Semi-supervised Clustering of Yeast Gene
Expression Data

A. Schonhuth, I.G. Costa, and A. Schliep

Abstract To identify modules of interacting molecules often gene expression is
analyzed with clustering methods. Constrained or semi-supervised clustering pro-
vides a framework to augment the primary, gene expression data with secondary
data, to arrive at biological meaningful clusters. Here, we present an approach using
constrained clustering and present favorable results on a biological dataset of gene
expression time-courses in Yeast together with predicted transcription factor binding
site information.

1 Introduction

Life on the biochemical level is driven by large molecules acting in concert fol-
lowing complex patterns in response to internal and external signals. Understanding
these mechanisms has been the core question of molecular biology for the time
since discovery of the DNA double helix. Ideally, one would like to identify detailed
pathways of interaction. Unfortunately, this is often impossible due to data quality
and the superposition of many such pathways in living cells. This dilemma led to
the study of modules — sets of interacting molecules in one pathway — as identi-
fying such modules is comparatively easy. In fact, clustering easily available mass
data such as gene expression levels, which can be measured with DNA microar-
rays simultaneously for many genes is one approach for identifying at least parts
of modules: for example co-regulated genes which show similar expression levels
under several experimental conditions due to similarities in regulation.

The effectiveness of this approach is limited as we cluster based on observable
quantities, the gene expression levels, disregarding whether the observed level can
arise due to the same regulatory mechanism or not. Considering this information
during the clustering should yield biologically more helpful clusters. Here we are
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dealing with primary data, the gene expression levels, augmented with secondary
data, for example transcription factor (TF) binding information.! Unfortunately,
such secondary data is often scarce, in particular if we require high quality data.

Constrained clustering constitutes a natural framework. It is one of the meth-
ods exploring the gamut from unsupervised to supervised learning and it uses the
secondary data to essentially provide labels for a subset of the primary data. Semi-
supervised techniques have successfully been employed in image recognition and
text classification (Lange et al. 2005; Lu and Leen 2005; Nigam et al. 2000).
Hard constraints for mixture models (Schliep et al. 2004) were, to the best of our
knowledge, the first application of constrained clustering in bioinformatics which
showed the effectiveness of highest quality must-link or positive constraints indi-
cating pairs of genes which should be grouped together. Here we use a soft version
(Lange et al. 2005) which can cope with positive (must-link) and negative constraints
(must-not-link) which are weighted with weights from [0, 1].

Constrained learning is used to estimate a mixture model where components
are multi-variate Gaussians with diagonal covariance matrices representing gene
expression time-courses. The secondary data consists of occurrences of transcrip-
tion factor binding sites in upstream regions of yeast genes. Its computation is
based on methods proposed in Rahmann et al. (2003) and Beer et al. (2004). The
more transcription factor binding sites (TFBS) two yeast genes have in common,
the more likely it is that they are regulated in a similar manner, which is reflected
in a large positive constraint. Previously, we showed that even modest noise in the
data used for building constraints actually will result in worse clustering solutions
(Costa and Schliep 2006); the main contribution here is the careful construction
of the secondary dataset and the method for evaluating the effectiveness of using
constraints.

2 Methods

A mixture model (McLachlan and Peel 2000) is defined as

K
P[x;|0] = > oxPlx; [64], (1
k=1

where X = {x,-}lN=1 is the set of (observed) data. The overall model parameters
® = («1,...,0k,01,...,0k) are divided into the probabilities ay,i = 1,..., K
which add to unity for the model components P[x;|0;] and the 6,k = 1,..., K,
which describe the multi-variate Gaussians components of the mixture. One now
aims at maximizing (1) by choosing an optimal parameter set ®. This problem is
routinely solved by the EM algorithm, which finds a local optimum for the above

! Transcription factors are essential for inhibiting or enhancing the production of proteins encoded
in a gene.
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function by involving a set of hidden labels Y = {y; }IN=1 where y; € {1,...,K}is

the component, which generates data point x;. For details of the EM algorithm see
Bilmes (1998).

In addition to the data x; one is now given a set of positive respectively negative
constraints wl-‘; resp. w;; € [0, 1], which reflect the degree of linking of a pair of
data points x;,x;,1 < i < j < N. The task is to integrate these constraints
meaningfully and consistently into the EM routine. We will explain the essence of
the solution proposed in Lange et al. (2005) and applied in Lu and Leen (2005) and
Costa and Schliep (2006). Computation of the Q-function in each step of the EM-
algorithm requires the computation of the posterior distribution P[Y | X, ®] over the
hidden labels y;, where ® is an actual guess for the parameters. By Bayes’ rule we
have

P[Y|X,0] = ; -P[XY, 0] - P[Y|O], 2)

where Z is a normalizing constant. The constraints are now incorporated by, loosely
speaking, choosing as prior distribution P[Y |©] the one, which is “most random”
without that the constraints and that the prior probabilities o in ® get violated. In
other words, we choose the distribution, which obeys the maximum entropy principle
and is called the Gibbs distribution (see Lange et al. 2005 for a theoretical setting
and Lu and Leen 2005 for formulas and further details):

1 R
P[Y|®] = 7 | |0‘yi | |exp[—x+wi*jf(l —8yy;) — A w8y y,] 3
i i,j

where Z is a normalizing constant. The Lagrange parameters AT and A~ define
the penalty weights of positive and negative constraints violations. This means that
increasing A1, 1~ leads to an estimation, which is more restrictive with respect
to the constraints. Note that computing (2) is usually infeasible and thus requires
a mean field approximation (see again Lange et al. 2005 and Lu and Leen 2005
for details). Note, finally, that when there is no overlap in the annotations — more
exactly, w;;- € {0, 1}, w;; € {0, 1}, w;;-wi; =0,and AT = 1~ ~ 0o — we obtain
hard constraints as the ones used in Schliep et al. (2005), or as implicitly performed
in Pan (2006).

2.1 The Gene-TFBS-Matrix

The computational basis for the constraints is a binary valued incidence matrix,
where the rows correspond to genes and the columns correspond to transcription
factor binding sites (TFBS). A one indicates that, very likely, the TFBS in question
occurs in the upstream region of the respective gene.
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In a first step TFBS profiles were retrieved from the databases SCPD? and
TRANSFAC.? In addition to consensus sequences for reported profiles we com-
puted conserved elements in the upstream regions of the yeast’s genes by means
of the pattern hunter tool AlignACE.* In a second step we removed redundant
patterns resulting in 666 putative TFBS sequence patterns. We then computed posi-
tional weight matrices (PWM) from these patterns by using G-C-rich background
frequencies to contrast the patterns, following Rahmann et al. (2003).

With the PWMs we computed p-values for the occurrence of a TFBS in the
upstream region of a gene by means of the following Monte Carlo approach. First,
we generated 1,000 G-C -rich sequences of the length of the upstream sequences
(800bp). We then computed a score for each of the 1,000 random sequences and
each of the 666 PWMs by sliding a window of the length of the PWM in question
over the sequence and adding up the values given by the PWM. We thus obtained, for
each of the PWMs, a distribution of scores in sequences of length 800. We finally set
a one in the Gene-TFBS-Matrix (GT-matrix) if the score of an upstream sequence of
a gene (obtained by the same procedure as for the random sequences) was below a
p-value of 0.001 compared to the distribution given through the random sequences.
We note that we chose a very restrictive p-value as TFBS analysis usually is very
easily corrupted by false positive hits (Rahmann et al. 2003; Claverie and Audic
1996) and false positives negate the benefits of constrained clustering.

2.2 Constraints

From the GT-Matrix we compute positive and negative constraints. We remind
the reader that, by means of the GT-Matrix we have, for each of the genes, a
binary valued vector of length 666. One is now tempted to, say, define the positive
constraint between two genes to be proportional to the number of positions where
the binary vectors of the two genes have a one in common (thus indicating that
there is a transcription factor acting on both of the genes) and, likewise, to set the
negative constraint to be proportional to the number of positions where exactly one
of the genes has a one (thus indicating that there is a transcription factor which acts
on one but not on both of the genes). Yet, although we expect seeing a one in only
one of 1,000 genes in each of the columns of the matrix according to the p-value of
0.001, there are PWMs, which occur frequently (up to 90%) in the genes’ upstream
sequences. This indicates that there are heterogeneities in the upstream regions in
general. It may also be due to the computation of the TFBSs as conserved elements
of the upstream sequences themselves.

To address this we computed for each TFBS z the frequency of occurrence p;
within the genes and defined the positive (w;;- ) and negative (wi;) constraints for

2 Saccharomyces cerevisiae promoter database, http://cgsigma.cshl.org/jian.
3 The transcription factor database, http://www.gene-regulation.de.
4 Motif finding algorithm, http://atlas.med.harvard.edu.
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two genes i and j as follows. Let M, denote the GT-Matrix entry for gene i and
TFBS z and set

wh =yt #{x : p2 <001, Miz = Mj; = 1},

That is, wjj? is up to a scaling factor y+, the number of TFBSs, which occur with a
p-value of 0.01 or less in both genes i and j. Similarly, we define

wi; =y @zt pz(1—pz) <001, Miz = 1. M =0}
+#z : p.(1—p2) <001, Mj; =0, M, = 1}).

2.3 Relevant Constraints

Constrained clustering profits from information of two datasets — the original, pri-
mary dataset and the secondary one, from which constraints are computed. When
the influence of the secondary dataset is increased, cluster results change. To iden-
tify which constraints cause changes we computed the pairs of genes in one cluster,
which were in the same cluster in the unconstrained clustering and in distinct clus-
ters in the constrained case or vice versa. Lists of positive and negative constraints
for pairs of genes identified ranked by constraint weight serve as the basis for fur-
ther analysis. This way we identified the TFBSs which had the largest contribution
to changes in the clustering.

3 Results

As in Costa and Schliep (2006) we used 384 yeast cell cycle gene expression pro-
files (YCS) for analysis. YCS is one of the rare examples of a dataset where high
quality labels are available for each gene as each of them is assigned to one of the
five mitotic cell cycle phases. Because of the synchronicity of the profiles within one
group (corresponding to one of the five phases), we opted for multivariate Gaussians
with diagonal covariance matrices as components in the mixture model. We ini-
tialized the mixture estimation procedures by means of an initial model collection
algorithm presented in Schliep et al. (2005). The clustering solution was obtained
from the mixture by assigning each data point to the component of highest posterior
probability.

3.1 Clustering Statistics

We estimated mixtures for varying values of the Lagrangian parameters A, 1~ Let
TP resp. TN denote the amounts of pairs of genes correctly assigned to one resp.
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Fig. 1 We depict the CR, Spec and Sens with only positive (left), only negative (middle) and
both positive and negative (right) constraints for increasing values of the Lagrangian parameters
At AT

two clusters out of P resp. N many according to the true labels. Then, we computed
Sens = TPP and Spec = TAI,V and the corrected Rand, which can be perceived as a
significance level for the clustering of being distinct from a random distribution of
the genes over the clusters, to monitor the effects of an increasing influence of the
constraints (Fig. 1).

While the positive constraints improve sensitivity, the negative constraints
slightly improve specificity. One also sees a considerable improvement of the cor-
rected Rand for the addition of positive constraints and a slight improvement for the
negative constraints. Taking into account both positive and negative constraints one
sees improvements in all of the three statistics. However, there does not seem to be a
synergy of the positive effects of the two kinds of constraints. This may be an indi-
cation for contradictions within the constraints and suggests some “contradiction
purging” as a future area of research.

3.2 Gene Ontology Statistics

To validate the clustering quality from a biological point of view we compare the
p-values from enrichment of Gene Ontology (GO) terms in a procedure similar to
the one performed in Ernst et al. (2005). More specifically, we computed GO term
enrichment using GOStat (Beissbarth and Speed 2004) for an unconstrained and a
constrained (AT = A~ = 1.35) mixture estimation as described above. We selected
all GO terms with a p-value lower then 0.05 in both clusterings and plotted the
— log(p-values) of these terms in Fig. 2.

We found smaller p-values for the constrained clustering and compile a list of
GO Terms, which display high log-ratios in Table 1. The constrained case had 16
of such GO terms, 10 out of these are directly related to biological functions or
cell compartments related to cell cycle (big dots’ in Fig.2 and GO terms in italic
in Table 1). On the other hand, only five GO terms had a higher enrichment in the
unconstrained case, all with a significant lower log ratio then in the constrained case.

3 Due to overlap, only eight big dots are visible.
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Fig. 2 Scatter plot comparing the GO Term enrichment of the unconstrained (x-axis) and
constrained (y-axis) results. Points above the diagonal line indicate higher enrichment in the
constrained case, while values below indicate higher enrichment in the unconstrained case

From those, the first four are related to chromatin structure and nucleosome, which
is related to the S phase of cell cycle.

As described in Sect.2.3 we computed the constraints which had a relevant
impact on the clustering statistics. We found (not shown) that the TFBS data partic-
ularly helped correctly classifying genes, which belong to cell cycle phases late G
and S which is consistent with the gene expression time-course dataset used. Further
manual analysis of the relevant constraints and investigation of the TFBSs involved
will likely provide insights in mechanisms which are not discoverable from gene
expression alone.

4 Conclusion

Constrained clustering is a very useful tool for analyzing heterogeneous data in
molecular biology, as there is often an abundant primary data source available (e.g.,
gene expression, sequence data) which can be made much more useful by integra-
tion of high-quality secondary data. However, as the results by Costa and Schliep
(2006) show, constrained clustering cannot be applied straight-forwardly even to
secondary data sources which are routinely used for biological validation of cluster-
ing solutions. Point in case: the predicted TFBS information used here improves
results whereas the experimental chip-on-chip data used by Costa and Schliep
(2006) does not. This is likely due to higher error rates in the experimental data and
a lack of quality measure for each individual experiment, which precludes filtering
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Table 1 List of GO Terms for which the log ratio of the p-values is higher then 4.0 (or
| log(( p-values const.)/(p-values unconst.))| >4.0). Positive ratios indicate a higher relevance
of the term in a cluster from the constrained case, while negative ratios indicates higher relevance
in a cluster from the unconstrained case

GO Term ID GO Term p-value log ratio
GO:0005694 Chromosome 99.6581
GO:0009719 Response to endogenous stimulus 44.9090
GO0:0000278 Mitotic cell cycle 27.6137
GO:0003677 DNA binding 11.7053
G0:0044427 Chromosomal part 9.7880
GO0:0007010 Cytoskeleton organization and biogenesis 9.7352
G0:0000228 Nuclear chromosome 8.9036
G0:0043232 Intracellular non-membrane-bound organelle 8.6498
GO0:0043228 Non-membrane-bound organelle 8.6498
G0:0044454 Nuclear chromosome part 7.5673
GO:0007049 Cell cycle 7.4107
G0:0006259 DNA metabolism 6.9792
G0:0044450 Microtubule organizing center part 5.6984
GO:0006281 DNA repair 4.9234
GO0:0007017 Microtubule-based process 4.7946
GO:0006974 Response to DNA damage stimulus 4.0385
GO:0000786 Nucleosome —8.3653
G0:0000788 Nuclear nucleosome —8.3653
GO:0000790 Nuclear chromatin —5.1417
GO0:0000785 Chromatin —5.1333
G0:0016043 Cell organization and biogenesis —4.8856

on quality. Noise reduction in constraints, resolution of conflicts between positive
and negatives constraints and measure of constraint relevance are open questions
which need to be addressed.
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