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Abstract. Bloom filters are hash-based data structures for member-
ship queries without false negatives widely used across many application
domains. They also have become a central data structure in bioinformat-
ics. In genomics applications and DNA sequencing the number of items
and number of queries are frequently measured in the hundreds of bil-
lions. Consequently, issues of cache behavior and hash function overhead
become a pressing issue. Blocked Bloom filters with bit patterns offer a
variant that can better cope with cache misses and reduce the amount of
hashing. In this work we state an optimization problem concerning the
minimum false positive rate for given numbers of memory bits, stored
elements, and patterns. The aim is to initiate the study of pattern designs
best suited for the use in Bloom filters. We provide partial results about
the structure of optimal solutions and a link to two-stage group testing.
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1 Introduction

The following scenario appears in various applications of computing: A large set
S of data is maintained. Further elements may be added to S, but usually ele-
ments are never removed. Many queries of the form “s ∈ S?” must be answered,
where s is any element from the domain of discourse. To facilitate quick answers,
a certain rate of false positives is permitted: The system may sometimes claim
s ∈ S although actually s /∈ S. However, false negatives are not allowed: The
system must recognize that s ∈ S whenever this is the case. A popular example
of a data structure providing this functionality is the Bloom filter [2].

The word filter in the name indicates their use in avoiding accesses to the
set S, in particular if slow accesses over networks or to disks become neces-
sary. If these costly operations only happen for items passing the filter, the
computational cost of many operations can be reduced, if the filter data struc-
ture allows inserts and queries in a time- and space-efficient manner. A num-
ber of database products (Google BigTable, Apache Cassandra, and Postgresql)
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and web proxies (Squid) use Bloom filters; they have also been used to accelerate
network router performance [23].

A specific application area in which Bloom filters have become a central data
structure is the bioinformatics analysis of high-throughput DNA sequencing data
from clinical or genomics experiments. In its analysis the k-mer, a consecutive
substring of k characters in a DNA read, or string obtained from a sequenc-
ing instrument, is a fundamental unit for two reasons: First, the nodes of the
de Bruijn-graph [7] are k-mers. The de Bruijn-graph is the most frequently used
data structure in de novo genome assembly [25], the process of assembling com-
plete genomes from the many fragments obtained from a sequencing instrument.
Second, due to the way the errors are distributed in DNA sequencing reads,
frequent k-mers seen a number of times represent the error-free sequence of the
genome, whereas k-mers seen only once are erroneous. This explains the impor-
tance of identifying frequent k-mers [21] and their use in error correction, gene
expression analysis and metagenomics, to list just a few applications.

The size of the problem instances are huge. A DNA sequencing data set of
a human genome might contain 240 billion k-mers in its 2.4 billion reads. One
expects about 3 billion k-mers to be frequent, and there could be up to 270 billion
distinct erroneous k-mers for k = 31 [21]. Consequently, the filters have to be large
too, in the tens of Gigabyte range, which amplifies the effect of cache misses. As
the cost of the Bloom filter operations makes up a large proportion of the total
running time, constants, complexity and details of cache behavior matter and a
better understanding of these aspects of the filters will have impact on many prac-
tical applications. In the following, we first introduce the particular type of Bloom
Filter we will study and motivate the hypothesis pursued in this study.

1.1 Blocked Bloom Filters with Bit Patterns

Bloom filters [2] are a classic implementation of the filtering idea introduced in
the previous section. Although they have some issues (deletions are not sup-
ported, and the space is 1.44 times larger than optimal) and alternatives came
up more recently in theory [11,19] and practice [13], Bloom filters remain an
important and widely used data structure due to their conceptual simplicity.

Some basic notation is needed for the subsequent descriptions. A vector
always means a bit vector, if not said otherwise. For vectors x, y of equal length,
let x ∩ y and x ∪ y denote the bit-wise AND and OR, respectively. We write
y ≤ x if y is contained in x, that is, for every entry 1 in y, the entry at the
same position in x is 1 as well. We write y < x if y ≤ x and y �= x. For a set
or multiset X of vectors,

⋃
X is the vector obtained by joining all vectors in X

by ∪. The complement of a vector x is obtained by flipping all bits. To set a bit
means to assign value 1 to it. We wish to store a subset S of a universal set U .

Bloom filters with bit patterns have been proposed in [20], and standard
Bloom filters appear as a special case of them. Their work can be described
as follows. (A formal definition would be lengthy.) The filter consists of a vector
of m bits, whose length m is chosen depending on parameters of the application.
The filter uses a hash function h : U −→ {0, 1}m, assigning a vector to every ele-
ment s ∈ U . We call this vector the pattern of s. Let d be the number of elements
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in S ⊂ U , and let x1, . . . , xd be their patterns. Only the vector x := x1 ∪ . . .∪xd

is stored. In order to test whether s ∈ S, one takes the pattern y of s and checks
whether y ≤ x. If not, then clearly s /∈ S. If y ≤ x, then s ∈ S is assumed.
Hence s /∈ S is a false positive if and only if y ≤ x1 ∪ . . . ∪ xd. In particular, any
collision of patterns, y = xi, causes a false positive.

Specifically, the standard Bloom filter uses a fixed k and builds the pattern
by setting up to k bits, chosen by k independent hash functions with values in
{1, . . . , m}; note that the k bits are not necessarily distinct. For variations of
this original idea and theoretical analysis of their properties, in particular, the
false positive rate versus space, see, e.g., [3,8,15,18].

A blocked Bloom filter consists of many small blocks. A hash function first
chooses a block (or blocks are partly predetermined, as the elements may be
already grouped in some way), and then the blocks work like usual Bloom filters.
Blocked Bloom filters with bit patterns have been proposed in [20]. It is one way
to reduce both cache misses and hashing, which make up for the major part
of the running time in some applications. Different applications can have very
different demands on the false positive rate, memory space, time complexity,
cache- and hash-efficiency, etc., therefore it is worthwhile to have a variety of
filters with different strengths regarding these parameters.

Getting back to the description of blocked Bloom filters with bit patterns,
the n patterns to be used are precomputed, by random sampling of k bits per
pattern, and stored. While the space needed for the patterns is negligible com-
pared to the entire filter, too large an n, say larger than the Level-1 or Level-2
cache will lead to deteriorating performance. Too small an n will lead to more
collisions and increase the errors rate, which can be remediated by increasing
filter size. Collision resolution mechanisms may be used to get roughly the same
number d of elements per block. Hashing can be drastically reduced even without
deteriorating the asymptotic false positive rate [15], but these results are shown
for d → ∞ whereas we are interested in blocks with small d and prescribed n.

1.2 Specific Problems and Our Contributions

Our hypothesis, prompted by observations with random k-set designs in com-
binatorial group testing [16], is that the exact choice of random k-bit patterns
does have an effect in particular in light of small n. Also, it is not obvious that
random k-bit patterns indeed attain optimal performance.

To our best knowledge, a study is missing that asks which set of bit pat-
terns (i.e., which image of the hash function) is optimal to use in this approach
to blocked Bloom filters, depending on the mentioned parameters m, d, n. The
present paper is mainly devoted to this question.

We consider arbitrary probability distributions on the m-bit vectors (result-
ing from the part of the hash function that assigns patterns to elements in a
block), and we ask which ones minimize the false positive rate (FPR):

Definition 1. Let m and d be fixed positive integers. Consider any probability
distribution on the set of m-bit vectors. Draw d + 1 vectors x1, . . . , xd and y
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randomly and independently from the given distribution. We define the false
positive rate (FPR) of the distribution, for the given d, as the probability of
the event y ≤ x1 ∪ . . . ∪ xd. The true negative rate (TNR) is the probability
of the complementary event. We abbreviate the FPR and TNR for a fixed d by
FPR(d) and TNR(d), respectively. (Thus TNR(d) + FPR(d) = 1.) We refer
to the probability of the event y ≤ x1 ∪ . . . ∪ xd, where the xi are fixed and only
y is random, as a conditional FPR.

Problem. Given m, d, n, devise a probability distribution on the m-bit vectors
that assigns positive probabilities to at most n vectors and minimizes FPR(d).

First we look at d = 1. This is not yet the realistic case, because a block
would barely hold just one element. We start with this case rather for theoretical
reasons, as it already provides some structural insights. We show that the best
FPR(1) is achieved by a random vector with a fixed number of 1s, which is m/2
(rounded if m is odd). Note that these vectors form the largest antichain (with
respect to ≤) due to Sperner’s theorem [24]. While the result is not surprising, its
proof is not that straightforward: Clearly, the more vectors we use, the smaller
can we make the probability of collisions (y = x1), and this is the only type
of false positives caused by an antichain. But it must also be shown that using
even more vectors, partly being in ≤ relation, is not beneficial. Our argument is
based on edge colorings in bipartite graphs and resembles the “sizes of shadows”
in one of the proofs of Sperner’s theorem, yet our objective is different. (The
proof also closes a gap in a proof step of a side result, Theorem 4, in [5].) This
start result raises further interesting points addressed in the sequel.

First, notice that a random vector with some fixed number of distinct bits has
the optimal FPR, and its specification needs less than log2 2m = m random bits,
whereas, e.g., setting a fixed number of independent random bits has a worse
FPR and needs Θ(m log m) random bits (more than m/2 specifications of one
out of m position, requiring Θ(log m) bits each).

Getting to the real case with general d (and also with limited n), one may
wonder if random vectors with some fixed number k of 1s (depending on m and
d) yield optimal FPR(d) as well. This conjecture will be disproved already by
a counterexample being as small as m = 2 and d = 2, but then we also obtain
the following general result (that will point to a modified conjecture; see below):
Some distribution with minimum FPR(d) has a support of a form that we call a
weak antichain. While an antichain forbids any vectors in ≤ relation, in a weak
antichain we do allow such pairs of vectors provided that they differ in only one
bit. (In [4] we proved that another combinatorial optimization problem shares
the same property, also the basic proof idea of “quartet changes” is the same,
however the proof details are problem-specific.) The relevance of this general
theorem is that families of bit patterns in Bloom filters can be restricted to
weak antichains, since other designs have only worse FPR values.

Note that setting k independent random bits with replacement violates the
weak antichain property, which naturally leads to the idea of patterns, too.
On the other hand, the proposal in [20] was just to use a “table of random
k-bit patterns”. The small example of non-optimality and the weak antichain



An Optimization Problem Related to Bloom Filters with Bit Patterns 529

property suggest that it might be good to use some mixture of patterns with
two consecutive numbers, k and k + 1, of 1 entries. This seems also plausible
because for any given d and m one would hardly expect one optimal k that
jumps when m grows.

We do not manage to solve the general optimization problem considered
here, however its difficulty is explained by our last contribution that might be
the main result: We show that FPR minimization is, essentially, equivalent to the
(notoriously difficult) construction of optimal almost disjunct matrices, which are
designs being known from the group testing problem. The connection between
Bloom filters and group testing has been noticed earlier here and then, but we
are not aware of an explicit result on their relationship, as provided here.

2 Preliminaries

In this section we collect some special notation and known facts, in the order of
appearance in the paper, except disjunct matrices and group testing which fit
more naturally in the technical sections.

We call the number of 1s in a vector u its level. (This number is also known as
the Hamming weight, but later we want to avoid confusion with another weight.)
We also use the phrase “level k” to denote the set of all vectors with the same
number k of bits 1.

We consider probability distributions Φ on finite sets only. The support of
Φ, denoted supp(Φ), is the set of elements u (in our case: vectors) with nonzero
probability p(u) > 0. The distribution Φ is uniform on supp(Φ) if all these
p(u) > 0 are equal.

As said before, p(u) denotes the probability of vector u in a given distribution.
Sometimes it is more convenient to write pU instead, where U is the set of
positions of bits 1 in u. We also omit commas and brackets. For instance, p(1, 0, 1)
is written as p13. If U = ∅, we write p0.

We presume that standard graph- and order-theoretic concepts not explained
here are widely known. A classic theorem by König (1916) states that every
bipartite graph with maximum degree Δ allows an edge coloring with Δ colors.
That is, we can color the edges in such a way that edges with the same color
always form a matching, i.e., they are pairwise disjoint. Different proofs and
many algorithmic versions have been given later, see, e.g., [14].

An antichain in a partial order (e.g., in the partial order of m-bit vectors
under the ≤ relation), is a subset without any pairs y < x. Sperner’s theorem
[24] states (rephrased) that the largest antichain in the set of m-bit vectors is
simply the set of all vectors on level k, where k = �m/2� or k = 
m/2�. Slightly
relaxing the notion of antichain, we call a set A of m-bit vectors a weak antichain
if for all vectors u, v ∈ A with u ≤ v, vector v has at most one 1 entry more than
vector u.

Let y be a vector and X a tuple of d vectors (which are in general not distinct).
We define f(y,X) = 1 if y ≤ ⋃

X, and f(y,X) = 0 otherwise. Note that FPR(d)
in Definition 1 is the weighted sum of all f(y,X), where the weight of (y,X)
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is the probability that d + 1 vectors independently drawn from the distribution
happen to be y and the vectors of X in the given order.

We say that a probability distribution Φ on the m-bit vectors is dominated
by another distribution Ψ if, for every d, the FPR of Ψ is no larger than that of
Φ. We call Φ undominated if Φ is not dominated by any Ψ �= Φ. Clearly, from
the point of view of getting optimal FPR, only undominated distributions need
to be considered.

Every probability distribution on finitely many elements and with rational
numbers as probability values can be equivalently viewed as a uniform distribu-
tion on copies of the elements: Let q be a common denominator of all probabili-
ties. Then we may represent every element of probability p/q as p distinct copies
labeled by the element. We refer to these copies as units, and every unit is chosen
with probability 1/q. Notationally we may not always distinguish between a unit
and its label, if this causes no confusion.

Let e denote Euler’s number. Logarithms are meant with base 2 if not said
otherwise.

3 False Positive Rate for One Element

Theorem 1. For every m > 1, the uniform distribution on a median level, i.e.,
on the level �m/2� or 
m/2�, attains the smallest FPR(1).

Proof. For any probability distribution Φ on the m-bit vectors, observe that
FPR(1) =

∑
u p(u)2 +

∑
u<v p(u) · p(v), where the sums are taken over all

vectors. Let k be the lowest level containing any vectors in supp(Φ), and assume
that k ≤ (m − 1)/2. We construct a weighted bipartite graph as follows. The
vertices are all vectors u ∈ supp(Φ) on level k, and all vectors v on level k + 1
(including those with zero probability). We use the terms vector and vertex
interchangeably. The edges are all pairs (u, v) with u < v. The weight of a
vertex is its probability, and the weight of an edge (u, v) is p(u) · p(v).

Note that every vertex on level k + 1 has a degree at most k + 1, and every
vertex on level k has exactly the degree m − k ≥ k + 1. By König’s theorem
there exists an edge coloring with m − k colors. Clearly, every vertex on level k
is incident to exactly one edge of each color. Since m > 1, we have m − k ≥ 2.
The total edge weight of the bipartite graph is b :=

∑
u<v p(u) · p(v), where u

and v are restricted to vertices on level k and k +1, respectively. The color class
of a color c is the set of all edges of this color c. Let M be a color class with
minimum total edge weight, among all colors c. This weight can be at most b/2,
since m − k ≥ 2.

Now we modify the probabilities. For every vertex u on level k and its partner
v in M , we set p(u) := 0 and p(v) := p(v) + p(u). Notice that v exists, and
different vertices u have different partners v. The contribution of levels k and
k + 1 to FPR(1) decreases by b as we destroy all edges, and at the same time it
increases by at most 2b/2 = b because every new p(v)2 becomes (p(v)+p(u))2 =
p(v)2 + 2p(u) · p(v) + p(u)2. In words: For every (u, v) ∈ M , the squared vertex
weight p(u)2 just “moves into” p(v)2, and the doubled edge weight is added. The
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sum of all doubled edge weights in M is bounded by 2b/2. Finally, no further
positive terms in FPR(1) are created by moving probability mass to level k +1:
There are no further vertices w with p(w) > 0 on lower levels, and for any w > v
on higher levels we have already w > u by transitivity. Altogether it follows that
we can empty the level k without increasing FPR(1).

By symmetry, FPR(1) is not affected if we take the complements of all
vectors. Thus the same reasoning applies also to the highest level k that intersects
supp(Φ), assuming that k ≥ (m + 1)/2. By iterating the procedure we can move
all probability mass into the level m/2 if m is even, or into one of �m/2� or

m/2� if m is odd. As the last step, the sum of squares of a fixed number of
values with a fixed sum is minimized if these values are equal. ��

In Theorem 1 we did not limit the size of the support, i.e., the number n. of
patterns. Now let n be prescribed. Due to Theorem 1, if n >

(
m

�m/2�
)
, we would

still take only a median level and no further vectors, and if n ≤ (
m

�m/2�
)
, we can

take the uniform distribution on any antichain of n vectors to achieve the best
FPR(1) which is then 1/n.

4 Weak Antichains

Theorem 2. For every m, every probability distribution on the m-bit vectors is
dominated by some probability distribution whose support is a weak antichain.

Proof. Let u and v be vectors such that u ≤ v, and v has at least two 1 entries
more than u. Clearly, we can get two vectors w and w′ such that w ∩ w′ = u,
w∪w′ = v, and u, v, w,w′ are four distinct vwctors. Now let Φ be any probability
distribution on the vectors with u, v ∈ supp(Φ), that is, Φ contains two such units
u and v, and is therefore not a weak antichain. We replace one unit u with one
unit w, and we replace one unit v with one unit w′. We call such a replacement
a quartet change. We study how a quartet change affects the FPR.

In certain subsets (of sequences of vectors) with even cardinality we will pair
up all members, i.e., divide them completely into disjoint pairs, and we refer
to the members of every such pair as partners. In the following, observe that
distinct units carrying the same label are still considered distinct (as units), and
that to “appear” in a sequence means “at least once”.

Every argument (y,X) of f , where y is a unit and X is a sequence of d units,
belongs to exactly one of the following cases:

(a1) Both u and v are not y, nor do they appear in X.
(a2) Both u and v are not y, and exactly one of them appears in X.
(a3) Both u and v are not y, and both appear in X.
(b1) Unit y is one of u and v, and both u and v do not appear in X.
(b2) Unit y is one of u and v, and y appears in X.
(b3) Unit y is one of u and v, and only the unit other than y appears in X.

Note that, in general, y itself may appear in X.
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Since we are working with units, all (y,X) have the same probability, hence
FPR(d) is simply the unweighted sum of all f(y,X). In each of the cases we
prove that FPR(d) cannot increase by the quartet change.

Case (a1). Trivially, f(y,X) is not affected by the quartet change.

Case (a2). We pair up the arguments of f that belong to this case: The partner
of every (y,X) is defined by replacing all occurrences of our unit u with v, or
vice versa. Let Xu and Xv be any such partners containing u and v, respectively,
with unions xu :=

⋃
Xu and xv :=

⋃
Xv. We define Xw as the sequence obtained

from Xu by replacing all occurrences of the unit u with w, and xw :=
⋃

Xw.
Finally, Xw′ and xw′ are defined similarly. In the distribution after the quartet
change, Xw and Xw′ are partners.

We claim that f(y,Xu)+f(y,Xv) ≥ f(y,Xw)+f(y,Xw′). This claim follows
from two observations: If both y ≤ xw and y ≤ xw′ , then y ≤ xw∩xw′ = xu ≤ xv,
where the inner equality is true by the distributive law for ∩ and ∪. If only one
of the former inequalities holds, say y ≤ xw, then we still have y ≤ xv.

Case (a3). Consider any such argument (y,X) as specified in this case, and let
X ′ be the sequence obtained from X by the quartet change. Let x :=

⋃
X and

x′ :=
⋃

X ′. We claim that f(y,X) ≥ f(y,X ′). To show this claim, we use that
w ∪ w′ = v: If y ≤ w ∪ w′ then trivially y ≤ v. Together with the distributive
law this shows: If y ≤ x′ then y ≤ x.

Case (b1). Again we pair up the arguments of f that belong to the case: This
time, (u,X) and (v,X) are partners, and the claim is that f(u,X) + f(v,X) ≥
f(w,X) + f(w′,X). With x :=

⋃
X observe the following: If both w ≤ x and

w′ ≤ x, then u ≤ v = w ∪ w′ ≤ x. If only one of the former inequalities holds,
say w ≤ x, then we still have u ≤ x.

Case (b2). The same unit appears in the role of y and also in X, and it is
replaced with the same unit at all occurrences. Thus we have f(y,X) = 1 before
and after the quartet change.

Case (b3). We pair up the arguments (u,Xv) and (v,Xu), where Xu is obtained
from Xv by replacing all occurrences of our unit u with v. Note that we also
obtain Xv from Xu in the opposite direction. We define Xw and Xw′ as in case
(1). We also adopt the earlier notations for the unions.

We claim that f(u,Xv) + f(v,Xu) ≥ f(w,Xw′) + f(w′,Xw). To show the
claim, first note that trivially w ≤ xw and w′ ≤ xw′ . Now, if also both w ≤ xw′

and w′ ≤ xw, then u ≤ v = w ∪ w′ ≤ xw ∩ xw′ = xu ≤ xv, where the first
equality holds by definition, and the second equality was already used in case
(1). If only one of the former inequalities holds, say w ≤ xw′ , then it suffices to
observe that u ≤ v.

Finally, it is not hard to see that a sequence of quartet changes cannot
cycle. Hence we always arrive at a weak antichain dominating the original
distribution. ��
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5 Some Special Cases

The following propositions are proved by using extremal value calculations and
Theorem 2; a full version is available at www.cse.chalmers.se/∼ptr.

Proposition 1. Among all distributions whose support is contained in the levels
0 and 1, the distribution minimizing FPR(d) is the following:

For d ≥ m, assign probability 1 − m/(d + 1) to the zero vector, and 1/(d + 1) to
every vector on level 1.
For d < m, assign probability 1/m to every vector on level 1.
Moreover, for d < m, the (unrestricted) distribution minimizing FPR(d) does
not have the zero vector in the support.

Proposition 2. For m ≥ 2 and d ≥ 2, the support of any distribution minimiz-
ing FPR(d) does not include the vector on level m.

Although these propositions treat only special aspects of our FPR minimiza-
tion problem, they lead to some interesting conclusions:

Consider m = 2 and d = 2. Proposition 2 yields p12 = 0. Thus we can
apply Proposition 1, and therefore the best distribution is p0 = p1 = p2 =
1/3. Already this small example shows that Theorem 1 does not generalize to
d > 1 in the way that the optimal FPR(d) is always attained by the uniform
distribution on some single level. But together with Theorem2 it suggests that
the minimum FPR(d) might be attained by some distribution whose support is
in at most two consecutive levels, and where all vectors on the same level have
equal probabilities.

Whatever the conjecture is, it is not easy to see how the arguments in The-
orem 1 can be generalized to d > 1. Informally, movements of probability mass
from the lowest level upwards create larger unions x1 ∪ . . . ∪ xd. This makes it
tricky to control the FPR, since probabilities can no longer be assigned to the
edges of some graph.

So far we have usually assumed an unlimited number n of vectors in the
support. The problem earns an extra dimension when a maximum n is prescribed
as well, as in the following section.

6 Using Almost Disjunct Matrices

Disjunct matrices (see definitions below) are test designs for non-adaptive group
testing [9], and relaxed versions are applied to two-stage group testing. In non-
adaptive group testing, d unknown elements in a set of n elements have a specific
property called defective, and these defective elements must be identified by
m simultaneous group tests: A group test indicates whether a certain subset
contains some defective or not. In two-stage group testing the aim is the same,
but the job of the first stage is only to limit the possible defectives to a subset
of candidates, which are then tested individually in the second stage. (There is
also a version where the second stage can apply yet another non-adaptive group

www.cse.chalmers.se/~ptr
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testing scheme, but this problem version is not relevant in our current context.)
Remarkably, two-stage group testing can accomplish a query number exceeding
the information-theoretic lower bound only by a constant factor [6,12], which is
not possible in one stage.

We call a binary matrix (d, ε)- disjunct if y ≤ x1 ∪ . . . ∪ xd happens with
probability at most ε, when x1, . . . , xd are columns chosen independently and
uniformly at random, and y is uniformly chosen among the remaining vectors,
distinct from all xi. (The definition in [1,17] is slightly different, as it requires
the xi to be distinct as well, but the difference is marginal for d � n.) A (d, 0)-
disjunct matrix is simply called d- disjunct. Informally we also refer to (d, ε)-
disjunct matrices as almost disjunct. For the use of (almost) disjunct matrices
in group testing we refer to the cited literature. In our context, the n columns
are the patterns in a Bloom filter with m bits.

The event y ≤ x1 ∪ . . . ∪ xd can occur for two reasons: either (1) a collision
y = xi happens for some i, or (2) y is in the union of d vectors other than y. We
name the probabilities of (1) and (2) the collision and containment probability,
respectively.

Proposition 3. Among all distributions with a fixed support of size n ≥ d + 1,
the uniform distribution on the support has the smallest collision probability,
which equals 1 − (1 − 1/n)d.

Proof. We denote the n probabilities by q1, . . . , qn. The probability of no col-
lision equals

∑n
i=1 qi(1 − qi)d. We want to maximize this expression under the

constraint
∑n

i=1 qi = 1. From the first and second derivative one can see that the
function q(1 − q)d is increasing if and only if q < 1/(d + 1), and concave if and
only if q < 2/(d+1). It follows that, in an optimal solution, all qi < 2/(d+1) are
equal, and qi ≥ 2/(d+1) holds for at most one index. Denote the small and large
value s and r, respectively. The assumption n ≥ d+1 implies s < 1/n ≤ 1/(d+1).
Hence we can decrease r and increase s so as to preserve the sum constraint and
improve the objective. It follows that, in an optimal solution, an index i with
qi = r cannot exist. Finally we get qi = 1/n for all i. ��

By virtue of Proposition 3 we focus now on filters that use a distribution being
uniform on its support. We remark that, by simple calculation, 1− (1− 1/n)d =
d/n − O((d/n)2), which is essentially d/n.

Proposition 4. Any (d, ε)-disjunct m×n matrix enables a Bloom filter with m
bits, n patterns, and FPR(d) ≤ 1− (1− 1/n)d +(1− 1/n)dε, where the patterns
are assigned uniformly to the elements. The converse holds also true.

Proof. Given a matrix as indicated, we take the uniform distribution on its
columns. The collision probability is 1 − (1 − 1/n)d. The containment probabil-
ity, in the event of no collision, is bounded by ε, by the definition of (d, ε)-
disjunctness. Conversely, suppose that we have a Bloom filter as indicated.
Again, the collision probability is equal to 1− (1− 1/n)d because of the uniform
distribution. Since FPR(d) ≤ 1 − (1 − 1/n)d + (1 − 1/n)dε is assumed, the con-
tainment probability in the case of no collision cannot exceed ε. Hence we can
view the patterns as the columns of some (d, ε)-disjunct m × n matrix. ��
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Proposition 4 states that, at least for uniform distributions, constructing
Bloom filters with bit patterns that are optimal (in terms of FPR, space, and
amount of patterns and hash bits) is essentially equivalent to constructing opti-
mal almost-disjunct matrices. The next natural question concerns the possi-
ble trade-offs between the parameters. The smallest possible row number of
d-disjunct matrices behaves as m = Θ(d2/ log d) log n [10]. Unfortunately, with
ε := d/n this leads to m/d = Θ(d/ log d)(log d + log(1/ε)), i.e., the space per
element ratio is by a Θ(d/ log d) factor worse than in standard Bloom filters
where m/d = 1.44 log(1/ε). For d = 1 we remark that the optimal 1-disjunct
matrices are the Sperner families, and according to Theorem 2 they have optimal
FPR(1). But for d > 1, using d-disjunct matrices quickly becomes unsuitable.

The picture becomes better with (d, ε)-disjunct matrices. As mentioned in [1,
17], it is possible to achieve m = Θ(d log n) due to [26] (and hence the additional
Θ(d/ log d) factor disappears), although the cited result was not constructive.
But it was not noticed in [1,17] that a special type of (d, ε)-disjunct matrices
with m = Θ(d log n) rows and even better properties is known as well [6,12]. We
will utilize them now.

A binary matrix is called (d, f)-resolvable if, for any d distinct columns
x1, . . . , xd, the inclusion y ≤ x1 ∪ . . .∪xd holds for fewer than f columns y other
than the xi [12]. Note that any (d, f)-resolvable matrix is also (d, f/(n − d))-
disjunct, and the resulting false positive probability bound holds even condi-
tional on every tuple x1, . . . , xd, not only averaged over all tuples. A counterpart
of Proposition 4 holds for resolvable matrices and conditional FPR.

Specifically, Theorem 2 in [12] provides, for every integer f > 0, a (d, f)-
resolvable matrix with m = 2(d2/f) log(en/d)+2d log(en/f)+2(d/f) log n rows.
This yields, in a few steps: m/d = 2(d/f) log(en/d)+2 log(en/f)+(2/f) log n =
(2(d + f + 1)/f) log(n/d) + 2(d/f) log e + 2 log(d/f) + 2 log e + (2/f) log d. For
notational convenience we define r = d/n, s = f/n, and t = (d+f)/n. We assume
bounded ratios r/s and s/r and (for studying the asymptotics for growing n) we
neglect the terms that do not depend on n. Then the above equation simplifies
to m/d = 2(1+r/s) log(1/r). Further rewriting gives m/d = 2t/(t−r) · log(1/r),
which we use below.

It is not totally obvious that the most efficient resolvable matrices, that
maximize n for given m and d, also yield the smallest FPR(d) of Bloom filters
of this type. While the collision probability improves (i.e., decreases) for growing
n, the containment probability increases, as the relation between n and the fixed
m becomes worse. But, in fact, we can establish monotonicity.

Proposition 5. When the columns of the (d, f)-resolvable matrices from [12]
are used as patterns in a Bloom filter, then FPR(d) decreases for growing n.

Proof. Let C denote the factor for which m = Cd log n. Note that C ≥ 2.
Solving m/d = 2t/(t− r) · log(1/r) for t yields t = r/(1− (2/ ln 2)(d/m) ln(1/r)).
Taking the derivative with repect to r by using the quotient rule yields the
denominator 1 − (2/ ln 2)(d/m)(ln(1/r) + 1). We have the following chain of
equivalent inequalities: 1 − (2/ ln 2)(d/m)(ln(1/r) + 1) > 0 ⇐⇒ ln(1/r) < ln 2 ·
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(m/2d) − 1 ⇐⇒ 1/r < (1/e) · 2m/(2d) ⇐⇒ n/d < (1/e) · 2Cd logn/(2d) ⇐⇒
n < (d/e) · 2(C/2) log n ⇐⇒ n < (d/e) · nC/2, and the latter one is true for C ≥ 2.
Hence the derivative is positive in the relevant range of r, therefore t decreases
with growing 1/r, and the assertion follows. ��

On the other hand, a larger n requires more space to store the patterns and
more hashing. Still, the use of patterns is advantageous in this respect: In a
design with n patterns, only log n hash bits per element are needed. A standard
Bloom filter needs Θ((m/d) log m) = Θ(log n · log m) hash bits per element. The
constants depend on the desired FPR, but the extra Θ(log m) factor remains.

Another remark is that the resolvable matrices in [12] consist again of ran-
domly chosen vectors where a fixed number of bits is set, and Bloom filters are
explicitly mentioned as the inspiration. The opposite direction, namely, using
randomly chosen vectors with a fixed number of 1s as bit patterns in blocked
Bloom filters, was proposed in [20]. However, the known resolvable matrices are
not necessarily optimal. (In general, constructions of improved test designs are a
major theme in group testing research.) An intriguing question is whether there
are better designs with a given number n of patterns, and this is our optimization
problem.

7 Concluding Remarks

The actual construction of improved almost-disjunct matrices, and hence of bet-
ter bit patterns for Bloom filters, is beyond the scope of this paper. Our par-
tial results suggest that certain designs with vectors from two neighbored levels
might be optimal. We notice that the construction of combinatorial designs with
certain “almost-properties” gained new momentum recently [22].

We intend to design large-scale simulation experiments, to gain insights for
real and simulated workloads of using Bloom filters with bit patterns. We expect
to see differences between various pattern choices when viewing the FPR, as the
number of items in the filter increases. There may not necessarily be differences
in the FPR for the nominal design parameter representing the number of items,
but in how the FPR behaves up to this point and beyond.

Yet another aspect could not be addressed here: Cache considerations prevent
making the number n of patterns arbitrarily large, as the pattern storage needs
to fit within primary or at least secondary caches. One possible approach to
increase n (and thus reduce the FPR) in the same pattern storage would be the
computation of the actually needed patterns on-the-fly from hash values, using
only a small amount of auxiliary memory. Naturally, the design of the patterns
must allow fast calculation. We are wondering if such designs exist, that do not
compromise the other parameters too much.
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