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Predicting Mechanisms of Toxicity for Drug Development

A Semi-Supervised Machine Learning Approach with Metabolomic Data
SOREN RICHARD STAHLSCHMIDT

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The aim of this thesis is to predict different mechanisms of toxicity from the metabolomic
response of HepG2 liver cells. In order to utilize the metabolomic data the a semi-
supervised machine learning approach is investigated, namely the cluster-then-label
approach. The research focuses on the unsupervised part due to the centrality to
this method. The dose-dependency within the data is modelled by clustering the
dose-response curves according to their shape and transforming the feature space
to a categorical one. This dataset is then clustered with the K-Modes algorithm.
The analysis of the experimental data has shown that it is possible to distinguish
toxic from non-toxic compounds on individual dose level though mechanisms can
not clearly be distinguished. The proposed method is not able to clearly distinguish
between toxic and non-toxic compounds or between the mechanisms of toxicity. It is
hypothesized that the lack of mutually exclusive labels makes the prediction harder.
Furthermore, the model could benefit from a more fine-grained dose levels in the
identified range.

Keywords: Predictive Toxicology, Metabolomics, Semi-Supervised Learning, Dose-
Response






Acknowledgements

I would like to extend my gratitude to my academic supervisor Dr.Alexander Schliep
as well as my supervisor at AstraZeneca Dr.Maria Luisa Guerriero for their advice
and suggestions throughout the project. Furthermore, I would like to thank my line
manager Peter Konings for enabling an easy stay at AstraZeneca in Gothenburg.
For an introduction to the biological background and the experiment generating the
data I would like to thank Dr.Delyan Ivanov. Also I would like to thank Dr.Natalie
Kurbatova for fruitful discussions regarding the project and Dr.Oscar Hammar for
review of the probability theoretical claims. Finally, a big thank you to all colleagues
from the Quantitative Biology group at AstraZeneca for making these month very
enjoyable.

Soren Richard Stahlschmidt, Gothenburg, June 2019

vii






Contents

List of Figures
List of Tables

1 Introduction

1.1 Scientific and Societal Relevance . . . . . . . . . . . ... ... ....
1.2 Problem Definition . . . . . . . . .. ... ... ..
1.3  Aim and Research Questions . . . . . . ... ... ... ... .....
1.4 Limitations and Ethical Considerations . . . . . . . .. .. ... ...
1.5 Related Work . . . . . . . . ..

2 Theory

2.1 Biochemistry of Toxicity . . . . . . . . . .. ... ... ... ... .

2.1.1 Toxicity and Metabo
2.1.2  Mechanisms of Toxic

lites . . . . . . ..
iy . oo

2.1.3 Mechanisms and Metabolites . . . . . . . ... ... ... ...
2.2 Semi-Supervised Learning . . . . . . . . ... ... ... ..

3 Methods

3.1 Research Design . . . . . ... .. .. ... ..
3.1.1 Individual Dose Levels . . . . . .. ... ... .. ... ....
3.1.2 Dose-Response Analysis . . . . ... ... ... ... .....

3.1.2.1 Independence Assumption . . . . . ... .. ... ..
3.1.2.2  Modelling of Dose-Dependency . . . . .. ... ...

3.2 Dataset . . . . ...

3.2.1 Experimental Design

3.2.2 Preprocessing . . . . . .. ...
3.2.3 Batch Effect Correction . . . .. ... ... ... ... ...

3.3 Dimensionality Reduction

3.3.1 Principal Component Analysis . . . . . .. ... ... .....
3.3.2 Multiple Correspondence Analysis . . . . . . . ... ... ...

3.4 Clustering . . . ... ...
3.4.1 K-Means Clustering

3.4.2 Dynamic Time Warping . . . . . . .. ... ... ... ....

3.4.3 K-Modes Clustering

4 Results

xi

xiii

13
13
13
14
14
15
16
16
17
18
18
19
19
20
20
21
21

25

ix



Contents

4.1 Single Experiment Analysis . . . . . . ... ... ... ... .....
4.1.1 Individual Dose Levels . . . . . . . ... ... ... ......
4.1.2 Dose Response Analysis . . . . ... ... ... ... .....
4.2 Combined Experiment Analysis . . . . . . ... ... ... ......
4.2.1 Individual Dose Levels . . . . . . ... ... ... .. .....
4.2.2 Dose-Response Analysis . . . . ... ... ... ... ...
5 Conclusion
5.1 Discussion . . . . . . ..
5.2 Conclusion . . . . . . . . ..
Bibliography

A Appendix 1
A.1 Dynamic Time Warping . . . . . . . . .. ... .. ... .. .....



4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Al
A2
A3
A4
A5
A6

List of Figures

Control Substances at HC for July . . . ... ... ... ... ... ..
Different MeOAs at HC for July Dataset . . . . ... ... ... ...
Typical Curve of July Dataset . . . .. .. ... ... ... .....
Different MeOAs Dose-Response Analysis July . . . . . ... ... ..
Different MeOAs Dynamic Time Warping July . . . . . .. ... ...
Batch Effects . . . . . .. .
Batch Corrected at HC . . . . . . . .. .. ... ...
Typical Curve of Batch Corrected Dataset . . . . . .. ... ... ..
Different MeOAs Dose-Response Analysis Batch Corrected (BC) . . .
Different MeOAs Dynamic Time Warping BC . . . .. ... ... ..

Control Substances at HC for July (inactive) . . . . . .. ... .. ..
Control Substances at HC for June . . . . . .. ... ... ... ...
Control Substances at HC for August . . . . .. ... ... ... ...
July Different Dose Levels . . . . . . . .. ... ... ... ... ...
Curve Shapes within DTW Clusters July . . . . ... ... ... ...
Curve Shapes within DTW Clusters BC . . . . .. ... .. .....

xi



List of Figures

xii



4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Cluster Sizes for July DR-Analysis . . . . ... .. ... ... .... 29
Distribution of MeOAs in K-Modes Clusters (p = positive, n = negative) 30
Cluster Sizes for July K-Modes . . . . . . .. ... ... ... .... 30
Cluster Sizes for Batch Corrected DR-Analysis . . . . . . .. ... .. 36
Distribution of MeOAs in K-Modes Clusters (p = positive, n = negative) 36
Cluster Sizes for BC K-Modes . . . . . . ... ... ... ... .... 36

xiii



List of Tables

Xiv



1

Introduction

1.1 Scientific and Societal Relevance

Medicine is developed in order to improve patients’ lives. Therefore, the safety of
drugs is of utmost importance so that they themselves do not become a hazard to
the patient’s health. Knowing such effects before drugs move into the clinical trial
pipeline can therefore reduce harm to animals as well as humans. From a company
perspective, the attrition rate of drug development process throughout the clinical
trial phases is high and costly. For instance, between 2006 and 2015 only 9.6 percent
of drug development programs that were submitted to phase I of clinical trials were
ultimately approved by the FDA in the United States [1]. For the therapeutic area
of oncology this number drops even further to 5.1 percent. These high attrition
rates have two effects. Firstly, the costs of successful drugs need to carry those
costs produced by failed ones [2]. Ultimately these costs need to be transferred to
the patient, the healthcare system and society at large. Thus, reducing the attrition
rates in clinical trials translates into more accessible medicine for patients. Secondly,
resources have been invested into every failed drug development program that could
otherwise have been allocated to more promising candidate compounds. Hence, the
time it takes for drugs to reach the patient is significantly increased resulting in
harm to the patient. Increasing the likelihood of approval therefore is a promising
way of increasing patients’ health.

Beside drug efficacy, drug safety constitutes one of the major reasons why, especially
in phase II of clinical trials, drug development programs fail. Toxicity of molecules
is a hazard to the patient and leads to the failing of a drug candidate [2]. Chemical
toxicity is the ability of a molecule to damage cells of humans, animals and other
living organisms. However, toxicity can be highly idosyncratic, meaning that a
drug can be highly toxic in some individuals but not in others [3]. This makes its
prediction inherently difficult. Nevertheless, predicting before a clinical trial which
molecules or compounds are toxic to patients bears the potential of improving the
drug development process and reducing harm to trial participants. Particularly liver
toxicity is damaging for patients. Methods to minimize the risk for such hazards are
needed [4, 5].
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1.2 Problem Definition

Traditionally, cytotoxicity has been used to measure the toxic potential of com-
pounds. Cytotoxicity includes any form of cell death as a measurement of toxicity.
However, a new approach to toxicity is to measure metabolites in order to infer toxic
potential. So-called metabolomics is able to detect toxicity earlier since it becomes
apparent through metabolites even before widespread cell death. Utilizing methods
from artificial intelligence and machine learning to predict different liver toxicity of
molecules and compounds have shown some initial promising results to detect liver
toxicity with metabolomic datasets [6].

Furthermore, compounds can initiate different mechanisms of toxic actions (MeOA).
The ways a compound can damage a cell can be vastly different. Understanding
which MeOA is caused provides a more detailed picture of the effect on the cell and
thus can aid a better drug discovery process.

Classifying compounds according to the MeOA they cause comes with challenges.
The effect of a compound is highly dose dependent [6]. That means that low enough
doses, even of highly toxic compounds, are non-toxic. On the other hand, com-
pounds that at normal doses are not toxic at all, such as water, become toxic at
high doses. Thus, one must take into account the effect of the compound at different
doses. Along these dose levels the same reaction by the cell can occur earlier or later.
Though they are shifted they constitute a similar effect.

Another challenge is that a compound can cause several MeOAs. Therefore, the
compounds could cluster according to combinations of mechanisms. Additionally,
labelling for compounds that are known to be toxic is sparse since identifying these
is from a biological perspective a challenge in itself.

1.3 Aim and Research Questions

The aim of the research project is to investigate the potential of metabolomic data
to predict mechanisms of toxic actions with machine learning methods.

More specifically, two research questions are investigated:

1. Do chemical compounds cluster in metabolomic feature space according to their
mechanisms of toxic actions?

2. If such clusters exist, can a supervised machine learning algorithm be trained to
predict mechanisms of unseen compounds from the metabolites they activate?
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1.4 Limitations and Ethical Considerations

A limitation of the research is the gap between in vitro experiments and effects on
patients. Results from in vitro experiments are not directly translatable to live or-
ganisms. For instance, the exposure of the cell to the compound is not equivalent to
the dose given due to the uptake of the drug. Thus, knowledge about dose-response
from in vitro experiments does not necessarily hold in vivo. Solutions to bridging
the gap are based on pharmacokinetic models which estimate exposures from in
vitro experiments to in vivo effects. This in vitro to in vivo extrapolation (IVIVE)
however is not a trivial task [7]. This modelling is outside of the scope of this thesis.

Additionally, from a biological perspective this thesis is focused on the acute rather
than the chronic exposure to the chemical compound. This differentiation is im-
portant since the same compound administered in one high dose or chronically can
activate different mechanisms of toxicity [8]. Focusing on the acute exposure helps
to define a clear aim for the research project.

In order to focus the research, it is limited to in vitro modelling of drug induced
liver injury (DILI). Excluding injury in other organs keeps the project manageable
since only data from liver cell lines are generated and analyzed. Liver toxicity is a
major challenge to drug safety and thus constitutes a good use case. The liver is
the organ that is metabolizing most toxins and thus has the highest chance of being
adversely affected.

The measurements during the experiment are performed 24 hours after the initial
exposure to the chemical compound. This gives the cell time to react to the expo-
sure. However, observing the effects at different points in time holds the potential
to gain deeper insights into the MeOA. This is suggested as a future research that
builds upon this thesis.

Especially, in the medical domain high scrutiny of ethical implications of research
should be made. The high impact the findings, but also the research practice itself,
has on patients’ lives demands high ethical standards. Therefore, the patients are the
primary stakeholder from an ethical perspective [9]. The results from this research
can have an impact on patients as for instance clinical trial participants. Thus,
working thoroughly is of great importance. On the other hand, the research done
for this thesis concerns non-patient data due to its pre-clinical trial nature. From
this follows that no privacy issues with regards to patients can arise.

1.5 Related Work

Utilizing metabolic responses to predict toxicity of chemical compounds has recently
received much attention in the academic literature. The main reasons are the ben-
efits predictive models based on metabolomics offer over the traditional testing.
Using metabolites as biomarkers for toxicity has the advantage that these molecules

3
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are much earlier apparent for pathologies than widespread cell death. Additionally,
metabolomic data can give insights to the mechanisms underlying toxicity (for in-
stance [10, 11, 12] for in vivo experiments). This can be beneficial for instance to
group compounds according to these and do animal testing only on representative
compounds|13].

As a proof-of-principle, [13] investigated the potential of metabolomic data to pre-
dict the effect of three chemicals on the reproductive fitness of individual Daphnia, a
plankton species. By applying a multiple regression to the metabolic response data
of the test subjects, they demonstrated that it was possible to predict the toxic ef-
fect. Though the authors note that the findings are limited to these three chemicals
tested, they showed the potential of the approach.

[6] identify different mode of toxic actions with 35 test substances by comparing
the metabolomic profiles of reference substances that are known to exhibit a certain
adverse outcome pathway. Using these reference compounds that can be considered
labeled data to identify metabolites that are related to the different modes of actions
it was possible to separate the test compounds into groups according to their modes.
Again, the authors stress that their study functioned as a proof-of-concept for the
utilization of metabolomic data for the prediction of toxicity and their underlying
mechanics.

Building upon this research, this thesis aims to utilize the potential metabolomic
data has for the prediction of mechanisms of liver toxicity.
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Theory

Machine learning is not an end in itself and is thus always applied to a specific
domain. This chapter provides the background knowledge to the domain of toxicol-
ogy as well as the machine learning approach chosen in this research. This lays the
foundation for the approaches described in the methods chapter.

2.1 Biochemistry of Toxicity

In order to understand the target variable, the feature space and the connection
between the two, it is essential to delineate the biochemical concepts and processes
forming these. Hence, in the following what it means for a compound to be toxic is
explained. Additionally, the concept of metabolites is clarified. In order to define
the classes for the machine learning task the MeOAs for liver toxicity are described.
Finally, the connection between these mechanisms and specific metabolites are out-
lined.

2.1.1 Toxicity and Metabolites

Toxicity describes how much a chemical compound has adverse effects on an organ-
ism. These effects can occur on different levels, such as cell level (cytotoxicity) and
organ level. In this research for instance drug induced liver injury (DILI) is mea-
sured as hepatotoxicity. When for instance foreign chemicals are metabolized the
resulting biochemical consequences can cause different forms of stress on the cells
which ultimately can lead to cell death. Alternatively, the adaptive responses can
be activated to reduce damage inflicted upon the cell. Toxicity of a compound is
dose and time dependent, meaning that the exposure of the cell must be sufficiently
high and present for sufficient amount of time to result in cell death or adaptive
behavior. Examples of possible cell stress pathways are oxidative stress, stress on
the endoplasmic reticulum (ER) and mitochondria [5].

Oxidative stress is an imbalance between the reactive oxygen species and antioxi-
dant defenses of the cell. While oxygen facilitates energy production in the cell it
also can lead to damage or even death of the cell [14]. Thus, the imbalance induced
by exogenous chemicals can be harmful. ER is an organelle involved in folding and
modifying proteins in the cell. The loss of this function plays a role in a variety of
diseases such as cancer, Alzheimer “s disease and bipolar disorder. Thus, the disrup-
tion of the function through compounds can lead to damages of the cell [15].
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Mitochondrial stress is the disruption of the function of the mitochondria which
is associated with different disease such as schizophrenia, Alzheimer’s disease and
hepatitis C. Oxidative stress is one cause of such disruption. However, there exist
other causes such as metabolic dysregulation through for instance malnutrition that
not necessarily must be drug-induced [16].

Metabolites are small molecules produced in the process of maintaining life in an
organism. For instance, to provide the cell with energy the mitochondria trans-
form adenosine diphosphate (ADP) to adenosine triphosphate (ATP). Both these
molecules are metabolites of this process. Since many different processes take place
within living organisms the number of metabolites is high. This is for instance
apparent from the high dimensionality of the data set of this project. Measuring
metabolites thus enables inferences about the processes taking place in the organism
[17]. Further, measuring the concentration of metabolites gives a representation of
cell health [18]. Therefore the quantitative measurement of the metabolic reaction
of cells, termed metabolomics [12], to the exposure to foreign chemicals such as can-
didate drugs can provide insights to the toxic potential.

2.1.2 Mechanisms of Toxicity

As previously mentioned, compounds can cause cell and functional damage in dif-
ferent ways. The causal chains that result in these damages are termed adverse
outcome pathways (AOP). These require a specified molecular initiation which is
linked through different biological levels of organization to an adverse effect in the
population. This means that the chain is not limited to the cell but spans further
over subcellular level, cell, organ, organism and finally population. A MeOA is the
complete understanding of such a chain whereas the MoOA can be considered an
AOP with incomplete information [19]. The concept of AOP was introduced to clar-
ify the uncertainty about terminology in the field of toxicology. For the purpose of
this research the focus is laid upon the MeOA as a AOP with complete information.

For liver toxicity it is possible to distinguish five, not mutually exclusive mechanisms
leading to DILI. In the following these mechanisms are described in detail since they
constitute the classes for the classification task. Due to the in vitro nature of the
experiment the immune-system-based mechanism cannot be simulated with the cell
cultures that represent the model of the liver. The mechanism is nonetheless briefly
described for reasons of completeness.

Toxicity on the mitochondria (mechanism 1) is the disruption of the mitochondria’s
function by a foreign chemical compound. This disruption can result in different
outcomes such as the alteration of the mitochondrial homoeostasis. Such changing
of the natural balance of the mitochondria can result for instance in oxidative stress,
energy depletion and even cell death. The devastating effect this can have for pa-
tients can be observed with the antiviral therapy fialuridine which was a potential
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treatment for hepatitis B. In a phase II study, 7 out of 15 patients developed acute
liver failure of which 5 died and the remaining two survived through liver transplant.
It was shown that fialuridine was effecting the mitochondria of HepG2 liver cells [8].

Compounds can also be toxic by forming chemically reactive metabolites (CRM)
(mechanism 2). During drug absorption the parent drug can be metabolized to a
hydrophilic, i.e. water-soluble, entity. This process can also result in CRMs. These
metabolites constitute the molecular initiation of the AOP. The metabolites react
with macromolecules such as proteins, thereby disrupting the normal function of the
cell. Whereas some CRMs react locally inside the cell others can diffuse in surround-
ing cells and cause damage in a larger area. CRMs are one of mechanism that make
acetaminophen toxic. This chemical is involved in many acute liver failures since at
therapeutic doses the drug is safe but at higher doses exhibits toxic behaviors [8, 20].

Lysosomal impairment (mechanism 3) is another mechanism by which compounds
can be toxic. The lysosomes are organelles in the cell that break down different extra-
and intracellular molecules. The lysosomes are involved in autophagy which is the
process of breaking down intracellular molecules. The disruption of this process
can lead to diseases such as cancer, neurodegeneration and diabetes [21]. More-
over, the lysosome is involved in endocytosis which is the breakdown of extracellular
molecules such as drugs. Certain drugs can accumulate in the lysosome. The accu-
mulation of fats and the drug results in the imbalance of charges in parts of the cells
which ultimately causes dysfunction of the lysosome. The retention of fats such as
phospholipids (steatosis) [22] in the liver can cause the formation of excess tissue
(fibrosis) which quickly leads to the disruption of normal liver function through ex-
cessive amounts of scar tissue (cirrhosis) [8]. In the labelling for the dataset in this
project the mechanism is focused on the damaging through phospholipids.

A fourth MeOA is the accumulation of bile acid in the liver termed cholestasis (mech-
anism 4). Bile is a fluid that is produced by the liver and assists the small intestines
with the digestion of, for instance, fats. Therefore, bile acid is moved by different
transporters from liver cells to the small intestines. Drugs that cause cholestasis
affect these transporters which inhibits the secretion of bile. For instance, drugs can
inhibit the bile salt export pump (BSEP) (Padda, Sanchez, Akhtar, Boyer, 2011).
This results in the bile acid in the liver not flowing into the small intestine. The
accumulation of acid damages the liver. Bosentan is an example of a chemical where
such BSEP inhibition can be observed [23, §].

Finally, drugs can cause toxicity through immune mechanisms (mechanism 5). Im-
mune responses to compounds and compound-induced autoimmune reactions can
cause acute liver injury (Dragovic et al., 2016). This mechanism cannot be seen in
the current in vitro setup as hepatocellular cell lines are cultured as monocultures in
the absence of immune cells. Thus, this mechanism is not detectable in the dataset.

The four first mechanisms constitute the target variables. Classifying which mech-
anisms are initiated by a compound can be of importance determining the safety of

7
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drug candidates before they are tested in animals and patients. Thereby harm to
animals can be reduced and patient safety increased. As these pathways are taking
place in the cells, different metabolites can be observed. Reversely, the mechanism
can be inferred from observing metabolites.

2.1.3 Mechanisms and Metabolites

Though the connection between different biomarkers and specific mechanisms of
DILI is not fully explored, the association between some metabolites and specific
mechanisms have been shown [24, 23]. Thus, this leads to these metabolites in-
forming the annotation after clustering and at the same time justifies why other
metabolites are kept in the dataset. The metabolites that are not known to be
associated with any mechanism are used as the space for exploratory biomarker de-
velopment as suggested by [4]. Associations found through this exploratory method
can in future research be investigated further by subject matter experts on a case
by case bases. In the following the known association between specific metabolites
and the four mechanisms outlined above is described.

For toxicity on the mitochondria (mechanism 1) the change in ATP, ADP and adeno-
sine monophosphate (AMP) should be possible to observe. These metabolites are
essential for energy production. When foreign compounds damage the mitochon-
dria, the energy-carrying metabolite ATP should be depleted. There should be an
increase of ADP and AMP since they are not transformed into ATP. This follows
logically from the function of mitochondria in the cell. Thus, observing such an
increase can indicate that a compound is initiating mechanism 1.

Detoxification done in the liver generally happens in three phases. Phase I and II
metabolize the foreign compound through enzymes whereas phase III is the trans-
port and elimination from the body. However, in phase I the compound can be
metabolized to more reactive and toxic metabolites which are detoxified in phase
II. A foreign compound can be metabolized to for instance N-acetyl-p-benzoquinone
imine (NAPQI) in the case of APAP which then is detoxified by glutathione (GSH).
If an overdose of APAP enters the cell GSH is depleted and NAPQI causes dam-
age to the cell. Since GSH has this function for many toxins it can be considered
a biomarker for CRM (Mechanism 2). The depletion of GSH can activate the in-
crease in the metabolite ophthalmic acid (OA). Thus, OA can be considered an-
other metabolite indicating the activation of mechanism 2. 5-Oxoproline (5-OP) is
an intermediate metabolite in the GSH biosynthesis and is more directly linked to
GSH and can be used as an indication for CRM. There is some indication that the
amino acids cysteine, glutamine and glycine who are precursors of GSH are elevated
through hepatotoxic compounds. At least in plasma and urine elevated levels could
be shown [23].

The third mechanism which causes lysosomal impairment (mechanism 3) is as-
sociated with an increase in lipids which are free fatty acids, phospholipids and
lipid metabolites. As described above, fatty acids accumulate in the liver and
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form molecules with the foreign compounds. This increase should be visible in the
metabolomic profile of the compound [8]. Furthermore, the accumulation of lipids
would result in increased utilization of fatty acids to produce energy in the cells in
a process called —oxidation leading to the formation of 2-hydroxy and 2-keto fatty
acid derivatives and acyl-carnitine metabolites.

Cholestatic injury concerns the transport of bile acid from the liver. Due to the
inhibition of the secretion of bile acids from the liver increased levels thereof are to
be expected if a chemical compound is initiating mechanism 4 [23]. Though some
of the bile acids are produced in the gut and are not modelled with current in vitro
cell cultures, many bile acids are produced by liver cells.

2.2 Semi-Supervised Learning

In the realm of machine learning there exists the distinction between supervised
and unsupervised learning. In order to make classifications, supervised approaches
learn from fully labelled datasets. These datasets are required to represent the un-
derlying structure of the true distribution of the target variable in order to enable
sufficiently good classifications. However, a major challenge is that the annotation
of data usually has to be done by human expert annotators or specialized machines.
In the context of this project that means that subject matter experts have to review
the current toxicology literature to annotate chemical compounds with the known
mechanisms of toxicity. These procedures take significant amount of time, are costly
and are generally incomplete. Therefore, sufficiently large labelled datasets are rare.
Unsupervised learning however finds patterns in unlabeled data which is more read-
ily available. Usually this involves assigning similar observations into the same
group. Such clustering does not require human input. The main drawback is that
the clusters do not straight forward explicate to what category they correspond [25].

Semi-supervised learning (SSL) utilizes a labelled dataset in combination with an
unlabeled dataset to develop better classifiers. Thus, SSL refers to semi-supervised
classification in contrast to semi-supervised clustering since the final goal is the as-
signing of a category to an instance. Furthermore, one has to distinguish between
transductive and inductive learners. The former is the learning that cannot handle
unseen data. The latter in contrast is the approach pursued in this thesis. The
aim of the learning is the training of a model that can correctly classify unseen
instances. The major drawback of SSL approaches is that assumptions about the
problem structure, as for instance the assumption that the decision boundru should
not g through dense areas, are made by the different methods. If these assumptions
are actually violated the methods perform poorly [26].

A rationale for including unlabeled observations is provided by [27]. As a simple
example, say data is generated from a mixture model consisting of n normally dis-
tributed components. This model can be expressed as
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f(]0) = ilajﬂij). (2.1)

Where «; represents the coefficient for the respective component, functioning as a
weighting of the different components. Thus, >°7_; a; = 1. Additionally, © = {0;}
represents the model parameters. This model characterizes how observations x are
drawn from the distribution with such parameters. The class membership y; can
be considered a random variable. The class membership is dependent on the fea-
ture vector z; and the mixture component g;, i.e. P(y;|g;, z;). In other words, the
class membership is determined by the characteristics of an observation (z;) and
the densities of the different Gaussian distributions g;. Assuming for simplicity a
binary classification, through the maximum a posteriori (MAP) criterion the follow-
ing model describes the optimization objective for the classification task,

h(z) = argmaz gy ny Y Py = clgi = j,2:) X P(gi = jlas). (2.2)
J=1
Here the first factor in the sum represents the probability of the class being ¢ given
the component and the observation. The second factor is the probability that the
observation z; is generated from component g;. More specifically,

. a; f(2:]©)

P(gi = jlv:) ST o/ (2]08) (2.3)
shows that the prior belief that z; is generated by ¢; can be viewed as the frequency
it is generated by g¢; over the frequency that the observation is generated by any
component. The crucial explanation for why SSL can result in improved classifi-
cation is that this probability is not dependent on a class label y;. The unlabeled
data enables the estimation of the different distributions of the components. If an
unlabeled observation has a higher probability to be generated by a component
that dominantly generates positive classes, it is also more likely to be a positive
class. This is connected to the cluster assumption underlying SSL. It is assumed
that observations that belong to the same cluster also have the same label. Similar
assumptions are made in supervised learning [27, 26]

Having established the theoretical justification for why including unlabeled data in
classification can result in better accuracy, it is of interest to formalize how datasets
for SSL look like in practice. A data set for semi-supervised classification can be
split into two parts,

S = {(zi,yi)|z; € RLy €Y, 1<i< m}. (2.4)

The set S consists of observations for which labels exists. These instances inform
the first factor in (2.2).

U= {rz; e R 1<i< M} (2.5)
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The observations in U are unlabeled and can possibly assist in inferring the distribu-
tion of the population [28]. Though the two subsets are distinct, they are sampled
from the same underlying distribution.

11
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Methods

3.1 Research Design

The research is designed to address the question of whether chemical compounds
cluster in metabolomic feature space according to their MeOAs. To answer this
question (1) the compound-dose combinations are considered as individual obser-
vations and (2) the dose levels are summarized in curve shapes to predict MeOAs.
By analyzing the data with these different approaches, insights into the relationship
between toxicity and metabolites can be gained. This can facilitate the prediction of
drug safety before clinical trials as well as inform further experimentation to explore
the role metabolomics can play in predictive toxicology.

3.1.1 Individual Dose Levels

First, the compounds are considered on individual dose levels, i.e. each compound-
dose combination is considered as an observation. The aim of the approach is to
investigate whether on individual dose level toxic and non-toxic effects can be ob-
served. As mentioned above, even toxic compounds are non-toxic in low doses.
Distinguishing if and when compounds become toxic can be observed on the indi-
vidual levels. The distinction can be made by comparing the metabolomic response
to that of control substances. Dimethyl sulfoxide (DMSO) is used as a control for
the lack of toxicity. Chlorpromazine at 316pM is utilized to kill the cells, thus rep-
resenting control substance for toxicity.

The compounds are specifically investigated at low concentration where all com-
pounds should cluster with DMSO. At the highest concentration toxic compounds
should cluster with the "Death" control. The differentiation between the MeOA
should be visible in-between these concentrations since the cells are still alive and
the metabolizing of the compounds should be observable. As a side-effect the dose-
respone nature of the data can be confirmed. Thus, the compounds are plotted at
selected dose level.

Following the semi-supervised approach described previously, the identified clusters
are labeled and a supervised machine learning algorithm is trained. This algorithm
is then evaluated on a held out test set where toxicity is known. By using the
accuracy score of the held out data set a fair evaluation is possible. Due to the focus
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on the unsupervised part of the semi-supervised approach the supervised part is not
implemented in this thesis.

3.1.2 Dose-Response Analysis

From the theoretical expectation of dose-response dependencies and empirical con-
firmation by [6] follows that there is a potential to extract more information from
the dose-response relationship than from considering compounds at individual dose
levels. As the dose is increased, toxic compounds might show different dose-response
curves even though the final outcome (cytotoxicity) is the same. Incorporating the
metabolomic response from all dose levels into the analysis thus could lead to better
insights into the MeOAs.

3.1.2.1 Independence Assumption

The most straight forward way of including all dose levels is to ignore the dose all
together and do the SSL on all observations. However, this violates the indepen-
dence of observations assumption fundamental to statistical inference. Intuitively,
when sampling data from the population any two observations should not have an
influence on each other. Let S = {xy,...z,,} be observations produced by an exper-
iment. If the probability of observing x; has no influence on observing z;, where
x;,x; € S, both observations are independent.

More formally, let event E; € S be an observation from an experiment. If the
observations are independent that means,

P(Ey, B, ... E,) = P(E\)P(E,)...P(E,) (3.1)

where P(E;) is the probability distribution of observing that event [29]. In other
words, observing a set of values from an experiment is the multiplication of the
individual probabilities. Thus, it is feasible to estimate these.

Translating this to the experiment at hand, the observations would be independent
if the occurrence of a metabolomic profile of one observation would not influence the
values seen in another observation. However, due to the dose dependency this is not
the case. Let x and y be two compounds measured at 9 dose levels, thus resulting
in the metabolomic feature matrices X = {z1,...,29} and Y = {41, ..., 49}, where
x;andy; are vectors of length number of metabolites. Because the values in X are
all generated from compound z, the vector z; will be more similar to Vo € X than
to Vy € Y. This violates the independence assumption which in turn can result in
biased estimations.

When dependency between the observation exists the estimation needs to take these
into account. (3.1) becomes

P(Ey, B, ..., Ey) = P(Ep|Ey, ..., En_1)P(En_1|Er, ..., En_s)...P(Eo|E\)P(E)) (3.2)
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Failing to model the dependencies in (3.2) results in biased estimations since it does
not approximate the true distribution generating the data. In regards to the ex-
periment, not accounting for the systemic similarity between the observations in X,
namely all observations being generated by the same compound, will result in biased
estimations and thus in poor generalization.

3.1.2.2 Modelling of Dose-Dependency

To circumvent this violation of the independence assumption, a method that mod-
els the dependencies by summarizing the dose-response values of each compound is
proposed. This method is based on knowing how the dependencies between observa-
tions, e.g. P(E,|E\, ..., E,_1), relate to each other. Taking the known dependencies
into account can lead to independent observations and enable further analysis.

The dependency stems from some observation being produced by the same com-
pound at different dose levels. These doses are monotonically increasing and thus
can be ordered. Thereby the values form a dose response curve with the interpreta-
tion of the cells’ reaction to being exposed to increasing concentrations of the same
compound. The shape of that curve includes the information over all dose levels.
Hence, it is possible to summarize the information by determining the shape. Know-
ing that the dependency exits between observations in X and Y but not between
them enables condensing for example X from {z1,...,29} to a vector xpg which
holds categorical values for each curve shape.

The shapes of the curves are determined inductively, by clustering them and finding
representative curves for each cluster. After grouping by compound and ordering by
concentration, for each compound there exist a m x n matrix M where each row is
a metabolite and the column a dose level. Each row forms a dose-response curve. A
matrix A can be formed by adding the different compound matrices together such
that A becomes a [ X m x n matrix where [ is the number of compounds. The curves
of all compound-metabolite combinations are then clustered with the K-Means clus-
tering algorithm.

The same shape can occur at different dose levels, meaning that the same shape
is simply shifted. In this case the biological interpretation is similar which means
they should be clustered together. Thus, the identification of typical curves can
potentially benefit from aligning the curves. This is done by using dynamic time
warping (DTW) (as applied in [30] to K-Means++ clustering). This technique does
not compare dose by dose but finds the most appropriate dose to compare the values
with. Thus, shifts of the curves do not distort the assignment to a cluster. This
distance function is implemented in addition to Euclidean distance.

To arrive at a single value that summarizes the response of a specific metabolite to
a compound at different dose levels, the curves in the matrix are replaced by the
cluster membership. As previously mentioned, this reduces the dimensionality of
A to I x m by condensing X to zpr and avoids the violation of the independence
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assumption.

Subsequently, A is used to cluster the compounds according to the metabolomic
responses they cause in liver cells. Since the feature space consists of categorical
variables the K-Modes clustering algorithm is appropriate. Ultimately, a supervised
algorithm is trained to predict unseen compounds MeOAs.

3.2 Dataset

In the following, the experiment generating the data and the preprocessing steps
taken are described. The conditions under which the data was collected have essen-
tial influence on the external and internal validity of the findings. The experimental
conditions specify how the data is generated. Therefore, they limit the generaliz-
ability to a larger population of conditions. The preprocessing steps specify how the
data has to be transformed in order to arrive at the results. Ideally the preprocess-
ing helps in making the data approximating better the underlying patterns which
constitute ground truth by removing for instance noise and effects resulting from
the experiment itself such as batch effects.

3.2.1 Experimental Design

The data is generated by in vitro experiments on HepG2 liver cells. The cell cultures
are exposed to different chemical compounds and their reactions in form of metabo-
lites is measured. These measurements are done with Acoustic Mist Ionization Mass
Spectrometry (AMI-MS) [31]. In this project an untargeted metabolomics approach
is chosen. This means that all known and unknown metabolites are captured by
the AMI-MS. In contrast, targeted metablomics focuses predefined metabolites [32].
This done due to the exploratory objective of the research. The technology and
approach enable high throughput which results in a rich data set of at the moment
160 chemical compounds at 9 different concentrations with 3000 features detected.
Of these 3000 metabolites around 1000 could be identified and named as known
metabolites. The metabolite concentration in the cells is measured 24h after the
start of the exposure so that enough time has past for the cell to react. The data is
generated in three different experiments performed in June, July and August 2018
and referred to accordingly in the rest of the report. The June data set itself con-
sists of two different experimental runs. The July dataset constitutes the largest one.

The compounds are drugs, some of which are toxic. These toxicity levels are known
since they have failed clinical trials or have been retracted from the market. For most
compounds therefore exist drug induced liver injury (DILI) severity level annotation
which categorizes the compound crudely in different levels of toxicity. However, for
annotation for the different MeOAs subject matter experts have to investigate the
scientific literature to label the compounds. Additionally, researching in what way
a specific compound is toxic is in itself difficult and thus labelling is sparse.
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As mentioned previously, the concentration, or dose, to which the cell is exposed is
determinant in the adverse effects. This raises the challenge of determining which
concentrations to include in the experiment. Additionally, including several obser-
vations of the same chemical at different concentrations violates the independence
assumption underlying traditional statistical methods. Different methods rooted in
the experimental design can be found in the literature. For instance, [11] and [10]
include the concentration that inhibits 50% of the cell growth of the experimental
subjects. [13] use 5% to 10% of the neonatal LC5y dose for a 21 day chronic exposure
study. The neonatal LC5 is the lethal concentration at which 50% of newly born
(in their case <24h old) die. Both these approaches are not applicable for the study
at hand. The former is not suitable because the experiment in performed on in
vitro cell cultures and thus the cells are not growing. The latter investigates chronic
rather than acute toxicity. Ramirez et al.[6] performed range finding experiments
a priori to the main experiment. They determined a high and low dose by con-
sidering the reduction in protein after 48h. They compared these two to a control
substance for one chemical bezafribrate. Using repeated measurements, on a PCA
plot the control, low dose and high dose all clustered separate from one another.
This suggests dose-response dependency. Analysis with high and low doses with a
subset of their observations supported the dose dependency argument. Ultimately,
the authors decide to include only the observations at the highest dose in their anal-
ysis. They argue that at this level the toxic effects and the MeOA are most clearly
observable.

To circumvent this challenge, this research proposes to take a more holistic view on
the dose response behavior. Therefore, it is proposed to take into account the entire
dose-response curve as input to the machine learning model by summarizing its in-
formation into one value. The results gained from this investigation can contribute
to the scientific discussion on dose-response data.

3.2.2 Preprocessing

As is common with dose-response data, the concentrations of the compounds are log
transformed in order to get a linear interpretation of the data due to the exponential
increase in the original concentration. Additionally, the detected concentrations of
the metabolites are log transformed for outliers to have less influence and due to the
skewness of the data from the AMI-MS hence approximating a normal distribution
more closely.

In the feature space there exist missing values. Most of these stem from the con-
centration of that metabolite being below the limit of detection by the AMI-MS.
Different data sets are created with different cutoffs at which features are excluded
from the data set. The cut offs are chosen at 10%, 20% and 40%. For features below
the thresholds, two different imputation methods are applied. One method is based
on the rationale that missing values are caused by undetectably small concentra-
tions. Therefore, the minimum value of that feature is taken and divided by two.

17



3. Methods

The second method is based on the k-nearest neighbors with non-missing values.
These values are averaged to impute the missing value.

Since compounds are tested in different experiments and on different plates of the
AMI-MS, batch effects are introduced. This means that systematic bias is intro-
duced by the conditions of the experiment [33]. Therefore, normalization methods
have to take this into account. A common way of normalizing metabolomic data is
to include an internal standard of which the concentration is known in each sample.
Thus, all metabolites can be expressed in relation to this standard. However, the
metabolites to be analyzed can have an influence on the internal standard if they
have overlapping chromatographical peaks which is termed cross-contribution. A
reliable normalization algorithm termed cross-contribution compensating multiple
standard normalization (CCMN) that takes such cross-contributions into account is
thus applied to the dataset [34].

Once the scalar values of the metabolites for each composite of compound and log-
concentration are grouped into curves they are smoothed by applying a moving
average and standardized to a mean of zero and unit variance. The former is done
to decrease the influence of outliers on the curve. The latter is done to make the
curves comparable with each other.

3.2.3 Batch Effect Correction

As mentioned above, the data set is generated by three experiments which can intro-
duce batch effects. Even though the experimental conditions (cell type, solvent etc.)
were kept the same there are conditions not under the control of the experimenter.
Since these conditions introduce systemic bias to the data generated the data can
show pattern not due to biological phenomena but because of the conditions. When
integrating several data sets from different experiments into one global data set the
difference in bias can mask the true biological signal. Therefore, it is important to
control for such batch effects and if needed correct for them [35].

In order to correct for batch effects, the mutual nearest neighbors algorithm devel-
oped by [36] is applied to the three data sets. The algorithm has the advantage
that not all observations in both datasets need to be the same. It suffices that there
exists an intersection of some size. This is the case in the datasets in this thesis,
thus making it a good candidate for batch correction.

3.3 Dimensionality Reduction

One of the major challenges that high-dimensional data brings with it is the difficulty
of visualizing the observation so that the researcher can inspect. For visualization
purposes, dimensionality reduction methods are needed to plot data in two dimen-
sional space and at the same time preserve as much information as possible [37].
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Principal Component Analysis (PCA) for continuous and Multiple Correspondence
Analysis for categorical feature space are presented in the following.

3.3.1 Principal Component Analysis

PCA’s aim is to reduce the dimensionalty by preserving the maximum amount of
variability. This is done by finding new, uncorrelated variables, so-called Principal
Components (PCs), that are linear functions of the original features. More specif-
ically, PCA finds vectors in the original feature space in which the most variation
can be found. This means that the first PC is a vector in the direction in which
when projecting the observations onto that vector the variation is maximized. The
second PC is an orthogonal vector that captures the second most variation from the
data [37]. For a dataset with n features, or dimensions, n PCs would capture all
variation and thereby information from the data. However, since it is known which
PCs capture the most variation the k first PCs, where k < n, can be used to reduce
the feature space by only losing small amounts of information.

To find the vector that maximizes the variation it is possible to multiply a random
vector by the co-variance matrix repeatedly. It has been shown that this turns the
random vector into the direction with the greatest variation as well as extends or
reduces its length. The vectors that do not change directions when multiplied by
the co-variance matrix are termed eigenvectors. Formally, e = Ae where X is the
co-variance matrix and A is the scaling of the eigenvector, termed eigenvalue. The
principle component is the eigenvector with the largest eigenvalue [37].

The first PCs lend themselves for visualization since they capture large amounts
of information from the data and can be plotted in two-dimensional space. It is
important though to show how much variation is captured by these PCs since if
all dimensions have similar variation the captured variation by the first PCs could
be low, thereby not reflecting the structure of the original dataset well. A distinct
advantage over other visualization techniques is the simple interpretation of PCA.
Distance between observations in the reduced space reflect distance in the original
space. Other methods such as t-distributed stochastic neighbor embedding (t-SNE)
do not have such straight forward interpretation and the shape can be heavily in-
fluenced by hyperparameters such as perplexity in the case of t-SNE.

3.3.2 Multiple Correspondence Analysis

In order to visualize the feature space a multiple correspondence analysis is applied
(MCA). This similar to principal component analysis (PCA) though it is appropriate
to apply to categorical variables such as in the data set at hand. As mentioned
above, the similarity measurement of Euclidean distance is not appropriate when
analyzing categorical variables. MCA solves this by creating an indicator matrix
M expressing the values as binary indicators, 1 for a category being present and
0 otherwise. With M the eigenvector problem is solved to find components that
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summarize the data. Thus, MCA can be considered as an extension of PCA for
categorical variables. However, since M inflates the number of variables by having
binary columns for each category for each variable the explained variance is too low.
Thus, this is corrected for as a final step. Plotting the resulting components enable
a similar interpretation between rows as PCA [38].

3.4 Clustering

As mentioned above, clustering is essential in the approach chosen to predict MeOAs
from metabolomic data. Thus, in the following K-Means and K-Modes, the main
clustering algorithms used in this project, are described in depth. In addition to
the traditional implementation with Euclidean distance, it is investigated whether
the extraction of typical curves benefits from applying the K-Means algorithm with
Dynamic Time Warping instead. For the clustering of the compounds the K-Modes
algorithm is also applied due to its appropriateness to categorical feature space [39].

3.4.1 K-Means Clustering

The ultimate goal of a clustering algorithm is to assign observations X = {x1,z9,...,2,}
to clusters such that members of a cluster are more similar to each other than to
those of other clusters. The K-Means algorithm assigns the observations to k differ-
ent clusters by minimizing the within-cluster variation (i.e. the within-cluster sum

of squares(WCSS)). Formally expressed,

Minimize .
> wigllwi — ¢l (3.3)
j=1i=1
subject to
k
dwi;=1, 1<i<n (3.4)
j=1
and
w;,; € {O, 1}, 1< <n. (35)

Where ¢; represents the mean or centroid of the jth cluster. w; ; determines whether
observation z; is member of the jth cluster by taking the value of 1 if so and 0
otherwise. (3.2) ensures that each observation can only be member of one cluster
[39].

This minimization problem is solved in an iterative manner in a two-step process.
Before starting the iterative process, centroids C' = {¢,¢a, ..., cx} where |C| = k
are, for example randomly, initialized. The goal is to divide X into partitions
S = {s1, 82, ..., 8} with corresponding centroids C' such that the WCSS is mini-
mized. To do so in the first step the Euclidean distance from an observation to
all centroids in C' is calculated and it becomes a member of the partition s whose
centroid is closest. This is done for all observations in X. As a second step, all
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centroids in C are recalculated as the mean of the corresponding members of S. For
instance, ¢; is recalculated as the mean of s1, ¢y as the mean of sy and so on. As
these steps are repeated, the algorithm converges[39]. The value of k is a hyperpa-
rameter that needs to be chosen and different methods exist [40]. In the context of
this research project, particular during the curve extraction, the number of curves
is also influenced by the biological interpretation of the shapes.

It is important to note that there are drawbacks to the K-Means algorithm. Due
to the optimization problem (3.1) to (3.3) being non-convex the algorithm tends
to converge on a local minimum. Therefore, the algorithm is usually initialized
several times with different centroids and the best result in terms of WCSS is chosen.
Furthermore, the clusters in S are convex. Thus, K-Means is unlikely to find clusters
that have different shapes [39].

3.4.2 Dynamic Time Warping

A common problem with sequential data is that the discrete points at which the
observations are collected can vary even if the pattern, i.e. the dependency between
the consecutive observations, is similar. An intuitive example from speech recogni-
tion is the same word spoken at different speeds. The shape of the sound waves is
similar. However, calculating the Euclidean distance between them would be rela-
tively large due to the difference in speed. Considering the problem at hand, when
extracting curves, a cell might react similar to two different compounds however
just delayed. That is, the dose-response curve is shifted either to the left or right. If
this is the case, applying the clustering algorithm not with Euclidean distance but
a more appropriate measure could be beneficial.

By using Dynamic Time Warping (DTW) it is possible to align curves that are
shifted. DTW minimizes the distance between to curves not on a point by point
bases, as is done when applying Euclidean distance. Rather, for two curves A and
B a n x m matrix is created where one curve is captured by the horizontal and
the other by the vertical axis. Each cell represents the distance from a; to b;. The
warping path W that aligns the two curves can then be calculated by minimizing
the distance between a; and b;[41].

To visualize the different shapes that are grouped in a cluster the centroid is not
appropriate since it only reflects the mean of the different shifted curves. It is
expected that the centroid will have less of a clear shape as when applying K-Means
with Euclidean distance. Therefore, a K-Means algorithm with Euclidean distance is
applied to each cluster from the K-Means with DTW. The centroids of the resulting
clusters reflect the different shifts of the curve shape and thus can be visualized.

3.4.3 K-Modes Clustering

The K-Means algorithm is suitable for the first step in the approach chosen for pre-
dicting MeOAs, namely the curve extraction. However, for clustering the compounds
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with categorical values K-Means becomes less appropriate due to the dissimilarity
measure used and the way cluster centroids are defined. For categorical variables
the Euclidean distance between two values is meaningless and thus cannot function
as an appropriate dissimilarity measure. Similarly, calculating the mean of categor-
ical variables has no proper interpretation. Therefore, [39] proposed the K-Modes
algorithm to cluster observations in categorical feature space.

The K-Modes algorithm has the same steps as the K-Means algorithm. However, to
solve the issue of the dissimilarity measure a simple matching is used instead of Eu-
clidean distance. Between two observations X, Y with m features the dissimilarity is
calculated by comparing the observations with corresponding features and counting
how often they agree and disagree. The fewer times the observations disagree the
more similar they are [39]. Formally expressed,

m

di(X,Y) =3 d(x5,y;) (3.6)

where
8wy, y5) = {0 (5= y]:). (3.7)

Instead of the mean as the centroid the mode of the partition is chosen. The mode
is the combination of categorical values for the m features that minimizes the dis-
agreement between itself and all the cluster members. Thus, let X be the set of all
observations and S C X be the partition for one cluster with n observations. The
m dimensional vector @) is the mode of S if it minimizes,

D(5,Q) = zn:dl(SuQ) (3.8)

Note that ) € S is not a requirement.
From these changes from the K-Means algorithm the new cost function (the equiv-
alent to (3.1)) is,

Minimize,

k n m
ZZZ’UJHCS mzl»Ql,j (39)

1=1i=1j=1

subject to (3.2) and (3.3)

By minimizing the cost function the within-cluster similarity is maximized and the
observations in X grouped so that similar observations belong to the same group.
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The K-Modes algorithm is used to cluster the chemical compounds. Those clusters
in turn are used to infer cluster labels according to the MeOAs.
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Results

The results are reported for (1) the analysis of one dataset, the July experiment,
and (2) the batch corrected large dataset separately. In doing so the advantages of
a "clean" dataset, (1), and those of a large but potentially biased dataset, (2), can
be compared. Each analysis follows the two approaches, individual dose levels and
dose-response analysis, outlined in the research design. Since the results from the
unsupervised part of the semi-supervised learning (SSL) approach do not suffice for
a good labelling of the observations no supervised algorithm is trained and presented
here. It is important to note that the ultimate goal of the unsupervised part is to
inform a classification algorithm in order to make prediction. Thus, the results of
this thesis are to be considered in the wider context of the SSL paradigm.

4.1 Single Experiment Analysis

For the analysis of a single dataset, the July experiment has been chosen due to
its larger number of compounds included. Also the June experiment is composed of
two different experiments introducing batch effects (see Figure A.2 in the appendix).
The August experiment has significantly fewer compounds (see Figure A.3 in the
appendix).

4.1.1 Individual Dose Levels

The differentiation between toxic and non-toxic compounds can most clearly be seen
when inspecting the metabolomic profile at the highest concentration (HC). Figure
4.1 shows the July dataset reduced with PCA to two dimensions where the first PC
captures 39% of variation and the second 10%. The compounds are plotted with
control substances DMSQO, "Death' control, MMP! as control for lipogenesis as well
as compounds that are known to be toxic (active)?.

!Tamoxifen at 150 pM known to be toxic [42]
2Tamoxifen [42], Chlorpromazine [43], Fluoxetine [44], cccp [45]
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Figure 4.1: Control Substances at HC for July

As can be seen in Figure 4.1 two clusters can be identified in the data. The
left cluster is dominated by DMSO indicating that compounds in this cluster have
no toxic effect on the cell. The right cluster is dominated by the "Death" control
substance as well as the MMP control. This indicates that compounds in this cluster
have toxic effects on the cells. This is confirmed by the four active compounds
which are part of the right cluster. Also five inactive compounds are part of the
left cluster (see Figure A.2). Similar clusters can be seen in the June and August
dataset (Figure A.2 and Figure A.3). The low density areas between the two
clusters indicate a clear distinction between toxic and non-toxic compounds. Figure
A4 in the appendix shows that compounds move from the non-toxic to the toxic
cluster starting from the seventh to ninth dose level. This supports the expectation
of dose-dependency and that metabolomic data has the potential to show at least
toxic effects in general.
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Figure 4.2: Different MeOAs at HC for July Dataset

Figure 4.2 shows the MeOAs plotted at the HC for the July dataset. It can be seen
that not all compounds that are known to be toxic in human appear to be member
of the right cluster which is associated with toxic controls. Also, the compounds
that are known to cause toxicity through the respective MeOA and are part of the
toxic cluster do not separate as clusters within the larger cluster. Thus, in this
metabolomic feature space MeOAs are not obviously distinguishable. This in turn
calls for methods that take into account more information than one dose level.
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4.1.2 Dose Response Analysis

As shown above, analyzing compounds in metabolomic feature space can distinguish
well between toxic and non-toxic compounds. However, considering the different
mechanisms a distinction is not possible. Thus, in the following the results of the

dose-response analysis is presented.

Firstly, the typical curves identified with K-Means clustering are presented for k = 6
as well as the cluster size. This is done to show the biological interpretation of the
curves. Secondly, the MCA plots of the categorical feature space is presented, color
coded according to MeOA. Lastly, the output of K-Modes clustering algorithm is

presented in form of a table with the distribution of MeOAs.

Figure 4.3: Typical Curve of July Dataset
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Figure 4.3 shows the centroids as a typical curve for each cluster generated by the
K-Means algorithm. As described previously, the centroid is the point from which
the distance to all observations is measured. It also represents the mean value of
the cluster. Thus, it is a representation of the shape of the clusters. Since the mean
is sensitive to outliers the analysis has also been done with the K-Median algorithm
which uses the median instead of the mean.? The centroids in this case showed ap-
proximately the same shape and thus it is inferred that the results of the K-Means
algorithm are not influenced significantly by any outliers and hence are reliable.

The curves that were used for clustering were standardized to a mean of zero by
subtracting the mean of the curve to make them comparable with one another. The
curves were not standardized to unit variance in order to observe, for instance, flat
curves. Furthermore, the curves were smoothed by applying a moving average such
that outliers have less influence and the noise level gets reduced. k = 6 was chosen
inductively by comparing whether an increase of k£ by one would yield a significantly
new curve shape.

The six typical curves presented in Figure 4.3 all have biological interpretations
in regards to the metabolomic reaction by the cell. Cluster 1 groups curves that
change insignificantly over the dose levels and thus can be considered flat curves. As
Table 4.1 shows, this is one of the most common types of curve. This is biologically
sound since most metabolites are not connected to toxicity. This is supported by
the high number of curves in cluster 4 and 5 whose centroid also show fairly low
activity. Cluster 6 shows a significant drop at dose level 6. This coincides with the
observed changes in metabolomic profile of compounds (see Figure A.4). A possi-
ble interpretation would be the shutting down of processes within the cell or that
molecules that are used to metabolize the foreign compound are used up. Centroid
of cluster 3 shows the opposite reaction. An interpretation could be the increase in
metabolites that are byproducts of the metabolizing of a compound as the cell gets
under duress. Cluster 2 groups those reactions that show a less strong decline than
cluster 6. In conclusion, all cluster shapes have a sound biological interpretation
and cover a vast range of reactions by the cell, thus supporting the choice of k = 6.

H Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Custer 6 H
#Members 5782 3672 2114 5927 5609 943

Table 4.1: Cluster Sizes for July DR-Analysis

3Results not shown
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The categorical feature space can be clustered with the K-Modes algorithm. Ideally,
the resulting clusters correspond, or at least are dominated by, one MeOA. However,
due to the multiple MeOAs a compound can cause the cluster might be shared by
two compounds. Nevertheless, some structure should be observable.

H Mechanism | C-1p C-1n|C2p C2n|C3p C3n|C4p C4n H

MitoTox 7 1 9 1 3 0 7 1

CRM 9 1 15 1 8 2 8 2
Phospho. 3 10 12 8 0 11 8 6
Cholest. 10 0 15 0 8 0 10 0

Table 4.2: Distribution of MeOAs in K-Modes Clusters (p = positive, n = negative)

From the distribution of MeOAs in the clusters it can be seen that mitochondrial
impairment (MitoTox), chemically reactive metabolites (CRM) and the cholestatic
MeOA have a fairly similar distribution over the four clusters. Considering the
MeOA of lysosomal impairment, in form of phospholipidosis, one can identify that
cluster one and three are dominated by the negative category and cluster two and
four by the positive class. This could give some indication that they cluster in space.

H Cluster 1 Cluster 2 Cluster 3 Cluster 4 H
#Members 31 37 27 24

Table 4.3: Cluster Sizes for July K-Modes
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Figure 4.4 shows the compounds in the metabolomic feature space after trans-
forming the features into curve shapes thereby including the information over all
dose levels in one analysis. The feature space is reduced by applying a MCA. No
features selection has been done. In the data no clear clusters can be identified.
Only the MeOA phospholipids shows that compounds that exhibit the mechanism
cluster somewhat together. This is in line with the results from K-Modes clustering
which identified two clusters that were dominated by "False" category for phospholi-
dosis and two that tended to include dominantly "True" values. Moreover, the other
different MeOAs do not cluster together.
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Due to the fixed dose range in the experiment the same reaction can occur at differ-
ent dose levels which can be captured by using DTW instead of Euclidean distance
as the similarity measurement between curves. Applying K-Means with DTW to
the data shows that some curves are shifted but are correctly grouped in the same
cluster (see Figure A.5). Cluster 1, 2 and 4 show the same curve shape at different
dose levels. This shows that applying DTW to curve data can help grouping curves
that express biologically similar phenomena together.

Coding the observations according to these clusters results in similar MCA plots
as with Euclidean distance though the variance is decreased in the y-dimension
and slightly increased in the x-dimension. Also, here can be seen that only the
cholestatic MeOA shows some structure although again this could be due to uneven
labeling of the observations. Many unknowns can be found to the right side of
the plot. Ultimately, it is difficult to determine to what extent the application of
DTW has improved the results. It is important to note that K-Means with DTW
is computationally significantly more expensive which could be a challenge when
including more dose levels.
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4.2 Combined Experiment Analysis

The analysis can potentially benefit from including more observations and thereby
increasing the chance of representing the underlying distribution generating the
data. Thus, the following chapter presents the results from the merging of data
from four different experiments. The number of compounds included in the analysis
is significantly increased.

However, as Figure 4.6a shows, batch effects in the datasets can be found. This
means that systemic influences from the actual experimental run affect all obser-
vations in each dataset. The clusters form according to the experiments thereby
denying the chance to identify patterns rooted in biological effects such as toxicity.

To correct for the systemic effects in the different datasets the MNN algorithm with
20 mutual nearest neighbors has been applied to the data. Figure 4.6b shows the
resulting dataset with batch effects corrected. The parameter of k has been identified
inductively by plotting the batch corrected datasets for different k.

2ndPC (0.054)
2ndPC (0.098)

o B E E -10 0
1stPC ( 0.86) 1stPC (0.44)

(a) Batch Effects Between Experiments (b) Batch Effect Removed (MNN k = 20)

Figure 4.6: Batch Effect Correction with MNN

Though the algorithm was able to correct for the individual bias to a large extent
still some pattern can be identified. This can be seen in the August and July
dataset where the former is located on the right side of the latter. This can be
an artifact of the correction. Also, the August dataset has lower variation which
is the case in the uncorrected and corrected representation of the datasets. The
difference in variation can be due to batch effects and thus to a failing of correcting
it. However, an alternative hypothesis is that the smaller variation stems from
the compounds included in the experiment. In this case the variation would have a
biological cause and should not be corrected for. It is difficult to find out definitively
which explanation is correct. Therefore, the analysis proceeds with the output of
the algorithm, presented in Figure 4.6b, knowing that bias due to batch effects
could influence the final results.
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4.2.1 Individual Dose Levels

As has been shown with the individual dataset in section 4.1.1, by inspecting the
compounds at the highest dose level it can be possible to identify clusters that show
a distinction between toxic and non-toxic compounds. The controls for "Death" and
for inactivity, DMSO, can provide information for such distinction.

Figure 4.7 shows that there are two clusters that are separated by a low density
area between them.? The right cluster has low and the left cluster high variation. In
contrast to the individual dataset from July, the control substances do not clearly
correspond with the clusters. However, it seems that the upper part of the left
cluster is dominated by "Death" control and the right cluster by DMSO. The lack of
clear distinction between the controls could be a result of the merging of different
datasets since there might still be distortions remaining.
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4 MO
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o mp
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o E Z o
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(a) Batch Corrected K-Means (b) Batch Corrected HC

Figure 4.7: Batch Corrected at HC

As with the individual dataset, the batch corrected dataset could benefit from taking
into account the metabolomic path a compound takes. Hence, the next section
presents the results from the dose-response analysis.

4.2.2 Dose-Response Analysis

The following presents the dose-response analysis of the batch corrected dataset in-
cluding the experiments from June, July and August. First the identified typical
curves are presented as well as their number of occurrences within the dataset. The
compounds are then visualized in metabolomic feature space according to curve
shape by inspecting the MCA plots. Thereafter, the clustering with K-Modes is
shown. Due to the insufficient results from the unsupervised methods a supervised
algorithm is not applied and thus no results shown.

4Silhouette Score of 0.351 which indicates some clustering
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Figure 4.8: Typical Curve of Batch Corrected Dataset

The typical curves shown in Figure 4.8, as in the previous analysis on the single
dataset, correspond to a biological interpretation as a reaction of a cell to a foreign
compound. Centroid of cluster 1 corresponds to a cell reacting to a compound by
metabolizing it but this increase in this levels off. Cluster 2 clearly groups the flat
curves which represent the inactivity of that metabolite. This could be due to the
metabolite not being involved in the metabolizing of a compound or that the com-
pound is not toxic and thus not requiring such metabolizing. Similarly cluster 6
shows low activity. As in the individual dataset these clusters are dominating the
dataset as can be seen in Table 4.4 which is expected. Cluster 3 shows a strong
reaction to the increased dose that levels off whereas cluster 4 shows a strong de-
crease that becomes steady. Cluster 5 shows a constant decrease. In conclusion, the
different identified curves represent different biochemical reactions by the cells and
thus should be suitable for further analysis.
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H Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Custer 6 H
#Members 2042 5154 533 1387 1041 3367

Table 4.4: Cluster Sizes for Batch Corrected DR-Analysis

As can be seen in Table 4.5 , the positive and negative categories are evenly spread
between the clusters when considering the different cluster sizes. There is no clusters
that clearly groups the positive category and one for the negative category for any
of the MeOAs.

H Mechanism | C-1p C-1n|C2p C2n|C3p C3n|C4p C4n H

MitoTox 7 1 16 1 1 1 6 0

CRM 12 1 23 4 1 0 8 1
Phospho. 8 7 21 15 1 2 11 13
Cholest. 12 0 25 0 3 0 11 0

Table 4.5: Distribution of MeOAs in K-Modes Clusters (p = positive, n = negative)

Between the clusters there is a strong imbalance with cluster two having the highest
number of members with 83 compounds and cluster three only 13. Figure 4.9 can
offer a possible explanation. The compounds in the middle are fairly dense and at
the upper left and right corner are more sparsely distributed. Therefore, K-Modes
clusters the dense area together in one cluster and the sparser ones into the other
clusters.

H Cluster 1 Cluster 2 Cluster 3 Cluster 4 H
#Members 27 83 13 38

Table 4.6: Cluster Sizes for BC K-Modes

After coding the metabolomic reactions of the cell to the compounds according to
their curve shapes and reducing the feature space to two dimensions with MCA,
the plots in Figure 4.9 show the different compounds and the MeOAs they cause.
Inspecting the plots no clear clusters can be identified. Also, the different compounds
do not cluster together within the point cloud according to the MeOAs.
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Considering the MCA plots of the K-Means applied with DTW, one can see that the
curve alignment did not result in more clearly separated clusters of points. Figure
A.6 (see Appendix) shows that the alignment had some effect for instance in the case
of cluster one where a shifted U-shape can be observed in two of the curves. However,
adjusting for the shifts in curve did not result in a better distinction between the
MeOAs.
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Figure 4.10: Different MeOAs Dynamic Time Warping BC

Overall, the results show that the methodology to identify typical curves worked well
since a variety of different curves could be identified. The second step of the dose-
response analysis however did not result in positive results. Neither the individual
nor on the batch corrected dataset did result in clusters that could be utilized for
labelling unknown observations. This hinders building a good supervised model to
predict MeOAs of unseen compounds. This impediment is further analyzed in the
discussion section.
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5.1 Discussion

The analysis of observations on high concentration from an individual experiment
has shown that toxic effects can be identified from metabolomic data. This could
not definitively be confirmed with the batch corrected dataset. Yet, this could stem
from distortions not corrected for by the batch correction algorithm. Combining the
strong evidence from the individual dataset and the weaker evidence from the batch
corrected dataset one can conclude that toxicity can be identified on individual dose
levels in metabolomic feature space.

However, it turned out to be difficult to distinguish between the different MeOAs
on individual dose levels as well as when taking into account all dose levels. This
can stem from different causes. (1) Dead cells could show a common metabolomic
profile regardless by which MeOA they died. (2) The range of doses tested are not
fine enough to identify meaningful paths to cell death. (3) The MeOAs not being
mutually exclusive could distort the clustering.

In case (1) is correct, the dose-response analysis should be able to provide better
insights since it is taking into account the metabolomic path the cell has taken in
the process of dying. The analysis of the July dataset has shown that at dose levels
7 to 9 the compounds are moving from the non-toxic cluster to the toxic one. Thus,
the process of dying is not a discrete event in terms of metabolomic response by the
cell. Rather the process can be observed as the dose is increased until reaching a
lethal level. Since a toxic effect can only be seen in the highest three concentrations,
including more dose levels between level 7 and 9 could be providing more insights by
representing the metabolomic reaction by the cell more fine grained (2). Approaches
to this could be to use dose levels six to nine from the dataset analyzed in this thesis
or by performing range finding experiments as done in [6].

Additionally, the analysis could benefit by using the information from the metabolomic
reaction over increasing dose levels in different ways. During the dose-response anal-
ysis it has been shown that biologically sound shapes in the data have been found.
However, when coding the shapes into categorical variables some information is lost.
As an example, consider three curves a, b, c where a is increasing with the concen-
tration, b is strongly decreasing as the dose increases and c is slightly decreasing
as the dose increases. It stands to reason that curve b and ¢ are describing a more
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similar reaction by the cell than a and b and a and ¢. However, when transforming
these variables into categorical variables this information about the relation between
the shapes is lost since no notion of distance between categorical variables exists.
Therefore, research building upon the findings presented in this thesis could develop
such methodology that can model these relationships by quantifying the differences
between curve shapes. Thereby such potential information loss could be avoided.

As another impediment to finding meaningful clusters in the data is the lack of mu-
tually exclusive labelling of the compounds (3). Since a compound can be toxic by
causing multiple MeOAs a cluster for the different combinations of MeOAs should
form. A compound that causes mechanisms m; and msy should have a different
metabolomic profile than one that causes m; and ms. This makes finding clusters
with clear low density areas between them could be more difficult since the two
compounds share parts of their metabolomic profile due to m;.

5.2 Conclusion

The aim of this thesis is to predict MeOAs of chemical compounds that are drug can-
didates in order to assess the probability of safety before clinical trials are initiated.
To do so the potential of metabomolics as a source of information for such predic-
tion is assessed. Since labelling is generally sparse in this domain, as is the case in
this thesis, a semi-supervised machine learning approach is taken to utilize a larger
number of compounds. The thesis investigates an approach that takes into account
the information over several dose levels, thereby capturing information about the
reaction of cells to different concentrations. Since in the cluster-then-label approach
the unsupervised part is essential for good performance of classification algorithms
the finding of clusters in the data that correspond to MeOAs has been focused on.

The analysis of the individual observations at different dose levels has shown that
toxicity clusters in metabolomic feature space. This could be clearly shown when
applying the analysis on individual datasets and it is less clearly shown when merg-
ing data from different experiments and correcting for batch effects. At higher dose
levels compounds could be distinguished gradually from the non-toxic control. Thus,
it can be concluded that metabolomic responses can show toxic effects, that AMI-
MS experiments are suitable for capturing this information and that dose-response
effects hold information that can be utilized for predicting toxicity.

In this thesis, a method is proposed that codes the metabolomic response by cells
exposed to different compounds according to their dose-response curves in order to
create a transformed feature space that can take into account not only single dose
levels but to add the dimension of dose levels. This is done by K-Means to cluster
the curves and using K-Modes to cluster the transformed feature space.

Results from the method show that the compounds do not clearly cluster accord-
ing to their MeOAs in the transformed feature space. This is also the case when
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applying K-Means with DTW to align curves with the same shape. As reasons for
these results it is hypothesized that this could be due to the lack of mutual exclu-
sivity between the MeOAs. This would increase the expected number of clusters
and hence require more data and make distinctions more difficult. Moreover, it is
expected that a finer grained increase in dose levels could benefit the analysis since
this could refine the curves extracted from the dose-dependency.
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