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Selecting Oligonucleotide Probes
for Whole-Genome Tiling Arrays
with a Cross-Hybridization Potential
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Abstract—For designing oligonucleotide tiling arrays popular, current methods still rely on simple criteria like Hamming distance or
longest common factors, neglecting base stacking effects which strongly contribute to binding energies. Consequently, probes are
often prone to cross-hybridization which reduces the signal-to-noise ratio and complicates downstream analysis. We propose the first
computationally efficient method using hybridization energy to identify specific oligonucleotide probes. Our Cross-Hybridization
Potential (CHP) is computed with a Nearest Neighbor Alignment, which efficiently estimates a lower bound for the Gibbs free energy of
the duplex formed by two DNA sequences of bounded length. It is derived from our simplified reformulation of ¢-gap insertion-deletion-
like metrics. The computations are accelerated by a filter using weighted ungapped ¢-grams to arrive at seeds. The computation of the
CHP is implemented in our software OSProbes, available under the GPL, which computes sets of viable probe candidates. The user
can choose a trade-off between running time and quality of probes selected. We obtain very favorable results in comparison with prior
approaches with respect to specificity and sensitivity for cross-hybridization and genome coverage with high-specificity probes. The
combination of OSProbes and our Tileomatic method, which computes optimal tiling paths from candidate sets, yields globally optimal
tiling arrays, balancing probe distance, hybridization conditions, and uniqueness of hybridization.

Index Terms—Biology and genetics, DNA microarrays, tiling arrays, oligonucleotide probes, cross hybridization.

1 INTRODUCTION

NA microarrays have received a recent surge of interest

due to their ability to investigate complete genomes
with tiling arrays, which do not target specific transcripts of
genes but rather cover the complete genome with oligonu-
cleotide probes. Complete bacterial genomes can be
represented densely on single microarray chips, expanding
the use of tiling arrays beyond the most popular model
organisms [1]. For the human genome, similar setups
spanning several chips have been constructed. As several
vendors make such low-volume custom microarrays avail-
able at highly competitive prices, targeted or whole-genome
studies elucidating gene expression, protein-DNA binding,
or chromosomal aberrations have become routine for many
laboratories. Next generation sequencing technologies still
signify a major investment and are not obtainable for all
labs. Moreover, they are only competitive if their maximal
throughput of DNA reads generated is actually used in
experiments. In many settings, for example, for microbial
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genomes, tiling arrays provide a good cost efficiency. Tiling
arrays rather complement next generation sequencing for
large eukaryotic genomes as they can be used to select
specific genomic regions for sequencing [2], [3].

The computational challenge in designing tiling arrays
is to find an optimal set of oligonucleotide probes, called a
tiling path, which balances interprobe distances, hybridi-
zation conditions, and, most importantly, the potential of
probes to cross-hybridize, that is to bind outside their
intended target position on the genome. Cross-hybridiza-
tion decreases the signal-to-noise ratio and greatly com-
plicates downstream analysis. Most methods for
normalization take all probes into account, see, e.g., [4],
and thus a sizable amount of cross-hybridizing oligonu-
cleotide probes will, in fact, also change the normalized
hybridization intensities of others. To address this pro-
blems, several approaches have been published [5], [6]
which try to estimate the potential of cross-hybridization
and correct for this effect on the probe level. Note that any
thorough approach for estimating the potential of cross-
hybridization would have to solve the very problem we
are addressing, on a slightly smaller scale, namely for an
individual chip. We argue that the computational effort is
better spent on the design side, as is by no means
guaranteed that one can remove the increases in variances
and errors for bad probes post facto, even if the potential of
cross-hybridization can be assessed.

The problem of tiling array design can be broken down
in two subproblems: first, one needs to identify all probe
candidates for a genome which have a low potential for
cross-hybridization, recording relevant probe properties,
such as the melting temperature 7},,. Second, one needs to
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compute a tiling path. The last problem we solved recently
by proposing a linear-time algorithm which computes
globally optimal tiling paths [7]. Some of the desired
parameters for probe selection are trivial to compute, such
as melting temperature, others, in particular, the tendency
to cross-hybridize are very complex and typically assessed
by a simple heuristic.

Here, we propose a method for the generation and
selection of oligonucleotide probe candidates for whole-
genome tiling arrays based on their tendency to cross-
hybridize. The Cross-Hybridization Potential (CHP) is a
novel measure of oligonucleotide probe binding specificity
and based on thermodynamic calculations. Our Nearest
Neighbor Alignment (NNA) algorithm efficiently estimates
a lower bound for the Gibbs free energy of the duplex
formation of two DNA sequences of bounded length. It is
derived from a simplified reformulation of ¢-gap insertion-
deletion-like metrics [8]. To reduce the computational effort,
the Nearest Neighbor Alignment is only computed for cases
which cannot safely be decided by faster hamming-
distance-based heuristics, for which we use gapped g¢-
grams. Moreover, seeds for the alignment are computed
with weighted ungapped ¢-grams which extend the ¢g-gram
formalism to include energy contributions from the
thermodynamic model. Our method, including some
routinely used filters, is implemented in our software
OSProbes, which computes sets of viable probe candidates
and which is available under the GPL. The computational
costs of computing such candidate sets can be amortized
over many tiling path computations. The combination of
OSProbes with Tileomatic yields globally optimal tiling
arrays, balancing probe distance, hybridization conditions,
and uniqueness of hybridization.

We compare our method to prior approaches with
favorable results on a range of genomes measured by
specificity and sensitivity for cross-hybridization and
genome coverage with high-specificity probes.

Prior work. Assessing an oligonucleotide probe’s poten-
tial to hybridize to an unintended position in the genome,
thus giving spurious positive signals, has been studied
intensively. Nevertheless, the heuristic employed in many
labs relies on a simple two-pass filter relying on thresholds
known as Kane’s first and second criteria [9]. Probes with
an identity >75-80% to a nontarget sequence, or contiguous
perfect matches >25% of probe length are discarded. These
filters are employed in many tools in use for microarray
probe selection, such as ROSO [10], GoArrays [11],
OligoPicker [12], OligoWiz [13], and Oliz [14].

Incorporation of more accurate thermodynamic calcula-
tions were described as early as 2001 [1]. Probesel [15],
Promide [16], OligoArray [17], [18], and Thermonucleotide-
BLAST [19] estimate probe specificity based on more
accurate DNA thermodynamics. Some tiling-specific ap-
proaches focus on selecting probes in fixed windows [20],
[21] but most practically relevant approaches rely on ad hoc
methods and do not explicitly state more than one quality
criterion for filtering the possible probes [22].

In the following, we introduce the Cross-Hybridization
Potential, the Nearest Neighbor Alignment, and the
weighted ¢-gram filters. We describe additional filters,
including a gapped g¢-gram filter for filtering based on
hamming distance, and the implementation of our software.
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Computer experiments demonstrate the effectiveness of the
Cross-Hybridization Potential and its advantage over
Kane’s criteria. In the evaluation of the filter performance,
our method compares very favorably to state-of-the-art
methods for candidate generation and subsequent tiling
path computation. We have calculated example candidate
sets for typical small genomes and the complete human
chromosome 1, demonstrating the feasibility to compute
our measures for all possible probes of the human genome.

2 MEeTHODS

2.1 Cross-Hybridization Potential

We propose the CHP as a measure for how likely it is that a
probe will bind to a nontarget sequence during a micro-
array experiment. The CHP is based on the scores of NNAs
at genome positions where cross-hybridization could
possibly occur.

2.1.1 Nearest Neighbor Alignment

The Nearest Neighbor Alignment is an alignment, which
uses a scoring function that takes energy contributions from
base stacking effects into account. It can be used to compute
a lower bound of the free energy of duplex formation of two
DNA sequences.

D’Yachkov et al. introduced t-gap block isomorphic
subsequences and used them to describe abstract string
metrics similar to the Levenshtein insertion-deletion metric.
A particular variant of the T-gap insertion-deletion-like
metrics captures key aspects of nearest neighbor thermo-
dynamic modeling and defines a thermodynamic distance
function for hybridized DNA duplexes [8].

In this section, we present a slightly modified version of
their algorithm and show how it is used to obtain a lower
bound for the hybridization energy of two oligonucleotides.
The resulting algorithm computes the score for the lowest
scoring NNA, that can be interpreted as a lower bound for
the Gibbs energy A,G° of DNA duplex formation.

We are interested in an alignment of two DNA
oligonucleotides that we can interpret as a virtual second-
ary structure that the two molecules could form. We call
this structure virtual, because the two DNA molecules are
not expected to form this structure in solution. Instead, the
score of the alignment obtained by the NNA algorithm will
be used as a lower bound for the free energy associated
with the DNA duplex that will form in vitro. This is
possible, because the algorithm uses a simplified model of
the hybridization energy and takes only energetically
favorable terms into account disregarding destabilizing
structural elements.

First, we define the nearest neighbor score S,,, which is a
score for the thermodynamic stability of a sequence when
being aligned to its reverse complement.

Snn of a sequence s with length [ is the sum of the
thermodynamic weights of all adjacent base pairs, assuming
a perfect matching Watson-Crick duplex

-1
Sun(s) = ZF(Si, Siy1) - (1)

Table 1 shows the free energy parameters used [23].
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TABLE 1
Thermodynamic Weights of Stacked Pairs, in ’;f—‘;f
F A C G T
A | -1.00 -144 -128 -0.88
c | -145 -184 -217 -1.28
G | -1.30 -2.24 -184 -1.44
T | -058 -130 -145 -1.00

For example, F(G,A) = —1.3 denotes the free energy associated with
the stacked pair 5543

Scoring scheme. The score of the alignment is the sum of
nearest neighbor scores of all matched stretches with a
minimum length of two. Mismatches and indels do not
contribute to the score; they would only lead to destabiliz-
ing structures and can be omitted for the computation of a
lower bound for the Gibbs energy. An example of an NNA
and its score is given in Fig. 1.

The use of this scoring scheme is motivated by the
following observations:

e Indels or mismatches cannot increase the stability of
the duplex.

e Hamming distance does not take sequence composi-
tion into account.

e DPosition dependence of mismatches [24], [25], is
implicitly taken into account. Mismatches at the
beginning or end of the sequences will disrupt only
one stacked pair, whereas mismatches in the middle
disrupt two stacked pairs.

e Many noncontiguous mismatches between two
sequences lead to a high number of destabilizing
structures [26].

Given the scoring scheme, we compute the lowest
scoring alignment of two sequences based on dynamic
programming. Similar to other dynamic programming
alignment algorithms, the NNA algorithm builds up an
optimal alignment using previous solutions of optimal
alignments of smaller subsequences.

Given two sequences z = (z1,%2,...,2y,) and y = (v,
Y2,-..,Yn), We compute a matrix M :{1,2,...,m} x {1,
2,...,n} — IR, in which M(i,j) equals the best score of
the alignment of the two prefixes (z1,z9,...,2;) and
(y1,92,.-.,9;). Because a sequence of length one cannot be
part of an alignment with stacked pairs, M is initialized
with zeros in the first row and column, M(i,1) = 0 for i =
1,....,m and M(1,5) =0 for j=1,...,n. The remaining
matrix fields are filled based on existing values and the
nearest neighbor score of common suffices. M(i,j) is
computed recursively from the values of M(i —1,j),
M(i,j— 1), or the values on the upper left diagonal from
M(i, j), depending on the length of the longest common
suffix of (z1,...,z;) and (y1,...,y;).

This gives rise to the following main recursion for filling
the Matrix M:

AAGA-TGTC-—--CCCGAAAGGTCAGTATAC
PEEE T LI T EEr |
AAGAG-GTCTAT--CGA-AGGTCAGTATAC

Fig. 1. An example of a Nearest Neighbor Alignment of two sequences

of length 25. With a score of —22.3, it is the lowest scoring alignment of
the two sequences, i.e., the most stable virtual secondary structure.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.8, NO.6, NOVEMBER/DECEMBER 2011

TABLE 2
M Matrix after Running the NNA Algorithm with
x = GAAAGG and y = CGAAGG

M C G A A G G

G 00 | 00 | 0.0 0.0 0.0 0.0
A 00| 00| -13 | -1.3 | -1.3 -1.3
A 00|00 | -13]| 23| -23 -2.3
A 00 ] 00| -13 | 23 | 23 2.3
G 00 | 00 | -1.3 | 23 | 258 | -2.58
G 00 | 00 | -1.3 | 23 | -2.58 | -4.42

Gray fields show matched bases.

M(i—1,j),
%,7)s

where

D(Za]) = Qg:igrllcs(snn(w[ifwrl,i]) + M(Z -1 T))v (3)
and lcs is the length of the longest common suffix of
x1,...,7; and yi,...,y;. The notations z;_,,, and
Ti—yt1,--.,%; are equivalent and used interchangeably. In
the case that lcs < 2, D(3, j) defaults to 0. The NNA score of
z and y, denoted as nna(z,y), is then given as the value of
the matrix at M(m,n). From the main recursion, it follows
that nna(x, x) = S, ().

An example: Let z = GAAAGG and y = CGAAGG be two
sequences with length m =n = 6. The score matrix after
running the NNA algorithm is shown in Table 2. The gray
fields are those of matched bases contributing to the final
score. The score of the best NNA of = and y is —4.42, the
value in M (6, 6). For descriptive purposes, we also show the
traceback matrix T'B for this example (Table 3). Here, the
arrows indicate which value of the three choices in (2) was
the minimum. In the case of D(%, j), the number behind the
arrow indicates which value of r minimized (3). The
resulting alignment is ;G,2*4GG in single-base form, and,
to better see the matched stacked pairs, in dinucleotide form
cG oA AAARAGGE This example also shows why the loop
over 2 <7 <lcs in (3) is needed. This loop makes sure that
potential gaps are placed at optimal positions maximizing
the sum of the aligned base pairs. A greedy algorithm with

r =2 would lead to ’C’CiiﬁAGGGG (score —4.14) and r = Ics

TABLE 3
Traceback Matrix after Running the NNA Algorithm with
x = GAAAGG and y = CGAAGG

TB |c |G | a A G G
G « | « « « «
A T IR2 |« « «
A S I N 3 | « «
A T 0 0 0
G OO O 0 2 |«
G D RO ) 0 0 3

Arrows indicate where the value in the corresponding M field derived
from. The number behind the arrow indicates which value of r yielded
the minimum.
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would lead to Eéffﬁﬁgg (score —4.12), both not yielding the
optimal score.

In our further application of the NNA, = will be a probe
candidate and y a genome region of the same length. This
length limitation allows the NNA to produce a sharper
bound on the free energy but gives rise to the chance of
missing cross-hybridizing targets that span more than the
probe candidate length. However, we have experimentally
shown that this problem does not occur frequently (see
supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2011.39) and chances of making this kind
of error are negligible.

Running time. For two sequences with the same length
of k, the matrix M has k? fields. In the worst case, the
alphabet size of the concatenation of both sequences is one,
i.e., both sequences are stretches of the same single
nucleotide. In this case, the lcs in (3) will always be
min(i, j) at every D(i,j). The worst-case running time is
thus O(k*). However, for our application to DNA se-
quences, this is an unlikely scenario. If we assume two
sequences independently generated from the i.i.d. model,
the probability of having an Ics of length 0 is P(lcs = 0) =3,

P(les=1)=1, P(les=2) =4, P(les=n)=4. The ex-
pected length of an Ics at field M(4, j) is thus
1 1 1 1 “n
Bles) =1-42— 43—+ dn—=3 —, (4
(o) =13+ 206 F3G T T ;47“ )

where n is the minimum of ¢ and j. As this sum quickly
converges to 0.44, it is sufficient to assume this value as
E(les) in every field of the matrix. As a result, for two
independent i.i.d. model sequences, the expected runtime is
thus <O(1.44 - k*). Genomic sequences are not i.i.d. and
real-world lcs values are, on average, smaller than 0.44. For
the 100 million randomly selected NNA computations of
the experiment described in Section 3.3, the lcs has a mean
of 0.36 with a variance of 0.003.

2.1.2 From Nearest Neighbor Alignment Scores to
Cross-Hybridization Potential

In the previous section, we introduced the Nearest
Neighbor Alignment and its score, a lower bound for the
free energy of oligonucleotide hybridization. We now
motivate the Cross-Hybridization Potential, which we
interpret as a specificity measure, and use it to rank the
given probes by their quality.

During a microarray experiment, there should be a high
concentration of targets equally distributed over all probes.
The intended target and unintended targets compete for the
probe on the chip, with the duplex of probe and intended
target having the greatest stability. We assume that
hybridization can occur when a probe-target pair has an
NNA score greater than a certain threshold. This threshold
depends on the nearest neighbor score .S, of the probe and a
free energy value AE. We define AE as the minimum
difference of NNA scores between probe versus intended
target and probe versus unintended target that eliminates
the chance of cross-hybridization. Thus, we define the cross-
hybridization NNA score threshold as S, (probe) + AE. For
example, if a probe and its intended target have an NNA
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score of —65.30, and AFE is set to 30.0, then all NNA scores of
probes and unintended targets smaller than —35.30 are
considered to lead to cross-hybridization.

Given a probe p and its NNA scores T' =11, ..., T, with
unintended targets, and a cross-hybridization threshold
cht = S,,(p) + AE, the CHP chp of p is defined as

n cht — T;
Zi:l { 07
N (5)

Of all NNA scores that indicate cross-hybridization, the
amount they are below the threshold cht is summed up. By
dividing the sum by AFE, we can interpret the chp as the
number of positions where cross-hybridization will occur
under the following assumptions.

Sequences with an NNA score < cht are not considered to
hybridize and thereis a correlation of cht — Tj to the affinity of
probe and sequence. All sequences present on the microarray
appear in high copy number and are distributed evenly over
the surface of the chip. We assume the hybridization process
to be stochastic, thus probability of hybridization increases
linearly in the amount by which the NNA score surpasses the
cht and the number of sequences present.

if, T; < cht,
else,

chp(p) =

2.1.3 Filtering Using Weighted Seeds

To compute the CHP of a probe, we need its NNA scores
with unintended targets. The simplest but computationally
most expensive way to obtain these scores, would be to
align the probe to all nontarget positions of the genome. For
large genomes and high numbers of probes, this becomes
time-consuming and one can observe that a large portion of
the NNA scores is above the cross-hybridization threshold
not contributing to the CHP. We introduce a filter for the
number of scores to be computed a priori by only
considering positions in the genome where the probability
of obtaining a low NNA score is high.

Our filtering method is based on the observation that
low-scoring alignments have thermodynamic stable contig-
uous matches, which fall below a certain score threshold.
Therefore, we look for stable seeds between query and
database and apply the NNA algorithm to only those
positions. Other large-scale database search and filtering
algorithms, like BLAST [27], [28], FASTA [29], and
QUASAR [30], which rely on the g-gram Lemma [31], [32],
search for short common factors between database and
query. These methods identify exact matches with a
minimum number of base pairs and extend the search from
there. Similarly, we also employ a seed and extent approach,
but use the free energy contribution of common factors to
define seeds.

The filter exploits the correlation between the NNA score
nna(p,t) of a probe p and a target ¢ and the weight of the
heaviest common factor of p and t.

Notation. We write s <t if s is a factor of ¢; the cases that
s is empty or that s =t are allowed.

A common factor of two strings p and t is a string s with
both s<p and s<t. A common factor is a heaviest common
factor if no energetically more stable factor exists. We write

hef(p, t) := min{S,,(s) : s<p and s <t} (6)

for the weight of the heaviest common factor.
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Note the minimum in the definition; the weight is the
sum of free energy contributions from stacked pairs (which
are all negative), and the factor which can contribute most
to the overall energy associated with the duplex formation
of p and ¢ is called the heaviest common factor. The heavier a
common factor, the lower its score.

Using the heaviest common factor as an indicator for cross-
hybridization is motivated by the following observations:

e duplex formation needs a sufficiently stable core to
initiate binding [33],

e low-scoring Nearest Neighbor Alignments usually
have relatively heavy common factors, and

e depending on sequence composition, the heaviest
common factor need not be the longest.

The filter is controlled by a seed threshold weight w. This
w determines the minimum weight a seed must have and is
defined as a fraction of the nearest neighbor score of a given
probe. For example, if a probe has a nearest neighbor score
of —59.20, then the maximum score for a seed will be
expressed as w - (—59.2), in which w can be in the range of
0<w< 1. In general, small w will result in a greater
number of seeds that will be considered, which, in turn,
leads to more positions in the database that are verified. If
the score of the heaviest common factor of a probe and a
subsequence in the database is greater than the seed
threshold, the NNA score for this probe and the database
subsequence is computed.

To quickly find all occurrences of a given seed in a
database, a g-gram index over the database is build. For a
given probe, the filter then iterates over all minimal length
factors which meet the seed threshold criterion. At all
occurrences of every such seed in the database, NNA
score of probe and the database subsequence at this
position is computed.

2.2 Additional Probe Properties

The CHP as introduced in the previous section is our main
measure for probe specificity. Several other probe proper-
ties are evaluated during candidate generation by OSProbes
for comparison and to speed up the calculation of the
candidate set by removing probes with flaws easily
recognized such as runs of particular length [34].

2.2.1 Hamming Distance

The Hamming distance filter during probe candidate
generation can be used to filter candidates with a Hamming
distance to a nontarget position in the database below a
given threshold. To speed up the computation of this
approximate string matching problem, we apply gapped ¢-
gram filtering [35] or ungapped g-gram filtering using the
traditional ¢g-gram lemma [31]. The shape of the ¢-gram, as
well as the g-gram threshold which specifies how many
matching g-grams must exist to trigger verification, are part
of the user input. This allows for a flexible filter where the
user can choose between smaller, lossless shapes, and larger
shapes which might have a sensitivity below one but can
increase the speed dramatically. For example, consider the
problem of finding a sequence of length 51 with at most 10
differences (a similarity of 80 percent or more). The shape
11011000101 (0s are irrelevant positions) used with a
threshold of one will be lossless but has only a filtration
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ratio of about 0.012. On the other hand, the shape
111011101001011 with the same threshold has a filtration
ratio of 0.00004 at the cost of missing some of the less
similar hits; its sensitivity is 0.976.

When the Hamming distance filter is initialized, an index
using the provided shape is built over the entire database.
This lookup structure is then used to quickly find all exact
g-gram matches for a given probe. A counter at every
database position is used to check if the g-gram threshold is
met and the Hamming distance needs to be computed.

2.2.2 Uniqueness and Longest Common Factor
The uniqueness filter can be used to limit the number of
perfect or near-perfect matches a probe is allowed to have. A
near-perfect match is defined as a match with a very low
Hamming distance, i.e., we limit the number of mismatching
base pairs so that in the worst case, there is still a common
subsequence of length > 25. As a result, probes with a length
l of 50 <1 < 75 are allowed one and probes with 75 <1 <
100 up to two mismatching base pairs for a near-perfect
match. When no unique probes can be found, nonunique
probes can be valuable for identifying sequences with group
testing [36], [37], or they can be used when designing a
minimal size tiling array spanning different strains of a
given genome [38]. In addition, we compute the length of the
longest common factor of probe and nontarget sequences.
Both of these filters make use of a contiguous ¢-gram
index of the database and are thus very efficient.

2.2.3 Intrinsic Properties

We compute a number of properties based on probe
sequence composition and allow filtering based on quanti-
tative criteria [39]. These properties are the maximum
content of any single base, the maximum length of any
single base stretch, and the GC content.

In addition, we compute palindromes, which are scores
as the maximum number of contiguous complementary
base pairs formed by the probe folding back to itself. Low-
sensitivity probes that fold back on themselves cannot bind
their target and are therefore undesirable candidates.

The melting temperature 75, of the probe and its perfect
Watson-Crick complementary target is computed using the
nearest neighbor method [23].

2.3 Implementation

The NNA algorithm and all filters and indices used by
OSProbes were implemented in ANSI C and compiled to
Python modules using SWIG. Computing all of the probe
properties is a time-consuming exercise even for small
genomes and it is therefore useful to order filters on the
complexity of property computation. Local filters, which
operate only on the probe sequence, are applied before the
time-consuming global filters, which assess probe sequence
with respect to the genome. Whenever the properties of a
probe do not lie within the user-defined boundaries, it is
discarded and the remaining properties do not have to be
evaluated. For a complete order of the filters, see Table 4.

3 EXPERIMENTS

We designed a series of experiments to assess specificity
and sensitivity of the Cross-Hybridization Potential, the
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TABLE 4
Order of Filters and Their Experimental Filtration Ratio and Running Time (for Experiment Details, See Section 3.5)
Position | Type | Filter criterion Experimental filtration ratio and running time
1 local | sequence composition (GC content, single 59.24% 3:02
base run, single base contribution)
2 local | palindromes 99.97% 5:42
3 local Tm - _
4 global | number of perfect or near-perfect matches 96.27% 1:49:22
5 global | longest common factor 86.31% 1:47:08
6 global | Hamming distance 99.51% 1463:25:09
7 global | Cross Hybridization Potential - 2808:27:53

performance of the weighted seed filter, and how an
OSProbes candidate set compares to sets generated by
other software. Finally, we designed a tiling path using
OSProbes and Tileomatic and compared it to other state-of-
the-art methods. For comparability, we performed the
following experiments on the genome sequence of the
fungus Trichoderma reesei, which was used by Lemoine et al.
for a comparative study of custom microarray designs [40].
We compared our results for tiling array design to those
obtained with OligoTiler [20] and ArrayDesign [21]. Both
outperformed other methods and were analyzed exten-
sively by Lemoine et al. whose procedure we follow.

We used the unmasked FASTA file of the T. reesei
genome v.2.0 [41] from the US Department of Energy
website! with 33,454,791 base pairs in 87 sequences.

3.1 NNA Scores versus Kane’s Criteria

To evaluate the performance of the Nearest Neighbor
Alignment score and compare it to Kane’s criteria, we
generated oligonucleotide pairs with a low Hamming
distance and used the program hybridize, part of the widely
used DINAMelt package [42], [43], to obtain free energy
values for possible hybridizations. DINAMelt simulates the
melting of one or two single-stranded nucleic acids in
solution. The entire equilibrium denaturation profiles as a
function of temperature are calculated to obtain the melting
temperature 7}, for a given pair of strands. Stacked pairs,
interior loops, bulges, and dangling bases at the ends are
taken into account for the computation of free energy of a
duplex, and all possible conformational states are recur-
sively tested. All free energy values obtained during our
experiments were those of the duplex at a temperature of
37°C, Na' concentration of 1 M and Mg"* concentration of
0 M. We generated one million oligonucleotide pairs s, ¢
using the following method: Pick a random 50mer of the
genome sequence as s = t and a random Hamming distance
h between 10 and 15. Then, change h bases in ¢ either

at the 5" end,

in the middle,

at the 3’ end,

maximally distributed, or
5. randomly distributed.

Eal o

For varying free energy thresholds for hybridization
Hipue(8,8) = f - Spn(s) with f € [0,1], we then counted mis-

1. http://genome jgi-psf.org/Trire2 /Trire2.home.html.

classified oligonucleotide pairs for each method. If the free
energy FEi.(s,t) which is computed by the hybridize
program is smaller than Hy.,.(s,t), s and ¢ are assumed to
hybridize. Depending on the result of the two predictors
Kane’s criteria and NNA score, the oligonucleotide pair will
then be counted as false/true positive/negative. Fig. 2 plots
the false positive rate versus true positive rate for all Hy.,..

The NNA score showed a larger true positive rate and a
smaller false positive rate than Kane’s criteria. Especially,
when used with AE = 25, it was a much better predictor for
cross-hybridization.

The running time for 1 million NNA score computations
was 31.13 seconds. The optimized version of hybridize
running with the parameter—energy-only and a max-
imum loop length of 30 bases needed more than 353 minutes
to complete the task on the same 2.33 GHz CPU.

3.2 Weighted Seed Filter

The weighted seed filter (Section 2.1.3), which reduces the
amount of NNA scores that have to be computed is controlled
by the seed threshold weight w. With the following
experiments, we evaluated the filtration ratio as well as the
sensitivity and specificity of the filter for varying w.

The filtration ratio of a filter is defined as the fraction
of the number of downstream particles to the number of
all upstream particles. In case of the weighted seed filter,
we treat every position in the genome as an upstream
particle, and every position where genome and a given

True positive rate

0.6 [ e Kane’s criteria —
: NNA score with AE = 25
NNA score with AE = 30
05 i | NNA score with AE = 3|5

0 0.1 0.2 0.3 0.4 0.5
False positive rate

Fig. 2. Receiver operating characteristic (ROC) curves for cross-
hybridization prediction by Kane’s criteria and NNA score. Note the
ranges of the axes, this is the upper left corner of the ROC plot.
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filtration ratio

o7 ; ; ; ; ;
0 0.05 0.1 0.15 0.2 0.25 0.3
seed threshold

Fig. 3. Filtration ratio of the weighted seed filter for varying threshold
weights w.

oligonucleotide share a common factor of a weight greater
than a certain threshold as a downstream particle. We
randomly selected one billion 50mer pairs and computed
the weight of the heaviest matching factor hmf, which
differs from the heaviest common factor (6) that the start
position in both oligonucleotides is equal. For all seed
thresholds smaller than hmf, we added a downstream
particle.

The filtration ratio experienced an exponential drop with
increasing w (Fig. 3). At w = 0.1 one percent, and at w = 0.14
only 0.1 percent of the oligonucleotide pairs passed the filter.

Similarly, we measured sensitivity and specificity of the
filter by randomly picking oligonucleotide pairs and
computing their NNA score, as well as the weight of their
heaviest common factor. We could then evaluate the ratio of
oligonucleotide pairs which pass the filter and have an NNA
score that indicates cross-hybridization, and all oligonucleo-
tide pairs which pass the filter (specificity). In addition, we
could determine the ratio of oligonucleotide pairs which
cross-hybridize, and those which cross-hybridize and pass
the filter (sensitivity). Another measure of sensitivity was
given by the fraction of detected CHP contribution.

The results for 240 million 50mer pairs of T. reesei with
AFE = 25 show that the amount of detected CHP starts to
fall for w> 0.1 , where specificity is 0.65, and reaches
50 percent at w = 0.15 with a high specificity of 0.98 (Fig. 4).
Seed thresholds of w ~ 0.12 result in a good trade-off by
detecting almost 90 percent of the total CHP and filtering by
a factor of 400, based on the previous experiment.

3.3 Candidate Set for Comparison

We generated probe candidates with length 60 bp. To receive
a large maximal set with high coverage, we did not make use
of most filters. Our only requirement was a maximal
uniqueness score of 1, ie., every probe was allowed a
maximum of one perfect or near-perfect match in the genome.
As all oligonucleotide properties are part of the output of
OSProbes, filtering can easily be done at any later time.

The gapped ¢-gram for the Hamming distance filter was
1110101100011011 with a threshold of one. The CHP was
computed with AE = 25 for the NNA score thresholds, and
w = 0.13 for determining the minimum weights of seeds.
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Fig. 4. Sensitivity and specificity of the weighted seed filter. When using
w = 0.13, about 80 percent of the total CHP is detected, while only
10 percent of the NNA scores do not contribute.

In the absence of similar tools that can generate probe
candidates, we employed OligoTiler to generate a 60mer
tiling with oligonucleotide distance 1 and compared the two
sets. OligoTiler was run via its web interface,” leaving the
advanced parameters at their default values (IR region = 5,
IR require = 3, and repeat region overlap = 4).

Total running time of OSProbes was 9.5 CPU hours. The
OligoTiler website returned a result after about 45 minutes.
Of the 33,449,658 60mers in T. reesei, 0.1 percent included an
unknown base and were not considered by both programs.
From the total oligonucleotide set, 0.5 percent were filtered
out by OSProbes because they were nonunique. OligoTiler
rejected 7.8 percent of the oligonucleotides but created less
gaps with a length greater than 500 bp (31 versus 34), and
the OSProbes set covered slightly less bases with at least
one oligonucleotide than OligoTiler (99.8 percent versus
99.9 percent). Thus, the oligonucleotides rejected by
OligoTiler were distributed evenly across the genome
(Fig. 5). In the OligoTiler set, 0.4 percent of the candidates
are nonunique and appear at multiple locations in the
genome. Of the OSProbes set, 7.5 percent of the candidates
are not in the OligoTiler set; of those oligonucleotides,
87 percent have a CHP of 0 indicating a strong specificity.

The OSProbes candidate set showed the same large gaps
as OligoTiler, which were the result of repeats in the
genome. But the overall larger candidate set could prove to
be valuable during subsequent tiling path computations, as
we explored with the following experiment.

3.4 Tiling Path

The candidate set generated by OSProbes holds all
information about a number of probe properties. It is this
information that can be used to guide the computation of an
optimal tiling path with desired characteristics. Tileomatic
[7] can handle this multicriterion optimization problem
gracefully by casting it into a shortest path problem. This
allowed us to not only minimize the CHP of the tiling path
probes, but also the variability in 7}, and probe distances.
We computed tile paths for T. reesei using Tileomatic
with a candidate set generated by OSProbes, OligoTiler, and

2. http://tiling.gersteinlab.org/OligoTiler/oligotiler.cgi.
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Fig. 5. Candidate probe density for the sets generated by (a) OSProbes and (b) OligoTiler for T. reesei. The graph shows the number of probes for all
overlapping 5k windows. OligoTiler rejects more oligonucleotides than OSProbes but these oligonucleotides are distributed evenly across the
genome. The number of large gaps (>500 bp) is comparable in both sets (OligoTiler 31 and Tileomatic 34).

ArrayDesign and compared the resulting oligonucleotide
sets. OSProbes/Tileomatic and ArrayDesign but not Oligo-
Tiler support varying probe lengths. We used 60 bp for ease
of comparison.

Tileomatic was used with the OSProbes candidate set
described in the previous section and ran with the following
target parameters: probe distance = 90 bp, 7}, = 75°C, and
CHP = 0.0. The weights penalizing deviation from the
target parameters were chosen as follows: 1, 1, and 10, for
distance, 7;,, and CHP, respectively.

OligoTiler was used with the same advanced parameters
as in the previous section and the interoligonucleotide
distance was set to 90.

ArrayDesign sources were obtained from the author’s
website.®> As the software does not support the design of
tiling arrays natively, we followed the steps described in [40]
and created sequence windows of 150 bp at every 90 bp. For
suffix array creation, the MAX_PREFIX_LENGTH variable
was set to 15. ArrayDesign defines a uniqueness score v as a
specificity measure for oligonucleotide probes. We gener-
ated two probe sets, one with the default value of v = 0 and
one with u = 15 for high-specificity probes. In order to not
discard any probes based on their melting temperature, we
set the temperature range to 20°-200°C. All remaining
parameters were left at their default values.

The OligoTiler web service returned the result about
6 minutes after uploading of the sequence file finished.
Tileomatic took 21 minutes, and ArrayDesign needed 5
(u = 0) and 4.5 hours (u = 15).

OligoTiler picked the largest set (371k) with the lowest
deviation in probe distance, but also showed the largest
amount of probes with CHP > 0.1 (35k, 9.4 percent). The

3. http:/ /www.ebi.ac.uk/~graef/arraydesign/.

Tileomatic set was the second largest (359k) and showed the
lowest CHP; 99.99 percent had a value below or equal to 0.1.
The two ArrayDesign sets showed a higher variance in
probe distance and contained less probes than the other two
sets (341k and 280k). For these sets, the number of probes
with CHP > 0.1 lay in between the other two methods; 19k
for u = 0 and 11k for u = 15.

Probe count and CHP distribution for the different probe
sets is summarized in Fig. 7. Distribution of probe distances,
and 7;,, and GC content are shown in Figs. 6 and 8. Probes
selected by Tileomatic show a significantly smaller variance
in T,,; Bartlett’s test of homogeneity of variances indicates
the same variance in the other three sets (p-value 0.9638)
but does not support this when comparing the Tileomatic
set to the other sets (all p-values below 0.0005). Sensitivity
measured as palindrome score is virtually the same for all
four tiling paths and does not show any probes prone to self
folding (data not shown).

Overall, the combination of OSProbes and Tileomatic
resulted in the largest tiling path set with high-specificity
probes. In addition, more than 90 percent of interprobe
distances were between 85-95 bp and close to 100 percent
were between 70-110 bp. Furthermore, this probe set
exhibits the smallest variance in 7}, and GC content.

3.5 Candidate Set for the Human Genome
We establish the feasibility to compute the CHP for suitable
probes of the human genome. For in-depth studies, smaller
regions of interest such as the ENCODE region are selected
for the design [44]. They are of the same size as the genome
of T. reseii and can therefore be computed on modern
desktop computers.

Nevertheless, we provide a set of probes for custom
arrays for the complete human genome. We used the
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target parameter.

repeat-masked version of Build GRCh37, downloaded from
Ensembl [45]. For the computation of the CHP for probes of
the human chromosome 1, the largest, we used a machine
with 8 AMD Opteron 8439 SE and 256 GB of memory. The
total number of 60mers was 91,314,793. After use of the
standard filters, 44,567,348 remained for computation of the
CHP, which took seven days utilizing about 157 GB of the
shared memory. Filter parameters are given in the supple-
mental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2011.39, and filtration ratios and run-
ning times in Table 4. Candidate set computation took
23,597,628 CPU seconds of which about 66 percent is
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Fig. 7. Number of probes selected by each method and CHP distribution.
OligoTiler picked the largest set, but Tileomatic the most probes with
CHP 0.0

attributed to CHP computation, on average, 0.23 CPU
seconds per probe. This computational effort can be
amortized over several design runs, as it is not necessary
to rerun such analyses for a given build of the genome. The
remaining chromosomes are underway. We are also
investigating further algorithmic and implementational
improvements to reduce running times.

4 CONCLUSION

While the design of oligonucleotide tiling arrays has
received a lot of attention over the last years, methods still
rely on simple criteria like Hamming distance to determine
the susceptibility of probes to cross-hybridize. Cross-
hybridization undermines the effectiveness of experiments
as binding to unintended targets is detrimental to the
signal-to-noise ratio and complicates downstream analysis.

We address the problem of computing sets of candidate
oligonucleotide probes using thermodynamic considera-
tions to predict cross-hybridization. The novel CHP we
define directly measures the quality of a given probe and
has the advantage of combining local and global similarity
of potential matches to the genome. Its computation is
based on an NNA which we derive from a simplified
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Fig. 8. Distribution of interprobe distances. The OligoTiler and Tileomatic
sets showed the smallest variation in distances between oligo starts.
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reformulation of ¢-gap insertion-deletion-like metrics. The
NNA efficiently estimates a lower bound for the Gibbs free
energy of the duplex formation of two DNA sequences. A
novel filter using weighted ungapped ¢-grams to rapidly
identify high-energy binding sites reduces the number of
NNA scores that have to be computed by a factor of 400
while maintaining a sensitivity of 0.9. To reduce the
computational effort, the Nearest Neighbor Alignment is
only computed for cases which cannot safely be decided by
faster hamming-distance-based heuristics, for which we use
gapped ¢-grams. An additional suite of filters which are
routinely used in the design of DNA microarrays is
implement along the CHP in our software OSProbes, which
computes sets of viable probe candidates.

Our experiments show that the CHP is a better predictor
for cross-hybridization than Kane’s criteria. Consequently,
the number of oligonucleotide probes likely to cross-
hybridize used in tiling arrays designed by other methods
is 4.0-9.4 percent. This can be reduced to less than 0.01 percent
by the use of OSProbes. The combination of OSProbes with
our recently proposed linear-time algorithm which computes
globally optimal tiling paths [7], implemented in the software
Tileomatic, yields tiling arrays which are highly specific and
balance interprobe distances, striving for equal-distance
probes, the probe quality with respect to cross-hybridization
and the hybridization conditions, to assure that probes are,
for example, as equithermal as possible. The computational
costs of OSProbes can be amortized over multiple tiling
arrays due to our two-step procedure. Both Tileomatic and
OSProbes are available under the GPL and as a web service at
http://tileomatic.org.

Note that we found negligible differences between prior
methods used for designing tiling arrays. In comparison to
those prior methods, we find that not only our probe
qualities are significantly higher, but also that our arrays
show a statistically significant lower variance (p < 0.0005)
in melting temperatures, GC-content and other important
design features, thus achieving improved signal-to-noise
ratios and improved interpretability. The findings of several
biological experiments will be reported elsewhere.

While the CHP was designed and evaluated in the
context of tiling array design, it would be useful for other
methods requiring large-scale selection of probes, e.g.,
primer design and smaller scale oligonucleotide arrays
such as those used for gene expression analysis.

ACKNOWLEDGMENTS

The authors would like to thank Jorg Schreiber and Tino
Polen for helpful discussions and experiments with tiling
arrays designed with Tileomatic and OSProbes. During the
work on this manuscript, Christoph Hafemeister was with
the Department of Computational Molecular Biology, Max
Planck Institute for Molecular Genetics, Thnestr. 73, 14195
Berlin, Germany, and was also with Freie Universitat
Berlin, Germany.

REFERENCES

[1] F.Liand G.D. Stormo, “Selection of Optimal DNA Oligos for Gene
Expression Arrays,” Bioinformatics, vol. 17, no. 11, pp. 1067-1076,
Nov. 2001.

(2]

B3]

4

(5]

(o]

(]

8]

%]

[10]

(1]

[12]

(13]

(14]

[15]

[10]

(7]

(18]

[19]

(20]

[21]

[22]

1651

T.J. Albert, M.N. Molla, D.M. Muzny, L. Nazareth, D. Wheeler,
X. Song, T.A. Richmond, C.M. Middle, M.J. Rodesch, C].
Packard, G.M. Weinstock, and R.A. Gibbs, “Direct Selection of
Human Genomic Loci by Microarray Hybridization,” Nature
Methods, vol. 4, pp. 903-905, 2007.

R. Sasidharan, A. Agarwal, ]. Rozowsky, and M. Gerstein, “An
Approach to Compare Genome Tiling Microarray and MPSS
Sequencing Data for Transcript Mapping,” BMC Research Notes,
vol. 2, no. 1, p. 150, July 2009.

W. Huber, A. von Heydebreck, H. Siiltmann, A. Poustka, and M.
Vingron, “Variance Stabilization Applied to Microarray Data
Calibration and to the Quantification of Differential Expression,”
Bioinformatics, vol. 18, pp. §96-5104, Dec. 2002.

T.E. Royce, J.S. Rozowsky, and M.B. Gerstein, “Assessing the
Need for Sequence-Based Normalization in Tiling Microarray
Experiments,” Bioinformatics, vol. 23, no. 8, pp. 988-997, Apr. 2007.
H.-R. Chung, D. Kostka, and M. Vingron, “A Physical Model for
Tiling Array Analysis,” Bioinformatics, vol. 23, no. 13, pp. i80-i86,
June 2007.

A. Schliep and R. Krause, “Efficient Algorithms for the Computa-
tional Design of Optimal Tiling Arrays,” IEEE/ACM Trans.
Computational Biology and Bioinformatics, vol. 5, no. 4, pp. 557-
567, Oct.-Dec. 2008.

A.G. D’yachkov, A.J. Macula, W.K. Pogozelski, T.E. Renz, V.V.
Rykov, and D.C. Torney, “New t-Gap Insertion-Deletion-Like
Metrics for DNA Hybridization Thermodynamic Modeling,”
J. Computational Biology, vol. 13, no. 4, pp. 866-881, May 2006.
M.D. Kane, T.A. Jatkoe, C.R. Stumpf, J. Lu, ].D. Thomas, and S.J.
Madore, “Assessment of the Sensitivity and Specificity of
Oligonucleotide (50mer) Microarrays,” Nucleic Acid Research,
vol. 28, no. 22, pp. 4552-4557, 2000.

N. Reymond, H. Charles, L. Duret, F. Calevro, G. Beslon, and ].-M.
Fayard, “ROSO: Optimizing Oligonucleotide Probes for Micro-
arrays,” Bioinformatics, vol. 20, no. 2, pp. 271-273, Jan. 2004.

S. Rimour, D. Hill, C. Militon, and P. Peyret, “GoArrays: Highly
Dynamic and Efficient Microarray Probe Design,” Bioinformatics,
vol. 21, no. 7, pp. 1094-1103, Apr. 2005.

X. Wang and B. Seed, “Selection of Oligonucleotide Probes for
Protein Coding Sequences,” Bioinformatics, vol. 19, no. 7, pp. 796-
802, May 2003.

R. Wernersson and H.B. Nielsen, “OligoWiz 2.0—Integrating
Sequence Feature Annotation into the Design of Microarray
Probes,” Nucleic Acids Research, vol. 33, pp. W611-W615, July 2005.
H. Chen and B.M. Sharp, “Oliz, A Suite of Perl Scripts that Assist
in the Design of Microarrays Using 50mer Oligonucleotides from
the 3" Untranslated Region,” BMC Bioinformatics, vol. 3, p. 27, Oct.
2002.

L. Kaderali and A. Schliep, “Selecting Signature Oligonucleotides
to Identify Organisms Using DNA Arrays,” Bioinformatics, vol. 18,
no. 10, pp. 1340-1349, Oct. 2002.

S. Rahmann, “Fast Large Scale Oligonucleotide Selection Using
the Longest Common Factor Approach,” . Bioinformatics and
Computational Biology, vol. 1, no. 2, pp. 343-361, July 2003.

J.-M. Rouillard, C.J. Herbert, and M. Zuker, “OligoArray:
Genome-Scale Oligonucleotide Design for Microarrays,” Bioinfor-
matics, vol. 18, no. 3, pp. 486-487, Mar. 2002.

J-M. Rouillard, M. Zuker, and E. Gulari, “OligoArray 2.0:
Design of Oligonucleotide Probes for DNA Microarrays Using
a Thermodynamic Approach,” Nucleic Acids Research, vol. 31,
no. 12, pp. 3057-3062, June 2003.

J.D. Gans and M. Wolinsky, “Improved Assay-Dependent
Searching of Nucleic Acid Sequence Databases,” Nucleic Acids
Research, vol. 36, no. 12, p. €74, July 2008.

P. Bertone, V. Trifonov, ].S. Rozowsky, FE. Schubert, O.
Emanuelsson, J. Karro, M.Y. Kao, M. Snyder, and M. Gerstein,
“Design Optimization Methods for Genomic DNA Tiling
Arrays,” Genome Research, vol. 16, no. 2, pp. 271-281, Feb. 2006.
S. Grif, F.G.G. Nielsen, S. Kurtz, M.A. Huynen, E. Birney, H.
Stunnenberg, and P. Flicek, “Optimized Design and Assessment
of Whole Genome Tiling Arrays,” Bioinformatics, vol. 23, no. 13,
pp. 1195-1204, July 2007.

G.0.S. Thomassen, A.D. Rowe, K. Lagesen, ].M. Lindvall, and
T. Rognes, “Custom Design and Analysis of High-Density
Oligonucleotide Bacterial Tiling Microarrays,” PLoS One, vol. 4,
no. 6, p. e5943, 2009.



1652

(23]

[24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[33]

[30]

(371

(38]

(39]

[40]

[41]

[42]

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.8, NO.6, NOVEMBER/DECEMBER 2011

J. SantaLucia, “A Unified View of Polymer, Dumbbell, and
Oligonucleotide DNA Nearest-Neighbor Thermodynamics,” Proc.
Nat’l Academy Sciences USA, vol. 95, no. 4, pp. 1460-1465, Feb. 1998.
A.E. Pozhitkov and D. Tautz, “An Algorithm and Program for
Finding Sequence Specific Oligonucleotide Probes for Species
Identification,” BMC Bioinformatics, vol. 3, p. 9, 2002.

L. Zhang, C. Wu, R. Carta, and H. Zhao, “Free Energy of DNA
Duplex Formation on Short Oligonucleotide Microarrays,” Nucleic
Acids Research, vol. 35, no. 3, p. €18, 2007.

M. Seringhaus, J. Rozowsky, T. Royce, U. Nagalakshmi, ]. Jee, M.
Snyder, and M. Gerstein, “Mismatch Oligonucleotides in Human
and Yeast: Guidelines for Probe Design on Tiling Microarrays,”
BMC Genomics, vol. 9, p. 635, 2008.

S.F. Altschul, W. Gish, W. Miller, EW. Myers, and D.J. Lipman,
“Basic Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
no. 3, pp. 403-410, Oct. 1990.

S.F. Altschul, T.L. Madden, A.A. Schiffer, ]. Zhang, Z. Zhang, W.
Miller, and D.J. Lipman, “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, no. 17, pp. 3389-3402, Sept. 1997.

W.R. Pearson, “Rapid and Sensitive Sequence Comparison with
FASTP and FASTA,” Methods Enzymology, vol. 183, pp. 63-98,
1990.

S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and
M. Vingron, “Q-Gram Based Database Searching Using a Suffix
Array (QUASAR),” Proc. Third Int’l Conf. Computational Molecular
Biology (RECOMB ’99), pp. 77-83, 1999.

P. Jokinen and E. Ukkonen, “Two Algorithms for Approximate
String Matching in Static Texts,” Proc. 16th Symp. Math. Founda-
tions of Computer Science, vol. 520, pp. 240-248, 1991.

E. Ukkonen, “Approximate String-Matching with q-Grams and
Maximal Matches,” Theoretical Computer Science, vol. 92, no. 1,
pp- 191-211, 1992.

E. Southern, K. Mir, and M. Shchepinov, “Molecular Interactions
on Microarrays,” Nature Genetics, vol. 21, pp. 5-9, 1999.

W.B. Langdon, G.J. Upton, and A.P. Harrison, “Probes Containing
Runs of Guanines Provide Insights into the Biophysics and
Bioinformatics of Affymetrix GeneChips,” Briefings in Bioinfor-
matics, vol. 10, no. 3, pp. 259-277, May 2009.

S. Burkhardt and ]. Kérkkainen, “Better Filtering with Gapped
q-Grams,” Fundamenta Informaticae, pp. 73-85, 2001.

A. Schliep, D.C. Torney, and S. Rahmann, “Group Testing with
DNA Chips: Generating Designs and Decoding Experiments,”
Proc. Second IEEE CS Bioinformatics (CSB "03) Conf., pp. 84-93, 2003.
G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, and K. Reinert,
“Optimal Robust Non-Unique Probe Selection Using Integer
Linear Programming,” Bioinformatics, vol. 20, pp. i186-i193, Aug.
2004.

A. Phillippy, X. Deng, W. Zhang, and S. Salzberg, “Efficient
Oligonucleotide Probe Selection for Pan-Genomic Tiling Arrays.”
BMC Bioinformatics, vol. 10, p. 293, 2009.

D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo,
M.S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton,
and E.L. Brown, “Expression Monitoring by Hybridization to
High-Density Oligonucleotide Arrays,” Nature Biotechnology,
vol. 14, no. 13, pp. 1675-1680, Dec. 1996.

S. Lemoine, F. Combes, and S.L. Crom, “An Evaluation of Custom
Microarray Applications: The Oligonucleotide Design Challenge,”
Nucleic Acids Research, vol. 37, no. 6, pp. 1726-1739, Apr. 2009.

D. Martinez, R.M. Berka, B. Henrissat, M. Saloheimo, M. Arvas,
S.E. Baker, J. Chapman, O. Chertkov, P.M. Coutinho, D. Cullen,
E.G.J. Danchin, L.V. Grigoriev, P. Harris, M. Jackson, C.P. Kubicek,
C.S. Han, I. Ho, L.F. Larrondo, A.L. de Leon, ].K. Magnuson, S.
Merino, M. Misra, B. Nelson, N. Putnam, B. Robbertse, A.A.
Salamov, M. Schmoll, A. Terry, N. Thayer, A. Westerholm-
Parvinen, C.L. Schoch, J. Yao, R. Barabote, R. Barbote, M.A.
Nelson, C. Detter, D. Bruce, C.R. Kuske, G. Xie, P. Richardson, D.S.
Rokhsar, S.M. Lucas, E.M. Rubin, N. Dunn-Coleman, M. Ward,
and T.S. Brettin, “Genome Sequencing and Analysis of the
Biomass-Degrading Fungus Trichoderma reesei (syn. Hypocrea
jecorina),” Nature Biotechnology, vol. 26, no. 5, pp. 553-560, May
2008.

N.R. Markham and M. Zuker, “DINAMelt Web Server for
Nucleic Acid Melting Prediction,” Nucleic Acids Research, vol. 33,
pp. W577-W581, July 2005.

(43]

[44]

[43]

R.A. Dimitrov and M. Zuker, “Prediction of Hybridization and
Melting for Double-Stranded Nucleic Acids,” Biophysical ., vol. 87,
no. 1, pp. 215-226, July 2004.

E. Birney et al., “Identification and Analysis of Functional
Elements in 1% of the Human Genome by the ENCODE Pilot
Project,” Nature, vol. 447, no. 7146, pp. 799-816, 2007.

T.J.P. Hubbard, B.L. Aken, S. Ayling, B. Ballester, K. Beal, E.
Bragin, S. Brent, Y. Chen, P. Clapham, L. Clarke, G. Coates, S.
Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gordon, S. Graf, S.
Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson, N.
Johnson, A. Kahari, D. Keefe, S. Keenan, R. Kinsella, F.
Kokocinski, E. Kulesha, D. Lawson, 1. Longden, K. Megy, P.
Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios, M. Schuster,
G. Slater, D. Smedley, W. Spooner, G. Spudich, S. Trevanion, A.
Vilella, J. Vogel, S. White, S. Wilder, A. Zadissa, E. Birney, F.
Cunningham, V. Curwen, R. Durbin, X.M. Fernandez-Suarez, J.
Herrero, A. Kasprzyk, G. Proctor, J. Smith, S. Searle, and P. Flicek,
“Ensembl 2009,” Nucleic Acids Research, vol. 37, no. 1, pp. D690-
D697, 2009.

Christoph Hafemeister received the MSc
degree in bioinformatics from Freie Universitat
Berlin, in 2008. From 2005 to 2009, he was a
research assistant at the algorithms group at the
Max Planck Institute for Molecular Genetics,
Department of Computational Molecular Biol-
ogy, in Berlin. In 2010, he joined the New York
University doctoral program in computational
biology. His research interests include sequence
analysis and machine learning methods such as

A

clustering using mixture models and semisupervised learning, and the
application of these models to elucidate gene regulation and develop-
mental processes.

Roland Krause received the undergraduate
degree in biotechnology from Mannheim Uni-
versity for Applied Sciences in 1999 and the
doctorate degree in biochemistry from the
University of Heidelberg in 2004. He is a
scientist and lecturer at the Freie Universitat
Berlin and the Max Planck Institute for Molecular
Genetics, Berlin. His research focus is on the
evolution of the gene regulation machinery.

Alexander Schliep received the PhD degree in
computer science from the Center for Applied
Computer Science (ZAIK) at the University of
Cologne, Germany, in 2001, working in colla-
boration with the Theoretical Biology and Bio-
physics group (T-10) at Los Alamos National
Laboratory, New Mexico. From 2002 to 2009, he
held a group leader position in the Department of
Computational Molecular Biology, Max Planck
Institute for Molecular Genetics, Berlin. In

Summer 2009, he joined Rutgers University, where he was an associate
professor in computer science and the BioMaPS Institute for quantitative
biology. His research interests include data mining, statistical models

and algorithms for analyzing complex, and heterogeneous data from

molecular biology.

> For more information on this or any other computing topic,

please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


