
Compressed Machine Learning on Time
Series Data

Efficient compression through clustering using candidate se-
lection and the application of machine learning on compressed
data

Master’s thesis in Computer science and Engineering

FELIX FINGER
NATHALIE GOCHT

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Compressed Machine Learning on Time Series
Data

Efficient compression through clustering using candidate selection
and the application of machine learning on compressed data

FELIX FINGER
NATHALIE GOCHT

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Large-scale Clustering of Time Series
Efficient compression through clustering using candidate selection and the applica-
tion of machine learning on compressed data

FELIX FINGER, NATHALIE GOCHT

© FELIX FINGER, NATHALIE GOCHT, 2020.

Supervisor: Alexander Schliep, Computer Science & Engineering
Advisor: Gabriel Alpsten and Sima Shahsavari, Ericsson
Examiner: Devdatt Dubhashi, Computer Science & Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Prediction using compression

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Large-scale Clustering of Time Series
Efficient compression through clustering using candidate selection and the applica-
tion of machine learning on compressed data
FELIX FINGER
NATHALIE GOCHT
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The extent of time related data across many fields has led to substantial interest
in the analysis of time series. This interest meets growing challenges to store and
process data. While the data is collected at an exponential rate, advancements in
processing units are slowing down. Therefore, active research is practiced to find
more efficient means of storing and processing data. This can be especially difficult
for time series due to their various shapes and scales.
In this thesis, we present two variants for optimising a Greedy Clustering algorithm
used for lossy time series compression. This study investigates, whether the efficient
but lossy compression sufficiently preserves the characteristics of the time series
to allow time series prediction and anomaly detection. We suggest two variants
for a performance optimization, Greedy SF and Greedy SAX. These algorithms are
based on novel lookup methods for cluster candidate selection based on statistical
features of time series and extracted SAX substrings. Furthermore, we enabled
the clustering to allow processing time series with different value ranges, which
allows the compression of time series with various scales. To validate the end-
to-end pipeline including compression and prediction, a performance evaluation is
applied. To further analyse the applicability, a comprehensive benchmark against a
pipeline with an autoencoder for compression and a stacked LSTM for prediction is
performed.

Keywords: time series clustering, large scale data, machine learning, prediction,
anomaly detection, compression

v

Acknowledgements
We want to express our gratitude towards our academic supervisor Alexander Schliep
and our industrial supervisors Gabriel Alpsten (Ericsson) and Sima Shahsavari (Er-
icsson) for their continuous, useful feedback and guidance throughout this project.
Especially during complicated circumstances regarding the corona virus, we appreci-
ate the support even more. In addition, a thank you to Bengt Sjögren for helping us
getting familiar with spark and supporting us through out our challenges. We would
also like to acknowledge our examiner Devdatt Dubhashi for his helpful feedback
and remarks during the midterm discussion.

Felix Finger and Nathalie Gocht, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Background . 1
1.2 Related Works . 2
1.3 Roadmap . 3
1.4 Ethical Considerations . 4

2 Theory 5
2.1 Time Series Clustering . 5

2.1.1 Normalization and Similarity Measures for Time Series 5
2.1.2 Greedy Plain Clustering . 6

2.2 Symbolic Aggregate ApproXimation (SAX) 7
2.3 Autoencoder . 8
2.4 Long Short Term Memory (LSTM) 9
2.5 Evaluation Metrics . 9

3 Methods 11
3.1 Data Introduction . 11
3.2 Data Retrieval . 12
3.3 Smoothing Techniques . 14
3.4 Candidate Selection in Greedy Clustering 16

3.4.1 Greedy SAX Clustering . 18
3.4.2 Greedy SF Clustering . 19

3.5 Magnitude Adaptive Clustering . 22
3.6 Evaluation of Clustering . 25
3.7 Prediction . 26

3.7.1 Long Short Term Memory (clusterLSTM) 26
3.7.2 Autoencoder and Stacked LSTM (autoLSTM) 28

3.8 Anomaly Detection . 30
3.9 Evaluation of Machine Learning . 31

4 Results and Discussion 33
4.1 Exploration of Cluster Results . 33
4.2 Clustering . 35

ix

Contents

4.2.1 Feature Selection in Greedy SF 35
4.2.2 Clustering Performance . 38
4.2.3 Inferring Descriptive Statistics 41

4.3 Prediction . 43
4.3.1 Clustering and LSTM Prediction (clusterLSTM) 43
4.3.2 Stacked LSTM Prediction (autoLSTM) 44
4.3.3 Comparing Resources . 45
4.3.4 Anomaly Detection using Prediction Errors 49

4.4 Conclusion . 50

5 Future Work 52

Bibliography 54

A Appendix I
A.1 Prediction Results . I
A.2 Evalution of Clustering . IX

x

List of Figures

1.1 Roadmap . 4

2.1 Exemplary clusters . 5
2.2 Examples for SAX substrings . 8
2.3 Autoencoder workflow . 9
2.4 LSTM cell . 9

3.1 Example for Counter 79 . 12
3.2 Example for Counter 47 . 12
3.3 Example of overlapping weekly time series of Counter 79 13
3.4 Data retrieval workflow . 13
3.5 Example of moving average . 15
3.6 Example calculation of adapted moving average 15
3.7 Moving average technique based on the same weekday 16
3.8 Example for monthly average smoothing 16
3.9 Distribution of scales . 22
3.10 Abstract visualization of different tau values 23
3.11 Show case for dynamic tau calculation 24
3.12 Workflow of benchmark cpmpression and prediction 29
3.13 Architecture of stacked LSTM . 30
3.14 Architecture of autoencoder . 30
3.15 Overview of prediction pipelines . 31

4.1 Example clusters and their members 34
4.2 Unique clusters per cell . 34
4.3 Frequency of cluster labels for one cell 35
4.4 Distribution of statistical feature values for Counter 79. 36
4.5 Clustering times for different Greedy Clustering algorithms 39
4.6 Example for descriptive statistics comparison 42
4.7 Data sets for prediction . 44
4.8 Visualisation of an exemplary prediction using the autoLSTM 45
4.9 Comparison of prediction MSEs between clusterLSTM and autoLSTM 46
4.10 Example autoLSTM prediction . 47
4.11 Comparison of run times . 48
4.12 Show case for anomaly detection . 49

A.1 Prediction MSE comparison for all cells VII

xi

List of Figures

A.2 Prediction MSE comparison all cells VIII
A.3 Clustering performance for all data sets IX

xii

List of Tables

2.1 Breakpoint table for SAX extraction 8

3.1 Data sets for machine learning . 14
3.2 Alternatives to compute the dynamic tau 24
3.3 Configuration of LSTM models . 31

4.1 Analysis of statistical features . 37
4.2 Efficiency of feature extractions . 38
4.3 Performance tuning of SAX parameters 38
4.4 Clustering results for Counter 79 . 40
4.5 Inferring descriptive statistics of compressed data sets 42
4.6 Data sets for prediction . 43
4.7 Results of clusterLSTM . 44
4.8 Comparison of prediction results . 46
4.9 Comparison of computational resources for compression 47
4.10 Performance comparison between the two prediction pipelines 47

A.1 Results for cluster-based predictions II
A.2 Results of Stacked LSTM prediction for 72 cells IV
A.3 Comparison of predictions for two LSTM architectures VI

xiii

List of Algorithms

1 Greedy Clustering (Baseline) . 7

2 Greedy Clustering (Version 2.0) . 17
3 Create new cluster (Greedy SAX) . 19
4 Get candidates (Greedy SAX) . 19
5 Create new cluster (SF version) . 20
6 Get candidates (Greedy SF) . 21
7 Create similarity matrix . 28

xiv

Acronyms

APCA Adaptive Piecewise Constant Approximation.

DFT Discrete Fourier Transform.
DWT Discrete Wavelet Transform.

ED Euclidean Distance.

LSTM Long Short Term Memory.

PAA Piecewise Aggregate Approximation.

RNN Recurrent Neural Network.

SAX Symbolic Aggregate ApproXimation.
SF Statistical Features.

xv

Glossary

cluster candidate A subset of already computed prototypes that
are returned by the method getCandidates
during the greedy clustering algorithm..

cluster label Each cluster representative can be addressed
with its label which corresponds to the index
of the representative in the list of cluster cen-
ters.

cluster representative For every cluster computed in the greedy clus-
tering algorithm, there is a cluster centroid,
which contains the time series of 96 data
points, that was used to create the cluster.
This centroid is also called cluster representa-
tive.

Greedy Plain Greedy clustering without candidate selection.
Greedy SAX Greedy clustering improved by candidate se-

lection using SAX sub strings.
Greedy SF Greedy clustering improved by candidate se-

lection using statistical features.

xvi

1
Introduction

There are many disciplines where data has a temporal component. This could in-
volve natural processes like weather or sound waves and human-made processes,
like a financial index or sensor data of a robot. In general, time series are collected
and analysed in many areas of science such as in astronomy, biology, meteorology,
medicine, finance, robotics and engineering. This collected data has been growing
exponentially in the last years and it is getting more difficult to store and process
this information [20]. These challenges increase for machine learning applications
on large data sets due to their computational complexity. Data compression might
be necessary to enable machine learning models. However, compressing time series
is a challenge of its own because of their noisy and complex nature. One way of
compressing time series is clustering. Clustering is used to compress time series by
finding cluster representatives for similar groups of time series. Active research has
been going on and is continuously done in compressing and utilizing the information
contained in time series by means of clustering algorithms. As of today, clustering
on time series is still not an efficient process and requires a lot of computing time.
This thesis work introduces an improved version of the Greedy Clustering algorithm
proposed by [2] to dynamically handle different scales in the time series. Moreover,
two novel lookup methods for cluster candidate selection based on time series statis-
tics and SAX features are suggested to reduce the complexity of this algorithm.
Finally, a data set provided by Ericsson’s radio network stations is compressed by
this algorithm and used for evaluating whether time series prediction and anomaly
detection can be applied.

1.1 Background
Time series can be compressed using different methods. This study focuses on a
clustering-based method. Alternative solutions are described in related work. There
are various clustering algorithms. Some are not especially applicable for time series
such as k-means and others are specialised for time series data such as k-shape.
These algorithms have a crucial disadvantage when dealing with large amounts of
data as they require multiple iterations until convergence. These algorithms cluster
by comparing every time series in every iteration with every cluster. They belong
to the class of NP hard problems and are therefore not applicable when hardware is
restricted and amount of data is large. Using k-means, following Lloyd’s algorithm,

1

1. Introduction

for time series clustering has a complexity of O(i× c×n× l), where i is the number
of iterations, c the number of clusters, n the size of the data set and l the length of
a time series [9].

However, there is a clustering algorithm that only iterates twice over the data set,
called the Greedy Clustering algorithm. This algorithm creates cluster in the first
iteration and performs possible reassignments in the second iteration. In every
iteration, the series is compared to every cluster during the clustering, a total of
n × c comparisons is needed. Therefore, it is crucial to employ some technique so
that the number of comparisons can be reduced [2]. Essentially, the set of potential
clusters a time series can be assigned to needs to be narrowed down to decrease the
number of comparisons. This accounts especially for time series with an irregular
distribution. One downside of this algorithm is its focus on efficiency rather than
cluster quality. To further maintain precision, the settings of the clustering need
to be adjusted, such that approximately 1-10% of the time series are converted
to clusters. Considering an example of 1 million time series and 100 000 clusters,
the complexity would be very high even for this algorithm due to its large number
of similarity comparisons. Thus, we counter this situation by implementing two
lookup tables utilizing two kinds of time series features to decrease the number of
cluster comparisons during the clustering. There is a chance that similar time series
will not have similar enough features to be found by the lookup table. Hence, it
does not guarantee finding the most similar matches, but at least finding somewhat
similar matches given the computational resources. The efficient clustering of large
quantities of time series could enable the application of machine learning tasks as
anomaly detection or prediction. We assume that a sequence prediction could be
applied on the cluster labels instead of the original time series in an efficient manner
while maintaining an acceptable loss.

Based on these assumptions, we identified two research questions.

Question 1: How and to what extent can the computational complexity in time
and space, of existing time series clustering methods, be further decreased?

Question 2: How can machine learning techniques for the prediction of future
time series and anomaly detection on the compressed time series be designed and
implemented?

1.2 Related Works

There are many known methods for data compression. Salomon and Motta [21]
state that even though they are based on different ideas, are suitable for different
categories of data, they are all based on the same principle of compressing data by
removing redundancies. On the one hand, time series can be compressed lossless in
byte form using standard compression techniques as e.g. Snappy [8] introduced by
Google or Zstd [5] presented by Facebook. On the other hand, they can be com-
pressed lossy using different methods. Clustering can be used to remove redundant

2

1. Introduction

information by finding common structures in time series and only storing the cluster
representative. Another possibility for compression are neural networks that could
be trained on the time series to find a dense representation of the data by project-
ing it into lower space. This class of neural networks belongs to the category of
autoencoders.

Our master thesis is inspired by Alpsten and Sabi’s master thesis ”Prototype-based
compression of time series from telecommunication data [2]. They implemented a
new type of compression for time series based on clustering and residuals with the
aim to compress the data storage of time series. For the evaluation of the clustering,
they used data sets with less than 100 000 time series. Different algorithms were
analysed and one promising algorithm in terms of computational efficiency was the
Greedy Clustering algorithm presented in Section 2.1.2.

Our focus of this study is enabling machine learning on large time series data sets.
When dealing with large data sets, lossy compression is beneficial not only in terms
of data storage but also due to smaller features as input for machine learning models.
We identified a research gap here, as clustering of time series is still not an efficient
process where 1 - 10% of the data set can be translated to clusters. Therefore, we
used the Greedy Clustering algorithm proposed by Alpsten and Sabi as a starting
point for improvement in regard to larger data sets.

For further background, a broad survey on data mining of time series data is given
by Liao [23]. In this paper, various time series clustering approaches are presented
and described.

In order to improve the efficiency of the Greedy Clustering algorithm, two types of
candidate selections are implemented and compared with the plain Greedy Cluster-
ing. One candidate selection is based on the Symbolic Aggregate ApproXimation
(SAX) representation as presented in [14]. The SAX representation is often com-
pared to other time series representations such as Discrete Fourier Transform (DFT),
Discrete Wavelet Transform (DWT) and Adaptive Piecewise Constant Approxima-
tion (APCA) [13]. An alternative to SAX is introduced by Malinowski and Guyet et
al. [15], who presents the 1d-SAX representation that takes the slope of each segment
of the Piecewise Aggregate Approximation (PAA) into account. Sirisambhand and
Ratanamahatana [22] propose a dimensionality reduction technique for time series
data by combining the PAA segmentation with an Additive Representation.

Another related project using SAX feature extraction to enable indexing and mining
of a very large number of time series was presented by Camerra and Palpanas et al.
They implemented a novel tree based index structure iSAX 2.0 [4].

1.3 Roadmap
The required theoretical knowledge for the techniques used in clustering, machine
learning and evaluation are presented in Section 2. This section is followed by
a detailed description of the methods used. Figure 1.1 guides the reader in the

3

1. Introduction

general process of this research and visualizes the main concepts described in detail
in Section 3. This section contains information about the data sets, the data retrieval
using Spark and data cleaning and smoothing techniques. It describes the two novel
algorithms Greedy SF and Greedy SAX and the magnitude adaptive clustering
that allows to compress time series of different scale. These methods are followed
by the data engineering required for the respective machine learning applications
including the cluster based prediction and the benchmark model that predicts values.
Finally, it is outlined how the evaluation of the clustering results and the machine
learning tasks is applied. The results are presented and discussed in Section 4 and
summarized in a conclusion. Finally, different ideas on future work are given.

Figure 1.1: Roadmap

1.4 Ethical Considerations
The data is collected from Ericsson’s Network management tools and provides in-
formation about network performance on the cell level. Hence, the data used within
this research does not contain any personal user specific information and does not
compromise any user privacy. The results in this thesis could have many positive
effects as it enables the application of a wide range of tools that could otherwise not
be applied.

4

2
Theory

2.1 Time Series Clustering
Using clustering, n observations are partitioned into k clusters, where a cluster
is characterized with the notions of homogeneity, the similarity of observations
within a cluster and the dissimilarity of observations from different clusters. In
time series clustering, an observation consists of values measured over a defined
time interval[19]. Several methods have been proposed to cluster time series. All
approaches generally modify existing algorithms, either by replacing the default
distance measures with a version that is more suitable for comparing time series
(raw-based methods), or by transforming the sequences into flat data, so that they
can be directly used in classic algorithms (feature- and model-based methods)[23].
The Greedy Clustering in this research is a centroid based algorithm and Figure 2.1
demonstrates an example of a centroid in red and its assigned cluster members in
grey.

Figure 2.1: Example cluster with its cluster members.

2.1.1 Normalization and Similarity Measures for Time Se-
ries

In order to prepare time series for clustering, they need to be normalized as differ-
ences in scale can lead to false similarity comparisons. In general, approaches for
time-series comparison use the z-score normalization. A distance measure is then
used to determine their similarity and captures possibly more invariances[19]. The

5

2. Theory

z-normalization is defined as follows, where µ is the mean and σ is the standard
deviation over the entire normalized data set,

z = x− µ

σ
. (2.1)

By keeping the values for µ and σ used for normalization for every data set, the
initial values can be restored afterwards.

Another option to normalize the data is the min-max normalization. This scales all
time series values between zero and one and is defined as in[1]

x′ = x−min
max−min . (2.2)

The distance metric used in this research is the euclidean distance (ED)[7]. It is
defined as follows, where x and y correspond to vectors of the time series and n
represents the length of the time series,

ED(~x, ~y) =
√√√√ n∑

i=1
(xi − yi)2. (2.3)

The computation of the ED distance is efficient and the distance measure penalizes
large deviations as squares grow faster, which applies to small numbers and therefore
works on normalized data. Here, value 0 would indicate that the time series are
exactly equal to each other. The comparison performed by the euclidean distance
may not catch all the similarities as time series could be not perfectly aligned. In
this case the distance could become very large despite a very similar shape.

2.1.2 Greedy Plain Clustering
Algorithm 1 shows the Greedy Clustering algorithm as it was presented by Alp-
sten and Sabis[2]. In this research we will refer to this algorithm as Greedy Plain.
Compared to other clustering algorithms as k-means or k-shape, the Greedy Clus-
tering method only works as a two-pass algorithm and collects cluster centers rather
than computing them. Additionally, the resulting clusters will most likely not sep-
arate the data set in clearly defined clusters. Since clusters are formed "on the go",
overlapping clusters are possible.

The number of clusters k is not specified beforehand in the Greedy Clustering ap-
proach. The algorithm has two stages, the cluster formation and the cluster assign-
ment. In the first pass, we iterate through every time series. The first time series
forms the first cluster centroid and is also assigned as a cluster member. For every
new time series, its distances to the existing cluster centers are calculated. If the
shortest distance exceeds a specified threshold tau (τ), the time series forms a new

6

2. Theory

Algorithm 1: Greedy Clustering (Baseline)
Input : dataset, tau, distance measure
Output: cluster assignments, clusters
Cluster formation:
cluster = [];
for each time series ts do

if there exist no clusters c so that d(c,ts) < tau then
add ts to cluster

Cluster assignment:
for each time series ts do

find a clusters c so that d(c,ts) is minimal;
assign ts to that cluster

return cluster assignments, clusters

cluster and becomes the center or representative. If the distance is smaller than
tau, the time series is assigned to the already existing cluster. Here, tau can be
defined as the radius around each cluster center. If a data point falls within this
radius it belongs to that cluster. By setting tau very small, more clusters with fewer
members are created. When tau is chosen rather large, less cluster will be formed.
In the second stage every time series is compared to every cluster to find the final
cluster assignment with the smallest distance. The complexity for the second pass is
O(n∗k) where n is the number of time series and k is the number of clusters created.
Taking the complexity of this algorithm into account, it is much less complex than
k-means or k-shape.

2.2 Symbolic Aggregate ApproXimation (SAX)

The SAX transformation converts continuous-valued time series in a stream of char-
acters that represents the original time series. Figure 2.2 shows the basics of the
SAX transformation. Two parameters are chosen for the transformation: α, the size
of the alphabet, and w, the number of words to be produced. First, the time series is
normalized and segmented into equal sized user-defined pieces using Piecewise Ag-
gregate Approximation (PAA), which reduces the dimensionality of the time series.
Each time series need to be normalized individually to have a mean at zero and a
standard deviation of one. The value of each segment is the mean of the data points
in that segment. These segments are then translated into symbolic words using a
breakpoint table. Breakpoints define numeric borders. If two segments fall above
and under a breakpoint they have a different letter assigned. According to Lin et
al.[13], breakpoints are defined as a sorted list of a− 1 numbers that split the area
under a N(0, 1) Gaussian curve in a equal-sized areas. The number of breakpoints
is equal to α − 1. The values of the breakpoint can be looked up in a statistical
table.

7

2. Theory

a
breakpoint β 3 4 5
β1 −0.43−0.67−0.84
β2 0.43 0 −0.25
β3 0.67 0.25
β4 0.84

Table 2.1: Breakpoint table for a = 3, 4, 5 (comp. [13]).

Figure 2.2: Example of SAX for a time series, with parameters α = 3 and w = 8.
The time series above is transformed to the string cbccbaab, and the dimensionality
is reduced from 128 to 8[14].

Table 2.1 shows the breakpoints for a = α−1 = {3−5}. In Figure 2.2 the breakpoint
borders are shown as horizontal lines at 0.43 and −0.43. These borders state at
which point the segment has a different symbolic word. Due to the normalization
of every individual time series, the SAX representation doesn’t preserve the scale or
distribution of the entire data set but only the shape of the time series.

2.3 Autoencoder
An autoencoder neural network is an unsupervised learning algorithm that applies
backpropagation, setting the target values to be equal to the inputs. Autoencoders
compress the input into a lower-dimensional code and then reconstruct the output
from this representation. The code is a compact learned summary of the input,
also called the latent-space representation. In other words, it is trying to learn an
approximation to a function, so that output x̂ is similar to x[18]. An autoencoder
consists of 3 components: encoder, code and decoder. The encoder compresses the
input and produces the code, the decoder then reconstructs the input only using this
code. This can be used for compressing images, as well as time series to accelerate
machine learning on reduced data sets.

Figure 2.3 presents an example of the basic workflow of the autoencoder used on
time series. Four hyperparameters need to be defined before the training, the code
size, representing the number of nodes in the middle layer, the architecture of the
hidden layers and a loss function.

8

2. Theory

Encoder Decoder

Figure 2.3: Autoencoder workflow.

Figure 2.4: Structure of a LSTM cell[6].

2.4 Long Short Term Memory (LSTM)
Recurrent Neural Networks (RNN) can be used to learn and predict sequences since
it applies the same function to each input and stores information in an internal
memory. One of the general appeals of RNNs is the idea that they are able to
connect previous information to the present task. Nevertheless, due to the vanishing
gradient problem, RNNs are not able to remember information for a longer period.
Therefore, a simple RNN is unable to handle large input sequences[10]. Hochreiter
and Schmidhuber proposed the Long Short Term Memory (LSTM) model based on
a RNN. LSTMs are capable of learning long-term dependencies in sequences and
remembering information for a longer period of time[11].

Figure 2.4 demonstrates the structure of one recurrent unit within the LSTM. In
comparison to a simple RNN, it has three gates, an input gate processing the current
state, a forget gate that contains information about previous states as well as an
output gate that combines the current information with the previous knowledge.
The forget gate ensures to forget information that is not important and tries to
learn important repeating observations and patterns in sequences.

2.5 Evaluation Metrics
MSE

The Mean Squared Error is commonly used to evaluate regression models. It
is defined as the sum over all the data points, of the square of the difference
between the predicted and actual target variables, divided by the number
of data points. Within this thesis, it is used as a loss function within the
autoencoder as well as to measure the error of the predictions. The MSE is

9

2. Theory

calculated for every predicted cell since cells can respond differently to the
prediction method. Therefore, we can evaluate which cells are suitable for the
predictions.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (2.4)

Pearson’s correlation coefficient
A correlation coefficient r of 1 means that for every positive increase in one
variable, there is a positive increase of a fixed proportion in the other. Within
this research, the pearson correlation coefficient is used to measure, whether
statistical features are useful to infer how close or far away time series are from
each other based on the euclidean distance.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(2.5)

10

3
Methods

This section introduces the data sets used in this thesis, followed by a detailed de-
scription of the data retrieval process using a spark pipeline. Then, several smooth-
ing methods for time series are introduced to increase the cluster efficiency. This
section is followed by a detailed explanation of the two candidate selections for
Greedy SF and Greedy SAX. Subsequently, the magnitude adaptive clustering is
outlined, that enables the clustering of time series with different scales, finalized
by a description of the clustering evaluation. For the time series prediction, the
feature engineering process is outlined including the architectures of the two models
in comparison. This section concludes with the model for anomaly detection and
how the machine learning results are evaluated.

3.1 Data Introduction

All our mobile devices can be connected to the internet by using radio access network
cells. To ensure that these cells have a good performance and stability, performance
measurement counters are collected and evaluated. These counters describe different
aspects of the ongoing traffic in a cell and store values for every 15 minutes, forming
time series of 96 values for every day and cell. We analysed a representative subset
of these counters that are interesting to analyse and eventually allow the application
of machine learning.

We explored the data sets for different cells in regard to the level of noise and if they
show some regular shape or trend. Figure 3.2 and 3.1 present sample time series
of different cells for the extracted Counter 47 and 79. On the left, noisy samples
are shown, whereas on the right, some trend and regular shape is visible. Regular
behaviours among cells can differ due to the cell’s location. For example, a cell in
a rural area shows a different behaviour than a cell in an industrial area. Another
observation is a different behaviour on weekdays compared to the weekend.

If a cell has an uncommon behaviour, it can be an indication that this cell might
not be perfectly suited for prediction. This accounts especially for a compressed
representation as we have to accept some information loss that could concern these
outliers.

11

3. Methods

Figure 3.1: Example time series for Counter 79.

Figure 3.2: Example time series for Counter 47.

This might lead to many different cluster labels for one cell, which could not be
used for prediction. On the other hand, for a cell with small variations, models
might only predict the same cluster. This type of cell would not be suitable for
prediction. Nevertheless, many cells with a common repeating pattern are observable
for Counter 79.

Figure 3.3 presents 52 weeks overlapping for one specific cell within the data set
of Counter 79. The 672 data points represent the days from Monday to Sunday,
where every day consists of 96 data points, respectively. These weeks are visual-
ized in an overlapping fashion, so that differences in behaviour can be observed.
Sunday has an observable difference in amplitude and Saturday when compared
against the weekdays Monday to Friday. In general, these plots help to evaluate the
level of noise within the data, and potential patterns. Some days within the week-
days indicate potential anomalies as the time series deviate from regular behaviour.
This supports our assumption that some cells could contain anomalies, allowing the
application of anomaly detection. We observed a regular pattern for many cells,
which strengthened our assumption that forecasting using compressed time series is
possible.

3.2 Data Retrieval
The data and the environment for computation are provided by Ericsson. We used
data from a RAN network that is known to deliver good data quality. The data set

12

3. Methods

Figure 3.3: Overlapping weeks for one cell of Counter 79. The x-axis represents
the data points in a time series. Each week consists of 672 data points. The y-axis
shows the normalized values.

(1) Select columns and
filter by cell type

(2) Drop "cell type"
column

(3) Drop duplicates of
(cell, timestamp)

(4) Fill missing values
with "-1"

(5) Collect all 96 values
of each cell in one list

(6) Skip time series with
more than a third
missing values

(7) Transform to pandas

Figure 3.4: Data retrieval workflow using pyspark.

is read from parquet files using spark. The workflow of the pyspark logic is presented
in Figure 3.4.

We filtered the data set by a specific cell type, where certain Counters are measured.
Then, we filter for Counters that are interesting for machine learning applications
and at the same time might show a more regular shape (comp. (1) in Fig. 3.4). In
the results, only two counters are used. An overview over these two Counters and
the purpose within this project is presented in Table 3.1.

Duplicates in cell and timestamp combination are dropped and missing values flagged
to be approximated. For every cell, the values are collected in one list by using
the pyspark function collect_list over a window. This window is defined by a
partitionBy cell and ordered by timestamp. This guarantees that all values of one
cell are collected in the order of the timestamps.

Additionally, missing values are approximated with the median of the time series
when more than 64 out of 96 data points in a time series are filled. Otherwise the
time series is disregarded. This way we can ensure that every time series is complete,

13

3. Methods

Counter Data set GB Size Cells Application

79 Y 4.700 1 016 489 >5 000 clustering
X 0.943 411 160 >1 000 clustering, machine learning

47 X 1.184 342 740 >1 000 clustering

Table 3.1: Data sets for clustering and machine learning. For each data set the
size in Giga Byte, the number of time series and the number of cells is given.

which prevents inconsistencies during the clustering. The data is processed day by
day resulting in a spark data frame in which each line represents a cell at this specific
date. The columns are the counters which hold arrays of 96 data points for each
cell. As a last step, the spark frame is converted in a pandas data frame which is
considerably smaller than the raw parquet format. From this pandas data frame,
time series objects are created and hold the following information.

• cell name
• date
• raw Counter data
• Counter data z-normalized
• Counter data min-max scaled

• statistical features for both normal-
isations

• assigned cluster label
• Counter name

The time series are normalized using the z-normalization and the Min-Max scaler
described in Section 2.1.1.

Making use of the distributed computing of spark gave us a remarkable speed up
while reading and processing the data.

3.3 Smoothing Techniques
Smoothing techniques present an option to reduce noise. For telecommunication
data as ours, it can be used to aggregate time series to a common behaviour before
compressing the data. This could potentially improve the compression.

Moving Average

”A moving average is defined as an average of fixed number of items in the time
series which move through the series by dropping the top items of the previous
averaged group and adding the next in each successive average.”[17, ch. 12]

It can be used to smooth time series and eliminate the noise, given a window size
and sliding window step. The time series in Figure 3.5 consists of 29 280 data
points, where every 96 values represent one day. The blue line indicates the original
time series for the cell. The red line shows the basic moving average applied over a
window size of 96 and a sliding window of 1. This basic unweighted moving average
applies an average over a defined window size s and then moves forward in the series

14

3. Methods

Figure 3.5: Moving average of one time series with 29 280 data points and a
smoothing window size of 96

Figure 3.6: Example calculation for moving average on same timestamp and week-
day

with a sliding window step n. The resulting time series is s data points shorter than
the raw time series.

Figure 3.7 shows the original time series for a weekday within a cell and the resulting
smoothed time series after applying this smoothing technique. A more common
behaviour with reduced noise is represented by the smoothed time series.

We don’t apply a moving average in sequence over the 29 280 data points since it
deletes properties of the time series that might be important. Instead, we follow
the expert advice that cells in telecommunication show common behaviour among
specific weekdays. This means that Mondays in sequence might be very similar to
each other, but quite different to a Saturday or Sunday. Therefore, we include this
knowledge in the smoothing approach. We apply a smoothing for every weekday
separately and average every timestamp within the 96 data points for 5 days in
sequence. Figure 3.6 can be used to understand how the smoothing is applied for
Mondays on timestamp 00:00:00 with a window size of 5. This is then applied for
every weekday and for every time stamp using this window size.

Monthly Averages

Another option to find a common behaviour among time series is to average the
four days of the same weekday within a month. This means that all Mondays of a
specific month are averaged and all other weekdays. This finds a common behaviour
and reduces the amount of data noticeably. For example, a data set with 342 740
time series can be reduced to a data set with 96 178 time series. Figure 3.8 presents
an example of this technique, where the red line shows the average time series and

15

3. Methods

Figure 3.7: The upper figure shows the raw, normalized time series of a specific cell
on a specific weekday. The lower figure shows the result of the the moving average
technique. The time series show less noise and a more common behaviour.

Figure 3.8: Monthly average of a specific weekday of a specific cell.

the grey lines represent the four raw time series for a specific weekday in a specific
month.

3.4 Candidate Selection in Greedy Clustering
In this section, we explain how we changed the baseline algorithm referred to as
Greedy Plain and described in Section 2.1.2. In this section, the general algorithm
and its updates for the candidate selection are outlined. The candidate selection

16

3. Methods

Algorithm 2: Greedy Clustering (Version 2.0)
Input : data set, tau, distance measure
Output: clusterAssignments, cluster
Cluster Formation:
clusters = [];
lookupTable = [];
clusterAssignments = [];
for each time series ts do

features ← extract features of ts by using one of two described methods;

if lookupTable is empty then
append ts as new cluster in clusters;
add new cluster in lookupTable using features

end
else

candidates ← get candidates from lookupTable;
bestCluster ← get closest cluster from candidates;
if bestCluster < tau then

append clusterId of bestCluster to clusterAssignments
end
else

append ts as new cluster in clusters;
add new cluster in lookupTable using features;

end
end

end
Cluster assignment:
for each time series ts do

find a cluster with minimal distance to ts using above candidate selection;
assign ts to that clusters in clusterAssignments

end
return clusterAssignments, cluster

based methods are described in more detail in Chapter 3.4.1 and 3.4.2.

Algorithm 2 shows the extended Greedy Plain algorithm. The core of this algorithm
is a preselection of candidates. The differences to Greedy Plain are highlighted
with a yellow color. For each time series, features are extracted using either the
statistical feature extraction or the transformation in the SAX representation. The
lookupTable is empty in the first iteration, indicating that no clusters are created
yet. The first time series is inserted as the first cluster and its extracted features
are added to the lookup table. The structures of the lookup tables and how the
feature values are inserted are described in more detail in Chapter 3.4.1 and 3.4.2.
After the first iteration, cluster candidates are extracted from the lookup table by

17

3. Methods

comparing the features of the time series with the clusters and their features stored
in the lookup table. These candidates are used to find the closest cluster to the time
series using the ED. So instead of calculating the ED for all clusters, the algorithms
with candidate selection only calculate distances to potential candidates. Here, we
used a maximum of 100 candidates. The distance of the closest cluster is compared
to tau. If the distance is smaller than tau the time series is assigned to that cluster.
Otherwise the time series becomes a new cluster and its calculated features are
added to the lookup table.

3.4.1 Greedy SAX Clustering
One approach we implement for cluster candidates selection is based on the assump-
tion that time series can only be similar if large parts of SAX representation are
shared among two time series. A similar argument is often used in approximate
String matching, e.g. for genomics data. The hypothesis is that two sequences are
similar if large parts (large substrings) can be found in both sequences [16, p. 474].

Therefore, we implemented a lookup table that uses extracted SAX subsequences
as keys and additionally, the cluster labels where the SAX substrings are found in
their centroids. For the SAX feature extraction an alphabet size of 5, a word size of
12 and a window size of 4 is used. The word size defines the target dimensionality
of the time series.

Structure of lookup table

The code Listing 3.1 shows an extract of this lookup table. For each SAX substring
found in a new cluster, we store the cluster indices with this specific substring in the
table. At first, we stored the frequencies of the substrings in the according cluster
representatives leading to a list of tuples in each key in the lookup table. The clusters
did not necessarily improve by including the frequencies but the computational
performance appeared to be very slow since the algorithm did an additional for-loop
for each candidate selection, which increased the complexity by the number of data
points. Therefore, we decided to only store the information that the SAX string
occurred at least once.

1 sax_table = {'bbbb ': [1, 25, 27, 30, 43, 49, 54, ...] ,
2 'ccdd ': [116 , 165, 293, 371, 575, 577] ,
3 ...}

Listing 3.1: Dictionary storing a list of cluster labels of cluster representative that
include the SAX string

New entries in lookup table (new cluster)

Every time a new cluster is created during the Greedy Clustering, the keys in the
lookup table are searched for a match to the extracted SAX strings. If the SAX
string does not yet exist, a new key is created and the cluster label is stored within

18

3. Methods

Algorithm 3: Create new cluster (Greedy SAX)
Input : lookupTable, assignments, clusterRepresentatives, saxDict, ts
Output: assignments, clusterRepresentatives
clusterId ← length of clusterRepresentatives;
assign clusterId to ts in assignments array;
for each sequence-value pair in saxDict do

append clusterId to lookupTable[sequence];
end
append ts as centroid to clusterRepresentatives;
return assignments, clusterRepresentatives

Algorithm 4: Get candidates (Greedy SAX)
Input : lookup table, sax, cluster representatives
Output: cluster representatives, cluster labels
hits = [];
for each sequence in sax do

find sequence in lookup table;
append the cluster labels found to the hits list;

find most common cluster labels and their cluster representatives in hits;

this key. If the key already exists, the cluster label is attached to the list. The
pseudo code is presented in Algorithm 3.

Get Candidates

Algorithm 4 outlines how the candidate selection using SAX substrings works. The
goal is to find the closest cluster representatives and their cluster labels to the
currently processed time series t based on the number of shared SAX substrings.
We need to iterate over the extracted substrings for this time series and extract all
the cluster labels found at the respective index in the lookup table. These labels are
attached in a list hits. At the end of the loop, the cluster labels are counted and the
ones with the highest count are returned together with the cluster representatives.

As a result, we reduce the number of cluster comparisons dramatically, especially
when dealing with a higher number of clusters. The ED is used to find the closest
cluster among all candidates returned by the algorithm.

3.4.2 Greedy SF Clustering
Another approach to select candidates is to use time series statistics to determine
whether time series are similar. To extract the features, the python package tsfresh
is used to extract 22 different characteristics from time series. This includes classical
features as mean, median or maximum values or more time series specific features as
number of peaks, skewness or complexity. Later in this study, an extensive feature

19

3. Methods

Algorithm 5: Create new cluster (SF version)
Input : lookupTable, assignments, clusterRepresentatives, statsDict,ts
Output: assignments, clusterRepresentatives
clusterId ← length of clusterRepresentatives assign clusterId to ts in
assignments array;
for each feature-value pair in statsDict do

if lookupTable[feature] is a list then
append (clusterId, value) to lookupTable[feature];
if length of lookupTable[feature] > 100 then

split the list into two equal lists;

else
bin ← find feature list with similar values to value;
append (clusterId, value) to lookupTable[feature][bin];
if length of lookupTable[feature][bin] > 100 then

split lookupTable[feature][bin] into two equal lists;

append ts as centroid to clusterRepresentatives;
return assignments, clusterRepresentatives

selection is outlined, where six out of the 22 features are identified as most efficient
and useful to infer similarity and dissimilarity between time series.

The following aspects are explained to give an understanding how the candidate
selection with statistical features works.

Structure of lookup table

It is essential to understand the structure of the lookup table to understand how
clusters are created. In Listing 3.2, it is outlined how an extract of a lookup table
with statistical features could look like for the feature complexity. The lookup table
presents on the first level the feature and on the second level, the different keys that
define the threshold for which cluster labels are inserted. On the third level, the
cluster labels and their corresponding feature values are stored as a list of tuples.

1 stats_table = {'complexity ': {
2 3.06:[(0 ,2.01) ,(2 ,1.98) ,(4 ,2.44)] ,
3 5.4: [(1 ,5.55)] ,
4 6.3: [(3 ,6.8)] ,
5 8.0: [(5 ,10.08) ,(6 ,12.55)] ,
6 18.06:[(7 ,19.67)] ,
7 22.4:[(8 ,25.7) ,(9 ,23.4)]}
8 'n_peaks ':{ ...}
9 ...}

Listing 3.2: Dictionary storing the time series objects for every split by median of
statistical feature

20

3. Methods

Algorithm 6: Get candidates (Greedy SF)
Input : lookupTable, clusterRepresentatives, statsDict
Output: candidates, mostCommonClusterIDS
hits = [];
for each feature-value pair in statsDict do

if lookupTable[feature] is a list then
extend hits by lookupTable[feature];

else
bin ← find feature list with similar values to value;
extend hits by lookupTable[feature][bin];

hits ← get only clusterIDs from hits;
counterHits ← get counts for each counterID;
mostCommonClusterIDS ← filter for most common 100;
candidates ← filter clusterRepresentatives for mostCommonClusterIDS ;
return candidates, mostCommonClusterIDS

New entries in lookup table (new cluster)

When a new time series leads to the creation of a new cluster, the values of its
statistics are compared against the lookup table. As presented in Algorithm 5, the
bin is searched as a first step, where the cluster id needs to be inserted. Therefore,
the keys of a feature in the table are searched for the closest match corresponding
to the statistical feature value. As long as the number of cluster labels in a key does
not exceed 100, the new label is simply attached to the existing list. If the number
exceeds 100, the bin needs to be split, such that 50 cluster labels are in one bin and
50 in the other bin. That means that two new keys are created, where the first is the
median value and the second the maximum value. As we store the feature values in
the tuples, we can sort them and split the list at the median and allocate the tuples
to the two new keys. After this split, the old key with its 100 members is deleted.
At the end of the clustering, the number of keys at the second level correspond to
the number of bins. The splitting process ensures that the inner entries of the table
are always balanced and grow dynamically with the number of clusters. This table
has to be built separately for every data set due to a different distribution and scale
of values.

Get Candidates

The code for selecting the candidates is presented in Algorithm 6. For every time
series, this method is called to retrieve the cluster candidates before calculating the
ED. Here, for every statistical feature the same procedure is followed. The core of
this function is to find the accurate bin, where the statistical value of the current
time series is matching. To find this bin, the sorted keys of the feature lookup
table need to be iterated over to find the key in the table, where the key is greater
equals the statistical feature value of the current time series. Once the correct bin is
found, the cluster labels stored in this list are attached to a hit list, which stores all

21

3. Methods

Figure 3.9: Distribution of min-max ranges of all time series in the data set.

potential candidates. The last step is to count the occurrences of cluster labels and
select the 100 labels with the highest frequencies. These are the final candidates
returned by the function.

3.5 Magnitude Adaptive Clustering
We started this thesis using a static tau in Greedy Plain. After a thorough investiga-
tion of the cluster results, we realized that the algorithm only compressed a certain
set of time series very well. It produced a vast majority of single clusters compared
to the overall number of clusters and few clusters with medium number of members
and very few clusters with more than 80% of the entire data set grouped together.
We noticed that many cluster representatives are not a good fit for their members
by plotting a subset of cluster centroids with their members.

Even though, the z-normalization is normalizing the data set to a certain value range
defined by the mean and standard deviation, it is still possible that individual time
series in the data set show different ranges in their values. This is due to the fact that
the same normalization parameters are used for the whole data set. Figure 3.9 shows
the distribution of scales within the time series. We notice that many time series have
a very small scale while a smaller subset has a comparably large scale. This is due
to the nature of telecommunication data as the same performance measurement of
different cells can show very different values. For example, two small-scale time series
could have a distance of approximately 0.001 and are considered similar. Two similar
moderate-scale time series could have a larger distance since the value range in the
time series is larger than in small-scaled time series and be considered dissimilar by
the static tau. Analysing the scales of the cluster members led to the conclusion
that the different distributions of scales need to be considered by using a separate
tau value based on the magnitude of the time series processed. The range value
represented by max−min seemed to be a reasonable statistical feature.

Figure 3.10 shows an abstract visualization of clusters. The numbers 1, 2, 3 and

22

3. Methods

1

2

3

4

Figure 3.10: Abstract visualization of clusters with different radius. The radius of
a cluster depends on the min-max range of the cluster representative. Sample data
points are marked with an "×".

4 represent four sample clusters and time series are represented as an "×". The
clusters have a different radius depending on their respective tau. A data point may
be assigned to a cluster when it falls within the radius. One characteristic of Greedy
Clustering is that clusters can overlap. If a time series could belong to two clusters
it will be assigned to the closest centroid. If a time series falls in no radius it forms
a new cluster.

Dynamic tau based on cluster representatives

In the altered algorithm, the value range of each cluster centroid is stored. In each
iteration, the shortest distance is chosen by summing up the distances to the cluster
centers with the deviation of their respective max-min-range to the max-min range
of the time series that is being processed. The new distance can be formulated as
follows:

d(ts, c) = ED(ts, c) + |(max ts−min ts)− (max c−min c)|. (3.1)

This distance measure is only used when choosing the cluster representative with
the smallest distance. For the comparison with tau, the ED is taken. The new tau
value is calculated using the following equation:

threshold = τ × |max c−min c|, (3.2)

where c is the closest cluster representative or the time series depending which
one has the smaller min-max range. From the two range values involved in the
comparison the smaller one is taken for the comparison. τ needs to be adjusted
towards the desired compression. Choosing it smaller leads to more clusters and
single member clusters. Increasing the value reduces the number of clusters.

23

3. Methods

Figure 3.11: Show case of closest clusters using different distance measures. Case
1 shows the closest cluster to the blue series using the ED. In this case, the blue time
series would create a new cluster since the distance exceeds the threshold for new
clusters. Case 2 represents the closest cluster assigned using the distance measure
proposed in Equation 3.1. In this case, no new cluster is created. From eyesight,
the blue time series shows similarities with both calculated closest clusters.

ED(ts, c) d(ts, c) threshold for new cluster max c−min c
cluster, case 1 0.20769 0.25006 0.09739 0.03382
cluster, case 2 0.21072 0.24128 0.21941 0.10674

Table 3.2: Distances between the time series to be assigned (blue in Figure 3.11)
with a min-max range of 0.07619 and the clusters assigned using different distance
measures.

Choosing the closest cluster - a case study

Figure 3.9 shows the distribution of min-max ranges of the data set. Almost 10%
from the 342 740 time series have a scale close to 0. Most of the time series have a
scale smaller than 1.

By using the ED instead of the combined distance as defined in Equation 3.2, we
might find a closest cluster which can be a miss match because the distance exceeds
the tau value. This would create a new and possible single member cluster. There-
fore, the second closest cluster might be a suitable fit since it is only disregarded by
a very small margin. Especially for distances smaller one, the square in the equation
of the ED pushes the distance down. Therefore, time series with a clearly different
shape could be considered more similar on a smaller scale than on a larger scale.

The number of single clusters created by the three compression algorithms are re-
duced noticeably. We implemented this logic as single clusters do not compress and
at the same time are not useful for sequence prediction tasks based on cluster labels.

Figure 3.11 presents three time series. The blue series needs to be assigned using a
distance measure. C1 in orange is the closest cluster using the ED. C2 in green is
the assigned cluster using the proposed distance measure in Equation 3.1.

24

3. Methods

Table 3.2 shows the distances between the time series and the closest cluster in both
cases and the threshold for creating a new cluster and their respective ranges. Using
the ED, cluster C1 is the closest. By using the ED for finding the closest cluster,
we compare the distance 0.20769 with 0.09739. Here, the distance is larger than the
threshold. A new cluster is created, even though we see that the time series seems to
be similar to C2, which is not chosen as the closest cluster. Using the new distance
measure d(ts, c) (comp. Equation 3.1), we penalise a large deviation in value ranges
between time series. Therefore, the distance for choosing the cluster is larger to C1
and C2 is chosen as the closest cluster. The ED between the time series and C2 is
0.21072, which is smaller than defined threshold and the time series is assigned to
C2. Here we take the range of the time series to calculate the threshold since it is
smaller than the range of C2.

3.6 Evaluation of Clustering

The evaluation of clustering algorithms is a challenging task due to their unsuper-
vised nature. We extracted different information from the compressed data sets to
make assumptions about whether the tau value used for the clustering should be
adjusted. Besides this, CPU time and memory usage will be evaluated.

Descriptive statistics
A comparison of the distribution of statistical features between the original
data set and various compressed data sets using diverse tau values can help to
adjust tau accordingly.

Number of cluster members
The number of members in every cluster can give an indication on whether a
suitable tau value is selected. Possible observations are that a few very large
clusters are created and too many single member clusters if the tau value is
not aligned.

Number of single clusters
The number of single clusters can represent the outliers in your data set. By
using the following equation, the number of outliers can be expressed as a
percentage p, where n is the number data points in the data set and s is the
number of single member clusters:

p = s

n
(3.3)

Compression rate
Compression rate can be described as one minus the ratio of the compressed
and uncompressed size; for instance, a data set of 100 000 time series reduced
to 2000 clusters has a compression rate of 98 %. Equation 3.4 defines the

25

3. Methods

compression rate formally.

compression rate = 1− nclusters

ndataset

(3.4)

The main focus of our research is improving the performance of the Greedy Clus-
tering algorithm. To analyse the efficiency of the suggested algorithms Greedy SF
and Greedy SAX, different data sets are clustered and timed to determine the dif-
ferences in run time. Every clustering run is performed in the same way for the
baseline Greedy Plain as for Greedy SAXs and Greedy SFs. With this practice we
can investigate which clustering algorithm is more efficient depending on the amount
of clusters generated.

The Greedy Clustering algorithm does not ensure a good quality by design. Since the
clustering algorithm is used as a compression method, different descriptive statistics
are extracted for the original time series data set and after the compression for the
three different algorithms. The distributions of the results can then be compared
with the original distribution to determine, which algorithm is more precise.

Additionally, we evaluated 22 statistical features in their ability to distinguish be-
tween similar and dissimilar time series and their efficiency for the candidate se-
lection in Greedy SF. Using the Pearson’s correlation coefficient, we calculated a
r-value for each statistical feature that indicates if time series with a large ED are
represented by a large distance in the statistical feature and vice versa. This inves-
tigation is useful to decide which features are integrated in the candidate selection
in Greedy SF.

3.7 Prediction
The general setup for the prediction tasks is a train test split of 80/20 for both,
the prediction based on cluster labels and the autoencoder in combination with the
stacked LSTMs. In general, the data set of Counter 79 is used for the prediction
task. In total, 72 cells are predicted that contain 305 days of consecutive time series.
This sequence of time series is split into 244 days for training and 61 days for test.
The data preparation and architectures for both models are outlined in the following
sections.

3.7.1 Long Short Term Memory (clusterLSTM)
In the following, the LSTM prediction based on cluster labels is referenced as clus-
terLSTM. For every one of the three clustering algorithms and their respective com-
pressed data sets, the following data engineering is applied. At first, the time series
are sorted by date and the cluster labels are extracted. This resulted in three files
containing the 72 cells with its 305 cluster labels, sorted by date. These labels are
then transformed during the prediction into X and Y pairs. The most basic pre-
processing for cluster labels is for consecutive days, where we do not consider any

26

3. Methods

different behaviour among different weekdays. Consider the following example list
of cluster labels [6, 5, 6, 46, 46, 49, 5, 46, 6, 46, 32].

Here, we applied a sliding window of one and a sequence length of seven to extract
the labels for the test and training set. The seven previous cluster labels in X are
used to predict the 8th cluster label in y. Before the training, the y labels are one-
hot-encoded to be used in combination with a cross entropy loss. An extract of the
data preprocessing can be seen in the following example:

[6, 5, 6, 46, 46, 49, 5]→ [46]
[5, 6, 46, 46, 49, 5, 46]→ [6]
[6, 46, 46, 49, 5, 46, 6]→ [32]
[46, 46, 49, 5, 46, 6, 46]→ [?]

Time series data as the telecommunication data used here can be processed in dif-
ferent ways. Two ideas on how to process the days of the cells are discussed in the
following paragraphs.

Idea 1: Predicting Weekdays Separately

This is a suggestion to improve the cluster-based prediction by separating the cluster
labels by weekday and predicting every weekday, separately. Due to time limitations,
we could not compare the two types of label predictions. We assume that the LSTM
is able to learn this behaviour. Nevertheless, we would still like to outline the idea. In
telecommunication networks, recorded measures typically show a different behaviour
for every weekday. This could be due to the location of the cell as it might be at
an industrial park and therefore the usage is high during the day from Monday
and Friday, but low on the weekend. Therefore, we wanted to split the cluster
labels by every weekday and predict the next respective weekday in comparison to
predicting the next consecutive day as described before. A sliding window of one
and a sequence length of three is used to build the feature vectors. An extract of
the data preprocessing is shown as follows:

[m1,m2,m3]→ [m4]
[tu1, tu2, tu3]→ [tu4]
[w1, w2, w3]→ [w4]

[th1, th2, th3]→ [th4]
[fr1, fr2, fr3]→ [fr4]
[sa1, sa2, sa3]→ [sa4]
[su1, su2, su3]→ [su4]

Idea 2: Similar Cells

As described in section 3.1, depending on the geographical location of cells and their
surrounding population and industry level, they can show a different behaviour. On
the other hand, cells in the same area might show a similar behaviour to each
other. In order to increase the amount of training data and to decrease the number

27

3. Methods

Algorithm 7: Create similarity matrix
Input : dataset
Output: clusterSets, similarityMatrix
similarityMatrix = [];
clusterSets = [];
for each cell in dataset do

cellSet ← get set of cluster labels;
for each i, set in enumerate(clusterSets) do

if cellSet and set coincide to 50 % then
append it to the similarity matrix at index i;
break;

if cell not added to similarityMatrix then
append cellSet to clusterSets;
append cell as one-element list to similarityMatrix ;

return clusterSets, similarityMatrix

of machine learning models to train, we can group similar cells and their cluster
labels together. The prediction models are trained on a merged training set for
these similar cells. The test data is evaluated individually for each cell. To identify
similar cells, we needed a similarity measure. Therefore, we compared the present
cluster labels in each cell. If two cells coincide by at least 50% with their cluster
labels, they are considered similar. In Algorithm 7, the pseudo code for calculating
the similarity is presented. The result is a matrix, where the first index or row index
coincides with the according list index in the clusterSets variable. Each row in
the similarityMatrix has a list of cells that are similar to each other.

Architecture of LSTM

The LSTM used for the prediction task consists of two hidden layers with 25 units
and a dense layer with number of units corresponding to the number of unique
cluster labels. Furthermore, we used a categorical cross entropy as loss function and
Adam [12] as optimizer. The training is done for 25 epochs using a batch size of
16. In general, we tried to create a similar architecture to the benchmark prediction
described in Section 3.7.2.

Moreover, we implemented a different LSTM architecture using two layers of 14
units in respect to the length of the input sequences. We wanted to investigate
whether the smaller architecture produces similar results while at the same time
being more efficient. The results are presented in Appendix A.3.

3.7.2 Autoencoder and Stacked LSTM (autoLSTM)
Our benchmark model against cluster cluster-based prediction consists of an au-
toencoder and six stacked LSTMs. In the following, this prediction is referred to

28

3. Methods

Figure 3.12: Workflow from compressing time series using encoding to reduce
the data used for prediction. The prediction is applied using six stacked LSTMs
predicting every future data point separately. The prediction can be decoded to the
original 96 data points in the end.

as autoLSTM. The workflow is presented in Figure 3.12. The encoder compresses
the 96 data points of every time series in the training data set to six data points.
Examples of these compressed time series are presented in Figure 3.12 in red.

The autoencoder is trained with 20 epochs on the entire training data set of Counter
79. We used the same 72 cells for training and test as for the clusterLSTM. Once
every time series is encoded by the encoder from originally 96 to 6 data points, X
and y pairs are built. To achieve this, we split the 6 data points for every day and
combine the values of 14 consecutive days in X and the 15h value in y. This is
applied using a sliding window of one for the entire data set and for every cell. The
first 80% of the pairs are used for training and the last 20% for test in the same
way as the cluster-based prediction. As we have 305 days of data per cell, where
244 days are training and 61 days are test data, this results in 244 - 14 sequences
for training. Then, six stacked LSTMs are used to train the data. This results in a
sequential prediction of six different values for every day. The decoder mirrors the
architecture of the encoder and can be used to decode the combined six values to
the final prediction of 96 data points.

The architecture of every LSTM is similar and presented in Figure 3.13. Each
LSTM consists of two hidden layers with 25 and a dense layer with 15 units. This
architecture respects that values of 14 consecutive days are used to predict the value
of the 15th day. Additionally, a L2 regulariser is applied on every layer. Moreover,
we use MSE as cost function and Adam with a learning rate of 0.001 as an optimizer.
The hidden layers are using the tanh activation function, while the output layers of
the encoder and decoder use a linear activation function.

29

3. Methods

Figure 3.13: Architecture of stacked LSTM. The LSTM uses 25 units per layer
and predicts the next value.

Figure 3.14: Architecture of the autoencoder. The encoder produces a code of
length six from a time series of length 96. The decoder can reconstruct the time
series by using the code as the input.

3.8 Anomaly Detection

Potential anomalies can be identified by using the predicted centroids and the de-
viation from the actual time series and the predictions. An anomaly threshold can
be extracted from the predictions in the training set. We defined this threshold as
outlined in Equation 3.5, where n is the number of time series in the training set
and t is the individual time series. The calculation of the MSE is as outlined in
Equation 2.4. The MSE is measured between the predicted centroid and the actual
time series. Given that the MSE is stable for most days, the average MSE over
all days of one cell should reflect an approximate of the MSE. We then define the
threshold by empirically looking at MSEs on a day basis. If a MSE exceeds the
average by a larger difference, it can be acknowledged as an anomaly. The following

30

3. Methods

Greedy Clustering to
compress data

LSTM predicting cluster
labels

Autoencoder Stacked LSTM

1

2

Figure 3.15: Overview of prediction pipelines. In Section 4 the first pipeline will
be compared to the second pipeline.

parameter clusterLSTM autoLSTM
epochs 25 6 x 4 (24 total)
batch size 16 16

hidden layers 2 x LSTM (size: 25) 2 x LSTM (size: 25),
1 x Dense (size: 15)

dense output layer size number of unique labels 1
optimizer adam adam
loss categorical cross entropy MSE

Table 3.3: Configurations of LSTM models.

threshold is defined through an empirical approach:

thresholdanomaly = 2× 1
n

n∑
t=1

MSEt (3.5)

3.9 Evaluation of Machine Learning

Prediction

We selected 72 cells for Counter 79 for prediction and applied the prediction in the
same way to evaluate which compression of C to more accurate cluster predictions.
The cluster labels predicted by the LSTM can reconstructed to the 96 data points
of the respective cluster centroid. To get more information about whether the pre-
diction is influenced by a bad compression, we calculated the difference between
the actual centroid produced by the compression and the original time series. A
simple accuracy score can not be applied here, since cluster representativess can be
overlapping, which can not be concluded from their cluster labels. These values can
then be averaged by the number of days. Finally, we receive one averaged MSE for
every one of the 72 cells for Greedy Plain, Greedy SF and Greedy SAX. The MSE
scores can then be compared to a benchmark model.

Figure 3.15 shows both pipelines. The benchmark model consists of an autoencoder
that is trained with the original data set. For the benchmark model we can calculate
the average MSE between the predicted time series and the actual time series and

31

3. Methods

compare the results for every cell with the prediction based on cluster labels. More-
over, a comprehensive comparison of the performance between both approaches is
applied including the CPU time and memory usage.

Table 3.3 shows the configurations for the clusterLSTM, which predicts cluster la-
bels, and the autoLSTM, which uses six stacked LSTMs to predict encoded time
series. The configurations are specified to be almost equivalent.

Anomaly Detection

The anomaly detection model is demonstrated by a concrete cell, where the previ-
ously described approach of using prediction errors for anomaly detection can be
applied. In addition, several cells have been analysed in regard to this approach.

32

4
Results and Discussion

The results are introduced by a brief exploration of the cluster results for Greedy
Plain to deepen the understanding of the clusters and their members, differences
between cells and weekdays of one cell. The exploration is followed by selecting
six statistical features out of 22 for the candidate selection in Greedy SF and a
general comparison of efficiency between the SAX substrings and the statistical
features. Furthermore, a performance comparison of the algorithms Greedy Plain,
Greedy SF and Greedy SAX is presented. The clustering results are concluded
by an extraction of descriptive statistics for the original time series and the three
compression algorithms to evaluate the change in distribution. Furthermore, the
machine learning results for the LSTM prediction on the three compressed data sets
for 72 different cells are presented. This section is followed by the results of the
benchmark model autoLSTM. The results are compared and discussed including a
comprehensive performance evaluation of the two different solutions for prediction.
Finally, a proposal for a method to identify anomalies based on the clusterLSTM is
presented including a representative example.

4.1 Exploration of Cluster Results
Figure 4.1 presents four cluster with its 25 first members. The number of members
in total are presented in the legend. We used these visualizations to get a feeling for
the clusters created by the compression and for tuning the tau value. We adjusted
the tau value such that more larger clusters with several hundred candidates and
different shapes on different scales were created.

Moreover, we stored the set length of the cluster labels present of every cell in a list
and visualized the results in a histogram in Figure 4.2 for Counter 79. Given that
the compression and the respective cluster representatives for every day and every
cell is close to the original time series, this visualization can be used to identify more
constant and less constant cells. We assume that more stable cells would lead to
less variation in cluster labels and vice versa.

An important insight we have received from domain experts is that the data looks
quite distinct from weekday to weekend. Therefore, we visualized the occurrence
of cluster labels and the respective counts distinguished by weekday in blue and

33

4. Results and Discussion

(a) Cluster 1 (b) Cluster 23

(c) Cluster 32 (d) Cluster 53

Figure 4.1: Figure (a) - (d) show 4 exemplary clusters with different shapes from
the Greedy Plain compression for Counter 79.

Figure 4.2: Histogram presenting the number of unique clusters for every cell in
Counter 79.

weekend in orange in Figure 4.3. A clear distinction between work days and weekends
can be observed.

34

4. Results and Discussion

Figure 4.3: Frequency of cluster labels for one cell. The cluster labels present
during the week from Monday to Friday are marked in blue, whereas the weekend
is marked in orange.

4.2 Clustering

4.2.1 Feature Selection in Greedy SF
Various statistical features can be extracted from a time series. The computation
of the features can be expensive for large data sets as they need to be computed for
every time series. Therefore, the features should be selected first by their computa-
tional complexity and the quality for inferring the similarity or dissimilarity between
time series.

To analyse how useful a statistical feature might be to distinguish between similar
and dissimilar time series, we investigated the distribution of the values for 22 differ-
ent statistical features. Only continuous features are included for this investigation,
whereas discrete features, like number of peaks and Boolean values, are excluded.
The distribution of features is a first indicator for their applicability. For the mea-
surement of the distribution, a histogram was computed for every list of features
using 100 bins. Here, it was measured how frequent a bin contained at least 1% of
the time series included in the data set. Furthermore, we measured the necessary
time to compute the features.

To examine the quality of a statistical feature for the candidate selection, the distri-
bution alone is not sufficient. Hence, we investigated, whether a relation of the ED
between two time series and the absolute difference between their statistical features
exists. To achieve this, we analysed for a given pair of time series t1 and t2, whether
the ED(t1, t2) is large if the difference between statistical feature values SFD(t1, t2)
is large and vice versa. Therefore, we sampled 50 000 pairs of time series randomly
with replacement and computed the ED and the absolute differences of all statistical

35

4. Results and Discussion

(a) Absolute energy (R = 0.83) (b) Sum values (R = 0.98)

(c) Complexity (R = 0.63) (d) Mean (R = 0.98)

Figure 4.4: Distribution of statistical feature values for Counter 79.

features for every pair. These values can be plotted and the R-value computed. The
closer the R-value is to 1 and the clearer the trend is visible, the better the feature
is suited to be used in the candidate selection. The results of this investigation are
presented in Figure 4.4. It presents the results of four different statistical features.

The results for the feature absolute energy are not entirely obvious. There is a
visible relationship and the correlation coefficient is rather high with a value of
0.815. Nevertheless, it does not show a clear linear relationship but a skewed one.
Many pairs between a ED of 0 and 20 show very similar values for the feature. We
did not use this feature for the candidate selection, but it could be used based on
this investigation. In general, it is advisable to analyse the results in detail and to
not rely completely on the correlation coefficient R. Sum of values has a R value
of 0.933 and shows a clear linear dependency and a high distribution of statistical
values. We measured a high R value of 0.976 for the mean value and included this
feature. Complexity is a good example for a feature that is not useful as no linear
dependency is observable. The comprehensive results of this feature selection are
summarized in Table 4.1. We highlighted every feature with a reasonable efficiency,
variance and correlation using a green colour. These results only apply to Counter
79. It must be noted that the results might deviate for other data sets. Moreover,
we suggest using more statistical features for larger data sets as they will lead to

36

4. Results and Discussion

statistical
feature

time
in seconds

n_bins
>1% ts

Pearson
correlation coefficient

First Quantile 412 7 0.771
Third Quantile 419 13 0.919
absolute energy 3.09 2 0.815
absolute sum of changes 12.14 23 0.726
complexity 11.55 16 0.647
kurtosis 156 18 -0.056
maximum 6.38 16 0.718
first maximum 3 53 0.024
minimum 5.5 4 0.387
no peaks (distinct values) 86.5 excl. excl.
count below mean 15.1 32 -0.049
mean change 1.4 6 0.394
standard deviation 25.7 13 0.788
median 43 10 0.898
mean 45 9 0.976
mean second derivative 1.8 7 0.328
sum values 4.94 10 0.933
skewness 147 23 -0.008
count above mean 12.87 32 0.0573
first minimum 3 29 -0.064
longest strike above mean 107 25 0.118
longest strike below mean 110 30 -0.068

Table 4.1: Computing time for 15 different statistical features and a count how
many times at least 1% of the data was present in a bin. The histogram used for
this calculation was created with 100 bins and for Counter 79 including 342 740 time
series. The selected features meeting the performance and quality expectations are
highlighted.

more clusters in general and therefore increase the probability that close candidates
will be selected. Some features needed extensively more time to compute as for
instance, the statistical quantiles. It required more than 400 seconds to compute
these quantiles in comparison to the standard features like maximum, mean and
medium that only required 5 - 10 seconds. Based on the degree of variance in the
individual time series, features as mean could become uninformative. In this case,
statistical features could be extracted on subsequences, e.g. on every 24 of the 96
data points. Therefore, it is important to carefully evaluate the usefulness and the
performance for every feature.

37

4. Results and Discussion

time statistics for every counter 79 47
n time series 342 740 411 000
stats (6 selected features) 92 104
sax (word_size=24, alphabet=5, word_split=4) 321 384
sax (word_size=24, alphabet=4, word_split=4) 320 386
sax (word_size=12, alphabet=4, word_split=4) 309 377

Table 4.2: Time measurements of feature extraction for Greedy SF and Greedy
SAX

total clusters single clusters clustering time alphabet window
9 291 3 905 2 194 4 24
6 057 3 807 1 095 4 12
6 147 3 878 916 5 12

Table 4.3: Different SAX parameters and their influence on the clustering results.
This evaluation is done using Counter 79.

4.2.2 Clustering Performance

Different parameters

The performance of the candidate selection in Greedy SF and Greedy SAX is par-
tially dependant on the efficiency of the feature extraction. Table 4.1 contains the
computing time for the six statistical features selected in the previous Chapter.
Based on the evaluation and the performance, we decided to only include absolute
sum of changes, maximum, standard deviation, median, mean and sum of values in
the final candidate selection.

To compare the computing time of the SAX extraction with the statistical feature
extraction, we simulated the feature extractions for Counter 47 and 79. The results
are presented in Table 4.2. These findings explain partially, why the performance
of Greedy SAX is slightly worse than Greedy SF. Whereas the most efficient con-
figuration of sax parameters needed 321 seconds to compute for Counter 79, it only
required 92 seconds to compute the selected statistical features.

Moreover, we evaluated how different SAX parameters change the compression. The
results are presented in Table 4.3. An important finding is the strong influence of the
settings on the number of clusters created. Whereas the number of single clusters
is almost the same for the three different SAX configurations, the number of total
clusters varies noticeably between using a window size of 24 or 12. Based on the
results, we decided to use the latter configuration for the predictions.

38

4. Results and Discussion

Figure 4.5: Comparison of clustering time for different versions of Greedy Clus-
tering.

Clustering Times

Figure 4.5 outlines the time in seconds required to compress 10 000 time series
depending on the number of clusters created during the clustering. For this analysis
the data sets of Counter 47 and 79 were used, whose details can be looked up in Table
3.1. Every evaluated clustering algorithm uses the magnitude adaptive clustering
with a dynamic τ described in Section 3.5. The development environment is shared
between different users. Therefore, we only monitored the clustering times at night
or on the weekend to ensure similar preconditions. Both candidate selections Greedy
SF and Greedy SAX clearly outperform Greedy Plain when the number of clusters
increases. For a small number of clusters, Greedy Plain is faster than the Clustering
algorithms using a candidate selection. Greedy SF shows a better performance for
more than approximately 2 300 clusters. Greedy SAX on the other hand, shows
a better performance for more than 4 000 resulting clusters. In general, we could
observe that a larger data set leads to more clusters. Appendix A.3 presents the
clustering run times per 10 000 data points for a higher number of generated clusters.
Greedy SF clearly outperforms the other Greedy Clustering algorithms.

Table 4.4 shows the clustering results for Counter 79 of two data sets. Generally,
Greedy SF and Greedy SAX generate more clusters for the same tau than Greedy
Plain. This is due to the possibility that the candidate selection sometimes misses
potential clusters that are within the radius. In relation to the numbers of clusters
generated, Greedy Plain is always slower than the clustering methods with candidate
selection. We included a data set that has more than one million time series to see
how the clustering performs for larger data sets. With the same tau of 2.88, Greedy
SAX generate approximately 20 000 clusters more than Greedy SF. In this case,
Greedy SAX needs considerably more time for the clustering. Greedy Plain needs
over 13 hours to generate 27 555 clusters from the large data set, while Greedy SF
needs less than two hours two generate over 80 000 clusters from the same data
set. In addition, Greedy SAX needs noticeably less time for 19 664 clusters than
the Greedy Plain algorithm for their respective tau. As the number of generated
clusters grows, Greedy SAX shows a decreasing computational efficiency.

39

4. Results and Discussion

data set tau method clusters single
clusters

clustering
time (sec)

compression
rate (%)

342 740

1.92 Greedy SF 54 435 31 601 1263 84.12
Greedy Plain 27 993 15 467 8 472 91.83

2.40
Greedy SF 16 295 6 186 885 95.25
Greedy Plain 9 704 3 484 2 840 97.17
Greedy SAX 49 488 46 416 3 693 85.56

2.88 Greedy Plain 4 168 856 1 009 98.78
Greedy SF 5 858 1 221 707 98.29

3.84 Greedy SAX 6 147 2 269 916 98.21

1 016 489

2.40 Greedy Plain 27 555 9 789 49 256 97.29
2.88 Greedy SF 86 717 42 787 5 115 91.47
2.88 Greedy SAX 104 123 102 841 45 404 89.76
3.84 Greedy SAX 19 664 19 058 6 934 98.07

Table 4.4: Clustering results for Counter 79 for two data sets with different sized
data sets. The first column shows the number of time series in the data set. The
three clustering methods were tested with different tau values. The clustering time
is measured in seconds. All clustering results use the magnitude adaptive clustering
and dynamic tau. Clustering results using the static tau are not included.

In conclusion, the statistical-based candidate selection is much more efficient than
the SAX-based candidate selection, especially for data sets larger than one million
time series. This could be caused by the difference in the lookup structures for the
candidate selections. The lookup table used for Greedy SF is built in a way that
the bins have a limited size of 100. Therefore, the hit list from which the potential
candidates are chosen is limited to 100 times the number of statistical features used
in the extraction. Greedy SAX has no limitation on the length of the entries in the
lookup table. Thus, the hit list grows very large from which the potential candidates
are chosen. This makes the computational operation in Greedy SAX more expensive
as the number of clusters increases. Greedy Plain shows no competitive results and
is therefore not recommended to be used for data sets larger than one million time
series.

Static tau vs. Dynamic tau

It required a thorough and deep data exploration phase to understand, why the
clustering using a static tau value for every time series in the different data sets
did not result in a satisfying compression. We realized that the Greedy Clustering
is highly influenced by different scales of time series. Due to a static tau value,
time series with a small scale are grouped together in large clusters even though
the relative difference within the cluster is very high. The opposite applies for time
series with a large scale of values. These are often translated to single clusters or

40

4. Results and Discussion

small clusters as small differences in variation with a large scale are punished by
the ED and therefore, no clusters with a smaller tau value are found. Our gained
awareness for different scales within different cell types that could not be handled
by the initial z-normalization before the compression, resulted in a breakthrough.
The implementation of a dynamic tau calculation within the clustering relative to
the scale of the time series processed resulted in much better clusters.

Due to these improvements, we decided to exclude the evaluation of the compression
on smoothed data sets

Data Reduction

We stored the time series with meta data as outlined in Section 3.1. Hence, our
data files are considerably larger than necessary. A data set for Counter 79 of the
filtered subnetwork consisting of 342 740 time series is 943 MB large without any
compression. We can reduce the stored data by only storing the most important
information:

• cell name
• date
• Counter data z-normalized

• assigned cluster label
• Counter name

The file with reduced information only has 345 MB. By compressing the time series
by clustering, we created a compressed file for the time series prediction and a model
file that stores every information about the model learned including the cluster
representatives. If we keep the important meta data in the resulting data set file it
is 75 MB large. A reduced representation could reduce it to 11 MB. The resulting
model file is 13 MB large. We compressed 345 MB to 75MB + 13MB = 88MB,
which is 25% of the input and therefore presents a noticeable advantage regarding
the data storage.

Figure 4.5 can give a good estimate on when to use the candidate selections or Greedy
Plain. Considering that the tested data sets are a subset with approximately 900
MB of a data set that represents 12 GB of data, we can conclude that a candidate
selection is highly necessary. Nevertheless, this is a lossy compression, which is not
applicable for every use case. Therefore, it needs to be evaluated whether this type
of compression is adequate for other applications. In our case, the reduction of the
data set might indicate that algorithms trained on this data could be accelerated.

4.2.3 Inferring Descriptive Statistics
We investigated, whether comparable cluster representatives are created for Greedy
Plain, Greedy SAX and Greedy SF. The purpose of this analysis is to evaluate how
much the distribution of statistical features changes after the compression. Ideally,
the distribution would be very close to the distribution of the original data set.
We extracted every feature for every cluster representative of the model. Then, we
counted the number of members for every cluster and propagated the statistical

41

4. Results and Discussion

(a) Original (b) Compressed (Greedy Plain)

(c) Compressed (Greedy SF) (d) Compressed (Greedy SAX)

Figure 4.6: Comparison of the absolute sum of changes before and after the com-
pression for the three clustering methods Greedy Plain, Greedy SF and Greedy
SAX.

median original median compressed
feature Original Greedy Plain Greedy SF Greedy SAX

abs sum of changes 6,433 6,090 6,251 5,887
maximum 0,379 0,302 0,303 0,296
median -0,261 -0,264 -0,262 -0,307
mean -0,230 -0,244 -0,235 -0,230
std 0,249 0,231 0,230 0,225

sum values -22,048 -23,416 -22,597 -22,077

Table 4.5: Comparison of six descriptive statistical features for the three clustering
methods.

feature value of the cluster representative by the number of cluster members. After
this transformation, the distributions can be compared as they have equal length
corresponding to the number of time series in the data set. We selected the six fea-
tures used within the candidate selection for this investigation and used the median
value of the distribution for comparison.

42

4. Results and Discussion

Counter clustering method tau method tau clusters single clusters

79

Greedy Plain static 1.92 60 080 47 867
Greedy Plain

dynamic
2.4 9 704 3 484

Greedy SF 2.88 5 858 1 221
Greedy SAX 3.84 6 147 3 878

Table 4.6: Compressed data sets used for prediction. The original data set holds
342 740 time series.

The distributions of the statistical feature absolute sum of changes are visualized
in Figure 4.6 and the overall results for the features are presented in Table 4.5.
In Figure 4.6 slight changes in distribution can be observed, whereas the median
value is close to the original in every compressed method. Nevertheless, there are
differences in detail as Greedy SF and Greedy Plain show a more similar distribution
and median value as Greedy SAX. This detailed observation applies to the five other
features. In general, Greedy SAX shows the highest deviations to the original median
value for every feature, whereas Greedy SF shows the smallest deviation.

4.3 Prediction
The methods and detailed architectures of the machine learning models used for
the prediction tasks are described in Chapter 3. For the following prediction results
Counter 79 was used, compressed by the three clustering methods using a dynamic
tau. The old clustering version using a static tau was included for Greedy Plain,
to analyse the difference in cluster quality and therefore the impact on the machine
learning tasks. More detailed information about the compressed data sets can be
found in Table 4.6.

4.3.1 Clustering and LSTM Prediction (clusterLSTM)
Table 4.7 presents an extract of the prediction results for 11 different cells. The
complete results of the clusterLSTM prediction for 72 cells can be found in Appendix
A.1. On the left hand side, the results for Greedy Plain using a static tau in
comparison to the improved version using a dynamic tau are presented. The results
indicate that a dynamic tau improved the fit of the clusters dramatically. As a
result, the improved clusters show decreased prediction errors.

When comparing the prediction errors between Greedy Plain, Greedy SF and Greedy
SAX, it can be concluded that the errors are very close among the three models for
most cells. To get a deeper understanding of the influence of the compression on
the prediction results, the compression with the smallest error is included in Table
4.7. Greedy SF and Greedy Plain showed the lowest MSE 27 times, whereas Greedy
SAX had a frequency of 18. Greedy Plain and Greedy SF have an almost similar
MSE between the true time series and the assigned centroid. Greedy SAX shows
some noticeable differences and therefore leads to a slightly worse prediction.

43

4. Results and Discussion

Figure 4.7: Comparison of predicted and actual cluster centroids to the original
time series of cell AGB for one week using Greedy SF compression.

Static Tau Dynamic Tau
Greedy Plain Greedy Plain Greedy SF Greedy SAX

cell pred cluster pred cluster pred cluster pred cluster best
AAC 4.70 1.76 0.473 0.164 0.448 0.157 0.637 0.252 stats
AAJ 2.47 1.38 1.375 0.100 1.443 0.101 1.923 0.334 plain
ABY 2.21 1.65 0.260 0.163 0.362 0.191 0.342 0.284 plain
ACC 6.22 1.15 0.594 0.126 0.663 0.148 0.433 0.132 stats
ACF 1.16 0.60 0.228 0.097 0.275 0.126 0.317 0.142 plain
ACN 4.10 0.96 0.705 0.157 0.636 0.198 0.755 0.261 stats
ACP 3.52 0.40 0.146 0.064 0.134 0.066 0.608 0.093 stats
ACU 1.90 2.10 1.026 0.148 0.937 0.193 1.201 0.210 stats
ADQ 2.65 1.68 0.433 0.254 0.402 0.251 0.612 0.287 stats
AGB 2.65 1.11 0.400 0.155 0.519 0.191 0.352 0.219 sax
ASB 6.27 3.76 4.823 0.290 5.700 0.285 5.117 2.494 plain

Table 4.7: Average MSE between predicted centroids and true time series in the
test for Greedy Plain using a static and dynamic tau. Additionally, the error of
the assigned centroids is presented to validate the compression. Furthermore, the
prediction results of Greedy SF and Greedy SAX using a dynamic tau are presented.

Figure 4.7 presents an example of the clusterLSTM prediction of one week within one
cell of the test set using Greedy SF. Moreover, we visualized the assigned centroids
to see the deviation between the true time series and the assigned centroids and the
predicted centroids.

4.3.2 Stacked LSTM Prediction (autoLSTM)
We compared our pipeline with an autoencoder that reduces the dimensionality of
the time series to six values and applies a stacked LSTM. The predicted time series
can then be decoded again to result in a prediction of 96 data points. For the
analysis, we investigated the quality of the results. The CPU time and memory
usage of both pipelines are discussed in the next section. All LSTMs were trained
using four epochs and 80% of the data.

44

4. Results and Discussion

Figure 4.8: An example result of a prediction using the autoLSTM for the cell
AGB. The blue line shows the raw time series for the first predicted week. The
green line shows the reconstructed time series. The orange line represents the re-
constructed predicted time series.

Figure 4.8 shows an example prediction of a week for the cell AGB. The recon-
structed time series represents the raw time series very well and the predictions
are precise despite some larger deviations on day one and two. Table 4.8 shows an
excerpt of the prediction results using the autoLSTM and Figure 4.9 visualises the
prediction errors. A comparison of the results using the clusterLSTM for all 72 cells
is presented in Appendix A.2 and the visualisation can be found in Appendix A.1
and A.2. Most of the reconstructed time series using the decoder have a very small
MSE for all cells. Nevertheless, the predictions on the encoded time series have a
larger error in comparison to the reconstructed time series. Sometimes the error is
very large as in cell ASB which could point to an anomaly. Figure 4.10 shows the
outbreak of the time series on the second day. This is most likely an anomaly that
was learned by the autoencoder. Since the prediction is mostly predicting a pattern
it could not have predicted this peak. This shows that the prediction can be used
as an anomaly detection.

Comparing these findings with the results of our clustering approach, it can be de-
rived that the assigned clusters generally have a higher error then the reconstructed
time series. We assume that this is one explanation for the clusterLSTM showing
a slightly higher MSE than the results of the autoLSTM. Nevertheless, the errors
are comparable, proving our assumption that our clustering approach presents a
competitive option.

4.3.3 Comparing Resources
Besides the errors of the compared models, we measured the CPU time and memory
consumption for both scenarios. To measure the CPU time, we used the Python
module line_profiler. This tool evaluates the CPU times of a function decorated
with @profile. As a result, it prints the overall times, times per hit and the relative
amount of time spend line by line. To evaluate the memory usage, we used the tool
memory_profiler. It works similar to the line_profiler and prints the overall memory
and the memory increment for all profiled functions. Listing A.1 shows an example

45

4. Results and Discussion

MSE
true timeseries

autoLSTM Greedy SF + clusterLSTM
cell prediction reconstruction prediction cluster
AAC 0.163 0.018 0.448 0.157
AAJ 0.121 0.023 1.443 0.101
ABY 0.198 0.019 0.362 0.191
ACC 0.249 0.032 0.663 0.148
ACF 0.098 0.011 0.275 0.126
ACN 0.556 0.019 0.636 0.198
ACP 0.091 0.009 0.134 0.066
ACU 0.333 0.035 0.937 0.193
ADQ 0.188 0.033 0.402 0.251
AGB 0.348 0.040 0.519 0.191
ASB 29.952 0.812 5.700 0.285

Table 4.8: Excerpt from the autoLSTM prediction in comparison to the clusterL-
STM prediction using compressed data provided by Greedy Plain. For the clusterL-
STM, MSEs are computed between the prediction and the true time series or the
assigned cluster. For the autoLSTM, MSEs are computed between the reconstructed
time series and the true time series.

Figure 4.9: Comparison of prediction MSEs between clusterLSTM using Greedy
SF clustering and autoLSTM for the selected cells presented in Table 4.8.

output of the line_profiler.

Table 4.9 presents the CPU time and memory usage for the three clustering methods
as well as the autoencoder. The autoencoder requires less memory and time for
compression than all clustering methods, but Greedy SF shows a competitive run

46

4. Results and Discussion

Figure 4.10: autoLSTM prediction for cell ASB. The blue line shows the raw time
series for the first predicted week. The green line shows the reconstructed time
series. The orange line represents the reconstructed predicted time series.

Clustering Autoencoder
Greedy Plain Greedy SF Greedy SAX

CPU Time 2 820.3 707.0 916.0 483.0
Memory usage 5 406.7 5 400.0 5 422.0 1 523.0

Table 4.9: Comparison of CPU time and memory consumption between Greedy
Clustering and the autoencoder. The CPU time is measured in seconds and the
memory usage in MB. The autoencoder is trained for 20 epochs.

clusterLSTM autoLSTM
train evaluate predict total encoder fit/predict total

CPU Time 804.5 128.6 109.0 1068.9 6.3 1910.5 1916.8
Memory 2263.5 7.3 12.5 3720.5 166.1 67.6 3620.7

Table 4.10: Comparison of CPU time and memory consumption for both prediction
approaches: clusterLSTM and autoLSTM. Both models were trained on 72 cells
including 230 days of training to predict 75 days of test. The CPU time is given in
seconds and the memory usage in MB.

time. The autoencoder is trained using 20 epochs. We tested different number
of epochs and according to the MSE between the reconstructed and the original
time series, 20 epochs was the best balance between efficiency and quality. By
modifying this parameter or implementing an early stopping mechanism, the CPU
time could be further reduced. However, for the following prediction task, the
clusterLSTM is almost twice as fast per cell. This could be due to the architecture
of the autoLSTM as it consists of six LSTMs and therefore needs more resources in
time and comparable resources in memory. The clusterLSTM prediction required
14.8 seconds to train and predict one cell, while the autoLSTM using edcoded time
series needed 26.6 seconds. The total time of predicting 72 cells using Greedy SF
and the clusterLSTM required 1 775.9 seconds, whereas the autoLSTM needed 2
398.2 seconds. This is also visualized in Figure 4.11.

47

4. Results and Discussion

Figure 4.11: Comparison of run times between the clusterLSTM and the autoL-
STM pipeline. The autoencoder is trained with 20 epochs. Both LSTM versions
use a comparable number of epochs and a batch size of 16 (comp. Table 3.3). 72
cells are trained and predicted in each pipeline.

The memory usage depends on the size of the data set. The memory dimensions of
our data are described in Section 4.2.2. Run times and memory usages of the two
different predictions are presented in Table 4.10. Overall, the clusterLSTM requires
approximately 3.8 GB, while the autoLSTM consumes around 3.6 GB.

Both compression methods are tested and measured on the same development envi-
ronment at Ericsson. Nevertheless, it is important to consider that the environment
is not a sandbox. Therefore, depending on the load of the server the CPU times can
vary. Both LSTM solutions are tested on the same development server equipped
with a GPU. As resources are shared between users, these measurements can vary
depending on the number of active jobs on the server. In terms of memory usage the
clustering requires noticeably more memory than the autoencoder. The LSTM ap-
proaches are very similar in regard to the memory usage. Analysing the CPU times
presented allows the conclusion the complete pipeline is considerably faster than the
benchmark as the efficiency of predicting an individual cell is much more efficient us-
ing the cluster labels. The clustering provides an advantage in data storage without
loosing top much information as proven by the error between assigned centroid and
true time series. To get a more detailed and accurate analysis of resource allocation
and consumption, a sandbox system might be needed. Nevertheless, the presented
performance results give an overall conclusive estimation and comparison.

In conclusion, the prediction results of both approaches demonstrate that the clus-
terLSTM prediction is competitive in terms of prediction error while requiring less
computation. Further optimizations can be applied by improving the LSTM archi-
tectures and fine-tuning the cluster parameters. Moreover, it would be interesting
to analyse the predictions for all 1 436 cells and explore whether the predictions
are accurate for every type of cell. Moreover, as currently one individual model is
trained for every cell, the cluster labels could be used to group and train similar cells
based on their cluster labels. How this could be implemented is outlined in Chapter
3.7.1. Another improvement could be a separate prediction for every weekday, even
though we assume that the LSTM is able to learn this sequence implicitly.

48

4. Results and Discussion

(a) Original time series

(b) Anomaly Detector

Figure 4.12: MSE between actual time series and predicted centroid. The dashed
line is at averaged MSE *2. A day, whose MSE is above the dashed line could point
to potential anomalies.

4.3.4 Anomaly Detection using Prediction Errors
Figure 4.12 a) presents the actual time series for 60 days of cell ABS and the pre-
dicted centroids and the assigned centroids. This cell is suitable to demonstrate the
idea of using predicted centroids for anomaly detection as the cell shows clear devi-
ations from regular time series pattern within the period of 60 days. At the same
time, the predictions are very stable and accurate for the common days, because
the MSE is between 0 and 1. Within the interval, seven high peaks can be observed
that range from 0 to 25 whereas the common observed time series range from 0 to
5. Figure 4.12 b) below presents the MSE between the predicted centroid and the
actual observed time series and the average MSE as a dashed line. This visualiza-
tion demonstrates that the seven uncommon peaks can be identified indirectly by
our method using the deviation between the predicted centroids and the actual time
series.

By analysing and comparing a representative subset of the 72 cells predicted, we can
conclude the following. Given that the calculated MSE over time is relatively stable
and small in relation to the scale of the time series, we can rely on the prediction. If
we can rely on the prediction, the approach of using large deviations from the average

49

4. Results and Discussion

observed MSE is a very promising approach to detect anomalies. The anomaly
detection does not rely on a perfectly accurate prediction, but rather an indication
for a clearly different shape or scale of the time series observed. Hence, a lossy
compression can be used instead of a lossless compression. This anomaly detection
can be used without any additional machine learning after the prediction and only
requires the efficient clusterLSTM prediction. This approach could be tested on a
labeled data set to validate the model. In general, it would be interesting to explore
the results for the entire 1 436 cells in the data sets.

4.4 Conclusion
The evaluation of our compression baseline shows that Greedy Plain is an efficient
algorithm to compress a moderate number of time series similar to the size of our
data sets. Our results however indicate that this algorithm is performing worse for
larger data sets, as the run time depends on the number of clusters. The specialised
versions Greedy SF and Greedy SAX are more applicable when the data set becomes
larger due to the candidate selection. This selection ensures a run time complexity
that is mostly independent from the number of clusters. Especially, the candidate
selection in Greedy SF can accelerate the clustering while still maintaining precision.
Furthermore, it seems to be more robust than Greedy SAX as fewer single clusters
are produced even though a similar tau was used. Greedy SAX shows a higher de-
pendency on the number of generated clusters since the entries in the lookup table
increase respectively. It was important to realise that despite an efficient computa-
tion, the algorithm was not creating the clustering results we expected in the begin-
ning. This insight came from analysing various cluster results and exploring many
characteristics of the compression, namely the number of clusters, cluster members,
single clusters and many descriptive plots of many cells and their time series over
different time intervals. This resulted in the awareness that different distributions
of scales exist within our data set that could not be differentiated by our initial
Greedy Plain algorithm. It was important to understand that a z-normalisation
before the clustering does not ensure a good compression and according predictions.
Therefore, we realized the need for a change of the tau logic. Implementing the
magnitude adaptive clustering using a dynamic tau increased the compression rate
considerably and contributed to more accurate clusterLSTM predictions.

We are confident that a compression using Greedy SF or Greedy SAX could be
used to compress much larger data sets efficiently. By using a fixed value for the
number of potential candidates the computing time depends mainly on the size of
the data set, the hardware resources available and the desired compression rate.
We cannot directly influence the hardware resources. The desired compression rate
might depend on the use case for the data or the efficiency that wants to be achieved.
As described in our results, even a high compression rate can lead to satisfying
results that are noticeably close to the used benchmark. We assume that for larger
data sets, potential candidates might be disregarded due to a considerably small
number of candidates in respect to the size of the data set. Here, adjustments can
be implemented to set the number of potential candidates in relation to the number

50

4. Results and Discussion

of clusters. This would most likely result in a lower performance by a small factor.
Nevertheless, it could make the clustering more robust.

Regarding the clustering, larger data sets with more than one million time series
could be used to analyse the behaviour of the candidate selections. At the same
time, additional alternatives for compression could be compared with Greedy SF.

The clusterLSTM results suggest that this approach is very efficient and accurate
within the scope of our data set. We assume that this model could be applied for
any time series data set, where the data follows an approximately stable repeating
pattern within a defined interval. We suppose that steady changes in amplitude
can be learned by the model. In general, the quality of the predictions is highly
dependent on the quality of the compression. Regarding our data set, a moderate
variability in cluster labels for every cell is necessary to enable the LSTM to learn
the different behaviour of weekdays. This type of prediction is highly efficient as a
comparison to the autoLSTM shows. Even though the compression of the autoen-
coder and the clustering was very comparable, the clusterLSTM was approximately
two times faster than the benchmark, while still maintaining a competitive precision.

The use case for anomaly detection demonstrates that prediction errors can be used
effectively to identify anomalies for a subset of the predicted cells. This model allows
some uncertainty in the prediction and could therefore be an extremely efficient way
of identifying anomalies as no machine learning is needed additionally to the LSTM
predictions.

51

5
Future Work

Grouping Cells for Prediction

Additionally to the idea presented in Section 3.7.1, cells can not only be grouped
together through the similarities in cluster labels, but also by their geographical
location. This can be achieved by retrieving this information about each cell in the
network and group them by factors as population density.

Probabilistic Model for tau

For further studies about improving the current Greedy Clustering algorithm, one
could explore the research provided by Blei and Frazier [3]. They developed the
distance dependent Chinese restaurant process, a flexible class of distributions over
partitions that allows for dependencies between elements. This could be translated
to the problem of finding the different distance distributions within a time series
data set and trying to derive boundaries for different clusters. Having a distance
distribution, the expected distance distribution to other time series could be inferred
for every time series. The distance distribution could be retrieved by computing all
pairs of distances in a subset of the data set. It might be possible to provide a
probabilistic model to study the Greedy Clustering algorithm.

Precomputing a set of different τ

A subset of the data can be used to find a set of different scales in values. A lookup
table for τ can be added where depending on the value range of each individual time
series a specific τ is chosen for the comparison. This could improve the computa-
tional complexity of the algorithm and save computation time.

Improve Greedy Clustering

A simple improvement to save computational time can be made in the second itera-
tion of Greedy Plain, Greedy SF and Greedy SAX. The time series chosen as cluster
representatives are not required be compared with all cluster centroids again since
the distance to their own centroid is zero.

Moreover, the parameter max candidates can be implemented dynamically to allow
more candidates as the number of clusters increases on the go during the clustering.

52

5. Future Work

This could prevent overseeing potential candidates, especially for Greedy SF due to
its performance advantages. For the Greedy SAX algorithm, a more efficient im-
plementation in an architecture-close programming language might lead to a better
performance. Additionally, research can be made to further improve the lookup
table.

Another way of improving the performance of the Greedy clustering algorithm may
be to investigate means of parallelising or distributing computation.

53

Bibliography

[1] Luai Al Shalabi and Zyad Shaaban. Normalization as a Preprocessing En-
gine for Data Mining and the Approach of Preference Matrix. In Proceedings
of International Conference on Dependability of Computer Systems, DepCoS-
RELCOMEX 2006, pages 207–214. IEEE Computer Society, 2006.

[2] Gabriel Alpsten and Sharan Sabi. Prototype-based compression of time series
from telecommunication data. Master, Chalmers University of Technology, Uni-
versity of Gothenburg, 2019.

[3] David M Blei, Peter I Frazier, and Carl Edward Rasmussen. Distance Depen-
dent Chinese Restaurant Processes. Technical report, 2011.

[4] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. iSAX
2.0: Indexing and mining one billion time series. In Proceedings - IEEE Inter-
national Conference on Data Mining, ICDM, pages 58–67, 2010.

[5] Y. Collet. Zstandard - fast real-time compression algorithm, 2017.

[6] DeepLearning. LSTM Networks for Sentiment Analysis — DeepLearning 0.1
documentation, 2015.

[7] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast Subse-
quence Matching in Time-Series Databases. Technical Report 2, 1994.

[8] S. Gunderson. Snappy, 2011.

[9] JA Hartigan and MA Wong Journal of the Royal Statistical Society. Series C.
Algorithm AS 136: A k-means clustering algorithm. JSTOR, 1979.

[10] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowlege-Based Systems, 6(2):107–116, nov 1998.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, nov 1997.

[12] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings. International Conference on Learning
Representations, ICLR, 2015.

54

Bibliography

[13] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:
A novel symbolic representation of time series. Data Mining and Knowledge
Discovery, 15(2):107–144, 2007.

[14] Jessica Lin and Yuan Li. Finding Structural Similarity in Time Series Data
Using Bag-of-Patterns Representation. Technical report, 2009.

[15] Simon Malinowski, Thomas Guyet, René Quiniou, and Romain Tavenard. 1d-
SAX: A Novel Symbolic Representation for Time Series. In Allan Tucker, Frank
Höppner, Arno Siebes, and Stephen Swift, editors, Advances in Intelligent Data
Analysis XII, pages 273–284, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[16] Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for
next-generation sequencing data, jun 2010.

[17] Kumar Molugaram and G. Shanker Rao. Analysis of Time Series. Statistical
Techniques for Transportation Engineering, pages 463–489, jan 2017.

[18] Andrew Ng. CS294A Lecture Notes Sparse Autoencoder. Technical report,
2011.

[19] John Paparrizos and Luis Gravano. K-shape: Efficient and accurate clustering
of time series. Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2015-May:1855–1870, 2015.

[20] Chotirat Ann Ralanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn
Keogh, Michail Vlachos, and Gautam Das. Mining Time Series Data. In Data
Mining and Knowledge Discovery Handbook, pages 1069–1103. Springer-Verlag,
may 2006.

[21] David Salomon and Giovanni Motta. Handbook of Data Compression Fifth
Edition Previous editions published under the title "Data Compression: The
Complete Reference". 2010.

[22] Kukkong Sirisambhand and Chotirat Ann Ratanamahatana. A Dimensionality
Reduction Technique for Time Series Classification Using Additive Representa-
tion. In Xin-She Yang, Simon Sherratt, Nilanjan Dey, and Amit Joshi, editors,
Third International Congress on Information and Communication Technology,
pages 717–724, Singapore, 2019. Springer Singapore.

[23] T. Warren Liao. Clustering of time series data - A survey. Pattern Recognition,
38(11):1857–1874, nov 2005.

55

A
Appendix

A.1 Prediction Results

cell
Greedy Plain Greedy SF Greedy SAX best

predMSE
true time series

MSE
true time series

MSE
true time series

pred cluster pred cluster pred cluster
AAC 0.473 0.164 0.448 0.157 0.637 0.252 stats
AAJ 1.375 0.100 1.443 0.101 1.923 0.334 plain
ABY 0.260 0.163 0.362 0.191 0.342 0.284 plain
ACC 0.594 0.126 0.663 0.148 0.433 0.132 stats
ACF 0.228 0.097 0.275 0.126 0.317 0.142 plain
ACN 0.705 0.157 0.636 0.198 0.755 0.261 stats
ACP 0.146 0.064 0.134 0.066 0.608 0.093 stats
ACU 1.026 0.148 0.937 0.193 1.201 0.210 stats
ADQ 0.433 0.254 0.402 0.251 0.612 0.287 stats
ADR 0.250 0.103 0.351 0.125 0.402 0.134 plain
ADV 0.518 0.100 0.460 0.131 0.495 0.198 stats
AEM 0.209 0.071 0.182 0.077 0.186 0.086 stats
AFE 3.312 0.488 4.398 0.496 2.977 0.823 sax
AGB 0.400 0.155 0.519 0.191 0.352 0.219 sax
AGC 0.443 0.131 0.342 0.141 0.420 0.231 stats
AGE 0.661 0.217 0.723 0.290 0.894 0.396 plain
AGU 0.177 0.088 0.257 0.128 0.276 0.147 plain
AHI 3.260 0.172 2.530 0.195 3.776 0.187 stats
AHQ 0.279 0.115 0.326 0.129 0.315 0.147 plain
AHS 0.988 0.191 0.932 0.260 1.023 0.346 stats
AII 0.213 0.067 0.209 0.088 0.266 0.115 stats
AIK 0.522 0.146 0.609 0.152 0.528 0.200 plain
AJY 1.127 0.230 1.017 0.344 1.221 0.402 stats
ALT 0.152 0.066 0.220 0.101 0.251 0.132 plain
ANT 0.772 0.126 0.531 0.138 0.811 0.240 stats
AOA 1.263 0.160 1.323 0.196 1.437 0.265 plain
AOY 0.407 0.140 0.332 0.153 0.415 0.172 stats
APW 0.375 0.184 0.459 0.190 0.527 0.264 plain

I

A. Appendix

APX 1.913 0.069 1.043 0.079 1.057 0.113 stats
AQK 0.185 0.100 0.381 0.137 0.304 0.144 plain
AQL 0.733 0.178 0.590 0.170 0.427 0.251 sax
AQP 0.332 0.188 0.483 0.213 0.402 0.326 plain
ART 0.705 0.285 0.721 0.296 0.651 0.381 sax
ASB 4.823 0.290 5.700 0.285 5.117 2.494 plain
ATE 0.662 0.225 0.577 0.237 0.713 0.370 stats
ATT 0.589 0.130 0.784 0.127 0.812 0.216 plain
AUX 0.725 0.157 0.646 0.185 0.738 0.240 stats
AVC 0.831 0.104 1.014 0.129 0.608 0.153 sax
AVF 0.559 0.131 0.565 0.138 0.477 0.164 sax
AWG 1.656 0.256 2.407 0.409 2.213 0.329 plain
AWM 0.164 0.059 0.169 0.065 0.176 0.092 plain
AXF 0.780 0.143 0.665 0.172 0.596 0.233 sax
AXK 0.811 0.225 1.141 0.220 1.147 0.290 plain
AYH 0.446 0.315 0.417 0.286 0.659 0.280 stats
AYV 1.430 0.137 1.031 0.144 1.346 0.286 stats
AZF 1.925 0.107 1.818 0.110 1.530 0.237 sax
AZG 0.364 0.180 0.531 0.213 0.590 0.337 plain
BAH 1.423 0.121 1.666 0.133 1.162 0.125 sax
BAW 0.428 0.149 0.572 0.219 0.399 0.263 sax
BBE 0.621 0.241 0.604 0.287 0.885 0.385 stats
BBM 0.585 0.115 0.484 0.127 0.407 0.205 sax
BBQ 0.340 0.107 0.406 0.116 0.508 0.181 plain
BBV 5.029 0.458 3.259 0.450 6.700 0.948 stats
BCI 0.987 0.154 0.973 0.159 1.058 0.238 stats
BCU 1.546 0.179 1.138 0.186 0.890 0.187 sax
BCY 0.652 0.136 0.662 0.142 0.930 0.193 plain
BDB 0.382 0.126 0.529 0.144 0.432 0.183 plain
BFL 0.160 0.062 0.175 0.076 0.154 0.099 sax
BFT 0.173 0.061 0.165 0.074 0.171 0.094 stats
BGI 0.690 0.168 1.048 0.181 0.678 0.259 sax
BGL 0.416 0.105 0.298 0.111 0.493 0.158 stats
BHF 0.328 0.141 0.421 0.130 0.271 0.195 sax
BIA 0.299 0.073 0.189 0.087 0.169 0.099 sax
BJC 0.625 0.129 0.700 0.119 0.616 0.178 sax
BJL 1.232 0.070 2.294 0.070 1.333 0.077 plain
BKL 0.869 0.161 0.903 0.167 0.946 0.290 plain
BLG 0.980 0.125 0.927 0.144 0.897 0.119 sax
BND 6.235 0.496 6.302 0.551 9.428 3.198 plain
BNQ 1.925 0.631 1.996 0.673 2.169 0.977 plain
BNW 0.651 0.255 0.553 0.249 0.612 0.308 stats
BOD 0.605 0.156 0.641 0.170 0.648 0.227 plain
BOK 0.621 0.284 0.589 0.284 0.904 0.348 stats

Table A.1: Comparison of prediction results between Greedy Clustering, Greedy
SF Clustering and Greedy SAX Clustering

II

A. Appendix

MSE true time series

cell autoLSTM Greedy SF + clusterLSTM
prediction reconstruction prediction cluster

AAC 0.328 0.064 0.448 0.157
AAJ 1.217 0.067 1.443 0.101
ABY 0.149 0.047 0.362 0.191
ACC 0.314 0.047 0.663 0.148
ACF 0.145 0.040 0.275 0.126
ACN 0.385 0.079 0.636 0.198
ACP 0.081 0.022 0.134 0.066
ACU 0.516 0.071 0.937 0.193
ADQ 0.221 0.080 0.402 0.251
ADR 0.177 0.043 0.351 0.125
ADV 0.199 0.036 0.460 0.131
AEM 0.100 0.031 0.182 0.077
AFE 2.715 0.171 4.398 0.496
AGB 0.161 0.056 0.519 0.191
AGC 0.236 0.050 0.342 0.141
AGE 0.487 0.096 0.723 0.290
AGU 0.163 0.037 0.257 0.128
AHI 0.361 0.107 2.530 0.195
AHQ 0.352 0.041 0.326 0.129
AHS 0.844 0.094 0.932 0.260
AII 0.215 0.035 0.209 0.088
AIK 0.431 0.053 0.609 0.152
AJY 0.639 0.071 1.017 0.344
ALT 0.205 0.027 0.220 0.101
ANT 0.255 0.058 0.531 0.138
AOA 0.805 0.060 1.323 0.196
AOY 0.230 0.057 0.332 0.153
APW 0.463 0.067 0.459 0.190
APX 0.134 0.031 1.043 0.079
AQK 0.180 0.044 0.381 0.137
AQL 0.236 0.058 0.590 0.170
AQP 0.175 0.051 0.483 0.213
ART 0.253 0.102 0.721 0.296
ASB 5.101 0.197 5.700 0.285
ATE 0.389 0.069 0.577 0.237
ATT 0.454 0.040 0.784 0.127
AUX 0.433 0.084 0.646 0.185
AVC 0.371 0.039 1.014 0.129
AVF 0.282 0.049 0.565 0.138
AWG 1.233 0.106 2.407 0.409
AWM 0.130 0.020 0.169 0.065
AXF 0.348 0.068 0.665 0.172
AXK 0.573 0.072 1.141 0.220

III

A. Appendix

AYH 0.270 0.087 0.417 0.286
AYV 0.606 0.066 1.031 0.144
AZF 1.190 0.063 1.818 0.110
AZG 0.349 0.056 0.531 0.213
BAH 1.013 0.042 1.666 0.133
BAW 0.195 0.051 0.572 0.219
BBE 0.520 0.086 0.604 0.287
BBM 0.185 0.034 0.484 0.127
BBQ 0.220 0.037 0.406 0.116
BBV 0.790 0.151 3.259 0.450
BCI 0.606 0.050 0.973 0.159
BCU 0.708 0.071 1.138 0.186
BCY 0.735 0.061 0.662 0.142
BDB 0.252 0.059 0.529 0.144
BFL 0.131 0.021 0.175 0.076
BFT 0.167 0.026 0.165 0.074
BGI 0.668 0.069 1.048 0.181
BGL 0.222 0.045 0.298 0.111
BHF 0.191 0.058 0.421 0.130
BIA 0.187 0.032 0.189 0.087
BJC 0.166 0.046 0.700 0.119
BJL 0.530 0.035 2.294 0.070
BKL 0.535 0.048 0.903 0.167
BLG 0.764 0.047 0.927 0.144
BND 6.574 0.382 6.302 0.551
BNQ 1.117 0.217 1.996 0.673
BNW 0.702 0.106 0.553 0.249
BOD 0.386 0.051 0.641 0.170
BOK 0.400 0.070 0.589 0.284

Table A.2: Prediction results of a pipeline including an autoencoder and stacked
LSTM in comparison to the clusterLSTM prediction using Greedy SF compression

IV

A. Appendix

MSE true time series
Greedy Plain Greedy SF Greedy SAX

cell
pred
small
LSTM

pred
large
LSTM

pred
small
LSTM

pred
large
LSTM

pred
small
LSTM

pred
large
LSTM

best
pred

AAC 0,461 0,473 0.468 0,448 0,520 0,637 large - stats
AAJ 2,363 1,375 1.500 1,443 1,457 1,923 large - plain
ABY 0,341 0,260 0,252 0,362 0,315 0,342 small - stats
ACC 0,509 0,594 0,536 0,663 0,602 0,433 large - sax
ACF 0,304 0,228 0,213 0,275 0,214 0,317 small - stats
ACN 0,745 0,705 0,703 0,636 0,765 0,755 large - stats
ACP 0,120 0,146 0,152 0,134 0,148 0,608 small - plain
ACU 0,665 1,026 0,961 0,937 0,814 1,201 small - plain
ADQ 0,550 0,433 0,375 0,402 0,375 0,612 small - stats/sax
ADR 0,385 0,250 0,244 0,351 0,334 0,402 small - stats
ADV 0,593 0,518 0,459 0,460 0,696 0,495 small - stats
AEM 0,169 0,209 0,222 0,182 0,207 0,186 small - plain
AFE 2,911 3,312 3,100 4,398 3,180 2,977 small - plain
AGB 0,357 0,400 0,443 0,519 0,565 0,352 large - sax
AGC 0,513 0,443 0,430 0,342 0,372 0,420 large - stats
AGE 0,946 0,661 0,797 0,723 1,071 0,894 large - plain
AGU 0,270 0,177 0,189 0,257 0,204 0,276 large - plain
AHI 3,531 3,260 2,041 2,530 2,363 3,776 small - stats
AHQ 0,325 0,279 0,341 0,326 0,347 0,315 large - plain
AHS 1,208 0,988 0,852 0,932 1,164 1,023 small - stats
AII 0,278 0,213 0,216 0,209 0,188 0,266 small - sax
AIK 0,567 0,522 0,599 0,609 0,777 0,528 large - plain
AJY 1,054 1,127 1,151 1,017 1,026 1,221 large - stats
ALT 0,238 0,152 0,140 0,220 0,260 0,251 small - stats
ANT 0,633 0,772 0,624 0,531 0,581 0,811 large - stats
AOA 1,459 1,263 1,249 1,323 7,012 1,437 small - stats
AOY 0,413 0,407 0,402 0,332 0,314 0,415 small - sax
APW 0,389 0,375 4,202 0,459 0,556 0,527 large - plain
APX 1,009 1,913 1,309 1,043 1,501 1,057 small - plain
AQK 0,276 0,185 0,216 0,381 0,304 0,304 large - plain
AQL 0,440 0,733 0,516 0,590 0,404 0,427 small - sax
AQP 0,400 0,332 0,303 0,483 0,383 0,402 small - stats
ART 0,600 0,705 0,580 0,721 0,685 0,651 small - stats
ASB 4,832 4,823 4,135 5,700 4,702 5,117 small - stats
ATE 0,719 0,662 0,444 0,577 0,544 0,713 small - stats
ATT 0,778 0,589 0,643 0,784 0,757 0,812 large - plain
AUX 0,668 0,725 0,710 0,646 0,535 0,738 small - sax
AVC 0,703 0,831 1,182 1,014 1,126 0,608 large - sax
AVF 0,479 0,559 0,549 0,565 3,887 0,477 large - sax
AWG 2,131 1,656 1,864 2,407 2,021 2,213 large - plain
AWM 0,157 0,164 0,177 0,169 1,858 0,176 small - plain

V

A. Appendix

AXF 0,503 0,780 0,647 0,665 0,605 0,596 small - plain
AXK 1,122 0,811 0,834 1,141 1,187 1,147 large - plain
AYH 0,542 0,446 0,401 0,417 0,413 0,659 small - stats
AYV 0,984 1,430 1,112 1,031 1,229 1,346 small - plain
AZF 2,884 1,925 1,998 1,818 1,963 1,530 large - sax
AZG 0,515 0,364 1,293 0,531 0,475 0,590 large - plain
BAH 1,637 1,423 1,604 1,666 1,866 1,162 large - sax
BAW 0,528 0,428 0,341 0,572 0,641 0,399 small - stats
BBE 0,787 0,621 0,605 0,604 0,605 0,885 large - stats
BBM 0,514 0,585 0,605 0,484 0,476 0,407 large - sax
BBQ 0,469 0,340 0,327 0,406 0,410 0,508 small - stats
BBV 7,362 5,029 8,612 3,259 10,109 6,700 large - stats
BCI 0,688 0,987 0,895 0,973 0,953 1,058 small - plain
BCU 0,913 1,546 0,981 1,138 1,092 0,890 small - plain
BCY 0,825 0,652 0,651 0,662 0,603 0,930 small - sax
BDB 0,475 0,382 0,361 0,529 0,440 0,432 small - stats
BFL 0,186 0,160 0,166 0,175 0,176 0,154 large - sax
BFT 0,182 0,173 0,142 0,165 0,169 0,171 small - stats
BGI 1,684 0,690 0,828 1,048 0,754 0,678 large - sax
BGL 0,562 0,416 0,301 0,298 0,300 0,493 large - stats
BHF 0,272 0,328 0,317 0,421 0,412 0,271 large - sax
BIA 0,131 0,299 0,217 0,189 0,251 0,169 small - plain
BJC 0,635 0,625 0,611 0,700 0,461 0,616 small - sax
BJL 1,220 1,232 1,220 2,294 1,593 1,333 small plain/stats
BKL 0,713 0,869 0,858 0,903 0,816 0,946 small - plain
BLG 0,671 0,980 1,220 0,927 1,077 0,897 small - plain
BND 5,008 6,235 5,230 6,302 5,142 9,428 small - plain
BNQ 2,080 1,925 1,907 1,996 1,569 2,169 small - sax
BNW 0,531 0,651 0,580 0,553 0,536 0,612 small - plain
BOD 0,758 0,605 0,690 0,641 0,669 0,648 large - plain
BOK 0,834 0,621 0,547 0,589 6,669 0,904 small - stats

Table A.3: Comparison of predictions for the small LSTM architecture (2x 14
neurons in the hidden layer) and the larger architecture (2x 25 neurons in the hidden
layer)

VI

A. Appendix

Figure A.1: Comparison of prediction MSEs for cell AAC - ATT

VII

A. Appendix

Figure A.2: Comparison of prediction MSEs for cell AUX - BOK

VIII

A. Appendix

A.2 Evalution of Clustering

Figure A.3: Clustering times. Additionally, with higher number of generated
clusters

1 Wrote profile results to benchmark_auto_lstm .py.lprof
2 Timer unit: 1e -06 s
3

4 Total time: 482.985 s
5 File: benchmark_auto_lstm .py
6 Function : train at line 28
7

8 Line Hits Time Per Hit % Time Line Contents
9 ==

10 28 @profile
11 29 def train(x, epochs =20):
12 30 1 482985448.0 482985448.0 100.0 autoencoder .fit(x)

Listing A.1: Example output of line_profiler for function train

IX

	List of Figures
	List of Tables
	Introduction
	Background
	Related Works
	Roadmap
	Ethical Considerations

	Theory
	Time Series Clustering
	Normalization and Similarity Measures for Time Series
	Greedy Plain Clustering

	sax
	Autoencoder
	lstm
	Evaluation Metrics

	Methods
	Data Introduction
	Data Retrieval
	Smoothing Techniques
	Candidate Selection in Greedy Clustering
	Greedy sax Clustering
	Greedy sf Clustering

	Magnitude Adaptive Clustering
	Evaluation of Clustering
	Prediction
	lstm (clusterLSTM)
	Autoencoder and Stacked LSTM (autoLSTM)

	Anomaly Detection
	Evaluation of Machine Learning

	Results and Discussion
	Exploration of Cluster Results
	Clustering
	Feature Selection in Greedy SF
	Clustering Performance
	Inferring Descriptive Statistics

	Prediction
	Clustering and lstm Prediction (clusterLSTM)
	Stacked lstm Prediction (autoLSTM)
	Comparing Resources
	Anomaly Detection using Prediction Errors

	Conclusion

	Future Work
	Bibliography
	Appendix
	Prediction Results
	Evalution of Clustering

