
Clustering genomic signatures

A new distance measure for variable length Markov chains

Master’s thesis in Computer science - algorithms, languages and logic

Joel Gustafsson
Erik Norlander

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2018

Master’s thesis 2018

Clustering genomic signatures

A new distance measure for variable length Markov chains

JOEL GUSTAFSSON
ERIK NORLANDER

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Clustering genomic signatures
A new distance measure for variable length Markov chains
JOEL GUSTAFSSON
ERIK NORLANDER

© JOEL GUSTAFSSON, ERIK NORLANDER, 2018.

Supervisor: Alexander Schliep
Computer Science and Engineering

Advisors: Peter Norberg & Martin Holmudden
Institute of Biomedicine, Gothenburg University

Examiner: Devdatt Dubhashi
Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Clustering of genomic signatures. The colours correspond to the taxonomic
families of the signatures.

Gothenburg, Sweden 2018

4

Clustering genomic signatures
A new distance measure for variable length Markov chains
Joel Gustafsson
Erik Norlander
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Pathogens such as bacteria and viruses are leading causes of disease worldwide,
which makes it essential to identify them in DNA samples. Instead of analysing raw
DNA sequences, mathematical models based on Variable Length Markov Chains
(VLMCs), known as Genomic signatures, make it possible to classify DNA samples
faster than with traditional alignment-based methods. To analyse a set of genomic
signatures, we use clustering, which is an unsupervised machine-learning method.
For the clustering of VLMCs, an accurate and fast similarity measure (distance
function) is needed.

To analyse distance functions and clusters, we define metrics based primarily on
the taxonomic ranks of the underlying organisms. For the distance functions, we
primarily analysed whether the VLMCs within the same taxonomic rank were closest
to each other. For the cluster analysis, we use the silhouette metric to determine
how well separated the clusters are and define the average percentages, sensitivity,
and specificity of the captured taxonomic ranks.

We present a new distance function for VLMCs, called Frobenius-intersection, which
correlates accurately with the well-known Kullback-Liebler distance function, while
also being several orders of magnitude faster. We use average-link clustering to-
gether with the Frobenius-intersection distance to cluster data sets of known viruses
and bacteria with relatively short DNA sequences. The clusters of VLMCs corre-
spond accurately to the Baltimore types of the viruses as well as the viruses’ and
bacteria’s taxonomic families. However, most of the classifications of viruses are also
subdivided into multiple clusters. Moreover, when combining the set of bacteria and
viruses, the clusters start to mix the viruses and bacteria before finding all of the
taxonomic families.

The clustering of the genomic signatures is accurate with respect to, for instance,
taxonomic ordering. Therefore, it can help in identifying unclassified pathogens.
Future research may reveal other causes of similarity between the genomic signa-
tures.

Keywords: Computer science, Bioinformatics, Master’s thesis, Markov chains, Vari-
able length Markov chains, DNA clustering, Genomic signatures, Clustering, Ma-
chine learning, Unsupervised learning

5

Acknowledgements

We would like to express our gratitude towards our supervisor Alexander Schliep, for
always pushing us in the right direction. We would also like to thank Peter Norberg
and Martin Holmudden who have provided insight into the biological aspects of this
work, and made their previous research and tools available to us.

Joel Gustafsson & Erik Norlander
Gothenburg, June 2018

7

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Delimitations . 3

2 Theory and related research 5
2.1 Markov models . 5

2.1.1 Markov chains . 5
2.1.2 Variable length Markov chains 6
2.1.3 Hidden Markov models . 7

2.2 Distance functions . 8
2.2.1 Mathematical properties . 8
2.2.2 Measure of estimation error distance 8
2.2.3 Kullback-Leibler distance . 9
2.2.4 Frobenius norm . 9
2.2.5 PST-matching . 10

2.3 Clustering . 10
2.3.1 Graph-based clustering . 11

2.4 DNA . 12
2.4.1 Organism classification . 12

2.5 Genomic signatures . 13
2.5.1 Genomic signature generation 13
2.5.2 Species specificity . 13

2.6 Clustering DNA sequences . 13
2.6.1 Dnaclust . 14
2.6.2 Uclust . 14
2.6.3 SlideSort . 14

3 Method 17
3.1 Distances for Variable Length Markov Chains 17

3.1.1 GC-distance . 17
3.1.2 Measure of estimation error for VLMCs 17
3.1.3 Kullback-Leibler distance for VLMCs 17
3.1.4 Frobenius norm distance for VLMCs 18
3.1.5 PST-matching distance . 19

3.2 Clustering variable length Markov chains 20

i

Contents

3.2.1 Single-link clustering . 20
3.2.2 Average-link clustering . 20

3.3 Data sets . 21
3.4 Distance function evaluation . 21

3.4.1 Distance metrics . 22
3.5 Clustering evaluation . 22

3.5.1 Clustering metrics . 22

4 Results 27
4.1 Model generation results . 27

4.1.1 Number of parameters for VLMCs 27
4.1.2 Sequence length limit of the model-generation 28

4.2 Distance function evaluation . 28
4.3 Clustering results . 31
4.4 Alignment-based clustering methods 38

5 Discussion 39
5.1 Distance and clustering outcomes . 39
5.2 Time and memory requirements . 40
5.3 Selecting number of clusters . 40
5.4 Analysis of unknown data . 40
5.5 Remaining issues and future work . 41

5.5.1 Genomic signature generation 41
5.5.2 Signals in the data . 41
5.5.3 GC-content prevalence . 41
5.5.4 Homology-bias . 42
5.5.5 Learning classes . 42
5.5.6 Noise-resistant clustering algorithms 42

5.6 Ethics of DNA analysis algorithms 42

6 Conclusion 45

Appendices 51

A Selecting sequence length for KL 53

B PST-matching hyper parameter 55

C Clustering with other distance functions 57

D Extended data set 61

ii

1
Introduction

Pathogens such as fungi, bacteria, and viruses are leading causes of disease world-
wide. The world health organisation published a report in 2014 [18] which shows
an alarming rise in the amount of antibiotic resistant-bacteria, so-called superbugs,
around the world. These superbugs make wounds, cuts, and diseases that have been
treated effectively with antibiotics deadly once again. Moreover, viruses are also a
considerable threat to human lives, take for instance, the recent Ebola outbreak in
West Africa [28] which killed over 11 000 people. Accurate identification and classi-
fication of pathogens would make it possible to treat patients more efficiently and
help make informed decisions with regards to public health. One typical approach
to classification of pathogens is to analyse their genome.

The genome of an organism is the blueprint of the organism’s cells. It is made up
of DNA molecules which corresponds to the source code of the organism. DNA is
copied to new cells and organisms, and sometimes errors referred to as mutations
occur. These mutations gradually lead to evolution where many organisms share
a significant portion of DNA. Organisms within the same taxonomic family (for
instance, primates) share an even more significant portion of their DNA. The DNA
molecules are chains of nucleotide base-pairs, usually double-stranded. Each base-
pair consists of two of the four possible nucleotides: Adenine, Cytosine, Guanine,
and Thymine. There are four base pairs: A-T, T-A, G-C, and C-G. Because the
base pairs are symmetric, one strand of the DNA molecule is always a mirror of the
other, see figure 1.1. This property makes it possible to analyse DNA as a single
sequence of As, Cs, Gs and Ts.

Over the last years, the methods involved in DNA sequencing (the process of deter-
mining the DNA sequence of a given organism) have evolved dramatically. The num-
ber of sequenced genomes has grown exponentially with improved experimental tech-
niques, algorithms and hardware. These improvements have led to databases with a
considerable amount of classified DNA sequences, including those of pathogens such
as viruses. These databases allow researchers to have a large reference set of DNA
sequences with which to compare unclassified sequences.

The typical approach to identifying unclassified DNA sequences aligns small parts of
sequences (sequence reads obtained in a DNA sequencing experiment) to reference
genomes. The sequence alignment is an expensive operation, the standard implemen-

1

Chapter 1. Introduction

Figure 1.1: The images illustrate the helix-shaped DNA molecule and the base pairs it is made
of. Since the base pairs are symmetric, A always binds to T, C to G, and vice versa, each of the
two strands is a mirror of the other. This makes it possible to think of DNA as a single long string
of the four letters A, C, G, and T.
Images courtesy of the National Human Genome Research Institute.

tation costs O(n2) [17] with n as the sequence length. In contrast, alignment-free
methods rely on features of the DNA, such as GC-content (the percentage of Gs
and Cs in the DNA) [16] and oligonucleotide frequencies (the frequencies of short
sub-sequences of nucleotides) [2].

Genomic signatures are mathematical models that represent such features. For in-
stance, an IID (independent and identically distributed) model captures the relative
frequency of As,Cs,Gs, thus capturing the GC-content. Extending the model with
one step of memory gives a first-order Markov chain which is capable of capturing
more complex relationships. More advanced genomic signatures, based on Variable
Length Markov Chains (VLMCs) [4, 5], have been shown to be species-specific [9]
and can thus be used for analysis of DNA sequences. Furthermore, since VLMCs are
compact, they allow for a faster comparison procedure than entire sequences. These
models, as such, allows analysis of larger sets of data, for instance with clustering.

Clustering is a machine learning technique which identifies patterns in data. A
clustering procedure divides data into subsets in which data points are more similar
to each other than to data points in the other subsets. As an example of clustering,
consider the Iris data set [7]. Iris contains the sepal length and width, as well as
the petal length and width of 50 samples from three species of Iris flowers. We can
apply clustering to this data set to classify each data point as belonging to one of
the three species. The species are identified by which combinations of sepal/petal
length and width correspond to what the clustering believes to be the three species.
When presented with a flower which we do not know the species of, the resulting
clusters can tell us which of the three species it most closely resembles.

1.1 Purpose
In this thesis, we present a clustering procedure for VLMCs, as well as a new distance
function. The clustering may provide insight into which DNA sequences are similar,
and in which respect. As such, the clustering can help identify pathogens, as well as
give valuable insight into how pathogens and species evolve. However, to be able to

2

Chapter 1. Introduction

cluster VLMCs, we first need to define which VLMCs are similar; we need to define
a distance function.

The variable and stochastic nature of the VLMCs pose a problem for a distance
measure since two structurally different VLMCs can model a similar underlying
sequence. However, there is a recently defined distance function for VLMCs [27].
Moreover, the literature on distances between Hidden Markov models (more com-
plicated, but similar models), for instance, [3, 13, 30], suggests that it is possible to
define several distance measures between VLMCs.

The speed of the distance calculation is also crucial. The clustering procedure may,
as a worst case, require a distance calculation for every pair of VLMCs. Given an
extensive data set of VLMCs, this imposes some time/complexity-constraints on the
distance calculation.

1.2 Delimitations
We do not devise a novel clustering algorithm. Instead, we adapt an existing al-
gorithm to this specific problem. We use an existing algorithm for clustering since
there are existing algorithms that fulfil our needs.

We only consider genomic signatures based on VLMCs. Although this approach
could be used with other underlying models, VLMCs have been shown to work well
in the past, for instance, [9].

3

Chapter 1. Introduction

4

2
Theory and related research

Here, we give a formal definition of variable length Markov chains, as well as hidden
Markov models, for which there are several well-known distance functions. We then
present some distance functions, and give an introduction to clustering. Moreover,
we present some further background on DNA, how species are classified as well as
how to construct the genomic signatures (VLMCs) from DNA-sequences. Finally,
we present a couple of methods which cluster DNA-sequences directly.

2.1 Markov models
Markov models are a class of stochastic models that are well suited to model a
sequence of events, often represented by symbols. The simplest Markov model, the
first-order Markov chain, models the next event as a function of only the current
event. Higher-order and variable length Markov chains instead model a sequence of
previous events which the probabilities of the next event are based upon. Finally,
hidden Markov models use a more abstract relationship not directly dependent on
the observed events.

2.1.1 Markov chains
A Markov chain is a discrete-state random process, specifically, a set of discrete
random variables, {X1, X2, ..., Xn}, defined over a sample space Σ. In the context of
genomics, Σ = {A,C,G, T} is a common choice, corresponding to the four building
blocks of DNA.

In a first-order Markov chain, the probability mass function (pmf) ofXn is a function
of the outcome of Xn−1. If the outcome of Xn is a ∈ Σ, we define the model to be in
state a. The probability mass functions of the random variables Xn can be expressed
as a transition matrix, which we refer to as A. If there are N = |Σ| symbols in the
alphabet, the transition matrix for a first-order Markov chain will be of size N ×N .
Figure 2.1 depicts a first-order Markov chain along with its parameters.

In a higher-order Markov chain, the next state does not depend only on the imme-
diate previous outcome. Instead, it depends on the previous sequence of outcomes,
referred to as the context. Formally, for a Markov chain of order k, the pmf of Xn is

5

Chapter 2. Theory and related research

A C

G T

pA|A pC|A

pG|A

pT |A

pA|C

pC|C

pG|C

pT |CpA|G

pC|G

pG|G

pT |G

pA|T

pC|T

pG|T pT |T

Figure 2.1: This first-order Markov chain can be used to model a sequence of As, Cs, Gs, and Ts.
The model can be used to generate a random sequence of these letters. If the model has generated
a certain sequence, for instance, "ACAT", we say that the model is in state T, since it is the latest
character. From this the probability that the next generated letter is A is simply PA|T .

a function of the outcome of Xn−1, Xn−2, ..., Xn−k. If the outcome of Xn is a ∈ Σ, we
define the model to be in the state corresponding to the k-suffix of the concatenation
of the context of Xn and a. The transition matrix for a higher-order Markov chain
will be a S × S matrix, where S = |Σ|k is the number of states in the model.

2.1.2 Variable length Markov chains
A generalisation of a higher-order Markov chain is the Variable Length Markov
Chain (VLMC), for instance, [1, 22]. In these Markov chains the length of the
context is allowed to vary on a state by state basis. The order of a VLMC is defined
as the length of the longest context. We define the emission matrix B for a VLMC
as the matrix with size S × N , where S is the number of states, and N the size of
the alphabet. Element bij is the probability of emitting a character j while in state
i.

A VLMC can be described by a Prediction Finite Suffix Automaton (PFSA), see
figure 2.2a for an illustration, which is a similar representation to the standard
Markov chain. Each state, s, in the PFSA is labelled by a sequence, l(s), of symbols
from an alphabet Σ. Each transition between two states is labelled by a single
symbol a ∈ Σ. The states are labelled as: if state s0 has a transition to s1 with label
a, then l(s1) is a suffix of the concatenation of l(s0) and a.

Another representation of a VLMC is as a Prediction Suffix Tree (PST). The tran-
sition and state labelling are symmetrical to the PFSA, however, the structure is
not. If state s0 has an edge to state s1 with label a, then l(s1) is the concatenation
of a and l(s0). In a PST the current state is determined by reading the current
sequence backwards from the root. For example, if given the string "BBA" and we
wish to predict the next character, we read "A-B-B" from the root until we reach a
terminal node. This terminal node contains the probability distribution for the next

6

Chapter 2. Theory and related research

AApA|AA, pB|AA, πAA

B pA|B, pB|B, πB

BA pA|BA, pB|BA, πBA

A

B

B

A

A

B

a A PFSA corresponding to a VLMC. π denotes the probability of starting in the corresponding
state.

ε pA|ε, pB|ε

B pA|B, pB|BApA|A, pB|A

BA pA|BA, pB|BAAApA|AA, pB|AA

A
B

A
B

b Corresponding PST. If we want to find the probability that an A comes after the sequence BBA,
we would read the sequence backwards from the root and end up in the node BA.

Figure 2.2: A PST and PFSA representation of a VLMC with the alphabet Σ = {A,B}. Note the
similarities: the labelling of states and transitions, and the differences: state B does not transition
to BA in the PST, and state A is needed for the tree structure.

character. An illustration of such a PST is given in figure 2.2b. Note that, unlike the
PFSA, we do not traverse the structure along the edges when continuously reading
a sequence.

2.1.3 Hidden Markov models
A Hidden Markov Model (HMM), is probabilistic function of a Markov chain, and a
more complex model than a VLMC. The main difference is that this model consists
of two underlying random processes instead of one.

An HMM consist of S hidden states, whose transition probabilities can be repre-
sented as a transition matrix A of size S × S. This matrix is similar to the tran-
sition matrix of a Markov chain. However, the transitions that A represent do not
correspond to an output character. Instead, the HMM also has an emission matrix
B. Each row in B represents the distribution of the possible output characters in
a state, this makes B a matrix of size S × N , where N is the size of the alphabet
Σ. See figure 2.3 for an illustration, note how there are separate probabilities for
emissions and transitions in the model.

7

Chapter 2. Theory and related research

S0b0A, b0B

S1 b1A, b1B

S2 b2A, b2B

a00

a01

a11

a12

a20

a21

Figure 2.3: An example of an HMM. Note how the symbols that are outputted from each state
does not correspond to which state the model moves to. For example, regardless of which symbol
is outputted from S0, the model can move to either S0 or S1. The output symbol from S0 is
probabilistic and the probabilities are found in the emission matrix: b0A is the probability that an
A is generated and b0B that a B is generated.

The states of an HMM are called hidden since it is not possible to determine which
state the model is in from the output of the model. This is in contrast to Markov
chains, where each state depends on the observed data in a deterministic fashion.

2.2 Distance functions
A proper distance function has a number of desirable mathematical properties, which
we present here. Moreover, previous research into the area of HMMs and VLMCs
has revealed a number of distance functions, most which do not fully satisfy the
mathematical properties.

2.2.1 Mathematical properties
Mathematically, a distance function D(x, y) has to satisfy the following conditions:

Symmetry: D(x, y) = D(y, x)
Non-negativity: D(x, y) ≥ 0
Identity: D(x, x) = 0
Triangle inequality: D(x, z) ≤ D(x, y) +D(y, z)

Fulfilling these conditions makes the distance function a metric, and implicitly de-
fines a metric space for the data points. If the data points lie in a metric space, it
is easier to reason about how they relate to each other.

2.2.2 Measure of estimation error distance
Levinson et al. [12] introduce a distance function that they refer to as "measure
of estimation error". It can be used as a Euclidean distance between two HMMs

8

Chapter 2. Theory and related research

(λ1, λ2), and measures the similarity of the emission probabilities,

d(λ1, λ2) :=

√√√√ 1

MN

M∑
j=1

N∑
k=1

(
b

(1)
jk − b

(2)
p(j)k

)2

. (2.1)

Here, b(i)
jk is an entry in the emission matrix B(i), and b(i)

p(j)k corresponds to the entry
in B(i) which minimises equation (2.1). This distance function obeys identity and
non-negativity, but symmetry and triangle inequality does not hold.

2.2.3 Kullback-Leibler distance
Juang et al. [10] propose a distance measure, based on the likelihood of a generated
sequence OT , called KL-distance. The distance measure is the Kullback-Leibler
number between the likelihoods, µ(· | λ), of two HMMs (λ1, λ2),

d(λ1, λ2) := lim
T→∞

1

T

(
log µ(OT | λ1)− log µ(OT | λ2)

)
. (2.2)

Here, OT is a sequence generated under λ1, with length T . Typically, T is set to
a large value, instead of using the limit T → ∞. The measure obeys identity and
non-negativity and can be made symmetric as

ds(λ1, λ2) :=
d(λ1, λ2) + d(λ2, λ1)

2
. (2.3)

However, Zung et al. [30] show that the distance measure does not obey the triangle
inequality.

2.2.4 Frobenius norm
Cuzzolin et al. [3] make use of the Frobenius norm as a base distance between two
HMMs. They claim the Frobenius norm has both superior performance and speed
compared to the KL-distance. The Frobenius norm is a standard matrix norm,

||M ||F :=

√√√√ m∑
i

n∑
j

|aij|2. (2.4)

The distance between λ1, λ2 is calculated by applying the norm to the differences
between the emission matrices and transition matrices respectively, and summing
the result, yielding

dF (λ1, λ2) := ||A1 − A2||F + ||B1 −B2||F . (2.5)

This distance function at least obeys identity, non-negativity, and symmetry.

9

Chapter 2. Theory and related research

2.2.5 PST-matching
Sürmeli et. al [27] propose a distance function for VLMCs, in their PST-form,

d(λ1, λ2) =
N∑
i

M∑
j

xijwij(I ·
γij
Lij

+ (1− I) · δijεij
2

). (2.6)

Since the equation (2.6) contains a sum over all pairs of states, they introduce xij
as an indicator function. It has the value of 1 if i, j are the same state or the most
similar state in the other model. Otherwise, xij is 0.

They call wij the match weighting component, and it is equal to the average of
the occurrence probabilities of the two states i and j in their respective model. The
occurrence probability is the probability of seeing that specific context in the original
training sequence.

Furthermore, the distance is split into two costs: similarity-cost and dissimilarity
cost. The hyper-parameter, I ∈ [0, 1], known as the cost type weighting component,
adjusts how much each cost should contribute to the total distance. The similarity-
cost will be 0 for any two states which are not exactly the same context. Analogously,
the dissimilarity cost will be 0 for any two states which are exactly the same context.

The dissimilarity cost is a measure of how different two states are,

I · γij
Lij

. (2.7)

Here, γij ≥ 0 is the absolute difference in context length for the two states i from λ1

and j from λ2. The term is normalised by Lij which is the larger of the two context
lengths.

The probability cost is a measure of how similar the probabilities of two states are

(1− I) · δijεij
2

. (2.8)

Here, εij is defined to be 1 only if the contexts i and j are exactly the same, it is 0
otherwise. The factor δij is the sum of the differences of the probabilities in the two
states i from λ1 and j from λ2

δij =
∑
a∈Σ

|P1(a | i)− P2(a | j)|. (2.9)

The authors do not motivate if their distance measure is a real distance metric.

2.3 Clustering
The clustering problem is well studied in the field of machine learning. To cluster a
data set is the problem of finding a set of clusters C. Elements within each cluster

10

Chapter 2. Theory and related research

Figure 2.4: An example of the input to a clustering procedure. The colours and markers indicate
the "real" classes, the input points to a clustering procedure are generally not distinguishable from
each other. The clustering task is to find the three groups of points shown in the image.

c ∈ C are more similar to each other than to elements of other clusters in C. We
refer to elements within a cluster to be in the same class. Given a clustering of a
data set, it is also possible to determine into which of the classes a new data point
belongs.

Figure 2.4 contains an example of the input to a clustering procedure. Note that,
usually, the number of clusters and which points belong to which classes are un-
known parameters. Therefore, the number of clusters may need to be estimated (for
instance, by running the algorithm multiple times).

2.3.1 Graph-based clustering
One type of clustering algorithm is graph-based clustering [29]. Each data point
corresponds to a vertex in a graph, G, and the distance between the data points cor-
respond to weighted edges between them. From the graph, several different schemes
(for instance single-link or average-link [15]) can be applied to find a clustering. In
bottom-up graph-based clustering, each vertex of the graph initially represents a
cluster. Then, iteratively, the clusters are merged to form larger clusters.

A disadvantage to graph-based approaches is the construction of the graph, which
requires distance calculations between every vertex. However, the approaches allow
analysis of individual steps in the clustering, which allows for manual selection of
when to stop the clustering depending on when clusters were merged.

11

Chapter 2. Theory and related research

2.4 DNA
DNA (and RNA) molecules are responsible for encoding the blueprint of their re-
spective host. Therefore, analysis of DNA molecules serves as a good source of
information about the organisms. The DNA molecules are made up of four nu-
cleotide bases: adenine, cytosine, guanine, and thymine, shortened as A, C, G, and
T, respectively. DNA molecules are typically double-stranded, each strand forming
a mirror of the other, A always binds to T and C to G, and vice versa, in the other
strand. As such, both strands contain the same information and it is sufficient to
analyse one of them. Although uncommon, some organisms, such as certain viruses,
have single-stranded DNA.

A sequence of three nucleotides (also called a triplet or codon) in the DNA sequence
encodes an amino acid residue, a fundamental building block for proteins which,
in turn, are crucial for the functioning of the cells. This encoding is not unique
since there are more possible combinations (43) than there are common amino acid
residues (20). A more general name for a short subsequence (not necessarily three
long) of nucleotides is oligonucleotides.

One standard approach to analysing differences between organisms is to examine
differences in their respective DNA. Since DNA sequences can be encoded as strings
of characters, a common method of measuring the difference between two DNA
sequences is with the Levenshtein (or edit) distance. The Levenshtein distance
measures the number of operations (insertions, deletions, and substitutions), repre-
senting evolutionary mutations, that has to be applied to the two strings for them
to become equal. These operations can be weighted to favour certain operations.
A well known dynamic programming method for calculating the Levenshtein dis-
tance is the Needleman-Wunsch algorithm [17]. Another method that measures the
difference between two sequences is the k-mer distance, the number of shared (or
differing) substrings of length k.

Moreover, there are alignment-free methods which compare DNA sequences without
having to calculate the edit distance. These methods usually construct a simple
mathematical model of the sequence, giving a faster comparison step. Examples
of alignment-free methods include measuring the difference in GC-content [16] and
comparing oligonucleotide frequencies [2].

2.4.1 Organism classification
Organisms are ordered in a taxonomic hierarchy, sometimes referred to as the phy-
logenetic tree, corresponding to the genetic ancestry of the organisms. The ranks
are domain, kingdom, phylum, class, order, family, genus and species. For instance,
the family Felidae corresponds to cats, the genus Felis corresponds to small and
medium-sized cats, and the species Felis silvestris corresponds to small European
and African cats (including domestic cats).

The Baltimore classification is a classification system for viruses. It places viruses

12

Chapter 2. Theory and related research

into classes depending on the structure of their genome (DNA, RNA, double-stranded,
etc) and method of replication.

2.5 Genomic signatures
A genomic signature refers to a model that captures the frequencies of oligonu-
cleotides in a DNA sequence [11]. While the definition of genomic signatures does
not specify what the model is, in this thesis, the underlying model is a VLMC.

2.5.1 Genomic signature generation
Dalevi et al. [4, 5] have developed a method for creating genomic signatures based
on VLMCs. They start with a DNA sequence from an organism and learn a VLMC
corresponding to the organism’s species. They estimate the PST corresponding to
a VLMC by first naively constructing a PST by adding all nodes up to a certain
depth when the number of times the node shows up in the sequence is large enough.
Then each node in the PST is assigned a score (∆v,w), and terminal nodes with
lower scores are removed iteratively. ∆v,w is defined as

∆v,w :=
∑
a∈Σ

p(a | v) log

(
p(a | v)

p(a | w)

)
N(v). (2.10)

Here, w is a suffix of v, with length |v| − 1 (w is the parent node in the PST), N(v)
denotes the frequency of the word v in the training sequence, and Σ is the alphabet
of the model. The value of ∆v,w can roughly be interpreted as: if large enough,
v is sufficiently important to keep in the PST, and otherwise it either occurs too
infrequently or is too similar to its parent state.

2.5.2 Species specificity
Using VLMCs as the underlying model for genomic signatures, Holmudden [9] has
demonstrated that genomic signatures can be used to distinguish between species
of viruses. To show this, they divided each of the DNA sequences of the viruses
into two parts. For each part, they generated the corresponding genomic signature.
The signature corresponding to the first part was entered into a database, and then
every second signature was compared to the database. The comparison was made
using KL-distance. In 25 out of 28 cases, the signatures most closely matched each
other, which indicates that they accurately capture important aspects of the virus’
DNA.

2.6 Clustering DNA sequences
Earlier work in the area of genome-clustering uses the DNA sequences directly as
opposed to genomic signatures. We present some of these methods here, for com-
parison to our method.

13

Chapter 2. Theory and related research

2.6.1 Dnaclust
Ghodsi et al. propose dnaclust [8], which uses the edit distance between two DNA
sequences for the distance measure, with unit cost for insertions, deletions, and
substitution. They define a similarity measure for sequences as

similarity = 1− edit distance
length of shorter sequence

. (2.11)

Since the edit distance calculation is expensive, they also introduce an early stopping
criterion. If at any point, the edit distance becomes too large (as defined by the user)
the calculation is aborted, deeming the sequences as dissimilar. The prefix of the
dissimilar sequence, for which the edit distance became too large, is compared with
other sequences in order to see if the distance calculation can be skipped altogether.

The clustering procedure uses a user-defined cluster diameter, which corresponds
to the maximum distance between any two sequences in the same cluster. The
algorithm proceeds as follows: sort the sequences by their length (longest first), pick
the longest unclustered sequence as a new cluster centre and place every sequence
with a similarity value less than the threshold in that cluster, repeat until every
sequence belongs to a cluster.

2.6.2 Uclust
Edgar et al. propose Uclust [6], which employs a more standard approach to se-
quence comparisons. Vsearch is a tool from 2016 provided by Rognes et al. [21]
which implements Uclust. The sequences are compared by the standard edit dis-
tance, however, what makes the approach fast is that the sequences are sorted by the
number of short words in common. The sorting allows the comparison algorithm to
utilise the fact that similar sequences tend to share short substrings. Thus allowing
the comparison calculation to be skipped if two sequences do not share many short
substrings.

The clustering uses the sequence comparison method to assign sequences to clusters.
How this assignment is done and when new clusters are created are not discussed
by the authors.

2.6.3 SlideSort
Shimizu et al. propose SlideSort [26], which finds pairs of similar sequences by
identifying chains of shared k-mers, i.e., substrings of length k. The process starts
by identifying shared k-mers in the sequences. The next step moves a window that
captures the shared k-mer one step forwards, and checks again for shared k-mers,
within a threshold of the edit distance of the k-mer. If there is a match, the process
continues recursively. The total edit distance of the chain of shared k-mers is taken
as the distance between the sequences.

The clustering procedure in SlideSort is a graph-based clustering algorithm with

14

Chapter 2. Theory and related research

the sequences as vertices and the distance as the weight of the edges. The minimum
spanning tree of the graph is constructed, from which a clustering is created by
removing the longest edges.

15

Chapter 2. Theory and related research

16

3
Method

To be able to cluster the VLMCs, we first define several possible distance functions.
Given the distance functions, we define two clustering procedures, our data sets, and
how we selected the parameters for the training procedure for the VLMCs. Finally,
we present how we evaluated the distance functions and clusters.

3.1 Distances for Variable Length Markov Chains
We defined several distance functions for VLMCs, some operate on the PST struc-
ture of the VLMCs, and some are not dependent on any specific structure. We based
most of the distance functions on distance functions defined for HMMs.

3.1.1 GC-distance
The GC-content of DNA sequences has been shown to be species-specific [16]. To
use this property when comparing VLMCs, we defined a distance measure which
compares the GC-content of two models. The root state, ε, of the PST contains
the relative frequency of As, Cs, Gs, and Ts, in the original training sequence. This
distance function is a proper metric and we defined it as

dgc(λ1, λ2) := |(P1(G | ε) + P1(C | ε))− (P2(G | ε) + P2(C | ε))|. (3.1)

3.1.2 Measure of estimation error for VLMCs
The measure of estimation error distance function equation (2.1) can be used without
modification. We defined the matrix used in the calculation to be the emission
matrix of a VLMC. While this distance function is not symmetric, we defined a
symmetric version by averaging the distance between λ1 and λ2.

3.1.3 Kullback-Leibler distance for VLMCs
The KL-distance measure can be applied to VLMCs synonymously to HMMs. How-
ever, the KL-distance requires a generated sequence s, which makes the time com-
plexity of the calculation to be in O(|s|). For a long sequence, we considered this
to be too slow. However, the KL-distance accurately measures if two models are

17

Chapter 3. Method

ε

A T

TA

ε

A T

TT

Figure 3.1: The figure illustrates two VLMCs, λ1, λ2, with the alphabet Σ = {A, T}, represented
as PSTs. Each state in the PST consists of probabilities for every letter in the alphabet, e.g. state
A consists of P (A |A) and P (T |A).

When using Frobenius-intersection to calculate dfi(λ1, λ2), we only consider the states that exists
in both models, i.e. A, T , and ε.

When using Frobenius-union, we consider all states in both models. The calculation is analogous to
Frobenius-intersection, except for the probabilities of model-unique states such as TA of λ1. Since
there is no corresponding state in λ2, we choose to use the node that would be the closest ancestor
to TA if it existed in λ2, in this case A. This is an intuitive choice, since λ2 would be in state A
if TA was the latest generated sequence. The other state that is unique to a model is TT in the
second model, which would be compared to state T in the first model in this example.

similar, for sufficiently large s. Therefore, we primarily used the KL-distance as
ground truth for equality between models.

3.1.4 Frobenius norm distance for VLMCs
We defined the Frobenius distance only on the emission matrix of the VLMCs, since
the transition and emission matrices are equivalent. Moreover, since the structure
of VLMCs vary, different pairs of VLMCs have a different amount of combined
states. Therefore, to make the distances comparable, we normalised the result of
the calculation by the square root of the number of states. This modification makes
the distance exactly the root mean squared error (we do not normalise with respect
to the alphabet, since the alphabet is constant for all our genomic signatures).
Moreover, the states of each VLMC represent different contexts, so the emission
matrices need to be made comparable.

To compare emission matrices, we analysed the structure of the PSTs. Two PSTs
always share at least the root state ε. Therefore, it is possible to compare the states
of the PSTs directly. However, the states which the VLMCs do not share are trickier,
we present two methods for dealing with them, illustrated in figure 3.1.

The intersection method, where we only compare states which both models
contain. One flaw is that it does not use all the information contained in the PSTs.

Formally, let Si ⊂ Σ∗ be the intersection of the states of two VLMCs λ1, λ2. We

18

Chapter 3. Method

compute the Frobenius-intersection distance as

dfi(λ1, λ2) :=

√
1

|Si|
∑
s∈Si

∑
a∈Σ

(
P1(a | s)− P2(a | s)

)2
. (3.2)

This distance function obeys symmetry, identity, and non-negativity. In the general
case, the triangle inequality does not hold. The time complexity of the calculation is
O(n|Σ|), where n is the number of states in the smaller of the two models (since the
intersection of the shared states is at most all of the states in the smaller model).

The union method, which considers every state in both models. In the cases
where a state exists only in one of the models, we compare the probabilities of that
state to the closest ancestor of that state in the other model. Comparing a node
with its closest ancestor is aligned with the pruning of states during the training of
the PST, see section 2.5.1. The training procedure prune states if they either have
similar probabilities to their parent state or if the state occurs infrequently. Under
the assumption that the removed states have similar probabilities to their parents,
comparing a missing state to its ancestor creates an accurate comparison. In the
other case, where we have removed states because of a low occurrence, this method
can introduce errors.

Formally, let Su ⊂ Σ∗ be the union of the states of two VLMCs λ1, λ2. We compute
the Frobenius-union distance as

dfu(λ1, λ2) :=

√
1

|Su|
∑
s∈Su

∑
a∈Σ

(
P̂1(a | s)− P̂2(a | s)

)2
, (3.3)

where, P̂i(a | c) is the function which calculates the probability of character a in
state c, if model i contains state c. If model i does not contain state c, it first finds
the closest parent to that state in the tree.

This distance function at least obeys the identity, non-negativity, and symmetry
conditions. The time complexity of the calculation is O(nd|Σ|) where n is the
number of states in the union of the models, and d the max of the order of the
models. The nd term is derived from the sum over the states, and having to find
the closest ancestor-state, which is O(d).

3.1.5 PST-matching distance
PST-matching (section 2.2.5) can be used directly since it is defined for VLMCs. We
set the cost type weighting component, I, to 0.5. We motivate this choice further in
appendix B. The time complexity of our implementation is O((N + M) · d), where
d is the highest order of the two models, and N and M are the number of states of
the two models. However, the distance function can be implemented as a parallel
traversal of both PSTs in order to reach O(N +M).

19

Chapter 3. Method

3.2 Clustering variable length Markov chains
For the clustering of a set of n VLMCs, we implemented two graph-based clustering
algorithms. Both of the clustering procedures require O(n2) distance calculations.

3.2.1 Single-link clustering
Single-link clustering is defined as follows:

1. Create a vertex for every VLMC λi in the input, and create a cluster Ci for
every vertex.

2. Calculate the distances between every pair of VLMCs, according to any dis-
tance function.

3. Merge clusters Ca, Cb with the smallest distance, according to equation (3.4).
4. Repeat 3 until a user-specified number of clusters remain.

D(Ca, Cb) := min{d(λi, λj) : λi ∈ Ca, λj ∈ Cb} (3.4)

Our implementation has a time complexity of O(n2 log n), where n is the number of
VLMCs. We select edges by first sorting the calculated distances (O(s log s), with
s = n2 distances), and then select the smallest edges which does not join already
connected parts. This final check has a time complexity of O(n) per introduced
edge, yielding a time complexity of O((n− k)n), where k is the number of clusters.
Furthermore, the implementation requires O(n2) memory to store the distances.

3.2.2 Average-link clustering
Average-link clustering is a similar procedure to single-link clustering. However,
instead of merging clusters with the minimum single distance between them, it
merges clusters with the minimum average distance. The distance between clusters
Ca, Cb is defined as

D(Ca, Cb) :=
1

|Ca||Cb|
∑
λi∈Ca

∑
λj∈Cb

d(λi, λj). (3.5)

The average-link merge criterion is also used in the UPGMA algorithm. UPGMA
produces a diagram, known as a dendrogram, which illustrates the merge steps in
the clustering procedure. With genomic data, this dendrogram can represent the
phylogenetic ordering of the input. Technically, UPGMA requires that the distance
function is an ultrametric, which is a stronger metric with a different version of the
triangle inequality, defined as

d(x, z) ≤ max {d(x, y), d(y, z)} . (3.6)

Our average-link implementation has a time complexity of O(n2 log n). We stored
the distances in a min-heap per cluster, which allows for O(n) time for finding the

20

Chapter 3. Method

smallest average distance every iteration. Moreover, merging two clusters requires
an update of all of the distances to the new, merged, cluster. Each such update
was implemented in constant time, however, removing the old distances from the
heaps requires O(n) per heap. Therefore, instead of removing them, we keep a
hash-map, from which we can remove in constant time. The hash-map is used to
verify that a distance found in the heap is still relevant. The creation of the new
cluster in every merge step does, however, take O(n log n) per step, which gives us
a final time complexity of O(n2 log n). Furthermore, the implementation requires
O(n2) memory. There are n2 distances, and each heap and hash-map both contain
an amortized maximum of n distances.

3.3 Data sets
We used two data sets of DNA from viruses, one with 33 viruses, and one with 304
viruses, which we obtained from our collaborators who are biological researchers.
We also used a data set of 91 bacteria with relatively short DNA sequences (less
than 5 million nucleotides long). Table 3.1 contains some additional properties of
the data sets.

Species # Families # Genera Min length Max Average

Small 33 5 16 30 536 295 119 127 926
Large 304 17 73 3 166 1 221 932 99 616

Bacteria 91 35 41 416 863 4 941 290 2 903 106

Table 3.1: Properties of the different data sets used. All sequence lengths are given in the number
of nucleotides. The very short family of viruses in the large data set are Retroviruses, and the long
one is a Mimiviridae, which is about three times longer than the next-longest.

From these data sets, we trained VLMCs using Dalevi et al.’s software [5]. To train
VLMCs, we have to specify how many free parameters to use, which corresponds
to how large the VLMCs become. For instance, a VLMC with 48 parameters cor-
respond to a second-order Markov chain. To choose the number of parameters, we
examined the accuracy of the distance functions with different numbers of parame-
ters with respect to our metrics defined in section 3.4.

3.4 Distance function evaluation
Our criteria for determining how well the distance functions behave are based on
the underlying training data. With virus DNA as the underlying data, we primarily
analysed the following three properties:

• Taxonomic rank (for instance, genus and family).
• Host species.
• The Baltimore classification.

During the comparison between distance functions, we primarily examined the tax-

21

Chapter 3. Method

onomic ranks of the species corresponding to the VLMCs. This evaluation method
is based on the intuition that if two species share a taxonomic rank, for instance,
they are both Herpes viruses, their genomic signatures (VLMCs) should be similar.
We also considered the host species of the viruses, gathered from Virus-Host DB
[14], and the Baltimore classification.

Moreover, since the approach should scale to large data sets, the computational
efficiency of the distance function is crucial. For this reason, we measured and put
a heavy emphasis on the computation time of the distance functions.

3.4.1 Distance metrics
We defined two metrics that reflect how well the distance functions perform. They
are defined for a given set of VLMCs Λ =

⋃N
i=1 Λi where each set Λi corresponds to

the classes within a taxonomic rank of VLMCs, and there are a total of N classes
within the rank. Both metrics assume a given VLMC, λ, in some class Λi. Examples
of the two metrics are given in figure 3.2.

Percent of taxonomic rank is a fraction of how many of the nearest |Λi| VLMCs
(to λ), according to the distance function, belong to Λi. As measured by this metric,
a perfect distance function would have a Percent rank of 1 for all VLMCs in Λ. In
order to compare distance functions over the same set of VLMCs, we use the average
Percent rank for all VLMCs in the set.

Distance to taxonomic rank is defined as a fraction of the average distance d
from λ to VLMCs in Λi and the average distance D from every λ to every VLMC
in Λ. An accurate distance function would have a distance rank close to zero, and
a value above 1 would indicate that the distances to VLMCs within the same rank
are larger than the average distance.

3.5 Clustering evaluation
We evaluated the output of the clustering algorithm primarily by analysing the
taxonomic ranks of the species that clustered together. The optimal clustering
would be one cluster per class within each rank. For the data sets with viruses, we
also analysed the host species and the Baltimore classification of the clusters.

For the sake of comparison, we ran alignment-based clustering algorithms on the
same data sets. Specifically, we compared to Dnaclust, Slidesort, and Uclust.

3.5.1 Clustering metrics
We defined three metrics for comparison between cluster outputs. They are defined
given a clustering C = {C1, C2, ..., Ck} of a set of VLMCs Λ =

⋃
Λi where each

λ ∈ Λ belongs to a class Λi within some taxonomic rank or Baltimore classification.

22

Chapter 3. Method

KF234407.1

NC_001731.1

JQ596859.1

GU980198.1

JN418926.1

KJ627438.1

AB026117.1

KF429754.1

NC_001493.2

NC_008035.3

NC_008348.1

AF258784.1

NC_007921.1

NC_001454.1

NC_001650.1

NC_000942.1

AC_000005.1

KF487736.1

NC_001132.2

NC_001734.1

NC_007767.1

NC_002513.1

AF147806.2

NC_009011.2

NC_008725.1

NC_008293.1

NC_001266.1

NC_003391.1

NC_001611.1

JN133502.1

NC_005905.1

NC_002188.1

NC_003389.1

Species

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Di

st
an

ce
s

Orf virus
Same family
Same genus
Distance
GC difference

a Plot of distance calculation for Orf virus, the values of our metrics are: a percent genus of 1, a
percent family of 0.25, distance genus of 0, and a distance family of 1.36.

NC_000942.1

AC_000005.1

NC_001734.1

NC_001454.1

NC_002513.1

AF147806.2

KF429754.1

AF258784.1

KF487736.1

JN418926.1

NC_007921.1

JN133502.1

GU980198.1

NC_001650.1

NC_009011.2

NC_008293.1

NC_008725.1

KJ627438.1

NC_007767.1

NC_008348.1

NC_008035.3

NC_001266.1

NC_001493.2

NC_001132.2

AB026117.1

NC_001611.1

NC_003391.1

NC_005905.1

JQ596859.1

NC_002188.1

KF234407.1

NC_001731.1

NC_003389.1

Species

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

s

Murine mastadenovirus A
Same family
Same genus
Distance
GC difference

b Plot of distance calculation for Murine mastadenovirus A, the values of our metrics are: a
percent genus of 0.78, a percent family of 0.78, distance genus of 0.50, and a distance family of
0.50.

Figure 3.2: The distance metrics in relation to distances.

23

Chapter 3. Method

Percent of taxonomic rank is calculated by averaging how many of the genomic
signatures in each cluster belongs to the same order (for instance, genus or family).

More formally, given a specific cluster Ci in the clustering, we calculate a value µj
for each VLMC λj ∈ Ci, belonging to some class Λk

µj :=
|Ci ∩ Λk|
|Ci|

. (3.7)

Then we calculate our metric as

Percent rank :=
∑
λi∈Λ

µi
|Λ|

. (3.8)

When clusters with genomic signatures are mostly in the same order, the metric has
a value close to 1.

The silhouette is a standard clustering metric designed to measure how well a
data point x lies within its own cluster. We used the average silhouette value as a
metric for a given clustering. We defined the silhouette of a data point as

s(x) :=
b(x)− a(x)

max{a(x), b(x)}
. (3.9)

Here a(x) is the average distance from data point x to every other data point in
the same cluster. b(x) is the average distance from x to all data points in the
neighbouring cluster of x, which is the cluster with lowest average distance to x that
does not contain x itself.

Given a data point, the silhouette value can range from -1 to 1. The higher the
value, the closer the data point lies to its own cluster compared to the neighbouring
clusters, corresponding to it being well-clustered. If a silhouette value is negative,
it is badly clustered since it lies closer to another cluster than to its own.

Sensitivity and Specificity, are defined by the rate of true positives vs rates of
false negatives and false positives. We define them here similarly to Pipenbacher et
al. [19]. A true positive is defined as a pair of VLMCs in the same cluster which
also share a feature, such as taxonomic family or Baltimore class. A false positive
is the opposite, a pair of VLMCs in the same cluster which do not share a feature.
Finally, a false negative is a pair of VLMCs which do not belong to the same cluster,
but do share a feature.

Sensitivity corresponds to the proportion of correctly classified VLMCs

sensitivity :=
#True positives

#True positives + #False negatives
. (3.10)

Specificity corresponds to the proportion of correct classifications in the entire set
of positive classifications

specificity :=
#True positives

#True positives + #False positives
. (3.11)

24

Chapter 3. Method

A perfect procedure would have both sensitivity and specificity of 1, corresponding to
every classification of VLMCs being correct. However, there is commonly a trade-off
between sensitivity and specificity, where the clusters mostly contain a single feature
without subdividing features into multiple clusters too much. We used these metrics
primarily with respect to the taxonomic family of the genomic signatures.

25

Chapter 3. Method

26

4
Results

We establish the number of parameters used for the VLMCs as described in sec-
tion 3.3, and then evaluate the proposed distance functions from section 3.1 using
the metrics described in section 3.4. We then evaluate the clustering algorithms
from section 3.2, with respect to the metrics defined in section 3.5, and illustrate
the resulting clusters. Finally, we compare our results to three alignment-based
clustering algorithms.

The tests are run on a computer with 8GB of RAM and an i7-6500U CPU (2.50GHz).
Our source code is available at github.com/kalior/clustering-genomic-signatures.

4.1 Model generation results
When creating the VLMCs from DNA sequences, we must specify how many free pa-
rameters the models should have. We present our results as to how many parameters
to select here, and then present an issue with the model training procedure.

4.1.1 Number of parameters for VLMCs
We tested varying the number of free parameters for the VLMCs, and figure 4.1
contains the results of the tests. As can be seen the metrics are quite good on models
with about 102 parameters. Above that, however, the metrics start to decline.

Based on these results, we choose the number of free parameters of the VLMCS
to 192. This number keeps the models small while still giving good results on our
data set. However, there has to be a sufficient amount of data to train each of
the parameters; consequently, with short sequences, a smaller amount of parameters
musts be used to avoid noise. With 192 parameters, the trained VLMCs have orders
as shown in table 4.1.

Creating the models from raw sequences takes a significant amount of time. The
VLMC training procedure takes on average roughly 1.8s per model. The individual
training time varies and is related to the sequence length of the genome.

27

https://github.com/kalior/clustering-genomic-signatures

Chapter 4. Results

Min order Average order Max order

Small 3 3.8 7
Large 4 7.5 13

Bacteria 4 5.4 8

Table 4.1: The order of the trained VLMCs with our three data sets. The VLMCs have been
trained to have 192 parameters

101 102 103 104

Number of parameters
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
of

 m
et

ric
s

Percent of genus
Percent of family
Distance to genus
Distance to family
Average distance

Figure 4.1: These plots shows how our distance metrics varies with respect to our smaller data
set given that we generate VLMCs of different sizes. The metrics are measured using the Frobenius
intersection distance, but the results are similar for the other distance functions.

4.1.2 Sequence length limit of the model-generation
We have been unable to train VLMCs for DNA sequences longer than 5 million
nucleotides due to memory constraints. This issue has limited our data sets to
viruses, which have small genomes, and those bacteria which have small genomes.

4.2 Distance function evaluation
We evaluated the distance functions for VLMCs, using VLMCs trained on the data
sets and with the metrics presented in chapter 3. For the KL-distance, we selected
a sequence length of 16 000, see appendix A for a motivation. We address the
parameter for PST matching in appendix B.

The results for the small data set are given in table 4.2, and the larger data set in
table 4.3. The simple GC-content distance captures roughly a third of the family,
and is one of the worst distance functions, despite being a true distance function.
The Frobenius-intersection performs about as well as the KL-distance, which is oth-
erwise the most accurate function, while being much faster to compute. Moreover,
the Frobenius-union is significantly worse than the Frobenius-intersection on the
large data set, despite taking more of the information contained in the models into
account. Finally, the PST matching is notably worse than even the GC-distance,
which is the simplest approach.

We have also considered other distance functions for HMMs (detailed results not

28

Chapter 4. Results

shown). Lu et al.’s distance function for HMMs from [13] is too slow for our use
case. Zeng et al.’s new distance function [30] is equivalent to the difference in the
proportion of As, Cs, Gs, and Ts for genomic applications (comparable to GC-
content). Cuzzolin et al.’s distance function from [3], requires target classes. We
do not want to overfit to, for instance, the taxonomic classes, but instead, identify
various causes for similarity between the genomic signatures.

Function % genus % family Dist. Genus Dist. Family Time

GC-distance 0.64 0.39 0.28 0.76 0.00072s
Error estimation 0.75 0.46 0.38 0.82 5.17s
KL-distance 0.87 0.58 0.20 0.65 161.97s

Frobenius intersection 0.85 0.56 0.30 0.71 0.06s
Frobenius union 0.78 0.49 0.43 0.82 0.70s
PST matching 0.61 0.36 0.54 0.83 0.44s

Table 4.2: Performance measure of the distance functions on the smaller data set. The sequence
length for the KL calculation was 16 000.

Function % genus % family Dist. Genus Dist. Family Time

GC-distance 0.46 0.35 0.33 0.70 0.05s
Error estimation 0.43 0.38 0.55 0.80 245s
KL-distance 0.69 0.55 0.22 0.56 7488s

Frobenius intersection 0.67 0.52 0.38 0.69 4.2s
Frobenius union 0.50 0.43 0.59 0.83 42s
PST matching 0.39 0.29 0.64 0.86 25s

Table 4.3: Performance measure of the distance functions on the large data set. The sequence
length for the KL calculation was 16 000.

In figure 4.2, figure 4.3, and figure 4.4 we plot how the Frobenius-intersection func-
tion correlates with difference in GC-content, and the cumulative captured percent-
ages of taxonomic family and genus. The x-axis of the plots corresponds to the
VLMCs as ordered by the distance function, similar to figure 3.2. There is a large
variation throughout, but a large GC-difference implies a large distance (for all of
the distance functions). Moreover, the distance functions quickly pick up the entire
genus and family. However, the family percentages vary significantly throughout.

29

Chapter 4. Results

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6
GC-difference

Figure 4.2: This plot illustrates how the difference in GC-content between VLMCs correlate with
our distance function.
For each VLMC λi in the set, the graph shown in figure 3.2 is created. All these graphs are then
combined into a single box-plot. Each box represents a certain level of proximity, e.g. the second
box represents how large the GC-difference is among the models which are in the closest 20% of
models but further away than the closest 10%. We can see that the difference in GC-content varies
throughout, but a large GC-difference implies a large distance.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0
Cummulative percent of family captured

Figure 4.3: This plot displays how many percent of the family the distance function has captured
cumulatively. The last box will always be 100%, since the full data set has been considered at that
point. For instance, the first box indicates that, on average, approximately 50% of the family can
be found within the 10% closest VLMCs, but there is also a large variation.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0
Cummulative percent of genus captured

Figure 4.4: This plot displays how many percent of the genus the distance function has captured
cumulatively. The last box will always be 100%, since the full data set has been considered at that
point. For instance, the first box indicates that, on average, 80% of VLMCs within the same genus
are found in the 10% closest VLMCs. There is a large variation, but not as large as with the
family.

30

Chapter 4. Results

4.3 Clustering results
We evaluated the clustering with the distance functions evaluated in section 4.2.
Here, we focus on the Frobenius-intersection and KL-distance, since they are the
most promising. We present the results for the other distance functions in appendix
C, but note that they perform worse than KL and Frobenius-intersection. We cluster
the large data set here unless otherwise specified.

In figure 4.5 and figure 4.6 we plot how the metrics vary with respect to the amount
of clusters k with single-link and average-link clustering, respectively. The single-
link clustering performs worse throughout, illustrating that at least average-link
clustering is needed. We, therefore, focus the remainder of our analysis on the
average-link clustering. We present the values of the metrics for three selected k
number of clusters from figure 4.6 in table 4.4.

k Sensitivity Specificity % family % Baltimore Cluster sizes

30 0.45 0.62 0.69 0.92 10.10 4.5 1 40
50 0.29 0.66 0.78 0.97 6.06 3.0 1 36
70 0.22 0.78 0.86 0.98 4.33 2.0 1 22

Table 4.4: The metrics for three selected numbers of clusters on the large data set and with
Frobenius-intersection and average-link clustering. The cluster sizes are given as the average,
median, smallest, and largest cluster size. The sensitivity and specificity are calculated with respect
to the taxonomic family.

For the average-link clustering (figure 4.6) the specificity, as well as the percentages
of Baltimore, family, and genus increase quickly, which represents that the clusters
correspond to what the metrics are measuring. The silhouette is larger for low values
of k since there are fewer clusters to compare to. The sensitivity is low throughout,
indicating that there are several clusters with the same taxonomic family. The
distance between the merged clusters is larger for small values of k, but decreases
steadily, indicating that there are no obvious values to stop merging at. Note that
the Frobenius-intersection and the KL-distance behave similarly, indicating that
they identify patterns in the data equally well. Therefore, the rest of the results
focus on the Frobenius-intersection distance function.

Figure 4.7 contains example output from the clustering, with the each viruses host’s
taxonomic class, taxonomic family, and Baltimore classification for k = 50 clusters.
The clustering takes roughly 1s to compute. Most clusters contain a single family,
but there are also unit-sized clusters and clusters with several families. In some
clusters, the only common factor is the class of the host-species, note that this is an
ancestor to the host-species, roughly corresponding to if the virus infects an insect,
bird or vertebrate. The Baltimiore classification is very consistent throughout.

In table 4.5, we list the six largest clusters (with k = 50), along with which families
and hosts are most prominent in those clusters. Again, most of the clusters contain
one prominent family. However, the largest cluster has two roughly equally large
families. Most of the clusters contain several different hosts.

31

Chapter 4. Results

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Single link, Frobenius intersection

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

a Frobenius intersection.

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Single link, KL-distance

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

b KL-distance.

Figure 4.5: Single-link clustering of the large data set with our clustering metrics with respect
to different values of k number of clusters. To improve readability, the silhouette value for k = 1,
which would always be 1, is excluded from the graphs. The merge distance is the distance between
the merged clusters at that step.

32

Chapter 4. Results

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Average link, Frobenius intersection

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

a Frobenius intersection.

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Average link, KL-distance

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

b KL-distance.

Figure 4.6: Average-link clustering of the large data set with our clustering metrics with respect
to different values of k number of clusters. To improve readability, the silhouette value for k = 1,
which would always be 1, is excluded from the graphs. The merge distance is the distance between
the merged clusters at that step.

33

Chapter 4. Results

Family: Adenoviridae
Family: Alloherpesviridae
Family: Baculoviridae
Family: Coronaviridae
Family: Endornaviridae
Family: Filoviridae
Family: Flaviviridae
Family: Herpesviridae
Family: Iridoviridae
Family: Lipothrixviridae
Family: Nimaviridae
Family: Nudiviridae
Family: Phycodnaviridae
Family: Poxviridae
Family: Retroviridae
Family: unassigned Marseilleviridae

a The taxonomic families of the viruses.
Host: Actinopterygii
Host: Arachnida
Host: Arachnida, Sarcopterygii
Host: Chlorellales
Host: Ectocarpus
Host: Insecta
Host: Insecta, Sarcopterygii
Host: Liliopsida
Host: Malacostraca
Host: Mamiellales
Host: Not Found
Host: Pucciniomycotina
Host: Sarcopterygii
Host: Sulfolobaceae
Host: asterids

b This figure shows how the clusters of viruses correspond to their host-species’ taxonomic class.
For those data points for which the class "Not Found" is specified, we either did not find a host
species, or we could not determine the host-species’ taxonomic class. We display the taxonomic
rank of class here since there are too many host species for an illustration, and also no immediately
obvious correlations.

Baltimore: 1
Baltimore: 3
Baltimore: 4
Baltimore: 5
Baltimore: 6

c The Baltimore classification of the viruses.

Figure 4.7: An example of which families and hosts cluster together with our method with k = 50,
and Frobenius-intersection. The distances between clusters are not representative of how far apart
the clusters are, the images only tell us which VLMCs belong to the same clusters.

34

Chapter 4. Results

Size Family Host

36

Adenoviridae: 17
Herpesviridae: 12

Alloherpesviridae: 5
Phycodnaviridae: 2

Homo sapiens: 7
Equus caballus: 6
Gallus gallus: 5
Rana pipiens: 2

27 Flaviviridae: 27

Homo sapiens: 16
Aedes albopictus: 5

Aedes aegypti: 3
Chlorocebus aethiops: 2

23 Baculoviridae: 22
Nudiviridae: 1

Lepidoptera: 4
Trichoplusia ni: 3

Mamestra configurata: 2
Helicoverpa armigera: 2

20
Herpesviridae: 15

Phycodnaviridae: 3
Adenoviridae: 2

Homo sapiens: 4
Gallus gallus: 3

Ostreococcus tauri: 2
Chlorocebus aethiops: 2

18 Poxviridae: 12
Lipothrixviridae: 6

Homo sapiens: 4
Mus musculus: 4

Acidianus convivator: 3
Acidianus: 2

18 Coronaviridae: 18

Homo sapiens: 3
Chiroptera: 3
Sus scrofa: 2

Turdus hortulorum: 1

Table 4.5: The six largest clusters from figure 4.7, with the distribution of families and hosts within
the clusters. Only the four largest groups within each cluster are displayed. In most clusters, there
is primarily a single family, but there is no correlation with respect to the hosts. Note that the bar
height is normalised per cluster and thus not comparable between clusters.

We produce a dendrogram for the small data set, depicted in figure 4.8, illustrating
the order in which clusters are merged. Most commonly, the connections are sup-
ported by the taxonomic family of the viruses. The dendrogram for the large data
set is too large to display here, but the results are similar.

We cluster our set of bacteria and combine the bacteria with the large data set in
figure 4.9. The silhouette values of the clustering of bacteria are larger, indicating
that the created clusters are more well-separated than in the virus case. Moreover,
the metrics overall seem to correspond more closely to the taxonomic families and
genera (35 and 41 respectively) of the bacteria, for instance, a percent of taxonomic
family of 88% at k = 35. With the two data sets combined, the bacteria and viruses
separate reasonably well. However, with a small number of clusters, the organisms
mix before merging all of the families of viruses and bacteria.

35

Chapter 4. Results

Herp
esv

irid
ae

Po
xvi

rid
ae

Po
xvi

rid
ae

Alloh
erp

esv
irid

ae

Ade
no

vir
ida

e

Alloh
erp

esv
irid

ae

Herp
esv

irid
ae

Herp
esv

irid
ae

Ade
no

vir
ida

e

Ade
no

vir
ida

e

Po
xvi

rid
ae

Po
xvi

rid
ae

Po
xvi

rid
ae

Po
xvi

rid
ae

Po
xvi

rid
ae

Po
xvi

rid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Bacu
lov

irid
ae

Herp
esv

irid
ae

Herp
esv

irid
ae

Herp
esv

irid
ae

Ade
no

vir
ida

e

Ade
no

vir
ida

e

Ade
no

vir
ida

e

Ade
no

vir
ida

e

Ade
no

vir
ida

e

Ade
no

vir
ida

e0.00

0.05

0.10

0.15

0.20

Figure 4.8: The dendrogram for the small data set. Note how most of the early connections, and
a lot of the later connections connects viruses in the same family.

36

Chapter 4. Results

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Bacteria

Silhouette
Percent of organism
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

a Bacteria data set.

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Bacteria and Viruses

Silhouette
Percent of organism
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

b The virus and bacteria data set combined.

Figure 4.9: These images illustrate how the metrics decrease upon adding a second type of or-
ganism into the data set. The bacteria and viruses separate fairly well, but with fewer number of
clusters they start to mix. Note also how much easier the bacteria set is to cluster (as indicated by
the higher silhouette).

37

Chapter 4. Results

4.4 Alignment-based clustering methods
We have attempted to run a number of alignment-based clustering methods on our
small data set. In general, they suffer from issues relating to memory and execution
time.

Dnaclust and Slidesort runs successfully on the small data set with only 160
base pairs for each DNA sequence. However, for the full length sequences, they both
crash. We do not present the results here since they are not comparable with full
length sequences.

We also ran Vsearch, which contains an implementation of Uclust, on our small
data set. The clustering took 2.5 hours on our test computer and the results of our
metrics are slightly worse than for our method, see table 4.6. We used an id of 0.419
for Uclust which gave 8 clusters.

Method Sensitivity Specificity % Family % Genus

Vsearch 0.36 0.51 0.70 0.56
Our 0.38 0.58 0.73 0.57

Table 4.6: The results of the Vsearch’s implementation of Uclust versus our method.

38

5
Discussion

5.1 Distance and clustering outcomes
Our method identifies the taxonomic family of viruses and bacteria with high ac-
curacy (78% and 88% respectively), with average-link clustering and Frobenius-
intersection distance. With even higher accuracy (97%), the clustering identifies the
Baltimore type of the viruses in our large data set. However, the sensitivity with
respect to taxonomic families is quite low which corresponds to families divided into
several clusters.

Moreover, the distance function Frobenius-intersection very closely matches the re-
sults of the Kullback-Leibler distance. This correlation is clear from the metrics of
the distance calculations and the clustering metrics, as well as producing similar
clusters. In addition to our metrics, we could have analysed if VLMCs which are
close to each other have the same order as sorted by different distance functions.
However, we have primarily been interested in how well the distance functions cap-
ture, for instance, the taxonomic family, rather than requiring that they are captured
in the same order.

That the Frobenius-intersection distance function works so well is somewhat surpris-
ing. There are plenty of artificial examples where the Frobenius-intersection ignores
essential features in the PSTs. Take, for instance, two models containing identi-
cal probabilities for the states A, C, G, and T, but one of the models has the extra
state TT, from which the probability of generating a T is 100%. These models would
clearly generate very different sequences since the second model would eventually
only generate Ts, but they would have a distance of 0 between them according to
the Frobenius-intersection distance. However, when VLMCs are trained from se-
quences, the states are not independent of each other, a parent state in the PST has
to contain the distribution of nucleotides for all of its children. This property allows
the Frobenius-intersection to capture important aspects of the data, even when it
ignores states.

39

Chapter 5. Discussion

5.2 Time and memory requirements
The Frobenius-intersection distance is fast. It has a time complexity of O(m|Σ|)
per distance calculation (roughly 4s on our large data set in total with n2 distance
calculations, but this could be reduced to

(
n
2

)
if we take symmetry and identity into

account), with m number of states in the smallest model and alphabet Σ. Note
that it is not possible to create a distance function with better time complexity
without excluding information. Currently, the distances are calculated sequentially
in the clustering procedure. However, the task of calculating the distances is em-
barrassingly parallel. This property offers an additional speedup corresponding to
the number of cores on the computer calculating the distances.

The average-link clustering has a time complexity of O(n2 log n) (roughly 1s in
total). For our data sets, the sequential time complexity for the distance calculations,
O(n2m|Σ|), dominate the total time complexity of the clustering. Moreover, the
clustering requires O(nm|Σ|+n2) memory for the VLMCs and distances respectively.

Our method is, therefore, more efficient than alignment-based methods, which re-
quire memory and time in the order of the full DNA sequences’ lengths, which is a
significantly larger value than both n and m.

These time and memory complexities do not contain the generation of the VLMCs,
which takes both time and memory in the order of the length of the DNA sequence.
However, since this is a pre-processing step, the models only have to be generated
once for every data set.

5.3 Selecting number of clusters
It is, in general, not possible to select the number of clusters to be equal to, for
instance, the number of known taxonomic families in the data, and expect a good
clustering. One contributing factor for this result is the fact that the average-link
clustering method does not have a concept of noise. Specifically, if the data contains
outliers, they can form unit-sized clusters.

For analysis of the clusters, the dendrogram, see figure 4.8, can be more helpful.
The dendrogram alleviates the need to select a fixed number of clusters. Instead, it
is possible to select a cut-off point on a cluster-by-cluster basis.

5.4 Analysis of unknown data
The resulting clustering of VLMCs can be used to classify new VLMCs that are
generated from unclassified DNA sequences. The average distance from the new
VLMCs to the clusters can be analysed to observe if any cluster is much closer than
the others. The members of the nearest cluster may indicate what type of virus the
new VLMCs might be.

40

Chapter 5. Discussion

If the input data to the clustering procedure, on the other hand, is unknown, it
can be useful to identify prominent signals in the resulting clusters. For instance,
signals such as early connections, large clusters, or clusters that are unaltered for
extended periods. It may also be beneficial to include genetic signatures with known
properties to get a better idea of what the clusters represent.

5.5 Remaining issues and future work
Our proposed method has some remaining issues which we have not addressed.
Furthermore, there are some remaining questions in regards to which signals are
prominent in the clusters, how much is noise, and what the origin of the signals are.

5.5.1 Genomic signature generation
We have observed that there is a wide range of parameters (between 40 and 1000, see
figure 4.1) for the models for which the results of the distance functions are similar.
However, we have not been able to identify whether it is possible to improve the
results by selecting different amounts of parameters on a model by model basis.

Dalevi et al.’s method [5] allows a constant ∆-value cut-off for the pruning of nodes
from the PST. However, this cut-off gives models with a considerable variation in
size, since ∆-values grow with sequence length. Therefore, unless a cut-off is chosen
per sequence, longer training sequences have enormous models, and short training
sequences have small models. For this reason, we elected to use a fixed number of
parameters. A more advanced heuristic for selecting the number of parameters or
cut-off value may improve the accuracy of the clustering.

Furthermore, there are faster and more memory-efficient algorithms for the VLMC
generation process than Dalevi et al.’s, for instance, Schulz et al.’s Pisa tool [25],
for which, however, there is currently no implementation available. A more effi-
cient VLMC-training implementation is needed in to analyse organisms with larger
genomes, such as most bacteria, plants, and animals.

5.5.2 Signals in the data
We observe that the clusters correlate with several possible signals in the data, such
as the Baltimore type of the viruses, and the taxonomic rank, while the host species
is not as prevalent. However, in some cases, we have been unable to identify possible
causes for clusters. Further research may reveal other biological correlations within
the clusters.

5.5.3 GC-content prevalence
A large difference in GC-content implies a large distance, regardless of distance
function. This correlation is present even in the cases where the VLMCs are in

41

Chapter 5. Discussion

the same taxonomic family or genus, see for instance figure 4.2. GC-content is a
prevalent signal since each parameter in the VLMC implicitly contributes to the total
GC-content. Hence, a large difference in GC-content implies differences between
many parameters and therefore implies a large distance between the models. This
prevalence of GC-content poses a problem for identifying taxonomic classes with
high internal variability of GC-content, such as Poxviruses [23], see figure 3.2 for an
example of the Poxvirus distance results.

5.5.4 Homology-bias
In the cases where the original DNA sequences are similar (homologous), we expect
them to have a small distance. Two sequences that are very similar will produce sim-
ilar VLMCs, in which case it is not surprising that the distance functions identifies
them as similar. We are interested in identifying pairs of DNA sequences which are
not homologous but still share strong signals. Holmudden [9] have shown that the
genomic signatures are preserved throughout the sequence in regards to distance;
however, we have not constructed a test for homology in regards to clustering.

However, we do not want to remove homology as a factor from the clustering re-
sults. If two sequences are homologous, that is a strong indication of, for instance,
taxonomic ordering.

5.5.5 Learning classes
Cuzzolin et al. [3] designed a distance function for HMMs where they learn specific
classes. A similar approach can be implemented for our application, by specifying
classes which the distance function should learn. For instance, it may be possible to
learn a distance function for taxonomic family, a distance function for host species,
antibiotic resistance, etc. Each of the distance functions can then be used to cluster
the data sets in order to provide a clustering based, for instance, purely on the
taxonomic family.

5.5.6 Noise-resistant clustering algorithms
Since average-link clustering is sensitive to noise, it may be possible to implement a
different clustering algorithm that can improve the results, two approaches follow.
Mixture models [20], where the diameter of clusters can vary on a cluster by cluster
basis. Neighbour-joining [24], which forms intermediate vertices which represent the
clusters.

5.6 Ethics of DNA analysis algorithms
Our work can contribute to the classification of pathogens, helping with medical
work in multiple areas. However, our proposed approach can also potentially be
used for unethical research into humans of different social groups, or for arbitrary

42

Chapter 5. Discussion

classifications of species. In general, research in regards to genetics can be adopted
for controversial use. Consider, for instance, the optimisation of human genes, or
eugenics in general, and specifically when used for racial policies.

43

Chapter 5. Discussion

44

6
Conclusion

We define several distance functions for VLMCs which we compare to previously
defined distance functions for both VLMCs and HMMs. We find that for our ap-
plication of VLMCs as genomic signatures, our Frobenius-intersection distance has
comparable accuracy to the KL-distance, and it is also much faster.

We cluster several sets of VLMCs using average-link clustering and find that, with
high accuracy, the clusters of genomic signatures correspond to the taxonomic order
of the underlying organisms. The Baltimore type of the viruses is also prominent,
while the virus’ host species are not equally prevalent. Further analysis may reveal
other correlations within the clusters of genomic signatures.

These results are obtained through analysis of data sets consisting of viruses and
bacteria with short DNA sequences. A more efficient VLMC training method is
needed to train and analyse VLMCs for organisms such as animals, plants and most
bacteria.

Our proposed clustering approach is also significantly faster and at least as accurate
as alignment-based clustering techniques. This improvement mostly stems from
having a much smaller model to compare, which still captures important parts of
the DNA sequences.

With our method, it is possible to classify the viruses and bacteria of a data set
accurately. Given sequenced DNA samples from patient, environmental or artificial
sources, our approach offers a fast and accurate method for analysis and identifica-
tion of pathogens.

45

Chapter 6. Conclusion

46

Bibliography

[1] Peter Bühlmann, Abraham J Wyner, et al. “Variable length Markov chains”.
In: The Annals of Statistics 27.2 (1999), pp. 480–513.

[2] C Burge, A M Campbell, and S Karlin. “Over- and under-representation of
short oligonucleotides in DNA sequences”. In: Proceedings of the National
Academy of Sciences 89.4 (1992), pp. 1358–1362. issn: 0027-8424.

[3] Fabio Cuzzolin and Michael Sapienza. “Learning pullback HMM distances”. In:
IEEE transactions on pattern analysis and machine intelligence 36.7 (2014),
pp. 1483–1489.

[4] Daniel Dalevi, Devdatt Dubhashi, and Malte Hermansson. “A new order esti-
mator for fixed and variable length Markov models with applications to DNA
sequence similarity”. In: Statistical applications in genetics and molecular bi-
ology 5.1 (2006).

[5] Daniel Dalevi, Devdatt Dubhashi, and Malte Hermansson. “Bayesian classifiers
for detecting HGT using fixed and variable order markov models of genomic
signatures”. In: Bioinformatics 22.5 (2006), pp. 517–522.

[6] Robert C Edgar. “Search and clustering orders of magnitude faster than
BLAST ”. In: Bioinformatics 26.19 (2010), pp. 2460–2461.

[7] Ronald A Fisher. “The use of multiple measurements in taxonomic problems”.
In: Annals of human genetics 7.2 (1936), pp. 179–188.

[8] Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. “DNACLUST: accurate and
efficient clustering of phylogenetic marker genes”. In: BMC Bioinformatics 12.1
(July 2011), p. 271.

[9] Martin Holmudden. “Virus Attenuation by Genome-Wide Alterations of Ge-
nomic Signatures”. In: (2015).

[10] B. H. Juang and L. R. Rabiner. “A probabilistic distance measure for hidden
Markov models”. In: AT T Technical Journal 64.2 (Feb. 1985), pp. 391–408.
issn: 8756-2324. doi: 10.1002/j.1538-7305.1985.tb00439.x.

[11] Samuel Kariin and Chris Burge. “Dinucleotide relative abundance extremes:
a genomic signature”. In: Trends in genetics 11.7 (1995), pp. 283–290.

47

https://doi.org/10.1002/j.1538-7305.1985.tb00439.x

Bibliography

[12] Stephen E Levinson, Lawrence R Rabiner, and Man Mohan Sondhi. “An intro-
duction to the application of the theory of probabilistic functions of a Markov
process to automatic speech recognition”. In: The Bell System Technical Jour-
nal 62.4 (1983), pp. 1035–1074.

[13] Chen Lu et al. “A normalized statistical metric space for hidden markov mod-
els”. In: IEEE transactions on cybernetics 43.3 (2013), pp. 806–819.

[14] Tomoko Mihara et al. “Linking virus genomes with host taxonomy”. In: Viruses
8.3 (2016), p. 66.

[15] Fionn Murtagh and Pedro Contreras. “Algorithms for hierarchical clustering:
an overview”. In:Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2.1 (2012), pp. 86–97.

[16] A Muto and S Osawa. “The guanine and cytosine content of genomic DNA
and bacterial evolution”. In: Proceedings of the National Academy of Sciences
84.1 (1987), pp. 166–169. issn: 0027-8424.

[17] Saul B Needleman and Christian D Wunsch. “A general method applicable
to the search for similarities in the amino acid sequence of two proteins”. In:
Journal of molecular biology 48.3 (1970), pp. 443–453.

[18] World Health Organization et al. Antimicrobial resistance: global report on
surveillance. World Health Organization, 2014.

[19] Peter Pipenbacher et al. “ProClust: improved clustering of protein sequences
with an extended graph-based approach”. In: Bioinformatics 18.suppl_2 (2002),
S182–S191.

[20] Simon Rogers and Mark Girolami. A first course in machine learning. CRC
Press, 2016.

[21] Torbjørn Rognes et al. “VSEARCH: a versatile open source tool for metage-
nomics”. In: PeerJ 4 (2016), e2584.

[22] Dana Ron, Yoram Singer, and Naftali Tishby. “Learning probabilistic au-
tomata with variable memory length”. In: Proceedings of the seventh annual
conference on Computational learning theory. ACM. 1994, pp. 35–46.

[23] Sourav RoyChoudhury, Archana Pan, and Debaprasad Mukherjee. “Genus spe-
cific evolution of codon usage and nucleotide compositional traits of poxviruses”.
In: Virus genes 42.2 (2011), pp. 189–199.

[24] Naruya Saitou and Masatoshi Nei. “The neighbor-joining method: a new method
for reconstructing phylogenetic trees.” In: Molecular biology and evolution 4.4
(1987), pp. 406–425.

[25] Marcel H Schulz et al. “Fast and adaptive variable order Markov chain con-
struction”. In: International Workshop on Algorithms in Bioinformatics. Springer.
2008, pp. 306–317.

[26] Kana Shimizu and Koji Tsuda. “SlideSort: all pairs similarity search for short
reads”. In: Bioinformatics 27.4 (2010), pp. 464–470.

48

Bibliography

[27] B. G. Sürmeli et al. “Unsupervised mode detection in cyber-physical systems
using variable order Markov models”. In: 2017 IEEE 15th International Con-
ference on Industrial Informatics (INDIN). July 2017, pp. 841–846.

[28] WHO Ebola Response Team. “After Ebola in West Africa—unpredictable
risks, preventable epidemics”. In: New England Journal of Medicine 375.6
(2016), pp. 587–596.

[29] Agnes Vathy-Fogarassy et al. Graph-based clustering and data visualization
algorithms. English. 2013;1; New York: Springer, 2013.

[30] Jianping Zeng, Jiangjiao Duan, and Chengrong Wu. “A new distance measure
for hidden Markov models”. In: Expert systems with applications 37.2 (2010),
pp. 1550–1555.

49

Bibliography

50

Appendices

51

A
Selecting sequence length for KL

We selected the sequence length necessary for the Kullback-Leibler distance calcula-
tion based on the following experiment. We calculated the average distance between
a few selected models, and averaged over 10 re-calculations. We then increased the
sequence length in log-spaced steps and selected the shortest sequence length that
gave the same average distance as the longer sequences. See figure A.1 for the results
of the test. We use a sequence of 16 000.

100 278 774 2154 5994 16681 46415 129154 359381 1000000

0.02

0.04

0.06

0.08

0.10

0.12

KL distance
AB026117.1
KF234407.1
NC_000942.1
NC_001454.1

Figure A.1: Test for how long sequence is needed for a consistent distance calculation using
Kullback-Leibler distance calculation.

53

Appendix A. Selecting sequence length for KL

54

B
PST-matching hyper parameter

The PST-matching performs worse than many of the other distance functions. This
can be due to several reasons. The hyper-parameter I, was set to 0.5 simply because
Sürmeli et al. used this value. The distance measure performed much better if we
chose a value much closer to 0. However, with I ≈ 0, the distance function essentially
reduces to our Frobenius-intersection, both with slightly worse results, and a more
complex model. Therefore, we have elected to set I = 0.5 to illustrate the full
PST-matching distance function.

Sürmeli et al. also train their models in a different way than we do. This can be a
factor to why PST-matching does not perform very well on our data set.

55

Appendix B. PST-matching hyper parameter

56

C
Clustering with other distance

functions

We present the clustering metrics for some of the exclude distance functions from the
results here. The single link clustering is worse throughout, and all of the distance
functions are significantly worse than Frobenius-intersection and Kl-distance.

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Single link, Frobenius union

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.1: Frobenius union, single-link clustering.

57

Appendix C. Clustering with other distance functions

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Single link, PSTMatching

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.2: PST matching, single-link clustering.

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Single link, GC-difference

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.3: GC-content, single-link clustering.

58

Appendix C. Clustering with other distance functions

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Average link, Frobenius union

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.4: Frobenius union, average-link clustering.

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Average link, PSTMatching

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.5: PST matching, average-link clustering.

59

Appendix C. Clustering with other distance functions

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289
Number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

of
 m

et
ric

Average link, GC-difference

Silhouette
Percent of Baltimore
Percent of family
Percent of genus
Sensitivity of family
Specificity of family
Distance between merged clusters

Figure C.6: GC-content, average-link clustering.

60

D
Extended data set

This data set contains multiple strains of the same species. These results indicate
that the clustering easily picks up the strains of the viruses, which is not surprising
since their DNA most probably is very similar.

k Sensitivity Specificity % family % Baltimore Cluster sizes

110 0.53 0.80 0.76 0.94 28.65 4.0 1 727
70 0.59 0.67 0.67 0.91 45.01 4.0 1 750

Table D.1: The metrics for the extended data set.

61

Appendix D. Extended data set

Size Family Host

727 Coronaviridae: 716
Myoviridae: 11

Homo sapiens: 280
Camelus dromedarius: 220

Sus scrofa: 180
Gallus gallus: 141

426

Adenoviridae: 244
Herpesviridae: 172

Alloherpesviridae: 7
Phycodnaviridae: 3

Homo sapiens: 246
Not Found: 82

Gallus gallus: 29
Equus caballus: 17

299

Filoviridae: 196
Siphoviridae: 48
Myoviridae: 31
Retroviridae: 8

Homo sapiens: 196
Epomops franqueti: 174

Myonycteris torquata: 174
Not Found: 63

177
Siphoviridae: 128

Myoviridae: 45
Podoviridae: 4

Mycobacterium smegmatis str. MC2 155: 113
Not Found: 48

Mycobacterium: 14
Mycobacterium smegmatis: 8

142 Myoviridae: 142 Synechococcus sp. WH 7803: 118
Synechococcus: 25

101

Poxviridae: 85
Mimiviridae: 6

Lipothrixviridae: 5
Iridoviridae: 2

Homo sapiens: 51
Mus musculus: 47

Bos taurus: 44
Acinonyx jubatus: 37

89

Herpesviridae: 69
Phycodnaviridae: 5

Adenoviridae: 3
Myoviridae: 3

Felidae: 37
Not Found: 18

Homo sapiens: 8
Chlorella variabilis: 4

81

Siphoviridae: 51
Adenoviridae: 23
Herpesviridae: 6

Filoviridae: 1

Not Found: 61
Odocoileus hemionus columbianus: 7

Pygoscelis antarcticus: 2
Mus musculus: 2

80 Herpesviridae: 80

Homo sapiens: 41
Bos taurus: 20

Macaca fascicularis: 20
Macaca leonina: 20

77
Baculoviridae: 71

Ascoviridae: 4
Polydnaviridae: 2

Not Found: 30
Lepidoptera: 9
Erinnyis ello: 6

Trichoplusia ni: 3

Table D.2: The ten largest clusters from the extended data set, with the distribution of families
and hosts within the clusters. Only the four largest groups within each cluster is displayed. In most
clusters, there are primarily a single family, but the correlation with respect to host is not as clear.

62

	Introduction
	Purpose
	Delimitations

	Theory and related research
	Markov models
	Markov chains
	Variable length Markov chains
	Hidden Markov models

	Distance functions
	Mathematical properties
	Measure of estimation error distance
	Kullback-Leibler distance
	Frobenius norm
	PST-matching

	Clustering
	Graph-based clustering

	DNA
	Organism classification

	Genomic signatures
	Genomic signature generation
	Species specificity

	Clustering DNA sequences
	Dnaclust
	Uclust
	SlideSort

	Method
	Distances for Variable Length Markov Chains
	GC-distance
	Measure of estimation error for VLMCs
	Kullback-Leibler distance for VLMCs
	Frobenius norm distance for VLMCs
	PST-matching distance

	Clustering variable length Markov chains
	Single-link clustering
	Average-link clustering

	Data sets
	Distance function evaluation
	Distance metrics

	Clustering evaluation
	Clustering metrics

	Results
	Model generation results
	Number of parameters for VLMCs
	Sequence length limit of the model-generation

	Distance function evaluation
	Clustering results
	Alignment-based clustering methods

	Discussion
	Distance and clustering outcomes
	Time and memory requirements
	Selecting number of clusters
	Analysis of unknown data
	Remaining issues and future work
	Genomic signature generation
	Signals in the data
	GC-content prevalence
	Homology-bias
	Learning classes
	Noise-resistant clustering algorithms

	Ethics of DNA analysis algorithms

	Conclusion
	Appendices
	Selecting sequence length for KL
	PST-matching hyper parameter
	Clustering with other distance functions
	Extended data set

