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Abstract—Alternating Direction Method Of Multipliers
(ADMM) is one of the promising frameworks for training
Support Vector Machines (SVMs) on large-scale data in a
distributed manner. In a consensus-based ADMM, nodes may
only communicate with one-hop neighbors and this may cause
slow convergence. In this paper, we investigate the impact of
network topology on the convergence speed of ADMM-based
SVMs using expander graphs. In particular, we investigate how
much the expansion property of the network influence the
convergence and which topology is preferable. Besides, we supply
an implementation making these theoretical advances practically
available. The results of the experiments show that graphs
with large spectral gaps and higher degrees exhibit accelerated
convergence.

Index Terms—ADMM, SVMs, Expander Graphs, Distributed
Optimization, Convergence

I. INTRODUCTION

Distributed optimization methods are key for solving large-

scale machine learning problems due to the exponential growth

of digital data. Serial methods are no longer capable of

solving today’s large problems due to the lack of scala-

bility. Even centralized parallel optimization methods may

perform poorly due to communication overheads. Therefore,

decentralized distributed optimization methods play an im-

portant role in solving problems with big data. Alternating

Direction Method Of Multipliers (ADMM) is one of such

successful distributed methods since it is robust, distributedly

parallelizable, and it has convergence guarantees. However,

even ADMM may suffer from slow convergence in specific

circumstances [1, 2]. In decentralized ADMM through a net-

work, distributed agents/nodes with the knowledge of local

data solve local optimization problems and only communi-

cate with their neighboring nodes with the common goal

of reaching consensus. Franca and Bento [2] point out that

the network topology has impact on the convergence rate of

ADMM in the context of a specific consensus problem. This

leads to the natural question, whether their observation also

arises in different circumstances. In this paper, we investigate

the impact network topology has on ADMM-based Support

Vector Machines (SVMs) [3]. In particular, we investigate how

much the expansion property and connectivity of the network

influence the convergence and which topology is preferable.

We also supply an implementation making these theoretical

advances practically available. The outline of the paper is as

follows. We briefly discuss the basics of network topology in

section II. In section III, we explain expander graphs and their

properties followed by a brief summary of SVMs and ADMM

in section IV and V. We in section VI describe the method

and corresponding materials used in this article. The results

of the experiments are presented in VII and we analyze the

results in section VIII. Finally, the summary and conclusion

of the paper are briefly described in section IX.

II. NETWORK TOPOLOGY

Network topology and the connectivity of the underlying

graph have impact on the performance of network-based

distributed algorithms in terms of convergence and the number

of iterations until convergence. Such impact is shown for

solving linear equations [1] and for ADMM with a specific

optimization problem not related to SVMs [2]. In this paper,

we investigate the impact of the network topology and the

connectivity of the underlying graph on the performance of

ADMM-based SVMs in terms of convergence. Consider the

network of distributed agents/nodes as a graph G(V,E), where

V = {1, 2, 3, . . . , n} is the set of the nodes and E ⊆ V × V
is the set of edges between nodes. We assume that G is

an undirected and connected graph and that there are no

multiple edges between any two nodes. The network topology

of the graph is shown by the corresponding adjacency matrix

A(G) = [aij ]n×n, where

aij =

{
1 for(i, j) ∈ E
0 otherwise.

(1)

By definition, the adjacency matrix of an undirected

graph is symmetric and has real eigenvalues. The spectral

gap/connectivity of a graph is related to the expansion property

of the graph. In order to define the spectral gap and con-

nectivity of a network, we first define the Lagrangian matrix

corresponding the adjacency matrix A(G). The Laplacian

matrix of an adjacency matrix, denoted L(A), and has −1
for a connected pair nodes and the degree of each node on its

diagonal, i.e.,

lij =

⎧⎨
⎩
−1 for(i, j) ∈ E & i �= j
ki fori = j
0 otherwise.

(2)
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Here, ki is the degree of node i. The eigenvalues of A(G)
satisfy

kmax = μ
′
1 � μ

′
2 � ... � μ

′
n, (3)

and the eigenvalues of L(G) satisfy

0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2kmax. (4)

Here, kmax is the largest degree of all nodes.

The algebraic connectivity or the spectral gap of a graph

network is related to the non-trivial eigenvalues of A(G) and

L(G), i.e., it relates to μ2 = max{μ′
2, |μ

′
n|} and λ2 [4].

The first smallest eigenvalue of L(G) is trivial (λ1 = 0) and

corresponds to the first largest and trivial eigenvalue of A(G),
i.e., μ1 = kmax and in some cases |μn| = | − kmax| [5].

A small spectral gap relates to a small number of edges

required to be taken away to generate a bipartite graph. In

contrast, a large spectral gap relates to non-modularity of the

corresponding graph. For details refer to [4].

III. EXPANDER GRAPHS

A group of well-studied connected graphs are expander

graphs, in which any subset expands through all nodes in a

robust manner, i.e., any subset of the graph efficiently connects

to many nodes. Properties such as effective communication,

high- and well-connectivity, and sparseness make expander

graphs good choices for designing efficient networks. The

expansion property of an expander graph can be defined by the

Cheeger or isoperimetric constant [4]. The Cheeger constant

shows that whether the graph has bottlenecks, i.e., whether

there are two large subsets of vertices connected by only few

edges. A large Cheeger constant indicates many edges between

the two large subsets of vertices. In contrast, a small constant

shows there is a bottleneck between the two subsets of vertices

and they are connected with only few edges. The Cheeger

constant of graph G(V,E) is denoted as h(G) and it can be

defined as follows,

h(G) = min
S⊆V,|S|� |V |

2

|∂S|
|S| . (5)

Here, ∂S = {(e, e′
) ∈ E : e ∈ S, e

′ ∈ V \ S}. The Cheeger

constant is related to the spectral gap by Cheeger inequalities,

i.e.,
λ2

2
≤ h(G) ≤

√
2dλ2. (6)

The expansion properties can be enhanced towards increas-

ing the spectral gap. In this regard, d-regular random graphs in

which each node is connected to d other nodes are expanders

if and only if the corresponding spectral gap is lower bounded

[4]. In this paper, we study the impact of d-regular graphs on

the convergence performance of the ADMM-based SVMs.

IV. SVMS

SVMs are a set of supervised machine learning techniques

developed from statistical learning theory to solve classifi-

cation and regression problems. The basic idea of SVMs

in a simple binary classification problem is to search for a

hyperplane that is the farthest to the closest training data

points from both sides of the hyperplane. This process has two

phases, training and testing. In the training phase, the machine

is trained to find a plane that separates the given data samples

into two classes. After the machine is trained, the training

model is extracted and then the testing phase is carried out. In

the testing phase, the SVMs model predicts which class label

a new unseen test sample should have [6]. SVMs give a good

generalization performance [7] and minimize the upper bound

of the generalization error [8]. SVMs have special characteris-

tics that can be used to implement efficient parallel algorithms

in terms of time and memory. One characteristic is the sparsity

of solutions [9], i.e., the solution is obtained by only a few

samples called support vectors that determine the maximum

margin separating hyperplane [10]. Another characteristic of

SVMs is to perform the nonlinear mapping without knowing

the mapping function using predefined functions called kernels

for calculating the inner product of mapping functions [10].

Other characteristics of SVMs are the simple structure of

SVMs constraints and the definition of the kernel function

in a linear case, i.e., the inner product is a simple dot product

in a linear case [11]. The optimization problem addressed by

SVMs can be written as follows,

Primal :

min
1

2
wTw + C

N∑
i=1

ξi

s.t. ∀i : yi(w
TΦ(xi) + b) ≥ 1− ξi , i = 1, 2, ..., N

∀i : ξi ≥ 0 , i = 1, 2, ..., N.
(7)

Here w is the weight vector for the hyperplane, x is a vector

of observations, yi are the class labels with yi ∈ {+1,−1},
b is the bias parameter and Φ(x) is the map function. In the

case that data can be classified by a linear classifier, Φ(x) =
x, but real-life data cannot always be classified by a linear

classifier [8]. In non-linear cases, one can map the data from

the input space into a high dimensional feature space using

a non-linear transformation, i.e., Φ(x) maps the input vector

x to the feature space [8]. In the feature space, the data can

be linearly separable. Consequently, the dual form of equation

(7) is represented in equation (8),

Dual :

min D(α) =
1

2
αTQα− 1Tα

s.t.
N∑
i=1

yiαi = 0

∀i : 0 ≤ αi ≤ C , i = 1, 2, ..., N.

(8)

Here α is Lagrangian multipliers and αi ∈ α, 1T is a

vector of ones and Q is a matrix of size N × N and

Qij = yiyjΦ
T (xi)Φ(xj).
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V. ADMM

Distributed methods are one of the important approaches

for solving large-scale machine learning problems. One of the

popular distributed methods is ADMM since it has properties

such as robustness, scalability of solving problems with big

data, easily distributable and parallelizable. The robustness of

ADMM refers often to no requirement of differentiability of

the objective function. ADMM guarantees the convergence

of convex functions [2] which is the case in SVMs. The

convergence rate of ADMM is O(1/N) for convex functions,

where N is the number of iterations [12, 13]. Note in practice

the convergence rate of ADMM is still not well-understood

[2].

The optimization problems of the following form can be

solved using ADMM.

min f(w)

s.t. w − v = 0
(9)

In order to solve the problem (9) in a distributed manner,

one can reformalize the optimization problem in the form

of (10). This problem is solvable using ADMM because of

the decomposability of ADMM in which each node in a net-

work has own independent objective function and constraints.

ADMM can solve consensus optimization in which nodes

only communicate with one-hop neighboring nodes. To do

this, consensus constraints are defined to force local variables

to agree across neighbors. The distributed consensus-based

optimization can be formalized as follows,

min
∑
i=1

fi(wi)

s.t. wi − w = 0, i = 1, 2, ..., n.

(10)

Here, w is the consensus variable across the neighboring

nodes. For detailed information, refer to [14, 15]. In this paper,

we have followed the approach given by Forero, Cano and

Giannakis in [14] for solving consensus ADMM-based SVMs.

VI. MATERIAL AND METHOD

We designed experiments with datasets gathered by LIB-

SVM Data [16] from several machine learning data repos-

itories such as UCI [17]. Table I shows the datasets with

the corresponding number of training and testing instances

and features we used in the experiments. In order to study

the impact of network topologies on the number of iterations

until convergence, we implemented several random d-regular

expander graphs. For each graph, upper and lower bounds of

the spectral gap are calculated using the formula given by Joel

Friedman [18]. The formula is given for the second largest

eigenvalue of the adjacency matrix μ2 = max{μ′
2, |μ

′
n|}. We

adapted the formula for the second smallest eigenvalue of the

Lagrangian matrix λ2 as follows. For ε > 0,

d− 2
√
d− 1− ε ≤ λ2 ≤ d+ 2

√
d− 1 + ε. (11)

Note λi = d − μ
′
i, i = 1, 2, . . . , N . This holds for every

random d-regular graph of size N for sufficiently large Ns.

We implemented a special type of regular graphs called

Ramanujan graphs. A d-regular graph is Ramanujan if and

only if μ2 ≤ 2
√
d− 1 holds, where μ2 is the second largest

eigenvalue of the adjacency matrix of the graph as defined

above.

For simplicity, we focus on the second smallest eigenvalue

λ2 of the Laplacian matrix as the spectral gap instead of using

the second largest eigenvalue of the adjacency matrix μ2 since

the spectral gap is defined as λ2 = d − μ
′
2, where μ2 =

max{μ′
2, |μ

′
n|}.

For a Ramanujan graph, formula (11) appears as follows

[19],

d− 2
√
d− 1 ≤ λ2 ≤ d+ 2

√
d− 1. (12)

To run experiments, we used several random regular graphs

with different degrees and number of graph nodes depend-

ing on the size of training datasets. The first group of

graphs, denoted G1, consists of d-regular expander graphs

with low degrees designed for training small datasets, where

d = {3, 5, 7, 9, 11, 13, 15} and the second group of graphs,

denoted G2, consists of d-regular expander graphs with

higher degrees for training large datasets, where d =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

In this paper, we have focused on binary classifications since

a multi-class classification can be transformed into several

binary classifications using the one-versus-all technique. The

classification accuracy of a consensus ADMM-based SVM is

influenced by parameters such as ρ in ADMM and JC and γ
in SVMs, where J is the number of graph nodes and γ is the

RBF kernel parameter. To estimate sufficiently good values of

the parameters, we used a grid search with cross-validation.

Besides, we use normalizing and standardizing scaling tech-

niques to further improve the classification accuracy if needed.

To evaluate the results, we used standard statistics such as

true positive/negative rate, positive/negative predictive rate,

and accuracy metrics.

To measure the impact of expander graph topology, the

algorithm trains the datasets for each d-regular expander graph

using shared memory parallel programming. Thereafter, the

number of iterations and the corresponding elapsed time are

measured until convergence. To stabilize our analysis for some

of the datasets, we shuffled the training data 10 times. Each

shuffled data are trained and the number of iterations and the

elapsed time are measured and then we calculated the average

value for the final analysis.

TABLE I
DATASET INFORMATION

Datasets Training Points Testing Points Features
ionosphere 300 51 34
svmguid 3089 4000 4
phishing 11055 1655 68

a9a 32561 16281 123
ijcnn 35000 14990 22

skinNonskin 37492 5000 3
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Fig. 1. The upper and lower bounds of the spectral gap for random d-regular
expander graphs with 16 graph nodes, where d = {3, 5, 7, 9, 11, 13, 15}. ”*”
symbols show the spectral gaps of the d-regular graphs implemented in the
experiments. ”o” symbols show that a random 11-regular graph can have a
higher spectral gap than a random 13-regular graph.

VII. RESULTS

The lower and upper bounds of the spectral gap (the second

smallest eigenvalue of the Lagrangian matrix) λ2 for low

degree regular graphs G1 is shown in Fig. 1. The same concept

for high degree regular graphs G2 is shown in Fig. 2. We use

the low degree expander graphs for training small datasets and

the high degree expander graphs for training larger datasets.

The vertical bars show the bounds calculated using formula

(12).

In Fig. 1, ” ∗ ” indicates the spectral gap of the Ramanujan

graphs implemented for 16 graph nodes in the experiments.

Similarly, in Fig. 2, ” ∗ ” shows the spectral gaps of the

Ramanujan graphs implemented for 128 graph nodes. As the

figures show, the spectral gaps of all of the expander graphs we

used in the experiments for 16 and 128 graph nodes are inside

the allowed bounds. As both figures show, the connectivity of

the regular/Ramanujan graphs increases as the degree of the

graphs becomes larger.

Fig. 3 shows the number of iterations and the elapsed

time for training ionosphere and svmguid datasets until

convergence using group G1 of d-regular graphs with 16

graph nodes. As shown in the figure, the number of iterations

decreases as the degree of the graph increases. The trend is

most visible between 3 to 9 regular graphs for svmguid and

between 7 to 11 for ionosphere. In contrast, the decrease in

the number of iterations saturates as the degree of the graphs

is close to the number of graph nodes, i.e., 16 nodes in this

case. This is visible between 11 to 15 regular graphs for both

datasets.

Fig. 4 shows the number of iterations and the elapsed time

for training phishing, a9a, skinNonskin, and ijcnn
datasets using group G2 of d-regular graphs with 128 graph

Fig. 2. The upper and lower bounds of the spectral gap for ran-
dom d-regular/Ramanujan graphs with 128 graph nodes and d =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Fig. 3. Impact of d-regular graphs on the number of iterations and time for
svmguid and ionosphere datasets using 16 graph nodes.

nodes. The results highlight the performance improvement in

terms of the number of iterations as the spectral gap and the

connectivity of the regular graphs increases with the fixed

number of nodes (128 nodes). This trend is more stable for

phishing and a9a datasets throughout all degrees and

it is most noticeable between 30 to 70 regular graphs for

skinNonskin and ijcnn datasets. Note for the degree

(d) close to the number of graph nodes, the performance

improvement saturates or becomes negligible. This is most

visible for degree between 90 to 100 for all datasets.

As shown in Fig. 4, ijcnn did not converge for 10 and

20 regular graphs in less than 10000 iterations which we put

as the maximum iteration for the convergence. This might
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Fig. 4. Impact of d-regular graphs on the number of iterations and time
for phishing, a9a, skinNonskin, and ijcnn datasets using 128 graph
nodes.

Fig. 5. Several rounds of shuffling data. Shuffling increases the classification
accuracy while keeping the trend of decreasing the number of iterations and
time for d-regular graphs.

be explained due to inefficient communication between graph

nodes when the degree of the graph is low.

Fig. 5 shows the number of iterations for several rounds of

shuffling data. Shuffling data follows the trend of decreasing

the number of iterations and time, besides improving the

classification accuracy and leading to a stable classifier.

VIII. DISUSSION

The performance of a network-based ADMM implementa-

tion of SVMs was improved based upon the efficient connec-

tion between neighbouring nodes using expander/Ramanujan

graphs. The graphs with high degrees and spectral gaps and

consequently many neighbouring nodes exhibit accelerated

convergence (Fig. 3 and 4). This finding is consistent with

that of Cao et al. [1] whose theoretical analysis suggested

networks with higher mean degree. Although their approach

was not tested for network-based ADMM algorithms, nor

were tested for nonlinear systems, the authors reported the

performance improvement of a distributed algorithm in terms

of convergence.

The bounds of the spectral gap expanded as the degree

of the graph and consequently connectivity increased for the

fixed number of nodes, thus efficient communication between

neighboring nodes. Note that a random d-regular graph may

have better connectivity than a random d
′
-regular graph even

if d < d
′
. This is likely if the spectral gap of d-regular graph

is larger than d
′
-regular graph, e.g., as shown in Fig. 1 by

”o” symbols, a random 11-regular graph has a higher spectral

gap than a random 13-regular graph. Therefore, increasing

the degree of a graph will not necessarily lead to better

connectivity.

The results of our experiments showed accelerated conver-

gence for increasing the degree of expander graphs, however

the decrease of the number of iterations was saturated or

became very small as the degree of the graph got closer

to the number of graph nodes (Fig. 3 and 4). This may be

explained due to the increasing number of neighbors, although

the convergence is guaranteed, many graph nodes should

communicate and exchange their local results to reach the

consensus. This leads to slow convergence.

Based on the line of reasoning above, it is interesting to

find an appropriate degree of regular graphs with regards to

the number of graph nodes in which the degree should be

sufficiently high that leads to efficient communication and

sufficiently low that leads to good connectivity.

The impact of many communicating neighbouring nodes is

minor in the shared memory parallelism. In contrast, in the

distributed memory parallelism, the communication between

many nodes reaching the consensus might cause communica-

tion overhead. Thereby, increasing the degree of graphs close

to complete graphs may not be efficient as in the shared

memory parallelism. We will further investigate the impact of

expander graphs on the performance of our algorithm using

distributed parallelism in the future work.

Beside the discussion of graph topology, several factors

showed their importance for the classification accuracy. One

factor was the balance between the two classes. To keep the

balance between two classes, we randomly shuffled data and

it exhibited higher classification accuracy versus unshuffled

data while keeping the trend of decreasing the number of

iterations and time. This might not possible for networks that

supply their data from distributed sources and do not allow to

combine and shuffle the data due to privacy issues. Another

factor was data cleansing and improving data quality. Although

we did not investigate different techniques of data cleansing,

simply removing missing and corrupted data exhibited higher

accuracy. Our implemented algorithm is able to solve the dense

and sparse formats of data and we plan to further improve the

performance in regards to special treatment of sparsity.
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IX. SUMMARY AND CONCLUSION

A consensus-based ADMM implementation of SVMs in-

volves a consensus agreement among neighboring nodes,

consequently the number of neighbors and the way they are

connected impact the performance of the algorithm in terms of

convergence and communication. Thereby, the network topol-

ogy used for communication of neighboring nodes plays an

important role in performance improvement of the distributed

algorithm.

Based on the line of reasoning above, complete graphs are

well-known for their connectivity, however, high connectivity

does not come cheap in particular using distributed memory

parallelism, i.e., all nodes need to communicate with each

other and this may increase the number of iterations until con-

vergence and increase the communication complexity. Random

d-regular expander graphs are good sparse approximations of

complete graphs [20] in which good connectivity property is

inherited with efficient communication between nodes. Note

the better the expander property of regular graphs is, the faster

nodes communicate.
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