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Parallel construction of variable length Markov models for large DNA sequences
Jan Rune Qvick
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Modern CPUs that contain multiple cores allows for parallel execution of algorithms,
and while the technology exists it is not always used by existing implementations.
Within this project one such case is investigated, namely the construction of variable
length Markov models (VLMC).

This work builds upon the unpublished work of J. Gustafsson, a base implementa-
tion for the construction of VLMCs on DNA-sequences. In addition to implementing
a parallel variant, the focus has also been on constructing models for large genomes,
something not yet undergone within the base project. The report presents two po-
tential practical parallel variants of this base, and early on selects the most promis-
ing for further analysis. For this selected approach multiple tests are performed to
present runtime, speedup and memory consumption. The load distribution is also
analysed, and presents an opportunity for future improvement.

The highest level of speedup was approximately a factor of 7, on 32 cores, compared
to seriel execution. This test was performed with an input string of 22 GB. The
memory footprint of the implementation, albeit high, is expected because of the
adaptation to large input sizes.
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1
Introduction

DNA is a molecule that is found in all living organisms, it contains all the ge-
netic information necessary to code all proteins utilised by that organism. The
DNA molecule can be represented by a string called the DNA-sequence. The DNA-
sequence is a unique identifier of an organism and its relatives. For this reason
research has been carried out in the field of bioinformatics to create computational
representations of DNA sequence in order to compare DNA in different ways. One
of these approaches is via the use of variable length Markov models (VLMM).

A lot of fascinating work has been carried out with regards to VLMMs. Dalevi et al.
[1] identified foreign DNA in the sequences of bacteria, which indicates traces of hor-
izontal gene transfer, a process with which bacteria share genes between individuals
rather then inherit them from their respective parent. Borodovsky and McIninch [2]
used VLMMs in order to find genes within the DNA sequence. Moreover, this type
of model is not exclusively used within the field of bioinformatics. They are present
in many other disciplines as well. A few examples are text classification as shown
by Ifrim et al. [3], the prediction of likely new targets of cyber-attacks by Fava et
al. [5] and even in unexpected areas, such as the research performed by Galata et
al. [4], where they analysed human behaviour.

VLMMs are known to be time consuming to train in practice for large sets of data,
and for this reason this project focuses on improving the existing performance of the
training process with regards to large input data, more specifically large genomes.
The work is heavily based on the currently unpublished work of J. Gustafsson and
his variable length Markov Chain construction implementation, implemented after
that of Shultz et al. [8]. This implementation by J. Gustafsson is referenced as the
base implementation throughout this thesis.

The rest of the report is organised in the following manner. Chapter 2, Theory,
presents the basis for the understanding of the project as a whole and the neces-
sary knowledge to follow the examples presented throughout the thesis. Chapter 3,
Methods, introduces two investigated approaches with regards to the paralellisation
and details on how the implementation is verified with respect to accuracy and per-
formance. Chapter 4 is concerned with the results of said evaluation and the last
chapter of the report contains a discussion regarding the results obtained and the
conclusions of the research.
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1. Introduction

1.1 Delimitation
This project focuses solely on the optimisation via parallelism, and adaptation of the
PST classifier project developed by J. Gustafsson, to larger data-sets. Throughout
the project, changes to the source repository have been taken into account as long
as it was manageable to do so, with respect to the time limitations in place.

2



2
Theory

2.1 DNA
While it is possible to generate variable length Markov models for any type of
sequential input data, in this particular project the focus will be on DNA sequences.
DNA is a molecule which carries the genetic information of an organism and the
DNA sequence is a way of representing this molecule as a string of characters.
These characters are ”A”, ”C”, ”G” and ”T”. Each character represents one of the
4 nucleotides: adenine (A), cytosine (C), guanine (G) and lastly thymine (T). For
the purpose of this project the DNA sequence will simply be seen as a long string.
The relationships between nucleotides and their function for encoding proteins will
not be taken into consideration.

2.2 Variable length Markov models
This section presents the basics of Markov chains, some background regarding vari-
able length Markov models and the data structures used to represent this type of
model. Within this section the terminology used follows that used by D. Gusfield
[9] and Giegerich et al. [6]. More specifically the extended terminology is presented
in table 2.1.

Table 2.1: Table presenting terminology used.

Term Meaning
Σ The alphabet
|Σ| Size of the alphabet
t Minimum number of occurrences for inclusion
K Pruning argument
k Order of Markov Chain
Ns(σ) Occurrences of sub-string σ

2.2.1 Markov chain
A Markov chain is a type of stochastic model that represents a sequence and is
typically used to statistically predict characters based on previous events. Using
a string as an example, the Markov chain contains a state for each character of

3



2. Theory

the alphabet. In addition to the state the model includes probabilistic information
about the transition to other states. A graphical representation of the Markov
chain constructed from the word ”GATTACA” can be seen in figure 2.1. What

A G

C T

1.0

0.5

0.5

0.50.51.0

Charater Counts
A C G T

A 0 1 0 1
C 1 0 0 0
G 1 0 0 0
T 1 0 0 1

Figure 2.1: To the left is a graphical representation of the string ”GATTACA”,
and to the right is the tabular representation containing the counts of each pair.

is described above is a Markov chain of order 1 as only one symbol is taken into
account when evaluating the next step. A Markov chain of order 2 would take two
symbols into account. Following the example above ’GA’ would have a probability
of 1 to transition to the character T.
As the order increases, the chain loses generality and becomes more tuned to the
given sequence. Additionally, the number of states increases exponentially following
|Σ|k. Formally, the definition of a first order Markov chain is as follows.

Definition: A first order (discrete-time) Markov chain with finite state space X
is a sequence X0X1X2...Xn of X -valued random variables such that for all states
xn, xn−1, xn−2, ... and all time n = 0, 1, 2....

P (Xn = xn|Xn = xn−1, Xn−2 = xn−2...Xn−k = xn−k) (2.1)

where for a first order Markov chain the probability P (xn|xn−1) depend only on the
states xn, xn−1 and not on the time n or the previous known states xn−2, xn−3....
The number P (xn|xn−1) is called the transition probabilities of the chain. For higher
order Markov chains the transition probability takes into account k previous states,
xn−1, xn−2...xn−k.

2.2.2 Variable length Markov chain
Variable length Markov chains (VLMCs) in essence are an extension of the Markov
chain concept presented previously. The major difference is that the order k is al-
lowed to vary, rather than being fixed. By letting the order vary the exponential
increase of parameters can be limited. This allows the model to be highly tuned to

4



2. Theory

the input sequence while still keeping the number of states low.

The order k varies depending on the recent history of the sequence, and whether
that history is included is decided by taking into account statistical information
inferred from the sequence itself. This statistical information is used to exclude or
include certain states depending on a threshold, for example the occurrence of the
state within the sequence. Many different data structures could be used to represent
a VLMC. However, the one used for the base implementation as initially presented
by Schulz et al. [8] is the probabilistic suffix tree (PST). PSTs are an extension of
traditional suffix trees where each branch has an accompanied vector with probabil-
ities. Suffix trees are presented in more detail in section 2.2.3.

For a more detailed definition of the model see [8].

2.2.3 Suffix trees
A suffix tree is a type of data structure that internally contains all the suffixes of any
given input string. More specifically, it is a rooted tree in which one can traverse
the tree from the root to any leaf and come back with any suffix present in the input
string. While the construction is costly, later operations performed on the structure
are comparatively cheap. As a visual example figure 2.2 shows a suffix tree created
from our previous example string ”GATTACA”.

#

A
C

T
T

A
C

A

A A
C

G
A

T
T

A
C

A

A
C

A

T
A

C
A

T

Figure 2.2: A suffix tree created from the string ”GATTACA”. The square nodes
represent ends of suffixes, while the circular nodes represent branching nodes.

There are multiple algorithms that generate a suffix tree given an input string, most
of them in linear time [10, 11]. The one used in the base implementation is the a
lazy suffix tree construction algorithm named WOTD algorithm by Giegerich et al.
[6]. This implementation enjoys an expected time complexity of O(n log n) with a
worst case of O(n2). Additionally, this algorithm allows us to save memory by not
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2. Theory

constructing the full suffix tree. Further information about this algorithm will be
presented in subsection 2.2.4.

In order to link together the concept of Markov chains and suffix trees, we can
extend the tree presented in 2.2 with the computed probabilities for each branch,
and make it so that every node holds a vector that corresponds to the probability
that either of its branches could be next in the sequence. This probability vector
is calculated by counting the occurrences of each of the branching nodes children’s
corresponding suffixs, in the input string. More formally, as presented by Kurtz et
al. [8]

P (σ|r) = Ns(rσ)
Ns(r∗)

, (2.2)

where Ns(rσ) is the number of all, possibly overlapping, occurrences of the subse-
quence rσ in the input string and Ns(r∗) = ∑

σ∈ΣNs(rσ). From this information,
each of the children is assigned a corresponding probability. With this probability
present, the model now contains information unique to the specific input string.
Since the probabilities take into account the difference in distribution of the suf-
fixes found in the string, two such strings with different composition, can now be
discerned from each other.

2.2.4 Lazy suffx tree construction
The base implementation uses a lazy top down approach suggested by Giegerich et
al. [6]. The general idea regarding this approach is the concept that nodes only
need to be expanded as they are visited if they satisfy a given criterion. In the base
implementation, this is done via a breadth first iteration starting from the root and
iterating layer by layer until no more nodes should be expanded. Whether a node
should be expanded or not is determined by the statistical parameter t, which is
passed to the algorithm as an input argument. Only nodes whose suffix occurs more
then t number of times in the input string is included in the tree. This reduces the
amount of nodes that will be present in the memory throughout the construction
as they will not be pruned away later. Subsequently, it also improves construction
time as less nodes need to be visited. Formally, as defined by Kurtz et al. [8], the
resulting suffix tree contains all nodes that satisfy

T ←

r|r ∈ L⋃
i=o

Σi and Ns(r) ≥ t)
, (2.3)

where t is the minimum number of occurrences specified to the algorithm and Ns(r)
is all occurrences of suffix r in the sequence. When a node is expanded its parent
and some additional flags are placed on two corresponding vectors. The flags con-
tain information whether the nodes have been visited and/or expanded. The table
contains a integer pointing to a position in the sequence where the suffix starts.

In addition to the base tree structure, as generated above, a subsequent step adds
what is known as suffix links. These suffix links connect branching nodes in a the

6



2. Theory

tree with their corresponding prefixes further down in the tree if they are present.
In essence, it allows for faster traversal of the tree. The suffix links are implemented
according to work carried out by M. G. Maaß [7].

Lastly, the table is pruned according to one of two estimators, Kullback–Leibler or
Peres-Shield. For this project the estimator Kullback–Leibler is used and it follows

∑
σ∈Σ

P (σ|ur) ∗ lnP (σ|ur)
P (σ|r)

 ∗Ns(ur) < K, (2.4)

where K is given as a parameter to the construction algorithm.

2.2.5 VLMC construction in short
The generation of a VLMC can be presented in short via the following steps:

1. Sequence is read form file
2. List of all suffixes are generated
3. List of all suffixes are traversed and the suffix tree is built according to equation

2.3
4. Suffix links are added
5. Probabilities are calculated
6. The tree is pruned according to section equation 2.4

2.3 VLMC comparison metrics
This section presents fraction shared states and negative log likelihood. Further-
more, the section also describes how they are used and how they are to be interpreted
in the context of this project.

2.3.1 Fraction shared states
Fraction shared states (FSS) compute the similarity of two VLMCs by calculating
to what extent the two models share nodes. This is done by first constructing a
set of all nodes present in both V LMC1 and V LMC2 via the use of intersection.
This set, in turn, is used to calculate the proportion of nodes present in each VLMC
according to

FSS(V LMC1, V LMC2) = 1−
|shared|
|V LMC1| + |shared|

|V LMC2|

2 , (2.5)

where each variable represents a set. The shared set is the intersection of all nodes.
This calculation results in a value between 0 and 1, where 0 represents an exact
match.

7



2. Theory

2.3.2 Negative log likelihood
Negative log likelihood (NLL) is used to measure the probabilistic similarities be-
tween two models according to,

NLL(V LMC1, V LMC2) = D(V LMC1, V LMC2) +D(V LMC2, V LMC1)
2 , (2.6)

D(x, y) = log(P (Sx|x))− log(P (Sx|y)), (2.7)

where D(x, y) is the cross entropy and it is calculated by generating a sequence
Sx from model x and using this sequence for the comparison. log(P (s|x)) is the
negative log likelihood of s given model x. From the two models two sequences
are generated; one for each model. The negative log likelihood is then computed
according to equation 2.6.

2.4 Parallelisation
The core problem of parallelising anything is, in essence, the distribution of the work
in such a way that the available hardware is optimally utilised. The initial task is
to determine which part of the program corresponds to the highest proportion of
the runtime. That part of the program is where the most considerable improvement
in performance is to be found. This section initially presents a mathematical way
to derive theoretical speedup from this proportion. It also gives an overview over
different general and language based concepts with regards to parallel development.

2.4.1 Amdahl’s law
When comparing different approaches of parallelisation, it is essential to allow for
a just comparison between their potential theoretical speedup. One method to do
this is to apply Amdahl’s law,

Stheoretical = 1
(1− p) + p

s

, (2.8)

where p is the proportion which benefits from parallelisation and s is the speedup
factor which corresponds to the number of cores.

In order to use this relationship, a runtime analysis has to be performed on the
existing base implementation. This is done in order to determine two values: the
total runtime and that of the parallelisable sections. From this, the proportion of
parallelisation, p, can be determined. The potential gains of a parallel solution to
a serial implementation are directly related to this proportion. Worthy of note is
that this technique does not take into account the overhead that occurs due to the
addition of parallelisation itself.

8



2. Theory

2.4.2 Threads
Threads are a lightweight way of dividing the execution of a program into multiple
pieces that can then be run in parallel on different cores in the processor. Cores
are sub units of modern processors that independently perform calculations. While
it is not necessary to run threads on separate cores, doing so allows for the highest
benefit as otherwise they would compete for the cores resources.

While the cores perform their calculations independently of one another they share
memory. This means that a shared data structure can be worked by multiple threads.
The access of the data needs to be controlled, a matter further presented in the
following section.

2.4.3 Synchronisation
When threads work on shared data some problems may arise. One of these, and the
main thing taken into account for this project, is called race condition. An exam-
ple of this is when two threads read the same variable at the same time and both
perform calculations on it independently and then both write back to memory. In
other words, if the value read by thread1 and thread2 is 3 both threads increment
the value to 4 and write this back. The problem is that the value should be 5.

The main way errors of this kind have been taken care of is via the use of mutual-
exclusion (mutexes) locks. These synchronisation constructs only allow one thread
at a time to access critical sections of the code. While a critical section is accessed
by a thread it will keep all other threads waiting until that section is clear.

2.4.4 Parallelisation in used languages
The two different languages used within the project in order to facilitate parallelism
are Python and C++. The former in the form of a wrapper around the existing base
implementation, later referenced as the distributed approach and presented further
in section 3.2. The latter is the language used for the base implementation, and as
the shared approach modifies this implementation it subsequently also uses C++.
Further information about this approach can be found in section 3.3.
Python, as a language, does not on its own support threads running on multiple
processors, because of what is referred to as a the global interpreter lock. Therefore,
Python is forced to bypass this lock by spawning new threads into additional, sepa-
rate, interpreters. There are libraries which allow controlling these new interpreters
in an efficient manner. The one used within this project is the standard Python
multiprocessing library [13].

C++ on the other hand supports many different frameworks for parallelism. For
this project the C++11 thread library [14] was chosen as the main library, as it is
low enough level be fully controllable via mutexes, while still being high enough to
facilitate function calls without the creation of structs for argument data.

9
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3
Methods

3.1 Runtime analysis
In order to assert the potential for improvement over the base implementation, the
runtime for each major step has to be measured . This is done using timestamps
within the code itself using the C++ chrono library [15]. The step that takes up the
highest portion of the program is the initial focus point of the parallelisation effort,
followed by the second and so on. The analysis is performed on a subsection of the
human genome.

Section 4.1 contains the result of the runtime analysis and indicates that the initial
focus should be placed on the construction of the PST and secondly on the addition
of suffix links both within the WOTD-algorithm.

3.2 Distributed model
The distributed PST approach consists of four steps. The first step is to split the
DNA sequence given as input into multiple sub sequences. These, in step two, are
then used as input for the construction algorithm in order to generate separate sub
PSTs. Each of these constructions run individually on their own core. The third
step is to combine these sub PSTs into a single data structure. The final step is to
prune the combined tree as it would have been done in the base implementation.

Because of the split of the data into sub sequences there is a risk that important
information will pass unnoticed in the sections where the split occurs. As a counter
measure an additional n nucleotides on each side of the split are concatenated to
their respective sub set. This will later be referred to as overhead, figure 3.1 shows
a graphical schematic representation of overhead with respect to 4 threads.

Since sub PSTs will be generated on a subset of the data, the statistical require-
ments that dictate whether a node should be present in the tree had to be modified.
The parameter that primarily affects this is the min-count argument, as this results
in a lower threshold for inclusion. However, a too low min-count will result in a
combined PST that contains a high number of nodes that would not be present in
the standard approach. Step four, additional pruning, is an attempt to mitigate this
fact.

11



3. Methods

Figure 3.1: Schematic representation showing overhead for 4 threads. Sub-image
C shows the individual sub-sequences feed into each thread and how the overhead of
the sub-sequence relates to the initial DNA sequence.

Another possibility to control the inclusion of nodes within the tree structure is the
threshold parameter. This is used within the base algorithm to control how aggres-
sive the pruning of the PST should be. By lowering this value more node will be
included when the sub PSTs are being generated.

The challenge is to find a composition of these arguments; overhead, min-count and
threshold that allows for the generation of a combined PST that closely resembles
that of the base implementation.

3.3 Shared model
The base implementation, as described in subsection 2.2.4, is a lazy top-down ap-
proach to constructing a PST. In essence, it is a breadth first iterative approach
that starts from the root and constructs nodes as they are visited. On a node visit
the algorithm evaluates whether it should be included or not.

The fundamental issue when attempting to parallelise this top-down approach with
a shared data structure is that there is no simple way to distribute the workload.
Nodes are only expanded when they are visited, and in order for them to be visited,
their parent must have been visited already. This top-down relationship means that
there is few ways to approach the parallelisation of this construction with a shared
memory model.

The key lies in the top-down approach itself as well as some insight about the input
data. As the given alphabet that the input data consists of is very short (only four
characters), one can expect that the first layer of the tree will always be present.
In other words, there will always be a suffix starting with each of the nucleotides in
the DNA sequence.

By serially expanding nodes and filling layers down to depth d it is possible to use
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these newly constructed nodes as new expansion points. By selecting one of these
nodes, n, and calling on the construction algorithm again, but this time n acting
as root, this subsequent iteration will generate a subtree containing all suffixes that
have n as an ancestor. See figure 3.2 for a visual representation of the concept.

Figure 3.2: To the left, marked a), represents the serial construction, while the
right, marked b), represent the parallel. The first layer of nodes in the parallel con-
struction are done in series after which, depending on initialised layers, 4d threads
are started to continue the construction of their respective subtree. Here d corre-
sponds to 1 which is the depth of the tree where parallel construction is started.

By doing this for each node on the layer the same layer, d, and performing the
subsequent construction on separate processors, there is a potential parallelisation
factor of |Σ|d, where |Σ| is the size of the alphabet, assuming an even distribution
of Σ in the input.

In our case, with the assumption that the distribution of nucleotides in a given DNA
sequence is roughly equal, the speedup for this improved construction is approxi-
mately 4d. In reality however, this ideal case is not realistically found in biological
structures. Therefore, some additional load-balancing is necessary. These measures
are not taken into account within the scope of this project. The effect of the lack of
load balancing is evaluated and presented in the results.

In addition to the base construction the step where suffix links are added consists
partially of breath first traversal which can intuitively be parallelised in the same
manner as the construction.

The runtime analysis of the base program, presented in section 4.1, shows that the
majority of the runtime is concentrated within the construction of the suffix tree
and the addition of suffix links. Together, these steps correspond to roughly 90% of
the runtime and from this information the plotted theoretical speedup, calculated
via Amdahl’s law, is shown in figure 3.3.
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Figure 3.3: Graph presenting the theoretical speedup according Amdahl’s law for
p = 0.90.

3.4 Verification and evaluation
This section presents how the verification and evaluation are performed in further
detail. The verification subsection focuses on the confirmation that the generated
trees share structure and probabilistic properties. The evaluation subsection is fo-
cused on the performance, more specifically, runtime and memory consumption of
the parallel model.

3.4.1 Verification
The verification is performed using both the base and improved algorithms to gener-
ate individual PSTs for a specific genome. The generated models are then compared
with focus on two different metrics. The general structural differences are deter-
mined via fraction shared states, and the probabilistic accuracy is determined via
negative log likelihood, both further described in Section 2.4.1. For the NLL metric,
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a sequence corresponding to 10% of the DNA sequence used for the calculation.

The verification of accuracy is ultimately performed on relatively short DNA se-
quences as the base implementation cannot construct models for large genomes.
The genomes which are utilised for accuracy verification are presented in Table 3.1.

3.4.2 Evaluation of performance
The evaluation of the performance is carried out similarly as the accuracy verifica-
tion. However, it focuses solely on the implementation developed during this project
and does not take the base implementation into account. The duration and memory
consumption of VLMC construction using a single processor are compared to that
of a few different multi-processor executions. The genomes presented in Table 3.2
are the input for the construction.

3.5 Dataset
The dataset of genomes used to evaluate the accuracy and the performance are
presented in Table 3.1 and 3.2. The genomes were gathered from the National Center
for Biotechnology Information (NCBI). The genomes themselves are contained in a
FASTA files, which are a standardised format for storing genetic information. These
files contain multiple records for different distinct areas of the genome. Before being
used as input for the construction algorithms, the records need to be merged in such
a way that each FASTA-file contains one record with all the genetic information
belonging to that specific organism. This is done in order to facilitate comparison
between the base and improved algorithm, as the base implementation only loads
the first record from a FASTA-file.

3.5.1 Verification of accuracy
The genomes selected for accuracy verification presented in table 3.1 were chosen
with two objectives in mind. The first being the value of having all major domains
represented in order to verify that DNA sequences that belong to each yield accurate
models. Secondly, they were chosen based on their relatively short length as they
had to be able to run on both models.

3.5.2 Evaluation of performance
In order to evaluate the performance of the models the dataset presented in table
3.2 is used. These specific genomes were selected because they have some of the
longest DNA sequences within their respective domain. The runtime will include
the time it takes to read the data from disk, but exclude the time required to write
the tree to console output or disk. Min-count t = 10000 is used to get results slightly
faster, the effect of this is that only suffixes that occur more then 10,000 times are
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Table 3.1: Genomes selected for the evaluation of the performance following par-
allelisation. All sources are from https://www.ncbi.nlm.nih.gov.

Organism Domains Scientific name Sequence Length GenBank identifie
Long-grained rice Plantae Oryza sativa 387,424,359 GCA_001623365.2
Fruit fly Animalia Drosophila melanogast1 133,403,897 GCA_004798055.1
Thale cress Plantae Arabidopsis thaliana 119,668,634 GCF_000001735.4
Baker’s yeast Fungi Saccharomyces cerevisiae 12,157,105 GCF_000146045.2
E.Coli Bacteria Escherichia coli 5,129,890 GCF_008632555.1
Human alphaherpesvirus 3 Virus Varicella-zoster 124,884 GCF_000858285.1
Ebola Virus Zaire ebolavirus 18,959 GCF_000848505.1

included in the final tree. The parameter K is set to the standard 1.2. Peak memory
consumption and CPU utilisation will be determined via the Linux included script
/user/bin/time. All performance tests will be carried out on a system running
Ubuntu 18.04.4 LTS and kernel version 4.15.0-54-generic. The system uses a
Intel(R) Xeon(R) 6126 and 755 GB of DDR4 memory. More information regarding
the system is summarised in appendix A.

Table 3.2: Genomes selected for the evaluation of the performance following par-
allelisation. All sources are from https://www.ncbi.nlm.nih.gov/.

Organism Domain Scientific name Sequence Length GenBank identifier
Loblolly Pine Plantae Pinus taeda 12,342,093,815 GCA_000404065.3
Larix sibirica Plantae Larix sibirica 12,342,093,815 GCA_004151065.1
Palaemon Animalia Palaemon carinicauda 6,699,723,695 GCA_004011675.1
Human Animalia Homo sapiens 3,099,706,40 CA_000001405.28

3.5.3 Evaluation of load balancing issues
This evaluation is only performed on the shared memory model, as the data that goes
into each of the generated sub trees can be of different sizes. Since load balancing
measures are missing the system resources can not be fully utilised. The impact of
this is therefore measured during the construction of the model, via time probing.

16



4
Results

4.1 Runtime analysis
The results of the runtime analysis are presented in Table 4.1. They indicate that
the construction of the suffix tree, within the WOTD-algorithm, is responsible for
roughly 71% of the runtime and is therefore the focus of the shared model. Because
of Amdahl’s law, only parallelising this portion of the code does not yield satisfactory
results. Therefore, the addition of the suffix links to the structure, at about 18%,
should also be parallelised in order to allow for a higher potential improvement.

Table 4.1: Runtime analysis performed on a subsection of the human genome
NCBI: GRCh38.p13

Step Sub-step Runtime of sub-step
(ms)

Proportion in sub-step
(%)

Proportion of total
(%)

Build Tree 129912 79.59 71.54
Expand implicit nodes 140 0.09 0.08
Add Implicit Status 32685 0.3 0.27

Support
Pruning

Add Suffix Links 32685 20.02 18.0
Reverse Suffix Links 8866 48.27 4.88
Calculate Probabilities 649 3.53 0.36Similarity

Pruning Pruning 8852 48.19 4.87

4.2 Distributed model
During initial testing of the distributed model some potentially good results were
gathered. However, as the input size grew the quality of the results degraded. This
is further described and expanded upon the in the discussion, section 5.1.1.

4.3 Shared model
The following sections present the results of the Shared model. It first shows the
verification before looking into the runtime evaluation and load balancing.

4.3.1 Verification
The verification of the shared model, carried out as described in the methods chapter,
yields the results presented in Table 4.2. The FSS score indicates that the resulting
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structure is the same for most DNA sequences, or in the case of long-grained rice
negligibly close. The NLL is the same across the board. This suggests, that while
the the exact structure might differ somewhat for longer sequences the probabilities
within in the models are strikingly similar, at least when generating test data at the
size of 0.1 sequence length.

Table 4.2: Results of the verification. A serial and a parallel tree are generated
for the listed organisms, the distance between them is calculated and noted down. ’-’
corresponds to time measured below 1 seconds.
1 and 2 corresponds to Fraction Shared States and Negative Log Likelihood respec-
tively.

Organism Sequence Length
(Base Pairs)

Number of
Processors

PST Constrcution
(Seconds)

Total Runtime
(Seconds) FSS1 NLL2

1 190 308Long-grained rice 387,424,359 4 76 188 2.32E − 07 0.0

1 66 109Fruit fly 133,403,897 4 26 69 0.0 0.0

1 9 20Thale cress 119,668,634 4 4 15 0.0 0.0

1 2 4Baker’s yeast 12,157,105 4 1 3 0.0 0.0

1 1 1Escherichia coli 5,129,890 4 - 1 0.0 0.0

1 - -Alphaherpesvirus 3 124,884 4 - - 0.0 0.0

1 - -Zaire ebolavirus 18,959 4 - - 0.0 0.0

4.3.2 Runtime evaluation
This section presents the runtime, speedup and memory consumption of the Shared
model. The evaluation is carried out as presented previously in section 3.5.2. The
runtime can be seen in figure 4.1. The one core results seem to indicate that for
relatively small genomes, Larix Siberia and shorter, the doubling in input size re-
sults in a doubling of runtime. However, when comparing the two larger genomes,
Larix Siberia and Loblolly Pine, this relationship is no longer present. Rather, with
doubling of input size the runtime is approximately 4 times longer. This observa-
tion seems to support the time complexity presented by Giegrech et al. where the
linear O(n log n) is expected for smaller input data, and as the input size grows the
runtime approaches the worse case O(n2).

The runtime data is the basis for the speedup calculations, presented in the graph
seen in figure 4.2. Here the speedup for the four largest genomes is superimposed on
the previously presented graph showing the theoretical speedup seen in figure 3.3.
The data indicates that the larger genomes can utilise the additional cores better.
Measurements of CPU utilisation can be seen in appendix B.
The memory consumption is almost the same, regardless of the number of cores used,
see figure 4.3. From this information the average peak memory consumption per

18



4. Results

Loblolly pine Larix sibirica Palaemon Human
0

1

2

3

4

5

6

7

·104

T
im

e
[S
ec
on

ds
]

Runtime in seconds

1 Core 4 Cores 16 Cores 32 Cores

Figure 4.1: Actual runtime in seconds for each genomes with regards to execution
on 1, 4, 16 and 32 cores. Each test except Loblolly Pine 1 core has been performed
multiple times and the standard deviation is accounting for the error bars present.

input character is calculated to be roughly 24.68 bytes. While this is much higher
than the WOTD-algorithm, this can reasonably be explained by the modifications
made to allow for execution with larger genomes as input. This line of thought will
be expanded upon in the discussion.

4.3.3 Load balancing
As described previously, because of the difference in how the data distributed, the
different threads have different runtime. In figure 4.4 and 4.5 this is shown with
regards to the largest genome tested. The green-blue line is the duration of the
construction performed in series, the orange line in parallel and the blue line is time
spent waiting. The initial observation made is that as more cores are used, the
proportion of the runtime that is spent working in series grows by 25%. While a
small increase is to be expected, there is more going on and this will be expanded
upon in the discussion.
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Figure 4.2: Graph presenting the speedup, with regards to different number of cores,
and how they relate to the theoretical speedup for p = 0.9.

The time spent waiting increases as the number of cores increases. However, as the
total execution time is shorter the actual time spent waiting is comparatively lower.
The average time spent waiting when working with 4 threads is 17% and 22% for
16 cores. The distinct pattern of which threads are the fastest or slowest are very
similar among the different genome. Graphs for the other 3 tested genomes can be
found in appendix C.
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Figure 4.3: The peak memory consumption of the execution for the four largest
genomes tested.
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Figure 4.4: The proportion of runtime spent in serial, parallel and the correspond-
ing wait for the lazy suffix tree construction on 4 cores. The genome used was loblolly
pine.
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Figure 4.5: The proportion of runtime spent in serial, parallel and the correspond-
ing wait for the lazy suffix tree construction on 16 cores. The genome used was
Loblolly pine.
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5
Discussion and Conclusion

5.1 Discussion
Following subsections discuss the results regarding the distributed and shared mod-
els.

5.1.1 Distributed Model
After exhaustive initial testing of the different parameters and their impact on the
accuracy for very short genomes (<10 MB), some initial promise was shown with
regards to the FSS and NLL metrics approaching 0. Based on this analysis, some
relationship between the parameters and the accuracy was determined. However,
intermediate tests with medium sized genomes (200-600 MB) indicated that these
relationships started to break-down. Additionally, the accuracy of the parallel con-
struction degraded with an increase of cores used and the only way to mitigate this
in practice was to increase the overhead. This necessity to give the thread respon-
sible for a sub tree construction more of the data had the effect that runtime for
the higher core count was similar to that of lower core count in order to achieve the
same accuracy.

Based on the observation that different genomes require different tuning to produce
accuracy scores of roughly 15% (FSS 0.15, NLL 0.1-0.01) and that this approach
would consume more memory lead to the investigation of other methods. As the
shared memory model showed better accuracy scores, and mostly more concise re-
sults, the distributed approach was scrapped.

5.1.2 Shared Model
While the approach of distributing work on a specified depth yields some good re-
sults, the verification showed that with longer sequences some discrepancies appear.
This being said, a difference of 2.32 ∗ 10−7 for a sequence of length 387 ∗ 106 is to
be considered very minor. More potential issues for this method are scaling, lack of
load balancing and the high memory consumption, which will be discussed further
in this section.

The issue with scaling in general is that as the number of cores increases the time
spent in series increases proportionally. In fact, for the tests performed on 4 and
16 cores the increase is almost threefold. This problem occurs because expanding
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nodes closer to the root require more work in comparison to nodes further down.
Based on the trend observed, at some point the serial runtime will stand for a higher
proportion than its parallel counterpart.

Because of the lack of load balancing, the effective utilisation of cores will decrease
as the number of cores increases. Already, at the increment from 4 to 16 cores the
portion where no threads were executing increased from 17% to 22%. This trend
is expected to continue for higher numbers of available cores. There is potential to
expand on this work and add load balancing properties by allowing for messages to
be sent between active threads.

Lastly, the memory consumption is quite high. The main cause for this is that the
large sequences considered force the program to utilise 64-bit integers rather than
32-bit for large parts of the execution. This is the only increase in comparison to the
base model. While some of the additional 8 bytes could be compressed somewhat
with a custom data type, this was found to be outside of the scope of the project.

Regardless of these potential issues though, the implementation showed a decent
level of speedup, especially when looking at the larges genome tested. It achieves
almost the theoretical speedup. The speedup for the other 3 tapers off earlier and
shows little improvement between 16 and 32 cores. Something to keep in mind here
is that the test shown as 32 cores is in fact 64 threads making use of 32 cores. This
difference between the largest genome and the other three is most likely explained
by the fact that the large input size allows the cores to be utilise better. However,
it could also be because the time complexity seems to go from linear to exponential.
This increased time complexity could be responsible for the extremely long runtime
of the one core test, and subsequently yield higher speed-up.

Moreover, something else that could have an impact on the speedup, which has not
been discussed in this report, is the architecture of the test system. An example
of this in action is that in between the initial test and the tests performed to le-
gitimise those a perceived degradation of performance on the test system led to an
investigation. This investigation culminated in the changing of some system settings
after which the runtime for the serial test improved. The improvement overall was
approximately 15%. This is a probable cause for the large errors that can be seen
in the graph shown in the result chapter.

5.2 Conclusion
This research aimed to suggest and implement parallel VLMC construction. The
initial runtime analysis showed that the suffix tree construction and suffix link addi-
tion, which were the main focus of the work, accounted for 90% of the runtime. Two
possible practical approaches were investigated. The so called shared model showed
higher promise of performance increase and was therefore chosen as the main focus
of the thesis. The results from the runtime tests showed a satisfactory level of paral-
lelism in comparison to theoretical calculations. Additionally, it was shown that the
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time-complexity approached an exponential worst case rather then the linear best
case as input size grew. Lastly, the memory footprint of the implementation was
determined to be very high. This and the lack of load balancing warrants future
research.
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A
Hardware information of test

system

cat /proc / cpu in fo

p ro c e s s o r : 0
vendor_id : GenuineInte l
cpu fami ly : 6
model : 85
model name : I n t e l (R) Xeon(R) Gold 6126 CPU @ 2.60GHz
stepp ing : 4
microcode : 0x2000064
cpu MHz : 3630.602
cache s i z e : 19712 KB
phys i c a l id : 0
s i b l i n g s : 24
core id : 0
cpu co r e s : 12
ap i c i d : 0
i n i t i a l ap i c i d : 0
fpu : yes
fpu_exception : yes
cpuid l e v e l : 22
wp : yes
f l a g s : fpu vme de pse t s c msr pae mce cx8 ap ic sep mtrr

pge mca cmov pat pse36 c l f l u s h dts acp i mmx f x s r s$
bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass

l 1 t f mds
bogomips : 5200.00
c l f l u s h s i z e : 64
cache_alignment : 64
address s i z e s : 46 b i t s phys i ca l , 48 b i t s v i r t u a l
power management :
. . .

cat / proc /meminfo

MemTotal : 791275468 kB

I



A. Hardware information of test system

MemFree : 687107596 kB
MemAvailable : 757022628 kB
Bu f f e r s : 986128 kB
Cached : 68532740 kB
SwapCached : 0 kB
Active : 78343352 kB
Ina c t i v e : 13755588 kB
Active ( anon ) : 22582276 kB
Ina c t i v e ( anon ) : 117152 kB
Active ( f i l e ) : 55761076 kB
Ina c t i v e ( f i l e ) : 13638436 kB
Unevictab le : 0 kB
Mlocked : 0 kB
SwapTotal : 515068 kB
SwapFree : 515068 kB
Dirty : 4 kB
Writeback : 0 kB
AnonPages : 22573568 kB
Mapped : 705992 kB
Shmem: 119364 kB
Slab : 6636028 kB
SReclaimable : 5502528 kB
SUnreclaim : 1133500 kB
KernelStack : 24464 kB
PageTables : 433804 kB
NFS_Unstable : 0 kB
Bounce : 0 kB
WritebackTmp : 0 kB
CommitLimit : 396152800 kB
Committed_AS : 133708596 kB
VmallocTotal : 34359738367 kB
VmallocUsed : 0 kB
VmallocChunk : 0 kB
HardwareCorrupted : 0 kB
AnonHugePages : 7366656 kB
ShmemHugePages : 0 kB
ShmemPmdMapped : 0 kB
CmaTotal : 0 kB
CmaFree : 0 kB
HugePages_Total : 0
HugePages_Free : 0
HugePages_Rsvd : 0
HugePages_Surp : 0
Hugepages ize : 2048 kB
DirectMap4k : 3655488 kB
DirectMap2M : 529747968 kB
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DirectMap1G : 272629760 kB
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C. Visualisation of thread execution
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