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Abstract. To understand transcriptional regulation during development a detailed
analysis of gene expression is needed. In-situ hybridization experiments measure
the spatial distribution of mRNA-molecules and thus complement DNA-microarray
experiments. This is of very high biological relevance, as co-location is a necessary
condition for possible molecular interactions.

We use publicly available in-situ data from embryonal development of Drosophila
and derive a co-location index for pairs of genes. Our image processing pipeline
for in-situ images provides a simpler alternative for the image processing part at
comparable performance compared to published prior work. We formulate a mixture
model which can use the pair-wise co-location indices as constraints in a mixture
estimation on gene expression time-courses.

1 Introduction

The cellular processes constituting life as we know it are controlled by highly
complex interaction mechanisms, where the most important form of control
is transcriptional regulation. That is the control of the amount of proteins
which are produced for a gene in the genome. As quantifying protein levels is
experimentally difficult, the intermediate product, messenger RNA (mRNA)
which is transcribed from a gene and gets translated to a protein, has received
a lot of attention. DNA-microarrays are an experimental technique based on
hybridization reactions to quantify levels of mRNA-levels for thousands of
genes simultaneously. However, these experiments give a view of transcrip-
tional regulation averaged over many cells or tissues. To understand devel-
opment of organisms and the necessary differentiation of cells with the same
genome, it is necessary to obtain a finer grained picture of gene expression.

In-situ hybridization experiments measure the abundance and spatial dis-
tribution of specific mRNA-molecules in organisms through staining cells pro-
portionally to mRNA-concentration. Although the experimental technique is
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quite expensive as experiments have to be repeated for each gene reasonably
large amounts of data exist. For example, the Berkeley Drosophila Genome
Project (BDGP, http://www.fruitfly.org) provides a database of images for
expression patterns during embryonal development. There are problems with
data quality due to the experimental errors and the imaging process, however
the data provides a unique opportunity to augment gene expression time-
courses over embryonal development with co-location information. This is of
very high biological relevance, as co-location is a necessary condition for pos-
sible interaction.

We introduce an image processing pipeline for processing in-situ hybridiza-
tion data and a simple co-location index, which performs as well as published
results (Peng et al. (2004)) even though it is substantially simpler (for more
details see Opitz (2005)). We also formulate a statistical mixture model which
allows the use of the co-location data in the form of pair-wise constraints in
a mixture estimation on gene expression time-courses. This will provide a
self-contained framework for joint analysis of in-situ hybridization and gene
expression data.

2 Method

2.1 Image processing pipeline

The majority of hybridization images in the BDGP database contain the pro-
jection of exactly one centered embryo. However, there is a substantial portion
of images with multiple touching or partially projected embryos. To exploit
as much data as possible, the goal of image preprocessing is to locate and
extract exactly one complete embryo from each image, even for touching em-
bryos. Subsequently this embryo is registered to standardized orientation and
size to allow for comparison of different expression patterns. Figure 1 shows
the steps of the image processing pipeline for one example image.

To distinguish between embryo and non-embryo pixels we employ a similar
approach as Peng et al. (2004) estimating the local variance of grey level
intensities for each pixel in a 3 × 3 neighborhood. As noted in Peng et al.
(2004) the background is much more homogeneous and as a consequence it
suffices to apply a fixed predefined threshold for segmentation using variance

(a) original (b) extracted (c) registrated

Fig. 1. Example for steps of the image processing pipeline.
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(a) type I (b) type II (c) type III (d) type IV

Fig. 2. The four categories of embryo images.

estimates. To eliminate small holes and erroneous embryo regions a sequence
of morphological closing and opening using a circular mask of radius 4 is
applied (see e.g. Gonzalez (1991)). Finally, the largest connected component
is extracted and remaining holes are filled.

The resulting region may be the projection of a single complete or partial
embryo or the projection of a set of multiple touching embryos. For further
processing we define four types of regions: (I) one complete high quality em-
bryo, (II) one complete blurred embryo, (III) one partially projected embryo,
and (IV) a set of touching embryos (see Figure 2). Embryos of type II and III
images are to be eliminated from further processing as they do not allow re-
liable co-location comparison. For type IV regions the aim of the processing
pipeline is to separate the individual embryos and to extract one complete
high quality embryo. This classification is realized by a series of simple filters.
First, as a measure of ellipticity we compute the deviation of the region ex-
tracted from an elliptical. Second, the compactness is computed as the ratio
of the squared circumference and the area of the region. Type I regions are
defined by a linear separating line in the resulting two-dimensional feature
space which is trained by a SVM using a set of 100 training images randomly
selected from the BDGP database. To select type II images a threshold on
the ellipticity is applied to the remaining images. Type III regions are identi-
fied using the area of the region and the number of pixels coincident with its
bounding box. The threshold for both filters are determined from the same
set of 100 images. To separate multiple touching embryos a new approach has
been developed. First, a hypothesis of the coarse location of the centroid of the
central embryo is derived using simple heuristic. Using a set of concentric rays
emerging from this centroid the contour points of the complete embryo region
are computed (see Figure 3). If the distance of two neighboring contour points
exceeds the mean of distances by more the 20% it is considered a cut point
between different embryos. The set of all detected cut points is used to finally
separate the central embryo from the remaining ones. To eliminate invalid
embryos separated by this method, an additional set of 50 type IV images is
used to train a SVM using again ellipticity and compactness as features.

The final step of preprocessing is to register the embryos extracted to a
standardized orientation and size. The embryo is rotated to horizontally align
the principal axis. Subsequently the bounding box is scaled to a standard
size (658 × 279 pixels for our experiments). After this registration there is
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(a) rays (b) cut points (c) original (d) result

Fig. 3. Principle and example for separation of multiple embryos. (a) detection of
contour points using a set of concentric rays; (b) detected cut points and separating
line; (c) example image; (d) extracted embryo.

still an ambiguity in orientation, which may correspond to dorsal vs ventral
and anterior vs posterior position. A part of the BDGP images is taken in a
lateral position, giving again rise to four orientations (an example is given in
Figure 4). We do not make an attempt for normalization at this step. Rather
when comparing a pair of embryos for co-location we take all four orientations
into account and use the best result as similarity score.

2.2 Co-location index

To compare in-situ hybridization patterns between genes and/or developmen-
tal stages, we developed a simple co-location index for a pair of registered
embryos which is directly based on the intensity levels of staining. We prefer
this approach to binarization of intensities (cf. Kumar et al. (2002)) or quan-
tization into a set of discrete staining levels (cf. Peng (2004)). Binarization
seems too coarse an approximation and disregards completely valuable infor-
mation on the abundance of mRNA. On the other hand, there is little evidence
for a fixed number of homogeneously distributed staining levels across a wide
range of genes and developmental stages. As an alternative we propose to use
the correlation coefficient of two registered embryo images where intensities of
corresponding pixels for two registered embryos are considered as paired data.
This score takes both the spatial distribution and the strength of hybridiza-
tion into account. Using this correlation coefficient, we achieve invariance of
the co-location with respect to linear scaling of intensities. This is of impor-
tance, as images are acquired under different illumination conditions and this
invariance eliminates the need of image normalization. As a consequence, also
expression patterns which differ by a uniform scaling of intensities not due to
differing illumination are scored as very similar (see Section 3 for an example).
Depending on the application this may or may not be desired. In the latter

Fig. 4. Four possible orientations of an embryo.
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case one may use (unnormalized) cross-correlation that is the scalar product
of the expression patterns as a substitute for the correlation coefficient with
prior normalization of illumination differences.

2.3 Joint clustering

Mixture models (McLachlan et al. (2000)) are the method of choice for clus-
tering gene expression time-courses; see Bar-Joseph (2004) for a recent review.
We extend a framework (Schliep et al. (2005)) using linear Hidden Markov
Models as components to allow the joint analysis of gene expression time-
courses and co-location information obtained from in-situ experiments. In-
stead of unsupervised learning we use a partially supervised approach, where
constraints between genes are taken from the in-situ data. The pairwise con-
straints are used in the EM-algorithm with extensions proposed by Lu et al.
(2005) and Lange et al. (2005).

Let the real-valued N -by-T matrix X = {xi}N
i=1 denote the N gene

expression time-courses of length T . A mixture model is a convex combi-
nation of K component models; note that here the choice of component
model is not important. We write [xi|Θ] =

∑K
k=1 αk[xi|θk], where the non-

negative αj sum to one and the θj denote the parameters of the compo-
nents. Then Θ = (α1, ..., αK , θ1, ..., θK) is the set of parameters. Follow-
ing (Lu et al. (2005)) we assume that—recall the complete data likelihood
[X, Y |Θ] = [X |Y, Θ][Y |Θ]—there is further dependence on pair-wise con-
straints W+, W− ∈ RN×N , yielding [Y |Θ, W+, W−] ∝ [Y |Θ][W+, W−|Y, Θ].
A positive W+

ij indicates that genes i and j should be accounted for by the
same component, and a positive W−

ij that they should not. Furthermore, we
assume that

[W |Θ, Y ] =
1
Z

exp




∑

i

∑

j #=i

−λ+W+
ij 1{yj %= yi} − λ−W−

ij 1{yj = yi}



 ,

where λ+ and λ− are global weights of the constraints. The estimation prob-
lem can be solved using Gibbs-sampling or mean field approximations (Lu
et. al (2005), Lange et al. (2005)). In consequence, when we set entries of
W+, W− to zero except for strong correlations or anti-correlations, we obtain
clusterings in which clusters contain co-located genes with similar expression
time-courses. Results will be reported elsewhere.

3 Results

We tested the image processing pipeline using an independent set of 300 ran-
domly chosen images from the BDGP which were manually labeled according
to the types introduced in Subsection 2.1. Table 1 shows the proportion of
types for manual as well as automatic labeling using the image processing
pipeline proposed. About 87% of the images are suited for comparison where
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Table 1. Distribution of image types for manual and automatic classification (left);
Classification accuracy where the positive class are images of type I and IV (right).

Type I II III IV
manual 70.7 5.7 7.7 16.0
automatic 71.7 4.3 10.3 13.7

True False Σ

Positive 80,7% 1% 81,7%
Negative 3% 15,3% 18,3%

Σ 83,7% 16,3% 100%

only 71% would be used by approaches like Peng et al. (2004), Kumar et al.
(2002). Of the sets of touching embryos 73% could be separated correctly and
as a consequence a total of 82% images were rendered as usable with only
1% false positive. The second important issue is the quality of the embryos
extracted. Five persons were asked to assess the accuracy of the embryo con-
tours into one of the categories (see Figure 5 for examples). With 69.4% of all
images judged as good and 24% as average, the method proves well suited to
register and extract embryos.

To evaluate the comparison of expression pattern with the co-location in-
dex we first used the same data set of 11 images annotated as “posterior endo-
derm anlage” as in Peng et al. (2004). Figure 6 shows the ranking comparing
Acf1 as query image to the remaining ten images. These results are as ex-
pected, both with regard to detailed annotation from ImaGO (compare Peng
et al. (2004)) and with regard to visual impression. We note that our ranks us-
ing the co-location index deviates from the results for a correlation coefficient
given in Peng (2004) which may be due to different extraction of embryos or
quantization of intensities. The rankings obtained between the three methods
are very similar, although the co-location index is computationally a much
simpler method. Note, that the ranking of CG5525 ahead of Slbp with the co-
location index is due to the invariance with respect to illumination changes,
see Subsection 2.2.

For a more comprehensive test we extracted ten further groups of images
for developmental stage 7-8 with identical annotation. For each of the anno-
tation terms used, we randomly selected ten images from BDGP for the set
of genes returned by an ImaGO query. For the ten queries ImaGO return
an average of 38.6 genes for each annotation term combination (intersection
of 2 different terms) which in turn resulted in an average of 179.5 images in
BDGP. We now compare each of the 100 images in turn against the complete

(a) good (b) average (c) bad

Fig. 5. Examples of the three categories to asses the accuracy of embryo contours.
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Query Rank co-location index Local GMM Hybrid
Acf1 1 pont 0.69 pont 0.32 pont 0.102

2 mam 0.51 mam 0.30 mam 0.051

3 RhoGAP71E 0.44 RhoGAP71E 0.24 Dcp-1 0.042

4 Dcp-1 0.42 Dcp-1 0.22 RhoGAP71E 0.038

5 CG5525 0.37 Slbp 0.20 Slbp 0.026

6 Slbp 0.31 CG5525 0.18 cl 0.019

7 cl 0.31 cl 0.17 CG5525 0.018

8 CG6051 0.29 CG6051 0.12 CG6051 0.008

9 CG33099 0.18 GATAe 0.07 CG33099 0.002

10 GATAe -0.21 CG33099 0.04 GATAe 0.001

Fig. 6. Comparing the expression pattern of Acf1 as query against ten other genes annotated
as “posterior endoderm anlage” from ImaGO. Columns 3 to 5 give the ranking using our co-
location index compared to the two favored methods of Peng et al. (2004). For each image the
name of the gene and the score is given. Ranks and scores for the two matching methods of Peng
et al. (2004) are take from the reference, for display we use our imageprocessing method.

BDGP dataset for developmental stage 7-8 comprising a total of 2893 images
for 1768 different genes and derive the ranking using the co-location index.
For the remaining nine images from the same group as the query we deter-
mine the distribution of the resulting ranks shown in Figure 7. As before the
expectation is, that these nine remaining images should show up at the top
of the ranking list as they share the same annotation with the query. How-
ever we can not expect to rank them exactly at the first top positions. First

Fig. 7. Distribution of ranks from the 10 genes to each other for 10 different groups.
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there are in general more images for genes identically annotated, as we choose
only ten images for each group for reasons of computational efforts. Second
there are ambiguities with respect to orientation (see Subsection 2.1) and also
experimental and annotation inaccuracies. The histogram conforms with our
expectation as the nine images are in most cases ranked (> 67%) in the first
third of a query result.

4 Conclusions

We presented a reliable yet simple image processing pipeline which allows
to compute pair-wise co-location indices for genes from in-situ hybridization
images. Furthermore, we formulate a mixture approach to use this co-location
data as constraints for clustering gene expression time-courses, potentially
leading to more relevant clusters of functionally related, interacting genes.
This will be evaluated for the Drosophila development in further studies.

In our image processing pipeline we perform rigid transformations of the
embryos with anisotropic scaling. Due to the variations in embryo shape, elas-
tic, non-rigid transformations (Neumann et al. (1999)) might increase robust-
ness of the co-location index. Furthermore, detection of embryo orientation,
dorsal/ventral versus lateral position, is a relevant problem which needs to
be addressed. Extensions to three-dimensional data as well as more intricate
clustering formulations are further exciting questions to pursue.
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