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Abstract

Background: Computational discovery of microRNAs (miRNA) is based on pre-determined sets of features

from miRNA precursors (pre-miRNA). These feature sets used by current tools for pre-miRNA recognition differ

in construction and dimension. Some feature sets are composed of sequence-structure patterns commonly found

in pre-miRNAs, while others are a combination of more sophisticated RNA features. Current tools achieve similar

predictive performance even though the feature sets used - and their computational cost - differ widely. In this

work, we analyze the discriminant power of seven feature sets, which are used in six pre-miRNA prediction tools.

The analysis is based on the classification performance achieved with these feature sets for the training algorithms

used in these tools. We also evaluate feature discrimination through the F-score and feature importance in the

induction of random forests.

Results: More diverse feature sets produce classifiers with significantly higher classification performance com-

pared to feature sets composed only of sequence-structure patterns. However, small or non-significant differences

were found among the estimated classification performances of classifiers induced using sets with diversification

of features, despite the wide differences in their dimension. Based on these results, we applied a feature selection

method to reduce the computational cost of computing the feature set, while maintaining discriminant power.
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We obtained a lower-dimensional feature set, which achieved a sensitivity of 90% and a specificity of 95%. Our

feature set achieves a sensitivity and specificity within 0.1% of the maximal values obtained with any feature set

(SELECT, Section 2) while it is 34 times faster to compute. Even compared to another feature set (FS2, see

Section 2), which is the computationally least expensive feature set of those from the literature which perform

within 0.1% of the maximal values, it is 34 times faster to compute. The results obtained by the tools used as

references in the experiments carried out showed that five out of these six tools have lower sensitivity or specificity.

Conclusion: In miRNA discovery the number of putative miRNA loci is in the order of millions. Analysis

of putative pre-miRNAs using a computationally expensive feature set would be wasteful or even unfeasible for

large genomes. Comprising even false positive rates or accuracy as low as 5% is not an option, as would lead to

hundreds of thousands of additional pre-miRNA candidates for verification. Consequently, to make the analysis

of putative miRNA using ab-initio tools computationally feaseable, new tools with low computational cost and

high predictive performance are needed. In this work, we propose a relatively inexpensive feature set and explore

most of the learning aspects implemented in current ab-initio pre-miRNA prediction tools, which may lead to the

development of efficient ab-initio pre-miRNA discovery tools.

The material to reproduce the main results from this paper can be downloaded from

http://bioinformatics.rutgers.edu/Static/Software/discriminant.tar.gz.

Background
A microRNA (miRNA) is a small (approx. 17-25 nucleotides) non-coding RNA molecule (ncRNA) that

modulates the stability of mRNA targets and their rate of translation into proteins [1]. MiRNAs are present

in the genome of vertebrates, plants, algae and even viruses and are involved in diverse and complex biological

processes, like development and cell differentiation [2], tumorigenesis [3] and immunity [4]. They can also

alter plant gene expression in response to environmental stresses [5].

In animals, maturation of canonical miRNAs occurs in two steps: First, the long primary miRNA tran-

script is processed within the nucleus into a ∼60-120 nucleotides (nt) stem-loop hairpin precursor (pre-

miRNA) by the enzyme Drosha [6]. Afterwards, within the cytoplasm, the enzyme Dicer cleaves the pre-

miRNA into a double stranded RNA duplex (miRNA/miRNA*) and into a loop. The loop is degraded as a

by-product [7], whereas the RNA duplex is unwound by helicase activity, releasing the mature miRNA and

the star sequence [6]. The last is typically degraded whereas the mature miRNA guides the microribonucleo-

protein complex (miRNP) to target messengers RNAs (mRNAs) by partial sequence complementarity [7].

Machine learning in miRNA recognition
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Unlike protein-coding genes, ncRNA genes do not contain easily detectable signals [8]. Therefore, com-

putational pipelines for miRNA discovery rely on characteristic features of pre-miRNAs. Coupled with

comparative genomic computational pipelines, using RNAseq read libraries or completely ab-initio meth-

ods, machine learning (ML) algorithms have played an important role in miRNA discovery [7, 9–20]. ML

algorithms induce models which are able to predict novel miRNAs based on patterns learned from known

pre-miRNA sequences and from other RNA hairpin-like sequences, such as transfer RNA (tRNA) and mR-

NAs. ProMiR [9, 21], a probabilistic method, searches for pre-miRNA in genomic sequences using sequence

and structure features. Naïve Bayes based probabilistic models were adopted to score miRNAs [11] and pre-

miRNA [7, 19] candidates. Support vector machines (SVMs) [10, 12, 13, 16, 17], random forest (RF) [14, 20],

relaxed variable kernel density estimator (RVKDE) [15] and generalized Gaussian components based density

estimation (G2DE) [18] were used to induce classifiers for pre-miRNA prediction.

A limitation of working directly with the sequence is that the information available may not

be sufficient to infer accurate models for novel miRNA prediction. For example, the approximate number

of RNAs folding into hairpin-like secondary structures in the human genome, without filtering based on

phylogenetic conservation, was estimated as 11 million [22]. Filters derived from other pre-miRNA features

reduced the number of pre-miRNA candidates to around 5,300. Therefore, the use of features that consider

different aspects may reduce false positive rates in miRNA detection.

Feature sets investigated in the literature

Some of the features commonly extracted from RNA sequences for pre-miRNA recognition may not help to

distinguish between positive (true pre-miRNAs) and negative (pseudo pre-miRNAs) classes. Therefore, the

feature sets considered may have an important effect in the learning process. Several feature sets have been

proposed for pre-miRNA recognition [10, 13, 14, 16, 18, 20, 23]. To comparatively evaluate the effect of these

different sets, we investigated seven feature sets proposed in the literature, named here FSi, i ∈ {1, .., 7}.

They were used to induce six classifiers and they contain most of the features employed in computational

pipelines for pre-miRNA discovery. Next, we briefly define each of these sets.

The first set, named FS1 [16], has 48 sequence and structural features. The second feature set FS2, which

corresponds to a subset of 21 features of FS1, was used by [16] to induce a classifier, named microPred. The

third feature set FS3, was used to induce a classifier called G2DE [18] and is composed by seven features

also present in FS1. FS4 is a set of 32 sequence-structural features used by the triplet-SVM [10]. FS5 is a

set of 1,300 sequence-structure motifs used by another classifier, mirident [23]. FS6 is the feature set used

by the MiPred [14]. This feature set merged FS4, the minimum free energy of folding (MFE) and a stability
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measure (randfold). Finally, FS7 merged FS2 with four features of FS4 and three other features: percentage

of low complexity regions detected in the sequence, maximal length of the amino acid string without stop

codons and cumulative size of internal loops. It was used to induce the HuntMi [20]. The classification

performances reported by the mentioned tools are among the highest in previous works. Their approximate

specificities and sensitivities are: triplet-SVM (90%, 93%), MiPred (93%, 89%), microPred (97%, 90%),

G2DE (98%, 87%), mirident (99%, 98%) and HuntMi (97%, 95%).

Proposal and key findings

In this study, we investigated the discriminative power of seven RNA feature sets, previously adopted in six

tools developed for pre-miRNA prediction. Among them are two sets composed of sequence-structure features

(FS4 and FS5) and five sets are a miscellany of RNA features (FS1-FS3 and FS6-FS7). The investigation of

a specific feature set, using a particular training data and learning algorithm, may insert learning biases. As

a consequence, the predictive performance for other training sets and learning algorithms could be different.

To deal with this problem, we evaluated each feature set using the learning algorithms, SVMs, RF and G2DE,

which were used in the publications proposing those feature sets. According to the experimental results, the

miscellaneous feature sets produced more accurate predictive models than features sets composed from only

sequence-structure patterns. However, the differences in accuracy among miscellaneous feature sets are small

or insignificant, despite their large differences in composition and dimensionality. Inspired by these results,

we selected a subset of 13 features, of lower computational cost, but with a similar classification performance,

when compared with FS1-FS3 and FS6-FS7 feature sets. The classes of positive and negative test sets used

in the experiments presented in this paper were predicted by the tools that we used as reference. Except for

one tool, higher sensitivity was tied to lower specificity and vice versa.

1 Material and Methods
Our goal was to investigate the predictive performance of RNA features in distinguishing pre-miRNAs from

pseudo hairpins. As such, we adopted seven feature sets and three learning algorithms. The feature sets were

used to induce classifiers for pre-miRNAs in triplet-SVM (FS4), MiPred (FS6), microPred (FS2 and FS1),

G2DE (FS3), mirident (FS5) and HuntMi (FS7). SVMs were used in triplet-SVM, microPred and mirident,

whereas RF was used in MiPred and HuntMi. Generalized Gaussian density estimator (G2DE) [24] is not

a tool for pre-miRNA prediction in the sense that the features have to be computed by the user in his/her

own pipeline. Nevertheless, we included G2DE because of its predictive performance and class distribution

interpretability. The subsections below provide details of our experiments.
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Data sets

Human pre-miRNA sequences were downloaded from mirbase 19 [25] as the primary source of positive

examples. In an attempt to avoid overfitting, we removed redundant sequences. As such, we clustered the

available 1,600 human pre-miRNAs sequences using dnaclust [26] such that sequences within a cluster shared

80% similarity. Then, one sequence of each cluster was randomly picked. This yielded the set of positives

composed of 1,377 non-redundant pre-miRNAs sequences.

The negative examples were the 8,494 pseudo hairpins from human RefSeq genes, originally obtained

by [10] and subsequently used by [13,14,16,18,20,23]. These sequences were obtained in order to keep basic

features such as length distribution and minimal free energy of folding (MFE), similar to those observed

in human pre-miRNAs. Moreover, this set has no redundant sequences. But, in order to adopt a uniform

criterion for redundancy removal, we applied the same procedure adopted in the positive set. Only singleton

clusters were formed. In practice, it is expected that high similarity between positive and negative examples

leads to higher specificity [10].

Experiments

The predictive performance of any model is dependent on the training set representativeness, which usually

increases with the increase in the training set size. Typically, density based algorithms, such as G2DE,

are more sensitive to the course of dimensionality and larger training sets are more likely to provide higher

predictive performances. We determined experimentally the training set size which would be suitable for any

algorithm and feature set. Each experiment was repeated 10 times, in order to provide standard deviations of

each classification performance estimation. One repetition consisted of a test set, named here as GEN and 13

training sets. For a given repetition, GEN was composed by 459 sequences of each class, which corresponded

to 1/3 of the 1,377 non-redundant pre-miRNA sequences. The remaining positive and negative sequences

were used to sample increments of 67 sequences of each class to compose the training sets of 134, 268, ..., 1, 742

instances. Each feature set was computed from the same training and test sets. In total, we worked with

10 test sets and 13 × 10 training sets. The classification performances of the three algorithms converged to

a threshold for training set sizes equal to 1,608, for all feature sets. Therefore, we presented the results for

the largest training set, which contained 1,742 sequences.
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Classification performance measures

Classification performance was measured as accuracy (Acc), sensitivity (Se), specificity (Sp), F-measure

(Fm) and Mathew correlation coefficient (Mcc); see below. This measures can be computed as given below,

such that TP, FN, TN and FP are the numbers of true positives, false negatives, true negatives and false

positives, respectively.

Acc = 100 × T P +T N
T P +F N+T N+F P

Se = 100 × T P
T P +F N

Sp = 100 × T P
T N+F P

Fm = 100 × 2×T P
2×T P +F N+F P

Mcc = 100 × T P ×T N−F P ×F N√
((T P +F P )×(T N+F N)×(T P +F N)×(T N+F P ))

The first three measures are commonly used whereas Fm is prefered when a compromise between sensi-

tivity and precision is desirable. Mcc measures the correlation between real and predicted classes and it is

considered less biased towards class imbalance. We presented the predictive performances by the mean and

the standard deviation (mean ± SD), over the 10 repetitions.

1.1 Features

Features used in this work are presented in Table 1, with references for the detailed descriptions. The

prediction of the secondary structure in this work considered the energy model, as implemented in RNAfold

[27] and UNAFold [28]. They predict the structure which gives the minimum free energy of folding (MFE).

We kept the same parameters used in the original publications.

The sequence-structure features combined sequence nucleotide information and its predicted state at the

secondary structure. In FS4, each feature represents the relative frequency of three contiguous nucleotides

states at the secondary structure, fixing the middle character ({Xsss}, X ∈ {A, C, G, U} and s ∈ {paired,

unpaired}). Because the triplet-SVM script excludes sequences with multiple loops, we implemented a

Python script to compute FS4 in any sequence. The motifs in FS5 give the counts of its occurrence in the

sequence-structure string. This string is obtained by padding the nucleotide sequence with its respective

predicted state at the secondary structure ({left-paired, right-paired, unpaired}). This set was obtained

using the Python script provided in the authors’ website. To compute FS1, we implemented a Python

script, based on the microPred Perl pipeline. FS1 contains the largest diversity of features and depends on

several independent scripts. We used the same scripts and options used in microPred. However, we used
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RNAfold from ViennaRNA-2.0 [29] and UNAFold v3.8 [28], instead of the older versions used in microPred.

Initially, we obtained implausible values for features based on pair-probabilities. They were linked to the

function get_pr() from the RNA Perl package of ViennaRNA-2.0. We bypassed this problem by restarting

Perl for each new sequence. FS2 and FS3 were obtained from FS1. A customized Python script computed

the randfold (p) and the MFE with the RANDFold [34] package and merged these two features with FS4

to obtain FS6. FS7 was obtained merging FS2 and the seven additional features obtained using the Python

script obtained from the authors’ website.

1.2 Algorithms

The algorithms we adopted have different learning biases. This is important for the present work, since

learning biases can play in favor of a feature set over others. SVM and RF are the two most applied

algorithms for pre-miRNA classification, whereas G2DE offered class distribution interpretability. Similar

interpretation would be obtained using RVKDE but [18] showed that RVKDE produced accuracies similar

to G2DE and slightly lower than SVM, even though the number of kernels constructed by each algorithm

were on average 920 (RVKDE), 361 (SVM) and six (G2DE).

1.2.1 Support vector machines

SVMs deal with classification tasks by finding a hyperplane that separates training instances from two

different classes with the maximum margin. The examples used to determine the hyperplane are the support

vectors. Because many problems are not linearly separable, for these problems, the original feature space is

mapped into a higher-dimensional space, where linear separation becomes feasible. Points from the original

space are mapped to the new space by a kernel function. The RBF (radial basis function) kernel is a

reasonable choice as it performs well for a wide range of problems [30]. For the training of SVMs, we used

a Python interface for the library libsvm 3.12 [30]. This interface implements the C-SVM algorithm using

the RBF kernel. The kernel parameters γ and C were tuned by 5-fold cross validation (CV) over the grid

2−5, 2−3, ..., 215 × 2−15, 2−13, ..., 23. The pair (C,γ) that led to the highest CV accuracy was used to train

the SVMs using the whole training set. The induced model was then applied to the corresponding GEN test

set.
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1.2.2 Random forest

RF is an ensemble learning algorithm that induces a set of decision trees based on the concepts of “bagging”

and random feature selection. Bagging is an important approach to estimate generalization error, whereas

the latter is important to generate tree diversity. It was shown [31] that the strength of the ensemble

depends on the strength of individual trees and the correlation between any two trees in the forest [32]. The

number of features affects the strength of individual trees as well as the tree diversity, while the number

of trees affects the generalization error. In order to obtain an ensemble with lower generalization error, a

sufficiently large number of trees shall be chosen, taking into consideration two facts: RFs do not overfit,

but limit the generalization error. This means that the number of trees has to be large enough to ensure

lower generalization error, but after a certain value it does not have any effect on the generalization error

estimate. For our experiments, we adopted the R package randomForest [32]. Each ensemble was generated

over the grid (30, 40, 50, 60, 70, 80, 90, 100, 150, 250, 350, 450)×[ (0.5, 0.75, 1, 1.25, 1.5)*
√

d ], representing

respectively the number of trees and the number of features. The
√

d is the default number of features

tried in each node split and d is the dimension of the feature space. We chose the ensemble with the lowest

generalization error over the grid and applied it to the corresponding GEN test set.

1.2.3 Generalized Gaussian density estimator

G2DE [24] was designed to predict an instance class based on the probability density functions (pdf) of both

positive and negative classes. Each pdf is fitted as mixture of generalized Gaussian components, using a

limited user-defined number of components. One important feature of G2DE is to provide the coefficients

and parameters associated with these generalized components [24].

The learning process of G2DE involves the estimation of the pdf parameters of each class, in addition

to the weights of each component. If k is the maximum number of components and the feature space has

dimension d, the number of parameters will be k(d+2)(d+1)/2. An evolutionary optimization algorithm finds

the solution by maximizing the number of instances correctly classified in the training set plus the likelihood

of class distributions. It requires two user-defined parameters: the number of Gaussian components (k) and

the number of individuals for the initial population in the genetic algorithm (N). The first was kept six as

in [18], and N was set to 100k, instead of 10k. High values of N implicate in more running time. On the

other hand, it is expected that high N increases chances of findings an optimal solution. Since the solution

is not deterministic, we ran G2DE five times and chose the solution which gave the highest CV accuracy.

The number five was determined by us through computational experiments.
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1.2.4 Feature selection

Once the prediction model is induced, the highest computational cost in the evaluation of putative pre-

miRNAs is the feature extraction from the sequences to be classified. Since this procedure is performed on

millions of sequences, we performed feature selection on different data sets, excluding features which depend

on shuffled sequences, which have a higher extraction cost. We also analyzed the importance each one of the

85 features obtained by combining all features from FS1 and FS6, and 3 features from FS7. The analyses

of feature importance was performed using the feature importance estimated by randomForest [32], and the

F-score, as described in [33]. Briefly, randomForest estimates the importance a feature xi by computing

the difference between the number of correctly classified out-of-bag (OOB) vectors before and after the

permutation of xi in those vectors, during the training phase. For example, in the data used for this study,

the number of OOB vectors is approximately 580. If an ensemble correctly classifies on average 500 and 36

OOB vectors before and after the permutation of xi, the estimated importance is approximately 464. This

value indicates that xi was crucial for the correct classification. However, the interpretation must consider

that the importance is conditioned to the induced ensemble. Thus, another feature xj with importance

200 in the ensemble including xi could obtain an importance close to 464 in another ensemble excluding xi.

Nevertheless, this measure provides a createrion to evaluate the relevance of each feature given the whole set.

Differently, the F-score estimates the ratio of between and within classes distances and is computed before

the learning step. Features with higher F-scores are more likely to be more discriminative, even though

there is no objective criterion to decide on a specific score cut-off. In our experiments, we trained SVMs

eliminating features with F-score below different score thresholds.

2 Results and discussion
2.1 Effect of feature sets and training algorithm

Data dimensionality may affect the learning process, particularly for parametric models. In our experiments,

G2DE only converged to a predictive model for the feature set FS3, which has only seven features. This

algorithm uses a genetic algorithm to estimate the parameters of Gaussian components and their corre-

sponding weights. In order to obtain the individuals for the initial population, the genetic algorithm uses

another algorithm which generates random covariance matrices. In our experiments, this algorithm generated

non-positive definite matrices, which caused the non convergence of G2DE for higher dimensions.

Table 2 shows that feature sets composed by a miscellany of RNA features produced higher classification

performances than feature sets composed by sequence-structure patterns. However, the small differences in
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classification performance produced by FS3 and FS6, compared to FS1, FS2 and FS7, shows that either the

diversity or the dimensionality may affect classification. Indeed, FS6 has a larger dimension than FS2, but

it is not composed of the same level of feature diversity than FS2. On the other hand, FS3 is more diverse

than FS6, but does not contain enough features to produce sensitivity comparable to FS2.

Nevertheless, it must be stressed that the highest predictive performances by the classifiers were not

significantly different when the feature sets FS1, FS2, and FS7 were used (Table 2). As previously mentioned,

FS2 and FS3 are subsets of FS1, while FS7 merged FS2 with seven additional features. These characteristics

together with the very similar results obtained when using FS1, FS2, and FS7 suggest that the increase in

the number of features leads to a limited increase of the predictive performance, even though the additional

features were shown to be distinct features of pre-miRNAs [16,20,34,35].

2.2 Feature discrimination and feature selection

Initially, we analyzed the importance of each one of the 85 features, obtained by merging FS1, FS6 and

three features from FS7, when they were all used to induce classification ensembles by RF. In parallel, we

also computed the F-scores. The Pearson correlation coefficient between the averages of these two measures

was 75%, showing a relatively high correlation between importance and discrimination. Figure 1 shows the

features whose importance was considered higher than 6. It can be seen that only 5 features obtained average

importances higher than 40, corresponding to approx. 6% of the 580 OOB training instances. This results

suggested that most of the 85 features may be redundant or irrelevant.

Interestingly, the features depeding on shuffled sequences appeared among those with the hightest im-

portance or F-score. However, these features were not included in our feature selection step, due to their

high computational cost and redundancy to the selected features. Moreover, since the features sets FS1 and

FS7 share the 21 features of FS2 and they all produced classifiers with the highest predictive performances,

we assumed that the relevant features for pre-miRNA classification were among these 21 common features.

Therefore, the feature selection was performed using FS2, eliminating zD, which depends on shuffled se-

quences. The features selected (SELECT) from this set, in order of relevance, were: MFEI1, MFEI2, dG,

dQ, dF, NEFE, Diff, dS, dS/L, |G-C|/L, |G-U|/L, %(G-U)/stems and MFEI3. Interestingly, six features of

this set are energy-based measures (MFEI1, MFEI2, dG,NEFE, Diff, dS, MFEI3). The other relevant fea-

tures are: entropy (dQ), compactness of the tree graph representation (dF), two thermodynamical features

(dS and dS/L), normalized frequencies of G-C and G-U pairing (|G-C|/L, |G-U|/L, %(G-U)/stems).

The computational cost of each feature set was estimated by the computation time for a data set composed
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of 100 pre-miRNAs sequences randomly sampled from mirbase 20. Among the feature sets that produced the

highest classification performance, FS1 had the highest cost (3:41h), followed by FS7 (1:18h), FS2 (1:17h) and

FS6 (39:03min). Because SELECT and FS3 do not contain any stability measure, their costs are significantly

lower than the cost for FS2. They took 2:17min and 10s to be computed. Among the sequence-structure

based feature sets, FS5 took 3:24min to be computed, whereas FS4 took 2s.

The next comparison evaluates how the predictive performance associated with each feature set is affected

by the use of different classifiers. For FS1, FS2, and FS7, the maximum difference in sensitivity and specificity

between SVM and RF was 1.9% and 1.4%, respectively. The predictive performances of the three classifiers

using FS3 were very similar. Thus, the learning biases of the three learning algorithms did not seem to have

a significant effect on the predictive performance. This small effect of the learning biases is explained by

the use of a sufficiently large training set, since most learning algorithms present a clear difference in their

predictive performance only when small training sets are used.

2.3 Comparison with tools using the same algorithms and feature sets

In order to compare our results with tools used as references for our experiments, we predicted GEN test

sets with those tools. Their main characteristics are summarized in Table 3. In Table 4 we show the

predictive performance on the GEN sets obtained by the triplet-SVM, MiPred, microPred, G2DE, mirident

and HuntMi classifiers in our experiments. According to Table 4, except for the G2DE tool, which uses the

G2DE algorithm, the predictive performance values obtained were much lower than the published values or

the sensitivity was compromised by the specificity, or vice versa. The comparison in Table 4 used test sets

obtained from mirbase 19, whereas the classifiers in those were induced with sequences of older releases.

As the representativeness of the pre-miRNA population increases in newer releases, it is likely that the

underlying distribution of the positive class would also changes. Therefore, the low sensitivities obtained

by tools trained with old releases of mirbase, such as triplet-SVM, microPred, MiPred and mirident are not

surprising. However, the low specificity values obtained by microPred and HuntMi, when compared to other

older tools, were not expected. The specificity obtained by HuntMi in [20] was 72%, while we obtained 94%

in our experiments, using the same algorithm and feature set. In contrast, the corresponding sensitivities

were 99% and 88%. Likewise, the specificity of microPred [16] was 68%, while we found 95% using the same

algorithm and feature set. Different results are usually obtained for experiments ran by different research

groups, but not so different.

The largest loss in specificity is observed for microPred and HuntMi tools, which both correct for class
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imbalance. That is, they attempt to correct the bias due to training sets formed of imbalanced number

of examples in each class. This imbalance may cause a bias towards the majority class in the learning

algorithm. Ideally, the class imbalance correction would increase the sensitivity without dropping the speci-

ficity. MicroPred increased sensitivity from 83% to 90%, while the specificity dropped slightly from 99% to

97%. The imbalance rate, the ratio of positive to negative examples, in the data set was 1:13. Likewise,

HuntMi reported sensitivity and specificity values of 94% and 95%, working under an imbalance rate of

1:57. Since the ideal imbalance rate is determined experimentally, it is plausible that the class imbalance

correction methods applied by microPred and HuntMi caused generalization problems. A contributing effect,

or alternative explanation, might be that HuntMi uses negative sequence which differ greatly from positive

examples, whereas the negative sequences used in microPred and in our experiments were selected to be

similar to positive sequences. The observed loss of specificity might be countered with modifications to the

training procedures. However, the lack of generalization of microPred was also mentioned in [7, 36].

2.4 G+C content effect

G+C content is an important feature during the folding of hairpin-like RNA sequences. Because G+C-

rich sequences have more alternative high-energy stable binding-pairs, the prediction of the corresponding

secondary structure is more complex. We drew the slopes of sensitivity and specificity correspondents to

12.5%-G+C content quantiles, to have a picture of the predictive performance of the feature sets and the

algorithms in predicting G+C-rich sequences. Figure 2 shows that the variation in specificity throughout

the intervals is random. Nevertheless, the sensitivities depended on the feature set and on the algorithm.

All feature sets dropped the sensitivities of RF classifiers in G+C-rich pre-miRNAs. However, when FS1,

FS2, FS7 and SELECT (not shown) were used to train SVM classifiers, only random variations in sensitivity

along the 12.5%-G+C content quantile intervals were obtained. These four feature sets have %G+C related

features in common, such as MFEI1 and normalized frequencies of G-C and G-U pairing (|G-C|/L, |G-

U|/L, %(G-U)/stems). As Figure 1 shows, except for MFEI1, the other features appear with relatively low

importance in the induction of ensembles by RF. On the other hand, the support vectors from the SVM

model contain all the features used. These results confirmed the importance of including %G+C related

features to detect G+C-rich pre-miRNA.
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2.5 Scope of the investigation

The research reported in this paper was carried out using human sequences, one of the species with the highest

abundance of positive sequences. Assuming that the larger the amount of positive sequences, the larger the

amount of information about the human pre-miRNA population, the investigation performed with human

sequences allowed a more fair comparison of the features sets and learning algorithms. Nevertheless, as it has

been indicated that the rising of novel miRNAs is highly correlated with morphological complexity [37–42],

our results may vary for more distantly related species.

3 Conclusion
A considerable part of the computional cost involved in pre-miRNA prediction is due to the feature extraction

from candidate sequences. Aiming to recommend effective and less costly sets of features, we investigated the

discriminant power of seven RNA feature sets, under controlled sources of variation. Throughout extensive

computational experiments, we showed that feature diversity is an important requirement in pre-miRNA

recognition. Nevertheless, despite the discriminant power of individual features, higher dimensional sets did

not produce higher classification performance classifiers. Based on these results, we proposed a smaller and

less costly to compute subset of features, which produced classification performances as high as the produced

by higher dimensional and more expensive sets. Because we attempted to avoid all possible sources of bias, we

believe that the maximum classification performances reported here are the state-of-the-art for pre-miRNA

prediction. Since these maximum classification performances are below experimentally feasible rates, other

approaches to increase classification performance are welcome. As our tests showed, the tools used as

references in our work either obtained low accuracies or the sensitivities or specificities were compromised.
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Figures
Figure 1 - Average feature importance estimated during the induction of RF ensembles. Features with
importance lower than five were omitted.

The average feature importance drops-off quickly after the 10th feature, indicating that for each ensemble

there are few distinguishing features.

Figure 2 - Predictive performance of classifiers throughout 12.5%-quantile distribution of G+C content.

The prediction of the secondary structure of G + C-rich sequences is more challenging. This figure shows

that the classification of G + C-rich pre-miRNA sequences is also more complex. As the G + C content

increased, the sensitivity dropped, except when SVM was trained with feature sets including %G + C-based

features (FS1, FS2 and FS7).
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Table 1: Features used in each feature set. Detailed descriptions can be found in the corresponding references.

FEATURE REFERENCE FEATURE SET
FS1 FS2 FS3 FS4 FS5 FS6 FS7

Dinucleotide frequencies [13] x
G+ C content [13,35] x x x
Maximal length of the amino acid string with-
out stop codons

[20] x

Low complexity regions detected in the se-
quence (%)

[20,43] x

Triplets [10] x x
Stacking triplets (X(((, X ∈ {A,C,G,U}) [10, 20] x
Motifs (ss−substrings) [23] x
Minimum free energy of folding (MFE) [27, 28] x
Randfold (p) [34] x
Normalized MFE (dG) [27] x x x x
MFE index 1 (MFEI1) [35] x x x x
MFE index 2 (MFEI2) [35] x x x x
MFE index 3 (MFEI3) [16, 27] x x x
MFE index 4 (MFEI4) [16, 27] x x x
Normalized essemble free energy (NEFE) [16, 27] x x x
Normalized difference (MFE − EFE) (Diff) [16, 27] x x x
Frequency of the MFE structure (Freq) [16, 27] x
Normalized base-pairing propensity (dP ) [35, 44] x x
Normalized Shannon entropy (dQ) [35, 45] x x x x
Structural diversity (Diversity) [16, 35,45] x x x
Normalized base-pair distance (dD) [16, 35,45] x x
Average base pairs per stem (Avg_Bp_Stem) [16] x x x
Average A-U pairs |A− U |/L [16] x x x
Average G-C pairs |G− C|/L [16] x x x
Average G-U pairs |G− U |/L [16] x x x
Content of A-U pairs per stem %(A−U)/stems [16] x x x
Content of G-C pairs per stem %(G−C)/stems [16] x x x
Content of G-U pairs per stem %(G−U)/stems [16] x x x
Cumulative size of internal loops [20] x
Structure entropy (dS) [16, 28,35,45] x x x
Normalized structure entropy (dS/L) [16, 28,35,45] x x x
Structure enthalpy (dH) [16, 28,35,45] x
Normalized structure enthalpy (dH/L) [16, 28,35,45] x
Melting energy of the structure [16,28,46] x
Normalized melting energy of the structure [16,28,46] x
Topological descriptor (dF) [35,47] x x x x
Normalized variants (zG, zP and zQ) [13, 35,48] x
Normalized variants (zD) [13, 35,48] x x x
Normalized variants (zF ) [13, 35,48] x
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Table 2: Predicted accuracies (Acc), sensitivities (Se), specificities (Sp), F-measures (Fm) and Mathew
Correlation Coefficients (Mcc) of classifiers trained with 1742 examples, presented as the mean and standard
deviation (mean ± sd). Capital letters in columns indicate the performance cluster of each feature set, within
algorithm (ALG). Lower case letters in columns indicate the cluster of each algorithms, within feature sets.
Bold numbers represents the highest performances, which were not significantly different according to the
clustering criteria in [49].

ALG FS Acc Se Sp Fm Mcc

SVM

FS4 E 85.6 ± 1.2 a D 83.0 ± 1.9 a D 88.4 ± 1.5 a E 85.2 ± 1.3 a E 71.4 ± 2.3 a
FS5 D 87.4 ± 0.9 a C 84.3 ± 1.5 a C 90.5 ± 1.4 a D 86.9 ± 0.9 a D 74.9 ± 1.7 a
FS6 C 89.8 ± 1.1 a B 87.5 ± 1.5 a C 93.0 ± 1.7 a C 89.5 ± 1.1 a C 79.8 ± 2.2 a
FS3 B 90.6 ± 0.8 a B 88.0 ± 1.3 a B 93.3 ± 1.3 a B 90.4 ± 0.9 a B 81.4 ± 1.7 a
FS1 A 92.2 ± 0.9 a A 89.7 ± 1.8 a A 94.7 ± 0.8 a A 92.0 ± 1.0 a A 84.6 ± 1.8 a
FS2 A 92.4 ± 0.9 a A 90.1 ± 1.6 a A 94.7 ± 0.6 a A 92.2 ± 1.0 a A 84.9 ± 1.8 a
FS7 A 92.3 ± 1.0 a A 89.9 ± 1.1 a A 94.7 ± 0.9 a A 92.1 ± 0.9 a A 84.7 ± 1.6 a
SELECT A 92.3 ± 0.9 a A 90.0 ± 1.3 a A 94.6 ± 1.0 a A 92.1 ± 0.9 a A 84.6 ± 1.7 a

RF

FS4 E 84.8 ± 1.1 b D 81.2 ± 1.8 b C 88.3 ± 1.3 a E 84.2 ± 1.2 b E 69.8 ± 2.1 b
FS5 D 85.7 ± 0.7 b D 81.2 ± 0.8 b B 90.3 ± 1.4 a D 85.1 ± 0.6 b D 71.8 ± 1.5 b
FS6 C 88.7 ± 1.4 b C 86.6 ± 1.5 b A 89.8 ± 1.6 b C 88.5 ± 1.4 b C 77.4 ± 2.8 b
FS3 C 90.0 ± 1.0 b C 86.9 ± 1.4 b A 93.0 ± 1.1 a C 89.6 ± 1.0 b C 80.1 ± 1.9 b
FS1 A 91.5 ± 1.0 b A 89.1 ± 1.1 a A 93.9 ± 1.2 a A 91.3 ± 1.0 b A 83.1 ± 1.9 b
FS2 A 90.9 ± 1.0 b B 88.1 ± 1.2 b A 93.8 ± 1.3 b A 90.7 ± 1.1 b A 82.0 ± 2.1 b
FS7 A 91.1 ± 0.8 b B 88.5 ± 1.3 b A 93.7 ± 1.3 b A 90.9 ± 1.0 b A 82.3 ± 2.0 b
SELECT B 90.5 ± 0.9 b C 87.4 ± 1.0 b A 93.6 ± 1.4 b B 90.2 ± 0.9 b B 81.2 ± 1.9 b

G2DE FS3 90.2 ± 0.9 87.4 ± 1.5 93.1 ± 0.9 89.9 ± 0.9 80.6 ± 1.8

Tables
Table 1 - Features used in each feature set. Detailed descriptions can be found in the corresponding
references.
Table 2 - Predicted performances of classifiers trained with 1742 examples, presented as the mean
and standard deviation (Mean ± SD). Acc=accuracy; Se=sensitivity; Sp=specificity; Fm=F-measure;
Mcc=Mathew Correlation Coefficient. Bold numbers represents the highest classification performances,
which were not significantly different according to the clustering criteria in [49].
Table 3 - Main characteristics of tools used as references in this work. BP=Number of base pairs on the
stem, MFE=Minimum Free Energy of the secondary structure, noML=no Multiple Loops, RR=Removed
Redundancies, E-value≤ 102=expected value in BLASTN against mirbase, ExpVal=Only experimentally
validated precursors and RF=Random forest
Table 4 - Predicted performance of tools used as references in our GEN experiments test sets. Re-
sults presented as the mean and the standard deviation (Mean ± SD). Acc=accuracy; Se=sensitivity;
Sp=specificity; Fm=F-measure; Mcc=Mathew Correlation Coefficient.
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Table 3: Main characteristics of tools used as references in this work. BP=Number of base pairs on the
stem, MFE=Minimum Free Energy of the secondary structure, noML=no Multiple Loops, RR=Removed
Redundancies, E-value≤ 102=expected value in BLASTN against mirbase, ExpVal=Only experimentally
validated precursors and RF=Random forest

TOOL ALGORITHM #FEATURES
PRE-PROCESSING TRAIN SOURCE
(+) (−) (+) (−) (+) (−)

Triplet−SVM SVM 32 noML
BP > 18

163 168 5.0 CDSMFE < −15
noML

MiPred RF 34 noML

BP > 18

163 168 8.2 CDSMFE < −15
50 < len < 138
noML

microPred SVM 21 RR
len < 151 Not Not

12
CDS

RR given given ncRNAs
clearly clearly

G2DE G2DE 7
RR BP > 18

460 460 12.0 CDSnoML MFE < −25
noML

mirident SVM 1300

BP > 18

484 484 11.0 CDSRR MFE < −25
noML 50 < len < 138

RR
noML

HuntMi RF 28 ExpVal E − value ≤ 102
Not Not

17.0
CDS

given given mRNA
clearly clearly ncRNA

Table 4: Predicted performance of tools used as references in our GEN experiments test sets. Results are pre-
sented as the mean and the standard deviation (Mean±SD). Acc=accuracy; Se=sensitivity; Sp=specificity;
Fm=F-measure; Mcc=Mathew Correlation Coefficient.

TOOL Acc Se Sp Fm Mcc
Triple-SVM 78.8 ± 1.3 64.7 ± 2.1 92.9 ± 1.3 75.3 ± 1.7 60.1 ± 2.5
MiPred 86.8 ± 0.9 76.8 ± 1.6 96.8 ± 0.9 85.3 ± 1.1 75.1 ± 1.7
microPred 69.9 ± 1.7 72.1 ± 1.7 67.6 ± 2.7 70.6 ± 1.5 39.8 ± 3.3
G2DE 90.6 ± 0.9 89.2 ± 1.2 93.3 ± 1.6 90.5 ± 0.9 81.4 ± 1.8
Mirident 85.5 ± 1.0 88.2 ± 1.1 82.9 ± 1.2 85.9 ± 1.0 71.2 ± 2.1
HuntMi 85.1 ± 2.1 98.7 ± 0.8 71.6 ± 4.2 86.9 ± 1.6 73.0 ± 3.5
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