallest eigenvalue of the
Lagrangian matrix λ2 as follows. For ε > 0,

d− 2
√
d− 1− ε ≤ λ2 ≤ d+ 2

√
d− 1 + ε. (11)

Note λi = d − µ
′

i, i = 1, 2, . . . , N . This holds for every
random d-regular graph of size N for sufficiently large Ns.

We implemented a special type of regular graphs called
Ramanujan graphs. A d-regular graph is Ramanujan if and
only if µ2 ≤ 2

√
d− 1 holds, where µ2 is the second largest

eigenvalue of the adjacency matrix of the graph as defined
above.

For simplicity, we focus on the second smallest eigenvalue
λ2 of the Laplacian matrix as the spectral gap instead of using
the second largest eigenvalue of the adjacency matrix µ2 since
the spectral gap is defined as λ2 = d − µ

′

2, where µ2 =
max{µ′

2, |µ
′

n|}.
For a Ramanujan graph, formula (11) appears as follows

[19],
d− 2

√
d− 1 ≤ λ2 ≤ d+ 2

√
d− 1. (12)

To run experiments, we used several random regular graphs
with different degrees and number of graph nodes depend-
ing on the size of training datasets. The first group of
graphs, denoted G1, consists of d-regular expander graphs
with low degrees designed for training small datasets, where
d = {3, 5, 7, 9, 11, 13, 15} and the second group of graphs,
denoted G2, consists of d-regular expander graphs with
higher degrees for training large datasets, where d =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

In this paper, we have focused on binary classifications since
a multi-class classification can be transformed into several
binary classifications using the one-versus-all technique. The
classification accuracy of a consensus ADMM-based SVM is
influenced by parameters such as ρ in ADMM and JC and γ
in SVMs, where J is the number of graph nodes and γ is the
RBF kernel parameter. To estimate sufficiently good values of
the parameters, we used a grid search with cross-validation.
Besides, we use normalizing and standardizing scaling tech-
niques to further improve the classification accuracy if needed.
To evaluate the results, we used standard statistics such as
true positive/negative rate, positive/negative predictive rate,
and accuracy metrics.

To measure the impact of expander graph topology, the
algorithm trains the datasets for each d-regular expander graph
using shared memory parallel programming. Thereafter, the
number of iterations and the corresponding elapsed time are
measured until convergence. To stabilize our analysis for some
of the datasets, we shuffled the training data 10 times. Each
shuffled data are trained and the number of iterations and the
elapsed time are measured and then we calculated the average
value for the final analysis.

TABLE I
DATASET INFORMATION

Datasets Training Points Testing Points Features
ionosphere 300 51 34
svmguid 3089 4000 4
phishing 11055 1655 68

a9a 32561 16281 123
ijcnn 35000 14990 22

skinNonskin 37492 5000 3



Fig. 1. The upper and lower bounds of the spectral gap for random d-regular
expander graphs with 16 graph nodes, where d = {3, 5, 7, 9, 11, 13, 15}. ”*”
symbols show the spectral gaps of the d-regular graphs implemented in the
experiments. ”o” symbols show that a random 11-regular graph can have a
higher spectral gap than a random 13-regular graph.

VII. RESULTS

The lower and upper bounds of the spectral gap (the second
smallest eigenvalue of the Lagrangian matrix) λ2 for low
degree regular graphs G1 is shown in Fig. 1. The same concept
for high degree regular graphs G2 is shown in Fig. 2. We use
the low degree expander graphs for training small datasets and
the high degree expander graphs for training larger datasets.
The vertical bars show the bounds calculated using formula
(12).

In Fig. 1, ” ∗ ” indicates the spectral gap of the Ramanujan
graphs implemented for 16 graph nodes in the experiments.
Similarly, in Fig. 2, ” ∗ ” shows the spectral gaps of the
Ramanujan graphs implemented for 128 graph nodes. As the
figures show, the spectral gaps of all of the expander graphs we
used in the experiments for 16 and 128 graph nodes are inside
the allowed bounds. As both figures show, the connectivity of
the regular/Ramanujan graphs increases as the degree of the
graphs becomes larger.

Fig. 3 shows the number of iterations and the elapsed
time for training ionosphere and svmguid datasets until
convergence using group G1 of d-regular graphs with 16
graph nodes. As shown in the figure, the number of iterations
decreases as the degree of the graph increases. The trend is
most visible between 3 to 9 regular graphs for svmguid and
between 7 to 11 for ionosphere. In contrast, the decrease in
the number of iterations saturates as the degree of the graphs
is close to the number of graph nodes, i.e., 16 nodes in this
case. This is visible between 11 to 15 regular graphs for both
datasets.

Fig. 4 shows the number of iterations and the elapsed time
for training phishing, a9a, skinNonskin, and ijcnn
datasets using group G2 of d-regular graphs with 128 graph

Fig. 2. The upper and lower bounds of the spectral gap for ran-
dom d-regular/Ramanujan graphs with 128 graph nodes and d =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Fig. 3. Impact of d-regular graphs on the number of iterations and time for
svmguid and ionosphere datasets using 16 graph nodes.

nodes. The results highlight the performance improvement in
terms of the number of iterations as the spectral gap and the
connectivity of the regular graphs increases with the fixed
number of nodes (128 nodes). This trend is more stable for
phishing and a9a datasets throughout all degrees and
it is most noticeable between 30 to 70 regular graphs for
skinNonskin and ijcnn datasets. Note for the degree
(d) close to the number of graph nodes, the performance
improvement saturates or becomes negligible. This is most
visible for degree between 90 to 100 for all datasets.

As shown in Fig. 4, ijcnn did not converge for 10 and
20 regular graphs in less than 10000 iterations which we put
as the maximum iteration for the convergence. This might



Fig. 4. Impact of d-regular graphs on the number of iterations and time
for phishing, a9a, skinNonskin, and ijcnn datasets using 128 graph
nodes.

Fig. 5. Several rounds of shuffling data. Shuffling increases the classification
accuracy while keeping the trend of decreasing the number of iterations and
time for d-regular graphs.

be explained due to inefficient communication between graph
nodes when the degree of the graph is low.

Fig. 5 shows the number of iterations for several rounds of
shuffling data. Shuffling data follows the trend of decreasing
the number of iterations and time, besides improving the
classification accuracy and leading to a stable classifier.

VIII. DISUSSION

The performance of a network-based ADMM implementa-
tion of SVMs was improved based upon the efficient connec-
tion between neighbouring nodes using expander/Ramanujan
graphs. The graphs with high degrees and spectral gaps and
consequently many neighbouring nodes exhibit accelerated

convergence (Fig. 3 and 4). This finding is consistent with
that of Cao et al. [1] whose theoretical analysis suggested
networks with higher mean degree. Although their approach
was not tested for network-based ADMM algorithms, nor
were tested for nonlinear systems, the authors reported the
performance improvement of a distributed algorithm in terms
of convergence.

The bounds of the spectral gap expanded as the degree
of the graph and consequently connectivity increased for the
fixed number of nodes, thus efficient communication between
neighboring nodes. Note that a random d-regular graph may
have better connectivity than a random d

′
-regular graph even

if d < d
′
. This is likely if the spectral gap of d-regular graph

is larger than d
′
-regular graph, e.g., as shown in Fig. 1 by

”o” symbols, a random 11-regular graph has a higher spectral
gap than a random 13-regular graph. Therefore, increasing
the degree of a graph will not necessarily lead to better
connectivity.

The results of our experiments showed accelerated conver-
gence for increasing the degree of expander graphs, however
the decrease of the number of iterations was saturated or
became very small as the degree of the graph got closer
to the number of graph nodes (Fig. 3 and 4). This may be
explained due to the increasing number of neighbors, although
the convergence is guaranteed, many graph nodes should
communicate and exchange their local results to reach the
consensus. This leads to slow convergence.

Based on the line of reasoning above, it is interesting to
find an appropriate degree of regular graphs with regards to
the number of graph nodes in which the degree should be
sufficiently high that leads to efficient communication and
sufficiently low that leads to good connectivity.

The impact of many communicating neighbouring nodes is
minor in the shared memory parallelism. In contrast, in the
distributed memory parallelism, the communication between
many nodes reaching the consensus might cause communica-
tion overhead. Thereby, increasing the degree of graphs close
to complete graphs may not be efficient as in the shared
memory parallelism. We will further investigate the impact of
expander graphs on the performance of our algorithm using
distributed parallelism in the future work.

Beside the discussion of graph topology, several factors
showed their importance for the classification accuracy. One
factor was the balance between the two classes. To keep the
balance between two classes, we randomly shuffled data and
it exhibited higher classification accuracy versus unshuffled
data while keeping the trend of decreasing the number of
iterations and time. This might not possible for networks that
supply their data from distributed sources and do not allow to
combine and shuffle the data due to privacy issues. Another
factor was data cleansing and improving data quality. Although
we did not investigate different techniques of data cleansing,
simply removing missing and corrupted data exhibited higher
accuracy. Our implemented algorithm is able to solve the dense
and sparse formats of data and we plan to further improve the
performance in regards to special treatment of sparsity.



IX. SUMMARY AND CONCLUSION

A consensus-based ADMM implementation of SVMs in-
volves a consensus agreement among neighboring nodes,
consequently the number of neighbors and the way they are
connected impact the performance of the algorithm in terms of
convergence and communication. Thereby, the network topol-
ogy used for communication of neighboring nodes plays an
important role in performance improvement of the distributed
algorithm.

Based on the line of reasoning above, complete graphs are
well-known for their connectivity, however, high connectivity
does not come cheap in particular using distributed memory
parallelism, i.e., all nodes need to communicate with each
other and this may increase the number of iterations until con-
vergence and increase the communication complexity. Random
d-regular expander graphs are good sparse approximations of
complete graphs [20] in which good connectivity property is
inherited with efficient communication between nodes. Note
the better the expander property of regular graphs is, the faster
nodes communicate.
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