
Federated Learning of Oligonucleotide
Drug Molecule Thermodynamics

with Differentially Private ADMM-Based
SVM

Shirin Tavara1(B), Alexander Schliep1, and Debabrota Basu2

1 CSE, University of Gothenburg | Chalmers University of Technology,
Gothenburg, Sweden
tavara@chalmers.se
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Abstract. A crucial step to assure drug safety is predicting off-target
binding. For oligonucleotide drugs this requires learning the relevant
thermodynamics from often large-scale data distributed across different
organisations. This process will respect data privacy if distributed and
private learning under limited and private communication between local
nodes is used. We propose an ADMM-based SVM with differential pri-
vacy for this purpose. We empirically show that this approach achieves
accuracy comparable to the non-private one, i.e. ∼86%, while yielding
tight empirical privacy guarantees even after convergence.
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1 Introduction

Machine learning (ML) and AI have been a remarkable success in improving
small molecule drug discovery over the past decade. Advanced ML models have
been applied to generate novel molecular structures, suggest synthesis pathways,
or predict biochemical properties or interactions of those molecules [6,15,16]. The
advances have led to open-source software [3] and cross-industry co-operations
centered around federated learning [20]. While small molecules interacting with
proteins are the most frequently used drug modality, alternatives are explored to
address unmet clinical needs. In particular, advances in chemistry for the novel
class of drugs based on antisense oligonucleotides (ASOs) have shown promise to
deliver successful therapies to the clinic [2]. In ASOs, similar to modalities like
small interfering RNAs (siRNAs), the fundamental reaction is one of hybridiza-
tion, or binding, of two oligonucleotides. The main difference to most small
molecule drugs is that oligonucleotide-based drugs modulate the expression of
genes post transcription by leveraging inter-cellular mechanisms to degrade the
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gene’s transcript, i.e. its mRNA, before it is translated to a protein. Thermody-
namics of oligonucleotides, i.e. structure formation of individual RNA molecules,
and hybridization of two oligonucleotides, have been studied extensively: the for-
mer to improve understanding of RNA molecules, and the latter partly because
DNA microarrays, the main platform for gene expression measurements before
the advent of high-throughput sequencing, rely on hybridization. Consequently,
there is a wide range of data sets, biophysical models and software available [19].

Thermodynamics are a crucial factor both in drug efficacy—binding to
the intended target—and drug safety—assuring no binding to unintended tar-
gets [33]. These models however do not reflect the many different chemical mod-
ifications proposed for ASOs, which often have a stabilizing effect [22] and thus
alter the binding energy even without changes to the oligonucleotide sequences.
Experiments to elucidate the binding energies are performed by many pharma-
ceutical companies and academic laboratories, but due to intellectual property
interests in both oligonucleotide sequences and gene targets, this information
cannot be shared easily. This suggests that a privacy-preserving federated learn-
ing approach would allow development of improved ML models for prediction of
thermodynamics from the entirety of data, while protecting respective IP rights.

For our proof of concept, the machine learning task we consider is that of
predicting off-target hybridization between an oligonucleotide and an mRNA
binding site with mismatches in its sequence. We consider the free energy as
the indicator of hybridization [33]. The mismatches are represented as features
capturing different aspects of sequence dissimilarity. In lieu of experimental data,
we use the widely popular nearest-neighbor model [38] as implemented in the
Vienna RNA package [19] to simulate data.

We propose to use an SVM [24] to classify the occurrence of binding and non-
binding, and an ADMM-based [29] framework to train in a distributed manner.
We adopt a differentially private mechanism [9] that respects privacy of individ-
ual nodes and local data while learning and communicating the final SVM model
(Sect. 3). This conglomeration allows us to operate over a large number of nodes
and data, while experimentally achieving comparable accuracy as the non-private
SVM and a reasonably tight privacy after global convergence (Sect. 4).

2 Background

In this section, we provide a brief overview of the methods: SVM, ADMM, and
Differential Privacy, which are essential for developing our methodology.

Support Vector Machines (SVM). Support vector machines (SVM) are a
supervised machine learning framework to solve classification [24,30,32,36] and
regression problems [7,11,26]. Let us consider a binary classification problem
with dataset D, i.e. training samples {xi}N

i=1 and corresponding class labels
{yi}N

i=1 ∈ {+1,−1}N . SVMs separate two classes of training data by finding a
hyperplane, h(x) � wT Φ(x)+b, with the maximum distance, or margin, from the
closest points on either side of h(x). In training, a primal optimization problem
as in Eq. (1) is solved to determine the hyperplane with the maximum margin.
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min
w,b

1
2
||w||2 + C

N∑

i=1

ξi s.t. yi(wT Φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0,∀i ∈ [N ]. (1)

Here, w ∈ R
D represents the weight vector of the model which is orthogonal

to the hyperplane, ξi’s are the classification error, b is the bias parameter, and
Φ(x) : RN → R

D is a map function. If the training samples are linearly sepa-
rable, the map function is linear, i.e. Φ(x) = x. In more complex and nonlinear
scenarios, SVM uses a kernel-based mapping function Φ, e.g. Radial Basis Func-
tions (RBFs), to map training data into a high-dimensional space, where linear
separation of data is possible [18,27].

Alternating Direction Method of Multipliers (ADMM). In many real-life
applications, including the application we consider, the data is often large and
distributed across different organisations at different locations. This naturally
calls for incorporating a distributed framework to train the SVM where local
models are built in different local servers and the local servers internally com-
municate to form a global model. ADMM [13,29] provides a robust, scalable,
and parallelizable framework to train SVM models on such distributed data,
where each node has limited access to the local datasets {Di}M

i=1 and can only
communicate to certain neighbouring nodes1. In this case, an individual node
i ∈ [M ] solves a local problem

min
wi

fi(wi) s.t. wi − wj = 0,∀i ∈ Ni, (2)

such that the global objective function to optimize is f(w) �
∑M

i=1 fi(wi), and
Ni is the set of one-hop neighboring nodes of the node i. The constraints in
(2) require that local variables wi’s should agree across one-hop neighbors wj ’s.
This asks for communication between neighbouring nodes. Detailed information
regarding convergence and robustness of ADMM can be found in [4,12]. ADMM’s
dependence on the network between nodes and their communications can be
found in [29,31]. We use ADMM to train our SVM model over distributed data.

Differential Privacy (DP). The final SVM model learnt using ADMM and
the internal communication between nodes during the interactive procedure of
ADMM posit new challenges for protecting data privacy of involved users. Spe-
cially, considering privacy is imperative if the data contains sensitive and clas-
sified information such as financial, medical records etc. [37], which should be
protected against unauthorized disclosure. DP [10] is a widely-studied and scal-
ably deployed statistical framework that enables data privacy. A differentially
private algorithm aims to generate outputs that remain almost indistinguishable
when an individual’s data is added or deleted from the training dataset [14].

Definition 1 (((ε, δ) − DP ) [10]). A randomized algorithm M is (ε, δ)-
differential private if for any two neighboring datasets D and D′ that only differ
at most in one data point, and for any subset of output O ∈ Range(M), the

1 Here, M is the number of nodes across which the data is distributed and M ≤ N .
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following holds, Pr[M(D) = O] ≤ eεPr[M(D′) = O]+ δ, given privacy level ε ≥
0, slack δ ≥ 0.

The lower the privacy level ε, the harder it is to distinguish the neighbouring
datasets, and thus a higher degree of DP is ensured. DP has been used to publicly
release medical and genetic data while respecting the data privacy of involved
individuals [25,28,34]. This motivates the use of DP as the privacy framework
for distributed learning of the hybridization prediction.

3 Methodology

In this section, we present the differentially private ADMM-based SVM algo-
rithm and the thermodynamics data that it is used to learn.

ADMM-Based Training of SVM. We use the ADMM-based SVM algorithm
proposed by Forero et al. [12] as the non-private base algorithm. The communi-
cation model in the algorithm is decentralized such that each node computes the
local optimization problem (Eq. (2)) and then broadcasts the local results to all
the one-hop neighboring nodes (Ni). In the aggregation phase, each node receives
and gathers the neighboring results to conduct the corresponding updates. The
process continues until the result of all nodes reach the consensus defined by the
constraints in (2). For further details, please check [31].

Differentially Private ADMM-Based SVM (DP-ADMM-SVM). To
incorporate differential privacy (DP) into the ADMM-based SVM algorithm, we
adopt the PP-ADMM algorithm [9]. Following PP-ADMM, we add calibrated
Gaussian noise into the local objective function fi(wi) at each ADMM itera-
tion. Specifically, each node i generates a random vector ηi1 from a Gaussian
distribution N (0, σ2

i1Id) and adds (ηi1)T wi into the local objective function and
obtains an approximated solution ŵt

i at iteration t. While communicating the
local model ŵt

i to the neighboring nodes, another random noise vector ηi2 is gen-
erated from a Gaussian distribution N (0, σ2

i2Id) and added to the approximate
solution of the perturbed objective function, i.e., wt

i = ŵt
i + ηi2. Here, σ2

i1 and
σ2

i2 are proportional to ε−2, where ε is the desired privacy level at every iteration.
For further details regarding noise variances σi1 and σi2, we refer to [9].

Algorithm 1. DP-ADMM-SVM
1: Input: Dataset {Di}M

i=1, initial models w0
i , privacy parameters ε, an optimizer

2: Initialization: Compute noise variances σ2
i1 & σ2

i2, regularization parameters
3: while #Iterations ≤ MAX ITER do
4: For each node, add noise ηi1 ∼ N (0, σ2

i1Id) to the local objective fi(wi)
5: For each node, use the optimizer to obtain updated model ŵt+1

i

6: For each node, add noise ηi2 ∼ N (0, σ2
i2Id) to ŵt+1

i & get the local model wt+1
i

7: For each node, broadcast the local model wt+1
i to neighbours Ni

8: Update local models of each node using the communicated neighbouring models
9: end while
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4 Experimental Analysis: Results and Discussions

In order to establish that the proposed methodology can scale to a large number
of academic and industrial participants, we have decided to use the relatively
large number of 224 entities with private data, which maps directly to the avail-
able computational resources. In order to study the privacy and accuracy of
DP-ADMM-SVM, we conducted three experiments on 479, 136 data points pri-
vately distributed over 224 nodes. We implemented DP-ADMM-SVM in C++
and performed the computations on 224 nodes provided by Tetralith, the Swedish
National Supercomputer Centre’s largest HPC cluster at Linköping University
[21]. In this section, we describe the data under investigation, and corresponding
insights from the experimental results.

Fig. 1. Accuracy of 10 runs for ADMM
algorithm with 50 iterations in loga-
rithmic scale. The grey area shows the
area between the minimum and maxi-
mum accuracy of 10 runs and the black
line is the median accuracy of 10 runs.

Fig. 2. Average of accuracy per iter-
ation for distributed ADMM-based
SVM using 224 nodes, ε = 1.0 and
50 ADMM iterations with and without
privacy. The error bars show the stan-
dard deviation of accuracy.

Data Description. We sample 10,000 binding sites of length 15, i.e. 15-mers,
uniformly from the Human transcriptome, i.e. the set of all expressed sequences
(GRCh38 reference genome). Their perfect Watson-Crick complements define
the oligonucleotides. For each oligo, we simulate 50 binding sites at an edit dis-
tance to the perfect match site of up to 5. Note that larger edit distances are
highly unlikely to lead to binding. We compute the difference in Gibbs free energy
ΔG◦ between the perfect match duplex and the mismatch duplex using RNAco-
fold [19]. We use ΔG◦ < τ as the binary indicator variable for the hybridization
with τ = 7. The sequence dissimilarity was represented through the following
features: edit distance, length of longest common factor, 2- and 3-gram distance,
Jaquard distance on 2- and 3-grams, and weighted versions of the q-gram dis-
tances, with weights2 derived from the nearest neighbor model [38]. Randomly
2 E.g. the 3-gram “GCG” has larger weight due to higher binding affinity than “ATA”.
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selecting data for each of the 224 nodes resulted in a total of 479,136 data points
in the training data set.

Accuracy vs. Privacy Trade-Off. In order to study the effect of privacy
on accuracy of DP-ADMM-SVM, we compute the test accuracy of DP-ADMM-
SVM after 50 ADMM iterations and repeat 10 times. In each run, we fix δ = 10−4

and vary the privacy level ε logarithmically (with base 10) in [0.01, 10]. Figure 1
shows the average accuracy of 10 runs on 224 nodes containing a grey area, which
is the area between the minimum and maximum average accuracy along with the
median of average accuracy of 10 runs in logarithmic scale. Figure 1 shows that
the accuracy increases with increase in ε for 0.01 ≤ ε ≤ 1.0.3 For 1.0 ≤ ε ≤ 10.0,
the accuracy remains stable around 86%. Figure 1 also illustrates that the grey
area between the maximum and minimum average accuracy over 224 nodes gets
tighter as ε increases. This experiment shows that accuracy increases as privacy
decreases but after ε = 1.0, the privacy has negligible effect anymore.

Cost of Privacy. Now we investigate the cost of DP on ADMM-based SVM
by comparing convergence of non-private ADMM-SVM and DP–ADMM-SVM
with ε = 1.0 over 100 iterations. Figure 2 shows the average test accuracy over
224 nodes and corresponding error bars indicating the standard deviation of
accuracies over these nodes. Figure 2 shows that the average accuracy of both
DP-ADMM-SVM and ADMM-SVM is almost the same, i.e. 86% after 100 itera-
tions. We observe that though the initial accuracy of DP-ADMM-SVM is higher
than that of ADMM-SVM, following iteration 10, it is lower than that of ADMM-
SVM. Both of these are due to the randomization introduced by the DP mech-
anism. This leads to model stability over iterations and lower accuracy after
convergence [23].

Fig. 3. Data-dependent (Budget Accountant)
and data-independent (Naive and Adaptive
Composition) privacy levels achieved per iter-
ation.

Empirical Estimate of Privacy
Level. From the näıve [10] and
adaptive [17] composition theorems
of differential privacy, we know that
the effective DP decreases, i.e. the
effective privacy level of the ML
model increases, as the number of
iterations increase. Following the
invent of moment accountant [1],
we know that often the privacy
level achieved by the dataset under
experiment is much tighter than
that of these data-independent and
worst-case composition theorems.
In order to investigate the increase
in effective privacy level of DP-
ADMM-SVM with increasing number of iterations, we plot the privacy levels
ε computed using naive and adaptive compositions and a budget accountant as
3 Increase in privacy level ε indicates decrease in differential privacy.
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a function of the number of ADMM iterations. We fix the ε per-step, i.e. the
ε used to calibrate the noise, as 1, and δ = 1/N , where the number of sam-
ples N = 479, 136 [5]. Figure 3 shows that the näıve and adaptive compositions
predict the worst-case privacy level of the SVM model obtained after 100 itera-
tions as 100.0 and 51.15 respectively. In contrast, while considering the data, the
empirical privacy level of the SVM model is 3.59, which is significantly tighter
and indicates moderate loss (i.e. ε ∈ [1, 10]) in DP.

5 Conclusion

We propose to use Differentially Private ADMM-based SVM to learn the thermo-
dynamics of oligonucleotide drug molecules from data distributed across multiple
nodes and with communication limited to immediate neighbours. We show that
DP-ADMM-SVM achieves ∼86% accuracy for privacy level ε = 1 at predict-
ing off-target hybridization, a determinant of drug safety. This accuracy level is
comparable with that of non-private ADMM-based SVM and does not improve
for lower DP, i.e. ε ≥ 1. We empirically show that the data-dependent privacy
level of the final SVM model is (3.59, 1/#samples). This is significantly tight as
a global privacy level where a distributed learning problem over 224 nodes and
479, 136 data points evolves over iterations. In future work we want to improve
the present DP mechanism such that it is not worst-case [8], does gradient per-
turbation [35], and is affected and gets stronger by the network between nodes.

Acknowledgments. SSF Strategic Mobility Grant “Drug Discovery for Antisense
Oligos” (A.S.), Swedish National Supercomputer Centre (A.S. & S.T.).

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318 (2016)

2. Bennett, C.F.: Therapeutic antisense oligonucleotides are coming of age. Annu.
Rev. Med. 70, 307–321 (2019)

3. Blaschke, T., et al.: Reinvent 2.0: an AI tool for de novo drug design. J. Chem. Inf.
Mod. 60(12), 5918–5922 (2020)

4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends R© Mach. Learn. 3(1), 1–122 (2011)

5. Canonne, C.: What is δ, and what δ difference does it make? DifferentialPri-
vacy.org, March 2021. https://differentialprivacy.org/flavoursofdelta/

6. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep
learning in drug discovery. Drug Discov. Today 23(6), 1241–1250 (2018)

7. Collobert, R., Bengio, S.: Svmtorch: support vector machines for large-scale regres-
sion problems. J. Mach. Learn. Res. 1, 143–160 (2001)

8. Dandekar, A., Basu, D., Bressan, S.: Differential privacy at risk: bridging random-
ness and privacy budget. In: Proceedings on Privacy Enhancing Technologies, vol.
1, pp. 64–84 (2021)

https://differentialprivacy.org/flavoursofdelta/


466 S. Tavara et al.

9. Ding, J., Wang, J., Liang, G., Bi, J., Pan, M.: Towards plausible differentially
private ADMM based distributed machine learning. In: Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp.
285–294 (2020)

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

11. Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Mach.
Learn. 46(1), 271–290 (2002)

12. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vec-
tor machines. J. Mach. Learn. Res. 11, 1663–1707 (2010)

13. França, G., Bento, J.: How is distributed ADMM affected by network topology?
ArXiv e-prints, October 2017

14. Harvard: Differential privacy (2021). https://privacytools.seas.harvard.edu/
differential-privacy

15. Johansson, S., et al.: AI-assisted synthesis prediction. Drug Discov. Today Technol.
32–33, 65–72 (2020)

16. Johansson, S.V., et al.: Using active learning to develop machine learning mod-
els for reaction yield prediction. ChemRxiv (2021). https://doi.org/10.33774/
chemrxiv-2021-bpv0c. Under review

17. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential pri-
vacy. In: International Conference on Machine Learning, pp. 1376–1385. PMLR
(2015)

18. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM
protein classification. In: Biocomputing 2002, pp. 564–575. World Scientific (2001)

19. Lorenz, R., et al.: ViennaRNA package 2.0. Algorithms Mol. Biol. 6(1), 1–14 (2011)
20. Martin, E.J., Zhu, X.W.: Collaborative profile-QSAR: a natural platform for build-

ing collaborative models among competing companies. J. Chem. Inf. Mod. 61(4),
1603–1616 (2021)

21. NSC: Tetralith (2021). https://www.nsc.liu.se/systems/tetralith/, https://www.
nsc.liu.se/systems/tetralith/

22. Papargyri, N., Pontoppidan, M., Andersen, M.R., Koch, T., Hagedorn, P.H.: Chem-
ical diversity of locked nucleic acid-modified antisense oligonucleotides allows opti-
mization of pharmaceutical properties. Mol. Ther. Nucleic Acids 19, 706–717
(2020)

23. Pinot, R., Yger, F., Gouy-Pailler, C., Atif, J.: A unified view on differential privacy
and robustness to adversarial examples (2019)

24. Platt, J.: Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, Microsoft Research, April 1998

25. Raisaro, J.L., et al.: Protecting privacy and security of genomic data in i2b2 with
homomorphic encryption and differential privacy. IEEE/ACM Trans. Comput.
Biol. Bioinform. 15(5), 1413–1426 (2018)

26. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements
to the SMO algorithm for SVM regression. IEEE Trans. Neural Netw. 11(5), 1188–
1193 (2000)

27. Soman, K., Loganathan, R., Ajay, V.: Machine learning with SVM and other kernel
methods. PHI Learning Pvt. Ltd. (2009)

28. Sun, Z., Wang, Y., Shu, M., Liu, R., Zhao, H.: Differential privacy for data and
model publishing of medical data. IEEE Access 7, 152103–152114 (2019)

29. Tavara, S.: Parallel computing of support vector machines: a survey. ACM Comput.
Surv. (CSUR) 51(6), 1–38 (2019)

https://doi.org/10.1007/11681878_14
https://privacytools.seas.harvard.edu/differential-privacy
https://privacytools.seas.harvard.edu/differential-privacy
https://doi.org/10.33774/chemrxiv-2021-bpv0c
https://doi.org/10.33774/chemrxiv-2021-bpv0c
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/


Federated Learning of Oligonucleotide Drug Molecule Thermodynamics 467

30. Tavara, S., Schliep, A.: Effect of network topology on the performance of ADMM-
based SVMs. In: 2018 30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 388–393. IEEE (2018)

31. Tavara, S., Schliep, A.: Effects of network topology on the performance of consensus
and distributed learning of SVMs using ADMM. PeerJ Comput. Sci. 7, e397 (2021)

32. Tavara, S., Sundell, H., Dahlbom, A.: Empirical study of time efficiency and accu-
racy of support vector machines using an improved version of PSVM. In: Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), p. 177. The Steering Committee of The
World Congress in Computer Science, Computer (2015)

33. Watt, A.T., Swayze, G., Swayze, E.E., Freier, S.M.: Likelihood of nonspecific activ-
ity of gapmer antisense oligonucleotides is associated with relative hybridization
free energy. Nucleic Acid Ther. 30(4), 215–228 (2020)

34. Wei, J., Lin, Y., Yao, X., Zhang, J., Liu, X.: Differential privacy-based genetic
matching in personalized medicine. IEEE Trans. Emerg. Top. Comput. (2020)

35. Yu, D., Zhang, H., Chen, W., Liu, T.Y., Yin, J.: Gradient perturbation
is underrated for differentially private convex optimization. arXiv preprint
arXiv:1911.11363 (2019)

36. Zhang, R., Ma, J.: An improved SVM method P-SVM for classification of remotely
sensed data. Int. J. Remote Sens. 29(20), 6029–6036 (2008)

37. Zhang, X., Khalili, M.M., Liu, M.: Improving the privacy and accuracy of ADMM-
based distributed algorithms. In: International Conference on Machine Learning,
pp. 5796–5805. PMLR (2018)

38. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for
RNA secondary structure prediction: a practical guide. In: Barciszewski, J., Clark,
B.F.C. (eds.) RNA Biochemistry and Biotechnology. NATO Science Series (Series
3: High Technology), vol. 70, pp. 11–43. Springer, Dordrecht (1999). https://doi.
org/10.1007/978-94-011-4485-8 2

http://arxiv.org/abs/1911.11363
https://doi.org/10.1007/978-94-011-4485-8_2
https://doi.org/10.1007/978-94-011-4485-8_2

	Federated Learning of Oligonucleotide Drug Molecule Thermodynamics with Differentially Private ADMM-Based SVM
	1 Introduction
	2 Background
	3 Methodology
	4 Experimental Analysis: Results and Discussions
	5 Conclusion
	References




