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ABSTRACT
Motivation: Cellular processes cause changes over time.
Observing and measuring those changes over time allows
insights into the how and why of regulation. The experi-
mental platform for doing the appropriate large-scale ex-
periments to obtain time-courses of expression levels is
provided by microarray technology. However, the proper
way of analyzing the resulting time course data is still very
much an issue under investigation. The inherent time de-
pendencies in the data suggest that clustering techniques
which reflect those dependencies yield improved perfor-
mance.
Results: We propose to use Hidden Markov Models
(HMMs) to account for the horizontal dependencies along
the time axis in time course data and to cope with the
prevalent errors and missing values. The HMMs are used
within a model-based clustering framework. We are given
a number of clusters, each represented by one Hidden
Markov Model from a finite collection encompassing
typical qualitative behavior. Then, our method finds in
an iterative procedure cluster models and an assignment
of data points to these models that maximizes the joint
likelihood of clustering and models.

Partially supervised learning—adding groups of labeled
data to the initial collection of clusters—is supported. A
graphical user interface allows quering an expression pro-
file dataset for time course similar to a prototype graphi-
cally defined as a sequence of levels and durations. We
also propose a heuristic approach to automate determina-
tion of the number of clusters.

We evaluate the method on published yeast cell cycle
and fibroblasts serum response datasets, and compare
them, with favorable results, to the autoregressive curves
method.
Availability: The software is freely available at http://
algorithmics.molgen.mpg.de/ghmm.
Contact: schliep@molgen.mpg.de
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INTRODUCTION
Microarray experiments have become a staple in the ex-
perimental repertoire of molecular genetics. They can be
used to detect or even quantify the presence of specific
pieces of RNA in a sample. The experimental procedure is
based on hybridization of these RNA-sequences to either
oligo or cDNA sequences which are affixed to the array.
Microarray experiments can measure the expression lev-
els of thousands of genes simultaneously. The resulting so-
called expression profiles allow, for example, investigation
of differences in distinct tissue types or between healthy
and diseased tissues. When microarray experiments are
performed consecutively in time we call this experimen-
tal setting a time course of gene expression profiles. The
questions this experimental setting tries to address are the
detection of the cellular processes underlying the regu-
latory effects observed, inference of regulatory networks
and, ultimately, assignment of function to the genes ana-
lyzed in the time courses.

There have been a number of approaches to analyz-
ing such time courses. These can be divided into two
classes, depending on whether they assume the different
experiments to be independent or not. Methods in the first
class do not consider any dependencies between profiles
belonging to subsequent time-points, so called horizontal
dependencies. Examples are hierarchical (Eisen et al.,
1998; Gasch et al., 2000) and k-means clustering (Tava-
zoie et al., 1999) or singular value decomposition (Rifkin
and Kim, 2002). Note that for those methods permuting
time points arbitrarily does not change the result of the
clustering. Accounting for the inherent nature of the data
and using the dependencies along the time-axis should
lead to higher quality clusters.

The clustering methods that belong to the second class
are all model-based. Instead of defining a distance mea-
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sure, itself a formidable task for time course data, and
grouping data points in a way that minimizes an objective
function based on the distances between objects, statisti-
cal models are used to represent clusters. Cluster member-
ship is decided based on maximizing the likelihood of data
points given the cluster models and the assignment of data
points to clusters. Model-based clustering is more suitable
for time-series data (MacDonald and Zucchini, 1997). The
main advantage of model-based clustering is that there
is no longer any need to define a distance function be-
tween time courses. This is crucial, as several non-critical
variances of signals—a delay, a slower rate, a premature
cutoff—will be overly emphasized by, say, Euclidean dis-
tance. Hence, capturing the essential qualitative behav-
ior of time-series is difficult with any method requiring
the definition of a distance. Using stochastic models to
represent clusters changes the question at hand from how
close two given data points are to how likely one particu-
lar data point is under the model. A larger robustness with
respect to noise is another virtue of the stochastic model.
As it is straight-forward to generate artificial data given a
model-based clustering, an analysis of the clustering qual-
ity based on the predictive performance of the inferred
set of models becomes feasible. Examples of model-based
clustering used for analysis of expression time courses are
based on cubic splines (Bar-Joseph et al., 2002) and au-
toregressive curves (Ramoni et al., 2002a,b).

Another important aspect is suitability for cyclic pro-
files. Methods that assume cyclic or periodic behavior—as
this is the case for cell cycle data—do not apply for differ-
entiation or pathogen response experiments. Ideally, tem-
poral dependencies indicative of cyclic behavior as well as
gene profiles displaying non-periodic behavior should be
detectable within the same framework.

Our objective was the design of a method that supports
the prevalent knowledge discovery process in molecular
biology and respects its peculiarities. Usually, clustering
is considered an independent step, that during one invoca-
tion takes a user from no knowledge at all to a complete
picture revealing all groups within the data; i.e. unsuper-
vised learning. However, the typical cyclic succession of
experiment and data analysis and the resulting incremen-
tal gain of information requires a somewhat different mind
set, emphasizing different aspects to maximize the useful-
ness of a computational method in the process. A method
should allow

• using prior knowledge, and

• visualizing and analyzing interactively, while

• maintaining a high robustness with respect to noisy
and frequently missing data.

What do those requirements translate to? First, the
clustering method should be able to cope effectively with

unlabeled data, like all prior work applied to expression
profiles. It should also cope with additional, labeled
data included in the data set to be analyzed and use the
information contained in the labeled data to yield a higher
clustering quality. Methods that perform partly supervised
learning (a survey is found in Seeger, 2001) have been
the center of active research only recently, for example as
extensions of Support Vector Machines (SVMs) (for an
introduction see Cristianini and Shawe-Taylor, 2000), a
classical supervised learning method, with which Mateos
et al. (2002) classified tumor tissues based on expression
profiles.

Second, a simple graphical user interface should provide
interactive access to the underlying method and its param-
eters, ideally by providing an alternative, more easily ac-
cessible view and control thereof, surpassing simple entry
fields for the usually difficult to interpret parameters. Ro-
bustness results from a proper choice of statistical models.

We propose using Hidden Markov Models (HMMs) to
account for the horizontal dependencies in time course
data. Besides their prevalent use for biological sequence
analysis (cf. Durbin et al., 1998), HMMs have been
successfully applied for analyzing time course data in
a wide range of different problem domains (MacDonald
and Zucchini, 1997). They are particularly suitable, if
essential types of qualitative behavior can be proposed, as
‘grammatical’ or ‘structural’ constraints in the data can be
effectively and explicitly modeled. The HMMs are used
in model-based clustering to partition a set of expression
time courses into clusters. Note that, as there is a one-to-
one correspondence between clusters and models, we shall
use the terms interchangeably in the following. Starting
from an initial collection of HMMs encompassing typical
qualitative behavior, an iterative procedure finds cluster
models and an assignment of data points to these models
that maximizes the joint likelihood of the clustering.
Partially supervised learning is achieved by adding models
representing and learned from groups of labeled data to the
initial collection of clusters and prohibiting reassignment
of the labeled data to other clusters. Finally, a graphical
user interface serves two distinct tasks. On the one hand
it can be used for interactive explorative analysis of a
dataset, on the other for the definition of the initial cluster
models. In both cases an HMM, either query or initial
prototype, can be graphically defined as a sequence of
levels and durations, each with user-adjustable amount of
variation. The querying mechanism is implemented as an
HMM-search; that is, profiles are ranked in decreasing
likelihood under the model.

We shall briefly review the prior work regarding analysis
of expression time courses. Naturally, many of the well
known clustering methods for expression profiles have
also been applied to expression time course data. For
reasons of brevity we shall not describe those here.
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Bar-Joseph et al. (2002) base their approach on statis-
tical models for clustering. To cope with the problem of
missing values and non-equidistant time points they pro-
pose representing each cluster as a spline curve, namely

Yi (t) = s(t)[µi + γi ] + εi ,

where Yi (t) denotes the observed value of gene i at time
t , s(t) the spline basis function, µ the mean of spline
coefficients for genes in the respective cluster, γ the
cluster specific variation coefficient and ε some normally
distributed error term. The clustering is computed with an
EM-type algorithm. The number of clusters is determined
automatically in a penalized maximum-likelihood fashion.
They mention that a cluster assignment based on prior
biological data might be used and maintained in the
clustering.

Ramoni et al. (2002a) (cf. also Ramoni et al. (2002b))
also use a model-based clustering approach, where the
cluster models are autoregressive curves of fixed order. For
each cluster of time series a posterior probability can be
derived and models with maximum posterior probabilities
are chosen agglomeratively, while deciding on the optimal
number of clusters by applying the Akaike information
criterion.

While clustering is an important step in the analysis,
the following methods directly aim at inferring regulatory
networks, performing a grouping of the time-series data
implicitly.

Friedman et al. (2000) infer a Bayesian network which
describes interaction between genes. Their graph-based
model describes part of the regulatory interactions that
underly a time course expression profile.

Chen et al. (1999) derive an edge-labeled directed graph
from time course microarray experiments by representing
all activation and inhibition relations between each pair of
genes. After filtering out genes of low absolute or relative
expression, they cluster the remaining data with average
linkage. After further processing, edges defining activa-
tion and inhibition along the time axis are introduced. Sub-
groups of regulatory candidate genes are determined by
applying an optimization method according to the strength
of the edges.

Filkov et al. (2002) propose investigating pairs of
regulated genes that show not only strong correlation
between their expression profiles, but also have simi-
larities between strong local signals. They model each
time course as a piecewise linear function. Time-points
are removed from consideration unless thresholds for
either absolute or relative expression are exceeded, or if
narrow peaks indicate a singular experimental failure. The
resulting profiles for each gene are pairwise compared
and a similarity score for each pair of adjusted curves is
deduced.

S1 S32S

Fig. 1. A Hidden Markov Model visualized as directed graph, the
emission pdfs are attached to the nodes. The model depicted is a
prototype for down-regulation.

We apply our method to yeast cell cycle (Spellman et
al., 1998) and fibroblasts serum response Iyer et al. (1999)
datasets, and compare them to the autoregressive curves
method (Ramoni et al., 2002a).

METHOD
Hidden Markov Models (HMMs) can be viewed as prob-
abilistic functions of a Markov chain (Burke and Rosen-
blatt, 1958; Petrie, 1969) where each state of the chain can
independently produce emissions according to so-called
emission probabilities or densities. We shall restrict our-
selves to univariate emission probability densities. Exten-
sions to multivariates or mixtures thereof, as well as to
discrete emissions, are routine. The following parameters
fully determine a Hidden Markov Model, λ: the states Si ,
1 ≤ i ≤ N ; the probability of starting in state Si , πi ; the
transition probability from state Si to S j , ai j ; and bi (ω),
the emission probability density of a symbol ω ∈ � in
state Si . The obvious stochasticity constraints on the pa-
rameters apply. Rabiner (1989) gives a thorough introduc-
tion to HMMs.

Model-based clustering: The clustering problem we
shall address can be formally defined as follows: Given
n sequences Oi , not necessarily of equal length, with
index set I = {1, 2, . . . , n} and a fixed integer K � n.
Compute a partition C = (C1, C2, . . ., CK ) of I and
HMMs λ1, . . . , λK maximizing the objective function

f (C) =
K∏

k=1

∏

i∈Ck

L(Oi |λk) . (1)

Here, L(Oi |λk) denotes the likelihood function, that is,
the probability density for generating sequence Oi by
model λk : L(Oi |λk) := P(Oi |λk).

It has been noted before (e.g. Smyth, 2000) that the
problem of computing a k-means clustering can be
formulated as a joint likelihood maximization problem.
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Adapting the k-means algorithm, we propose the fol-
lowing maximum likelihood approach to solve a HMM
cluster problem, given a collection of K initial HMMs
λ0

1, . . . , λ
0
K .

1. Iteration (t ∈ {1, 2, . . .}):
(a) Generate a new partitioning of the sequences

by assigning each sequence Oi to the model
k for which the likelihood L(Oi |λt−1

k ) is
maximal.

(b) Calculate new parameters λt
1, . . . , λ

t
K using

the re-estimation algorithm for each model
with their start parameters λt−1

1 , . . . , λt−1
K and

their assigned sequences.

2. Stop, if the improvement of the objective function
is below a given threshold, ε, the grouping of the
sequences does not change or a given iteration
number is reached.

Convergence: The nested iteration scheme does indeed
converge to a local maximum. This follows directly
from the convergence of the Baum-Welch algorithm and
the observation that re-assignment of sequences cannot
decrease the likelihood; indeed, this is in fact a nested EM-
algorithm.

Determining number of clusters: How to determine the
number of clusters poses a difficult problem for all
clustering methods. This is aggravated in our case since
we do not merely need to specify a number of clusters, but
rather we need to provide a heterogeneous collection of
models. While it is rather straightforward to populate this
collection of initial models with examples of prototypical
behavior, such as up-regulation or down-regulation, there
are two relevant questions that need to be addressed.
First, does the collection cover all prototypical behaviors
occurring in models of expression profiles? Second, does
the collection contain enough copies of each prototype
to represent those clusters in the data sharing the same
prototypical behavior, but differing enough in detail—
imagine different levels or stages of up-regulation—to
warrant separate clusters?

We address the question of completeness by use of an
explicit noise cluster. A noise cluster is a simple model
that can generate all possible expression profiles with low
probability and that is excluded from training. Adding a
noise cluster effectively translates to a slight variation of
the re-assignment rule in the clustering algorithm. A re-
assignment of a profile to the model that maximizes its
likelihood only occurs when the likelihood exceeds that of
the profile under the noise model.

Preserving the broad nature of the noise cluster, which
as a consequence bounds the maximal likelihood given
for any profile, is essential for keeping most of the

profiles assigned to clusters instead of the noise model.
The advantage of this approach is that clusters do not
get ‘smeared’ so easily, as, in addition to prototypes
unaccounted for in the initial collection, also profiles that
are true noise are assigned to the noise cluster. This has
been verified by observing a reduction of variances for
Gaussian emission PDFs of cluster models when an error
model is added (not shown).

There are a number of approaches that deal with the
problem of determining the number of clusters. They
usually rely on some measure that quantifies the quality
of the clustering, for example the Bayesian Information
Criterion (Hastie et al., 2001). We propose a method, that
is motivated by ‘model surgery’ Krogh et al. (1994) first
proposed in the context of learning the topology of profile
HMMs. Herwig et al. (1999) proposed a similar approach
for adjusting the number of clusters in a k-means like
algorithm.

Essentially there are two simple rules. First, if a
cluster gets assigned very few profiles, delete the cluster
and re-assign the profiles to the remaining clusters.
Second, if a cluster gets assigned too many profiles,
split the cluster into two parts. This is done by copying
the model, randomly changing parameters of the two
copies uniformly and independently, and continuing with
the re-assignment step in the clustering algorithm. This
corresponds directly to state splitting and state deletion in
HMM model surgery, which, although clearly heuristic in
nature, works very well in practice. The heuristic can be
extended to avoid splitting clusters that are homogeneous.
Rules can be easily formulated based on the variance of
the emission PDFs.

Missing data: Missing data can be handled in a straight-
forward manner. The emission probability distribution of
each state is replaced by a mixture of a discrete part emit-
ting a symbol that represents the missing value and the
usual probability density function. The mixture coefficient
of the discrete part is set to a constant value represent-
ing the overall empirical frequency of missing data. The
mixture coefficients are excluded from re-estimation in the
Baum-Welch step of the clustering algorithm.

Partially supervised clustering
Implementing partially supervised clustering within our
proposed method framework is straight-forward. Partially
supervised learning refers to additionally learning from
labeled data. That is, we have access to labels defining
a designated group membership for some of the data
we want to cluster. Assuming that distinct group labels
in fact do imply differences in the profile, we can
infer one HMM from each group of identically labeled
profiles. This requires a choice of the model topology,
or prototype, and training with the profiles. Note, that
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Fig. 2. A screen-shot of the graphical query language implemented
as an alternative way of defining either queries or prototype models.

over-fitting is to be avoided in the training step. However,
the model parameters are only relevant for the very first
iteration of the clustering. Hence, a simple heuristic,
for example running Baum-Welch re-estimation for only
one or two steps, suffices. The labeled profiles are
excluded from re-assignment in the clustering. In the
clustering, unlabeled profiles can be assigned to clusters
seeded with labeled profiles, driving the models towards
generalization. Questions that need to be addressed are
the size of the additional initial model collection, as well
as its composition. That labeled data is excluded from re-
assignment also implies that clusters this data is assigned
to should not be modified in the model surgery setting.

A graphical query language for expression profiles
A graphical user interface, see Figure 2, provides a simple
way of either defining prototypes, or, more importantly,
of finding expression time courses matching a graphically
defined query time course. The user can define a variable
number of steps for a time course. For each step, the
mean and variance of the Gaussian emission PDF can
be defined with data sliders, as can the duration that
is, for how many time-points the particular step should
be inhabitated. These variables define an HMM, each
‘step’ corresponding to a state; its duration is interpreted
as the expected state duration and an appropriate self-
transition is computed. Time courses in a dataset can be
scored by computing their likelihood under the specified
model. Finally, in the pane on the right in Figure 2, all
profiles exceeding a user-definable likelihood threshold
are displayed.

Post-analyzing clusters
As a cluster may contain many different forms of proto-
type appearances, a further analysis within one cluster can
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Fig. 3. A cluster representing on-switch behavior (that is a tempo-
rary, short up-regulation) and its decomposition according to when
the state, in which over-expression occurs, is reached.

be useful. We apply the Viterbi algorithm, which, given
a sequence and a model, computes the most probable se-
quence of the underlying hidden states. This sequence of
states is then attached as a label to all sequences belonging
to the same model. Sequences can then be sorted accord-
ing to their labels. We can, for example, group the profiles
of a cluster according to point in time and duration of a
designated state (see Fig. 3). This makes delayed response
phenomena or phase shifts of genes regulated in a cyclic
manner easily detectable. See Figures 4, 5, 7 and 8 for fur-
ther examples.
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Implementation
The relevant data structures and algorithms are freely
available in a portable C-library, the GHMM (Knab et al.,
2002), licensed under the Library GNU General Public
License (LGPL). The graphical user interface is based
on the GHMM, but additionally uses Python and a GUI-
framework.

RESULTS AND EVALUATION
The clustering method has been tested on the following
two data sets:

Yeast: Spellman et al. (1998) synchronized yeast cells
by three different methods, one of which was α-factor
based sychronization. The expression levels of 6178 genes
were subsequently measured every 7 minutes for the next
140 minutes, which encompasses slightly more than two
full cell cycles. (One cell cycle corresponds to about
8 time-points out of total of 18.) After normalization
(Spellman et al., 1998), genes that did not show two-fold
over- or under-expression in at least one time-point were
removed to curb artifacts due to noise in the data. Log
ratios of the remaining 1044 gene expression time courses
were taken as the input for the clustering algorithm.

Fibroblasts: Iyer et al. (1999) studied the physiological
response of fibroblasts to serum after growth arrest. The
expression levels of about 8,600 genes were measured at
a number of non-equidistant time point after stimulation.
The time course spanned a 24 hour period. Expression
levels were normalized (Iyer et al., 1999) and genes never
showing at least a two-fold over- or under-expression were
removed. The logarithms of the ratios (time point vs.
control) of the remaining 3,384 time courses made up the
input for the clustering algorithm.

Prototypes/models
Yeast: We choose an initial collection of 19 models,
each having 9 states, in order to allow detection of
significant changes along the 18 time-points. Models
were designed such that they could be traversed only
sequentially (Left-Right Models). This effectively limits
the number of parameters. To force alignment of the
sequences to the models, a designated end state, only able
to emit the end symbol, was added and the designated
end symbol was appended to every sequence. Cyclic as
well as non-cyclic prototypes were provided so that cell-
cycle regulated genes as well as genes showing other
phenomena could be detected. We further added a noise
model consisting of 18 consecutive states, each with
emission probability density function centered around
zero with a high variance. Parameters of the noise model
were excluded from training in the Baum-Welch step to

obtain a constant denoising threshold. The noise model
precluded outliers from obfuscating clusters.

Fibroblasts: For this data set 30 left-right models were
designed in the same manner as described above, each
consisting of five states. Models were meant to represent
typical behavior like (temporary) up- or down-regulation,
to encompass all possible response patterns. Here, we did
not use a noise model in the clustering.

Results
The output of the clustering algorithm was in both cases a
collection of trained models and an assignment of each
gene expression time course to one of them. The time
courses usually adhere to the prototypic behavior of the
model they were assigned to, but differ from each other
with respect to, say, a possible onset of a up-regulation.
These different characteristics within a cluster can be
detected by inspection of their most probable sequence
of states. Hence, a further classification using the Viterbi
labels (see post-analyzing clusters) was performed.

Yeast: Here the result was a collection of prototypes
that separate genes showing periodic or cyclic patterns
from those that do not clearly. Most of the non-periodic
patterns found show early on- or off-switch patterns that
could be due to α-factor responses; cf. Figure 6. The
cyclic prototypes all suggest a periodicity of about 8 time
points, differing only in amplitude and phase. Figure 4
depicts genes sorted according to their duration in the
first state of over-expression. Although their duration in
the second state of over-expression was not accounted
for while sorting, they follow the same behavior 8 time
points later, which clearly is a indicator of cell cycle
regulation. Figure 5 shows another cluster containing cell
cycle regulated genes. Expression levels herein oscillate
with greater amplitudes than those of the cluster depicted
in Figure 4. Here as well, splitting profiles according
to duration in the first peak state already leads to an
overall separation with respect to phase shift. Even if the
picture of the cluster itself doesn’t immediately reveal the
regulation patterns of the genes contained therein, a further
decomposition will clarify their behaviour along the time
axis (see Fig. 7).

We also carried out a CAGED clustering (Ramoni et al.,
2002b) using the default parameters; results are depicted
in Figure 9. CAGED suggests two clusters. The result
is somewhat unconclusive. A biological meaning of the
clusters as well as a functional relationship of the genes
therein remain unclear, at least at first sight. It seems that
our method outperforms CAGED on this data set.

Fibroblasts: The clustering resulted, as above, in a col-
lection of trained models and an assignment of expres-
sion time courses to the prototypes. Several response pat-
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Fig. 4. Yeast: A cluster containing cell-cycle regulated gene
expression time courses and a partial decomposition according to
the first over-expression state.
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Fig. 5. Yeast:A cluster containing cell-cycle regulated gene expres-
sion time courses and a partial decomposition according to duration
in the first over-expression state.

-3

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14 16 18

Log
Ra

tio

Timepoints

"Cluster_2"

-3

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14 16 18

Log
Ra

tio

Timepoints

"Cluster_14"
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Fig. 7. Yeast: A cluster containing on-switch patterns and its
decomposition. The third plot also could be interpreted as cyclic
behaviour.
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in the time course and its decomposition according to when the state,
in which over-expression occurs, is reached.
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Fig. 9. The two clusters found by CAGED (Ramoni et al., 2002b)
run with default parameters.

terns could be detected, many of them showing significant
changes at the beginning of the time course, clearly indi-
cating fast responses to the serum stimulation. An exam-
ple of a fast reaction to stimulation is shown in Figure 8.
Genes that were up-regulated in the second and/or third
time point were gathered by this model. A decomposition
of the cluster in genes that were up-regulated either in only
one of these time points or in both is also shown. Another
cluster is depicted in Figure 3. This prototype represents
a switching on later in the time course. The cluster was
then decomposed into those parts that stayed in the over-
expression state for exactly one time point.

CONCLUSION
To analyze expression profile series representing cyclic or
non-cyclic biological time series, we propose a Hidden
Markov Model-Based approach. This method allows us
to use prior knowledge as it is given in many biological
settings where for some genes the response is already
known. Furthermore, the data can be visualized and
analyzed interactively while a high robustness with respect
to noisy and frequently missing data is maintained. We
show that our method leads to very clear results on
two different datasets, containing cyclic (Spellman et al.,
1998) as well as (partly) non-cyclic (Iyer et al., 1999)

data and contrasted this to the approach proposed by
Ramoni et al. (2002b). Our clustering method combined
with the Viterbi-based cluster decomposition leads to very
homogeneous and fine grained clusters, which allow to
resolve the multitude of distinct regulatory process classes
in the data.

The flexible framework we proposed lends itself to
a wide range of possible enhancements and additional
applications. None of the methodological developments
make stronger assumption about the data than being a
time course. The HMM clustering can naturally be used
with HMMs modeling other types of data, for example
biological sequences. In preparation is an extension to
represent a time course as a mixture of models, which
given the ambiguous role played by many genes is closer
to biological reality.
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