
Improved Pattern Generation
for Bloom Filters with Bit Patterns
Optimizing bit patterns for use in blocked Bloom filters

Master’s thesis in Computer Science: Algorithms, Languages and Logic

BJÖRN HEDSTRÖM & IVAR JOSEFSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

ii

Master’s thesis 2018

Improved Pattern Generation for Bloom Filters
with Bit Patterns

Optimizing bit patterns for use in blocked Bloom filters

BJÖRN HEDSTRÖM & IVAR JOSEFSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Improved Pattern Generation for Bloom Filters with Bit Patterns
Optimizing bit patterns for use in blocked Bloom filters
Björn Hedström & Ivar Josefsson

© Björn Hedström & Ivar Josefsson, 2018.

Supervisors: Peter Damaschke & Alexander Schliep, Department of Computer Sci-
ence and Engineering
Examiner: Christos Dimitrakakis, Department of Computer Science and Engineer-
ing

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Front page picture depicts a pattern design for small filters using the MCRS-
algorithm described in this thesis.

Typeset in LATEX
Gothenburg, Sweden 2018

v

Optimizing bit patterns for us in Blocked Bloom filters
A Subtitle that can be Very Much Longer if Necessary
BJÖRN HEDSTRÖM & IVAR JOSEFSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Keywords: Bloom filter, genomics, non-adaptive group testing, disjunct matrix,
thesis.

vi

Acknowledgements
First and foremost we offer our sincere gratitude to our supervisors Peter Dam-
aschke and Alexander Schliep for a large amount of guidance and feedback they
have provided. Their vast knowledge of both the theoretical and practical aspects
of this work together with their fast response times when questions emerge have
been crucial in the completion of the project.

We also want to thank the kind people at Omegapoint Gothenburg for generously
offering us a place to work. Their hospitality gave us the environment needed to
produce this thesis.

Finally, we wish to thank all the people who have read through our text and pointed
out gaps in clarity and meaning. Their assistance has lead to a higher quality thesis
than we could possibly hope to write by ourselves.

Björn Hedström, Gothenburg, May 26, 2018
Ivar Josefsson, Gothenburg, May 26, 2018

viii

x

Glossary

Antichain A subset without any pairs y < x in a partial order.. ix

Hamming distance The number of indices where the bits differ in two binary
vectors.. ix

Hamming weight The number of 1’s in a vector.. ix

Level The number of 1’s in a vector. Synonym for Hamming weight. ix

Support The support of a discrete probability distribution is the set of all elements
with a non-zero probability.. ix

xi

Glossary

xii

Acronyms

BBFBP Blocked Bloom Filter with Bit Patterns. ix, 3, 4, 7, 9–11, 13–15, 17, 21,
23, 26, 32, 35, 36, 41

CPU Central Processing Unit. ix, 9, 10

ECC Error Correcting Code. ix, 18, 35

FPR False Positive Rate. ix, 3, 4, 8–11, 13, 14, 16, 19–34, 36–39, 41

LCG Linear Congruential Generator. ix, 23, 30

xiii

Acronyms

xiv

Contents

List of Figures xvii

List of Tables 1

1 Introduction 1
1.1 Background . 2
1.2 Problem description . 3
1.3 Related work . 4
1.4 Ethical considerations of this work 5

2 Theory 7
2.1 Preliminaries . 7
2.2 Bloom filters . 8

2.2.1 Standard Bloom filters . 8
2.2.2 Blocked Bloom filters with bit patterns 9
2.2.3 A conjecture regarding neighbouring levels 11

2.3 Group testing . 11
2.3.1 Non-adaptive group testing 12
2.3.2 Relationship to Bloom filters 13

2.4 Group testing algorithms . 14
2.4.1 COMP - Combinatorial Orthogonal Matching Pursuit 14
2.4.2 CHE - Cache- Hash- efficient 15
2.4.3 RrSD - A random r-size design 16
2.4.4 CRS - Chinese Remainder Sieve 17

2.5 Binary constant-weight codes . 18

3 Method 19
3.1 Experiment on precomputed patterns 19

3.1.1 Theoretical testing . 19
3.1.2 DNA-sequence testing . 20
3.1.3 Neighbourhood level analysis 20

4 Results 21
4.1 Experimental outline . 21
4.2 MCRS - Modified Chinese Remainder Sieve 21
4.3 Run-time pattern construction . 22

4.3.1 Linear Congruential Generators 23

xv

Contents

4.3.2 Chinese remainder methods revisited 24
4.4 Neighbourhood level result . 25
4.5 FPR comparisons for group testing algorithms 26

4.5.1 FPR for a single block . 26
4.5.2 FPR for multiple blocks . 27
4.5.3 FPR for real-world data . 29

4.6 FPR comparison for run-time generated patterns 30

5 Discussion 31
5.1 Neighbourhood levels . 31
5.2 Group testing algorithm results . 31
5.3 Run-time generated patterns . 32
5.4 Analysis of the MCRS-algorithm . 33

5.4.1 Run-time generation . 33
5.4.2 Preconstructed patterns . 34

5.5 Future work and unsolved problems 36
5.5.1 Unsolved problems regarding the MCRS-algorithm 36
5.5.2 Run-time construction evaluation 37
5.5.3 The relation between patterns and blocks 38

6 Conclusion 39

Bibliography 43

A Framework usage tutorial I
A.1 Installation . I

A.1.1 Windows . I
A.1.2 Ubuntu 16.04 . I

A.2 Setup . II
A.2.1 Windows . II
A.2.2 Ubuntu 16.04 . II

A.3 Running the analysis tool . II
A.3.1 Command line . II
A.3.2 Python code . V

A.4 Writing new patter-design generators VII
A.5 Generating data . VIII

B Primeselection in the MCRS-algorithm IX

C MCRS-primes XI

xvi

List of Figures

2.1 Example Bloom filter . 8
2.2 Containment error example . 11
2.3 Non-adaptive group testing example 13

4.1 FPR for neighbourhood levels of different p as a function of d. m=512 25
4.2 FPR for a single block for various n. m=512 26
4.3 FPR for large filters for various n. m=512, b=512 27
4.4 FPR for patterns as n increases, m = 512 28
4.5 FPR for real world data . 29
4.6 FPR for the run-time generators . 30

5.1 Example MCRS construction . 37

A.1 Framework demo 2D-plot . III
A.2 Framework demo 3D-plot . V

xvii

List of Figures

xviii

1
Introduction

To see if an item is a member of a set is one of the most commonly occurring
problems in computer science. The problem is deceptively simple: Given an item
and a collection of several items, does the given collection host the provided item?
Examples of this problem can be found all around in several different types of appli-
cations from web stores to computationally heavy research software. Consider a toy
example of any service that requires authentication through login. Then for the user
to access the service it is required that the user is registered in the user database,
which the software needs to check before granting the user access. Applications of
this problem can, however, be much more sophisticated than the above example.

A more specific application is using set-membership to speed up database queries.
A database query can be quite costly in terms of computational power, and to spend
that time to try to fetch an item which does not exist can be an expensive operation.
An idea to speed up this process can be to check if the key is actually present in
the database before querying it. This can be done by having some structure hosting
only the existing keys, which in turn may be so significantly smaller than the entire
database that the structure fit in local memory. This allows for a fast "filtering"
of queries that would otherwise just result in a negative response, and may in turn
speed up the application significantly.

Another application of set-membership is to detect duplicate data in large datasets
efficiently. In this case, an application may iterate over a dataset and test each item
against a different, initially empty set and insert the item into the set if the query is
negative. Hence if the query returns positive, then the item has been encountered
previously and can as such be reported as a duplicate.

The above examples illustrate just a small subset of applications of set-membership,
but regardless of application they have one thing in common: There must be some
data structure for the set. A popular structure for this is a hash table which assigns
each item to a unique key and allows one to fetch/check the item in constant time
by providing the corresponding key. But as the set grows larger, so does the memory
requirements for the hash table. When the memory usage reaches a critical point
it might be impossible to accommodate the table on a quick-to-access memory such
as the cache, which may result in costly operations just to query the table.

However, for specific applications, this can be avoided by using a probabilistic data
structure instead. In these cases, one can often significantly reduce the amount

1

1. Introduction

of memory needed by allowing the structure sometimes to claim that an item is a
member of a set when it is not. While this is not always applicable, for example,
one would never want to claim that a user might have administrative rights on one’s
system, in many cases a small number of false positives can be tolerated to allow
the structure to fit on a quicker access memory.

To illustrate this, we yet again consider the example of speeding up database-queries.
If the database contains a large number of keys, it might be impossible to accom-
modate the entire set-structure in the cache memory. In those cases to see if the
key exists requires a computationally expensive disc-read, which might only slow
the overall application down. However, by allowing a small rate of false positives,
the application might be able to filter out the vast majority of queries that would
not give any result. The time wasted searching the database for the non-existing
keys that slipped through the filter would then be dwarfed by the speed-gains of
successfully filtering the vast majority of non-existing keys.

1.1 Background
One of the most well-known probabilistic data structure for set-membership prob-
lems is the Bloom Filter. Named after their author Bloom which devised the struc-
ture in 1970, Bloom filters are a fast, small and probabilistic hash-based structure
which allows false positives but guarantees no false negatives [1]. There are draw-
backs to Bloom filters even when disregarding the false positive possibility, in partic-
ular, they require up to 44% more space than the information theoretical minimum
and in their basic form does not support deletions. However, when used correctly the
disadvantages are overshadowed by the computational gains due to space-efficiency.
For example, Georganas et al. [2] use a Bloom filter with a 5% error-rate while using
1-2% of the space required by a hash table in their recent genome assemble software.
Uses for Bloom filters exist for such diverse tasks as distributed caching [3], reducing
unnecessary disk lookups [4], identifying malicious URLs, word-hyphenation [1] and
speeding up database joins [5] among many other examples.

Since its conception in 1970 plenty of research has been devoted to improving the
original design. Today there are several variants of Bloom filters with different
trade-offs such as compressed Bloom filters and counting Bloom filters [3]. Different
fields tend to adapt Bloom filters to suit their requirements specifically, resulting in
several specific variants of the typical Bloom filter implementation.

Recently these structures have become an important tool in bioinformatics. For ex-
ample when counting frequent k-mers it is not unusual to have queries to the filter
number in the hundreds of millions [6, 7, 8], and store thousands of data points. In
these cases, even the comparatively small Bloom filter might become too large to
be efficiently handled, which can lead to unwanted behaviour in the form of cache
misses. A cache miss may slow down the computation by a factor of a hundred,
which in genomic applications can be devastating. Another issue is the time needed
to compute the hash functions for such a large amount queries since it can prove to

2

1. Introduction

be a bottleneck for the program in settings where the computational needs of the
hash functions may be a scarce resource. As such another approach is sought in
these kinds of applications.

Blocked Bloom Filter with Bit Patterns (BBFBP)s have been suggested as an al-
ternative to regular Bloom filters in problems where the issue of cache- and hash-
behaviour is of importance. In contrast to regular Bloom filters, BBFBPs are cache-
and hash-efficient, albeit with some additional storage requirements. The idea is to
speed up the queries to the filter by assigning an item to some precomputed bit-
pattern stored on the cache, which leads to substantial performance gains. However
recently there has been research indicating that the current standard of designing
these patterns is not optimal for minimising the rate of false positives [9].

1.2 Problem description
Since BBFBPs are cache-efficient, the most significant performance problem for
these structures comes from two sources: overhead from computing the hash func-
tions and receiving a false positive. A false positive can be a costly operation for an
application since it will typically lead to unnecessary extra computation. Therefore
a reduction in the risk for false positives will improve the running time of the pro-
gram that uses the filter.

Damaschke and Schliep showed that there is a mathematical connection between
optimal bit patterns and non-adaptive group testing [9]. This result links optimal
pattern designs to almost disjunct matrices, a design known from the group testing
literature. Group testing is a mathematical field interested in finding a subset of
defective items in a larger population in as few tests as possible by testing multiple
items as one sample. An important question is thus if there exists a design for ma-
trices that gives lower False Positive Rate (FPR). Since the field of group testing has
existed for a lengthy time, with many algorithms for disjunct matrix construction,
it is interesting to see if any of these algorithms might provide better performance
than the current standard. They also produced a partial result which suggests that
some mixture of patterns with specific attributes are optimal [9], which should be in-
vestigated in practice. Any evidence for or against this notion of optimal attributes
may give insights into a better construction of bit patterns or possible improvements
to existing group testing algorithms.

Another issue is the space required to store patterns when using a BBFBP. Since
all patterns need to be stored in the cache, there is a hard limit on the number of
patterns that can be stored. If there was a way to construct patterns when they are
needed this hard limit on the number of patterns could be bypassed. This run-time
construction would, in turn, allow for more patterns, which should lower the FPR.
Hence an intriguing question is if there exists some algorithm for constructing these
patterns at run-time with just a small amount of memory. If this is the case, it
might provide an interesting alternative to regular Bloom filters.

3

1. Introduction

The purpose of this thesis can thus be divided into one primary goal with three
related sub-goals:

Main goal: Improve the FPR of BBFBPs by constructing better bit-patterns.

1. Sub-goal: For finite numbers of patterns, evaluate the performance of existing
non-adaptive group testing designs as patterns in a BBFBP.

2. Sub-goal: Use real and theoretical workloads to check whether the conjecture
found in [9] regarding the optimal construction of bit patterns holds.

3. Sub-goal: Investigate deterministic designs for constructing patterns at run-
time for memory-management without severely worsening the performance.

These goals share the same end purpose, a good deterministic design for patterns
may provide a way to generate patterns at run-time, which in turn should provide
better performance than a regular Bloom filter. We have opted only to consider
Bloom filter performance in terms of FPR, primarily since we are looking at the
generation of patterns which has a minimal impact on running time, something that
will be explained more in-depth in coming chapters.

1.3 Related work

There are other methods than Bloom filters for probabilistic membership. Cuckoo
filters are one such structure that while theoretically worse, it has in practice
achieved better FPR than Bloom filters [10]. Compared to BBFBPs however,
Cuckoo filters are significantly slower in throughput. Hence it is still important
to analyse Blocked Bloom filters, and its variant with patterns since improvements
in FPR can lead to even better performance comparatively. Another improvement
to the classical Bloom filter was made by Pagh et al. [11], which gave a new structure
with constant lookup independent of the FPR, together with a lower order term on
the space usage. A common trait of this method and Cuckoo filters is the support
of deletions from the set, an operation which the original filter does not allow.

A closely theoretical-related work is the recently proposed EGH-filter [12]. This filter
is also heavily inspired by combinatorial group testing-designs and can guarantee
no false positives for specific, restricted, parameters. This type of filter utilises the
deterministic construction of a specific combinatorial design which does not require
the filter to save the patterns. However, these are not designed for cache-placement
and are therefore not constrained by the cache line-size, which is what drives this
study. The EGH-filter also only guarantees no false positives for incredibly small
amounts of items stored, and for any larger number it has worse performance than
a regular Bloom filter. Hence this type of filter is only usable in edge-cases for
particular problems, where we seek to find a more general improvement to BBFBPs.
It also places substantial constraints on the available universe, something that most
genomic applications cannot allow.

4

1. Introduction

1.4 Ethical considerations of this work
As mentioned previously, it is not always beneficial to allow some false positives, no
matter how small. In some cases, this might even be downright unethical. Consider
a case where a probabilistic data structure such as the Bloom filter was deployed to
check citizens for criminal activities. A false positive in this setting would imply that
a law-abiding citizen was labelled a criminal, which can have fatal consequences if
no follow-up check was conducted. While the previous example showcased a scare-
monger scenario, it illustrates that there are many applications where false positives
cannot be tolerated. Even when false positives can be tolerated, it is always a
balancing act between efficiency versus risk that is a crucial factor for users to
consider. However, even if the false positive rate seems negligible and the allure of
high efficiency seems promising it is essential to stress that these data structures
are never an alternative when false positives cannot be tolerated. Probabilistic data
structures should only be used if the false positive results in an unnecessary search
or a similar, harmless, computation.

5

1. Introduction

6

2
Theory

This chapter goes into detail about some of the theoretical aspects of Bloom filters,
BBFBPs and the theory behind non-adaptive group testing. It also reviews the
connection between pattern design in BBFBPs and group testing, and list a selection
of algorithms for non-adaptive group testing. The chapter finishes with a brief
introduction to binary constant-weight codes and how they relate to the field of
group testing.

2.1 Preliminaries
Here we note some terms that come up recurrently throughout the text. All men-
tions of hash assume perfect, uniform hash. The operator ≤ on vectors denotes
containment of an vector inside another vector, i.e. x ≤ y states that each index
containing a 1 in x also contains a 1 in y. The union operator ∪ is used to denote
bitwise-or of two vectors of equal length. Hamming weight refers to the num-
ber of 1’s in a vector, while Hamming distance refers to the number of different
bits when comparing two vectors. We will sometimes refer to a pattern’s Hamming
weight as its level, and throughout the text pattern and vector will be used in-
terchangeably. A vector always refers to a binary vector in this context. When a
pattern is added to a block, it means that the block is set to be the union of the
current block and the pattern. The support of a discrete probability distribution
denotes the set of all elements with a non-zero probability. These concepts can also
be found in the glossary. Together with this, some variable shorthand symbols are
used for mathematical purposes. These will be described in greater detail in the
coming sections.

• m = The number of bits in a block or pattern.
• n = The number of patterns.
• d = The number of stored items in the filter.
• b = The number of blocks in the filter.
• k = The number of hash functions in the filter.

When discussing matrices for non-adaptive group testing we will refer to their di-
mensions as m x n instead of the t x n notation that is more commonly found in
the group testing literature.

7

2. Theory

2.2 Bloom filters

2.2.1 Standard Bloom filters
A regular Bloom filter contains a set of m bits and a set of k hash functions. When-
ever an item is added to the set, k hashes in the range {1,..,m} are computed and
the corresponding indices set to 1. When testing if an item belongs to the set the
same k hashes are computed and instead it is checked if the bit at every index is
1. If so the query will be positive, if any of the bits are 0 the query will instead
be negative. This implementation gives the filter a probabilistic quality since it is
possible for the filter to compute every hash for an item not in the set to indices
already set to 1, thus generating a false positive. It has long been a known fact that
to minimise the FPR in Bloom filters the amount of 0’s and 1’s in the filter should
be about equal, which is achieved by taking k = m

d
∗ ln 2 [3]. Since many items can

map to the same index, it is not possible to remove an item from the filter, because
a Bloom filter guarantees no false negatives. However, extensions such as counting
Bloom filters solves this problem at the expense of additional space.

Figure 2.1: An example bloom filter with m = 10. Here item x
and y are inserted into the filter by k = 3 hash-functions, flipping
each bit in the mapped indices to 1. Item i and j is then tested.
Since one of the hashes for item i points to an index with a 0 this
item cannot be a part of the set. However since the hashes for item
j all points towards indexes with value 1 the test returns positive,
thus giving a false positive. This example also illustrates why items
cannot be removed since both x and y have two indices in common.
Removing one would thus result in a false negative when testing
the other for membership.

8

2. Theory

The standard Bloom filter implementation quickly becomes unsuitable when storing
a large number of items while trying to maintain a low FPR, despite its relatively
small size. This unsuitability is due to a combination of two factors, the first of
which is the hash overhead, since up to k hashes may need to be calculated for each
query. The second, maybe more pressing issue, is the cache behaviour when the filter
cannot fit on the cache. In this case, each hash function will result in a so-called
cache miss, a term used to refer to an action the program takes which requires it to
access some other storage than the significantly faster cache memory. These cache
misses comes from the application having to access a bit not currently on the cache.
The impact of cache misses for negative queries is not as severe, since the expected
number of hashes computed before rejection is 2 given that the filter consists of
equal amounts of 1’s and 0’s [13]. On the other hand for positive queries, there will
be k cache misses. For usage cases which expects a large number of positive queries,
there are adapted variants of Bloom filters that avoid this problem. Precisely at
what point a Bloom filter becomes suboptimal compared to more cache-efficient
varieties depends on the parameters of the system with the expected percentage of
positive queries.

2.2.2 Blocked Bloom filters with bit patterns
BBFBP is a variant of Bloom filters that can be used when the issue of cache-
and hash-behaviour is of importance. In this implementation, the filter is divided
into a number of blocks b and provided with a table consisting of n patterns. The
length of a block and a pattern is the same, namely m bits, which should be exactly
small enough to fit on either an L1 or L2 cache line. This implementation allows
the Central Processing Unit (CPU) to store both patterns and blocks on the cache,
which is crucial for the filter to be quick enough. A pattern is a precomputed vector
representing where the hash functions would have inserted a 1 into the filter. The
suggested way to construct this pattern-table is by constructing n vectors of length
m with exact Hamming weight k by random sampling [13]. By computing this be-
forehand, we can achieve significant speed improvements which will be described
later. However, the number of available cache lines limits the number of patterns n
and the number of blocks b. This limitation means that the number of blocks (b),
the number of patterns (n) and the number of bits in a block (m) is restricted by
the hardware on which the filter is run.

The implementation only uses two hashes that are calculated for every item that
is either added or queried. The first hash determines what block the item belongs
to and the second hash determines to which pattern an item corresponds. This
hash-scheme results in significantly fewer hash functions than a regular Bloom filter
in most cases, making the structure hash-efficient. Adding an item means that the
pattern is added to the block, a query instead consists of checking if the pattern is
contained within the block. Since a block and a pattern consists of the same amount
of bits, OR & AND instructions can perform each of these operations respectively.

9

2. Theory

SIMD instructions can be used to speed up the comparison of a pattern against
a block or adding a pattern to a block. These instructions are generally available
for any generic CPU that is relatively modern even without hand-written assem-
bly code. SIMD instructions can perform boolean operators on whole vectors in
just a few CPU cycles, which gives significant speed gains compared to the naive
method of iteratively comparing each index. This quick comparison between vectors
is significantly faster than comparing k separate indices, which makes BBFBPs a
significantly faster data structure overall compared to a regular Bloom filter. Since
everything is designed to fit on the cache the structure is also cache-efficient since
there is no way that memory outside of the cache will need to be accessed. While
this structure is fast, it does suffer in terms of space usage compared to regular
Bloom filters with the need to store the patterns. While in general the memory
required to store the patterns is dwarfed by the actual filter this is still a price to
pay to achieve the additional speed compared to computing several hash-functions.
However, the introduction of patterns also results in a higher FPR.

When querying a BBFBP a false positive can occur for two different reasons: either
a so called collision- or a containment-error.

A collision-error occurs when the two calculated hashes are exactly equivalent to
another item that was previously added to the filter. In the specific case of there
being only one block, b = 1, the probability of a collision error is 1− (1− (1

n
))d [13].

When there are multiple blocks, one can use collision resolution mechanisms to get
roughly equal amounts of items in each block. This results in the expected FPR
for a collision being 1 − (1 − (1

n
))d/b. This collision probability is not an issue for

regular Bloom filters and will thus increase the FPR for the structure compared to
the standard approach.

There is a minimal amount of patterns needed for the BBFBP to be useful. For any
n ≤ m, we get a collision probability bounded by 1 − (1 − (1

m
))d/b, which is worse

(or equal) to the expected error probability from just a single hash function, which
is vastly superior in terms of space usage. Hence we assume that we have n > m.
If this is not the case and we insist on using precomputed patterns, then the n first
columns of the mxm-identity matrix are always optimal.

A containment-error, on the other hand, is the probability that the selected pattern
has not been added to the block, but the filter still reported a false positive. This
false positive comes from other items being added to the filter, and the resulting
block has indices set to 1 at each index that the selected pattern has. For an example
of this, see Figure 2.2. Mathematically this can be described as the selected pattern
being y, and all previously added patterns added to the block is x1..xd. The condition
for a containment error to occur would then be y ≤ x1 ∪ ... ∪ xd, y 6= x1..xd. This
probability is, as opposed to the collision-probability, highly dependent on the actual
construction of the patterns.

10

2. Theory

Figure 2.2: Above is an example of a possible containment error
in the pattern design. Consider the case where x and y have been
entered in the filter. Should any new item hash to pattern z then
this will result in a false positive since z ≤ x ∪ y. Also, note that
this is not the only possible error in this design since both x ≤ z∪y
and y ≤ x ∪ z.

2.2.3 A conjecture regarding neighbouring levels
As mentioned previously, the traditional approach to both regular Bloom filters and
BBFBPs is to use k hash functions or construct patterns of exact Hamming weight k
with sampling, and choose from these with a uniform distribution. However, Dam-
aschke and Schliep indicated that this should not necessarily produce optimal FPR
[9]. Rather, they provide the following result:

Consider probability distributions on the set of bit vectors of length n. We say
that a distribution dominates another distribution if, when the vectors are used as
patterns in a BBFBP, the first one results in lower or equal FPR. Damaschke and
Schliep show that the following Theorem holds:

Theorem 2.1. For every m, every probability distribution on the m-bit vectors is
dominated by some probability distribution whose support is a weak antichain.

A weak antichain refers to a distribution of vectors where at least 1 bit differ between Correct antichain
definition
Correct antichain
definition

vectors, i:e the pairwise minimal Hamming distance is 1. While not conclusive, this
indicates that the support which obtains optimal FPR has a combination of patterns
on two neighbouring levels, k and k + 1 [9].

2.3 Group testing
Given the connection found between pattern design and non-adaptive group testing,
it is necessary to give a small introduction to the field of group testing. The section
begins by outlining the theory of non-adaptive group testing before presenting the
relevance of this field to the design of optimal patterns in a BBFBP.

Group testing has the goal of finding the defective individuals in a population while
doing fewer tests than the total population count. This search is performed by
grouping individuals together and testing multiple individuals using the same test.

11

2. Theory

The problem was initially formulated during World War 2 as an attempt to minimise
the number of tests required to determine which individuals had syphilis [14].
Today group testing is used in a multitude of different applications such as DNA
sequencing [15] and data compression [16], to name a few. The main idea is this:
assign the entire population into groups, where an individual can be a member of
several different groups. Then each group is tested as a single unit. Thus if any
item in the group is defective, then the entire group will be reported as such, and
it is a candidate for further study to find the defective element in this much smaller
group. Conversely, if the group is reported as non-defective, then it is assured that
none of the items in the group is defective. As an example, consider the application
of syphilis detection. Instead of testing each soldiers sample independently, a sub-
stantial amount of soldiers sample could be mixed into one sample and tested. If the
sample produced a negative result, then it is assured that no soldier in that group
has syphilis. This relatively simple approach, somewhat similar to binary search,
can significantly reduce the number of tests needed to locate defect items in a set
or population.

2.3.1 Non-adaptive group testing
Group testing can be either adaptive or non-adaptive, with adaptive group testing
running different tests depending on the results of previous tests while non-adaptive
group testing, on the other hand, has a fixed set of tests regardless of the outcome of
any test. Non-adaptive group testing is highly parallelizable, which enables signifi-
cant computational gains compared to adaptive group testing. From an application
standpoint, it also has the advantage that all groups are predetermined which can
ease the logistics of the tests. Constructing a non-adaptive group test can be ap-
proached by constructing a binary matrix of dimensions m x n [17]. In this case,
each row in the matrix represents a test and each column an item. If there is a 1 in
the i-th row and j-th column, then the j-th item participates in the i-th test. The
outcome can then be represented as a 0-1 vector of size m, where 1 denotes that the
test contains at least one defective, otherwise 0.

The set of defective individuals is denoted D. A requirement for a testing matrix is
that if D1 6= D2 then the outcome vector should be different, meaning that no com-
bination of tests "shadow" another test (column) in the matrix. If |D| = d then such
a matrix where no y ≤ x1∪ ...∪xd (with y distinct from x1..xd) is called a d-disjunct
matrix. If such a containment happens with a probability at most ε then the matrix
is called (d, ε)− disjunct, or almost disjunct. Note that a (d, 0)− disjunct matrix
is equivalent to a d − disjunct matrix. This relaxation is sometimes referred to as
two-stage group testing, as reported defectives are typically reexamined one more
time using some other algorithm to make sure that they are labelled correctly. This
form of testing can, in turn, reduce the number of tests needed to just a constant
factor above the information-theoretical minimum [18]. If the matrix is d−disjunct
the procedure of labelling items is easy. Since a defect item will never be a part of a
negative test, all items that were part of a negative test are removed as non-defective,
and the remaining d items are then labeled as the defective ones. Informally, this

12

2. Theory

Figure 2.3: Pictured is an example binary matrix used for non-
adaptive group testing. Since the property y 6≤ x1 ∪ x2, y 6= x1, x2
holds for all columns the matrix is 2-disjunct, and can as such
identify 2 defect items from the 12 items in 9 tests.

can be summarised as follows: A d-disjunct matrix of dimensions mxn allows us to
identify d defect items from a population of n items with m tests. The same goes for
a (d, ε)-disjunct matrix, but with probability 1−ε of success, which can significantly
reduce the number of tests needed (m).

A number of different algorithms have been developed to construct these types of
non-adaptive tests such as the randomised algorithm COMP [19] and its extension
DD [20] for two-stage group testing, and several random and deterministic designs for
d-disjunct-matrices [17, 18, 21]. However, for almost disjunct matrices deterministic
designs are generally lacking.

2.3.2 Relationship to Bloom filters
The similarities between group testing matrices and Bloom filters have been no-
ticed previously in literature [18], but it was recently proven mathematically to be
connected [9]. Damaschke and Schliep states that any (d, ε) − disjunct matrix of
dimensions m x n enables a BBFBP with m bits and n patterns, where the FPR is
bounded by

1− (1− 1/n)d + (1− 1/n)dε

if the distribution over the set of bit patterns is uniform. What this entails is
that constructing optimal bit patterns is equivalent to constructing optimal (d, ε)−
disjunct matrices, with ε being directly equivalent to the containment probability..
However, they also note that the space requirements for a completely d− disjunct
matrix, which would eliminate the containment probability, quickly become unsuit-
able as d grows. A workable alternative is (d, ε)−disjunct matrices since they grow

13

2. Theory

much slower in terms of tests (m).

There are however other types of matrices with even better properties for the use in
BBFBP. When a so called (d, f)−resolvable matrix’s columns are used as patterns,
the FPR decreases for growing n [9]. A (d, f)− resolvable matrix is a special type
of (d, ε)-disjunct matrix where y ≤ x1 ∪ ... ∪ xd holds for fewer than f columns y
that are different from all xi. Coincidentally these types of group testing matrices
when translated to patterns for BBFBP are exactly equivalent to the standard way
of generating patterns [18].

Using a (d, ε)− disjunct matrix to create the patterns in a BBFBP simultaneously
makes it easier to reason about FPR. For example, consider a small example of a
filter with m = 9, n = 12 and using the patterns from Figure 2.3. Since the pattern
design is 2-disjunct, we can store up to two items in the filter without any risk of
containment. This comes from the simple fact that no union of two columns (i:e
insertion of two items in the filter) can be constructed so that y 6≤ x1∪x2, y 6= x1, x2,
When testing an item not already stored we thus only risk collision errors.

2.4 Group testing algorithms
Since it is now known that patterns for a BBFBP can be formed from a non-adaptive
group testing matrix, it is important to evaluate the standard way of constructing
the patterns with other pre-existing algorithms for almost disjunct matrices. This
section outlines selected algorithms for constructing these matrices.

While deterministic constructions of (d, ε)-disjunct matrices usually come from codes,
algorithms using a random construction typically belongs to one of four categories
[17]:

1. RID = Random Incidence Design, each index is set to 1 with some probability
2. RkSD = Random k-set Design, each item is a participant in k tests.
3. RDkSD = Random Distinct k-set Design, same as RkSD but each column is

distinct.
4. RrSD = Random r−size Design, each test contains r items.

The algorithms presented below are selected to give a fair representation of each of
these categories. We have opted not to consider matrices from codes since they often
require the user to look up existing codes with good length m, which is unsuitable
for data structures which should be much more dynamic.

2.4.1 COMP - Combinatorial Orthogonal Matching Pursuit
The COMP-algorithm is one of the most widely used algorithms for generating
group testing matrices and a good representative of a RID. This popularity can
be attributed to its simple, and completely parallel implementation. Originally
proposed by Chan et al. [19], the algorithm works by setting each index in the

14

2. Theory

matrix to 1 with probability 1/d. In order to accommodate the block-structure of
BBFBPs the algorithm is slightly altered and the probability of setting an index is
d
b
instead of 1

d
. Hence this modification assumes that there is an equal spread of

items over the blocks, which can be achieved by collision resolution mechanisms.

Algorithm 1 Combinatorial Orthogonal Matching Pursuit
1: M := m x n matrix
2: set ever index in M to 1 with probability b

d
, 0 otherwise

3: return M
4: End

The above algorithm is a relatively simple way of generating a (d, ε) − disjunct
matrix. However, it is useful to analyse its properties shortly. The first thing to
note is the expected Hamming weight of a vector. Calculating the standard pattern
designs Hamming weight k in the traditional way [3] yields:

k = mb

d
∗ ln(2)⇒ d = mb ∗ ln(2)

k
(2.1)

We denote by X the Hamming weight of any pattern created by this algorithm.
This gives in a few steps:

E[X] = m ∗ b
d

= m ∗ b
m∗ln(2)

k

= 1
ln(2) ∗ k ≈ 1.44k (2.2)

However, we note from [9] that the suggested distribution of patterns yields vectors
with a Hamming weight of either k or k+1. It is also well known from Bloom filters
that k is the optimal number of hashes. Hence this algorithm will lead to a higher
weight than the suggested, which will lead to the filter more quickly filling up with
1’s. This, in turn, will likely lead to a higher rate of containment compared to the
standard approach, which is described in more detail below.

2.4.2 CHE - Cache- Hash- efficient
This design is the standard pattern design suggested in [13], as well as the design
for resolvable matrices from [18]. The algorithm is also fairly simple: construct each
column of the matrix so that their Hamming weight is exactly k by means of random
sampling, i.i.d of the rest of the matrix.

This approach of constructing a matrix also closely resembles the random k-sets
design proposed in [22], as well as being an excellent representation of a RkSD. It is
also worth to note the similarities between the fixed Hamming weight patterns and
non-adaptive schemes from constant weight codes [23]. While this seems promising
we note that random vectors with fixed Hamming weight cannot be optimal. This
can be shown by a small counterexample with m = 2 and d = 2 [9]. However since
this is the current standard it is included for comparative purposes.

15

2. Theory

Algorithm 2 Cache- Hash- efficient
M := m x n matrix

2: for i = 1 to n do
V := vector with k bits set to 1, rest m− k bits 0.

4: M[:, i] = scramble(V)
return M

6: End

2.4.3 RrSD - A random r-size design
The random r-size design constructs a matrix by, as previously mentioned, initialis-
ing each row with exact Hamming weight r independently of all other rows. While
RrSD is typically only used when the amount of individuals in a given test is limited,
it is still interesting to see how this design behaves concerning the FPR. It has also
been noted previously in the literature that these designs tend to under-perform
compared to RkSD or RDkSD [17]. However, the performance may change when d
grows. Sadly, this type of design does not immediately give any insight into how
patterns can be constructed at run-time since their construction is row-based and
not column-based.

Since we know from [9] that vectors of weight k construct high-performing matrices,
we attempt to set a value r (the weight of a row) so that the expected Hamming
weight of each column is k. While this seems to be just a RkSD with extra steps,
we note that this is just the expected weight, and that vectors can thus end up on
two, or more, different levels. As such, this algorithm may help to gain support
for/against the conjecture for neighbourhood levels in the vectors.

Let X denote the expected Hamming weight of a column. To get E[X] = k, each
index must be set to 1 with probability k

m
. Given the calculation for k = mb

d
∗ ln(2),

we get a probability needed for an index as:

p = b ∗ log(2)
d

(2.3)

Then it is easy to see that to get this probability we need to have

r = p ∗ n = b ∗ n ∗ log(2)
d

(2.4)

The algorithm thus becomes:

Algorithm 3 Random r-size design
M := m x n matrix

2: r := b∗n∗log(2)
d

for i = 1 to m do
4: V := vector with r bits set to 1, rest n− r bits 0.

M[i] = scramble(V)
6: return M

End

16

2. Theory

2.4.4 CRS - Chinese Remainder Sieve
This method of deterministic generation of patterns is taken from the Chinese re-
mainder sieve introduced in [18]. The Chinese Remainder Sieve is a deterministic
method for constructing d-disjunct matrices. While it does not perfectly suit our
needs since it is designed for small values of d, it might still be useful in special cases
for BBFBPs.

The original construction goes as follows and depends on the value d for which
we want the algorithm to be d-disjunct: Choose a set of unique primes (or powers
thereof) so that their product is above nd using some sieve. For each prime pi chosen
in this manner, construct a submatrix of dimensions pi x n with all entries set to 0.
For each column in each submatrix, set the index to 1 so that the column number
modulo the prime is zero. When this is done for each matrix, construct the final
matrix by arbitrarily concatenating the submatrices vertically.

A thing to note here is the difference from previous algorithms in that this algorithm
constructs a matrix where m is heavily dependent on n, and the assumption is that
n is known. Since our case consists of a known m we alter the algorithm somewhat
to the following construction:

Algorithm 4 Chinese Remainder Sieve
M := m x n matrix with zero at every index

2: Choose a number of powers of primes pi so that ∑k
i=1 p

ei
i = m

for i = 1 to k do
4: for x = 0 to pi − 1 do

for j = 0 to n− 1 do
6: if x == j%pi then M[x+∑i−1

l=1 p
el
l][j] = 1

return M
8: End

Analyzing the performance of this algorithm is interesting in regards to how d-
disjunct matrices behave as patterns for higher values of d than they were designed
for. However it is valuable to notice that the algorithm produces vectors with
Hamming weight equal to the number of powers of primes chosen, and these are
typically selected by some sieve. Hence the number of powers of primes grows quite
large for even modestly sized filters, which will result in poor performance since it
certainly will be larger than the optimal value k. This is not a new observation on our
part: The EGH-filter, which used this algorithm at run-time instead of computing
hash-functions, has noticeably deteriorated performance as d grows.

17

2. Theory

2.5 Binary constant-weight codes
Constant-weight codes and the special instance binary constant-weight codes are an
Error Correcting Code (ECC) design known from coding theory. ECC is a way to
code data redundantly so that errors can be found, and in some cases also corrected.
This redundancy enables it to be transmitted over, for example, noisy channels which
might introduce errors in the message. While this thesis does not delve into coding
theory, the properties of codes have recently been used for analysing almost disjunct
matrices, and as such the terminology is of importance to introduce.

A (M,N, h, w)-constant-weight binary code C is a set of N binary vectors of size
M with a pairwise Hamming distance of at least h and Hamming weight w. These
types of codes are of particular interest in specific areas of coding theory. Here we
use h for the Hamming distance instead of the traditional representation d to avoid
confusion with the Bloom filter terminology. A heavily researched topic is how to
construct these codes to detect as many errors as possible without adding too much
redundancy, see for example [24, 25].

The relationship between binary codes and non-adaptive group testing were discov-
ered quite early where the authors created a d-disjunct matrix from a code C by
using each code-word as a column in a testing matrix [23]. Other examples of these
constructions come from Porat Et al. [26] by the use of Linear ECC, among others.
However just recently explicit deterministic constructions of (d, ε)-disjunct matrices
from ECC where presented in [27, 28] where the parameters can be estimated by
analysing the properties of the codes. This new-found construction makes constant-
weight codes an essential topic for analysing pattern designs which generate vectors
with a fixed weight, even if we will not delve into their "real" application here.

18

3
Method

In this section, a short description of the evaluation methods will be described.
This content includes how FPR is calculated for both the neighbourhood levels and
analysis of pattern designs. It also contains a brief text of how the real-world data
is processed for testing.

3.1 Experiment on precomputed patterns
To get an estimate of the FPR of a pattern design the following procedure is per-
formed:

1. Generate patterns using the designated pattern design.
2. Enter d items into the filter.
3. Select a fixed number of patterns and test these for entry in the filter. Report

all positive matches as false positives.

For each pattern design this procedure is repeated several times to make sure that
the reported FPR is an average of multiple sets of patterns. Estimations of the FPR
consists of 100000 tests for each parameter combination to get an accurate number.
When experiments are conducted on real data, only datapoints not already entered
into the filter contributes to the FPR.

3.1.1 Theoretical testing
For the theoretical testing, a random number generator is used. We seed a Mersenne-
twister [29] with the current Unix time which is then used as the source for generating
random numbers. Whenever we select a random number it is used as an index for
selecting a pattern or selecting a block. Thus, for insertion of a pattern, we generate
a random number that is in the range of the number of patterns and insert the
corresponding pattern into the filter. The same goes for testing for membership in
the filter, a random number is generated to select a block, and then another random
number selects a pattern. The block is then checked against the corresponding
pattern for membership. If a random number is generated to the exact number a
stored item was generated to we consider this as a collision-error and also report it
as a false positive.

19

3. Method

3.1.2 DNA-sequence testing
To make sure that the testing with random numbers does not somehow affect our
results we also test using real-world data from DNA-sequences. These sequences
have to be converted to numbers before the filter can use them. The DNA-sequences
are originally represented by long strings consisting of adenine (A), cytosine (C),
guanine (G) and thymine (T). In an ideal scenario only these letters would occur,
but due to uncertainty in the reads other letters can also occur. Every letter in
a string is converted into a uniquely corresponding binary number, which when
completed results in a binary string. This binary string is then converted to decimal
and multiplied by a prime before used in the testing system.

3.1.3 Neighbourhood level analysis
A separate method is used to study the conjecture regarding neighbourhood levels
[9], with the difference being that no patterns are stored. Instead, a random pattern
with level k or k+1 is constructed with probability p and 1−p respectively whenever
an insertion or membership test is performed and then inserted or tested against
the filter. This testing environment allows us to study the dynamics as both k and
p changes and how it impacts the FPR.

20

4
Results

In this chapter we give a comparison of FPR for the presented group testing designs
when used as patterns in a BBFBP. We also propose a new algorithm for pattern
generation based on the known properties of high performing pattern designs and
compare its performance to the existing algorithms. This chapter also presents
the results from the neighbourhood level analysis together with two algorithms for
run-time construction of patterns.

4.1 Experimental outline
All experiments were performed using 3 cores of an Intel Core i5-5200U CPU run-
ning at 2.20GHz with 64 Bytes cache lines and L2-cache size of 256K. This hardware
gives us the ability to store a filter of up to 512 blocks on the L1 cache with 4096
patterns stored on the L2 cache. However, experiments are performed on values
higher than these to get accurate results for larger instances. The vector size of
both patterns and blocks of the filter is set to 512 bits.

Since each pattern design is redone multiple times for accuracy, we have opted to
preselect the primes needed for the CRS-algorithm. This simplification is done in
both an effort to save valuable computation time and to ensure that the performance
of the algorithms is not hindered by a poorly implemented algorithm selecting the
primes.

4.2 MCRS - Modified Chinese Remainder Sieve
Motivated by the knowledge that vectors with a fixed Hamming weight k have a
good chance of producing a (d, f)-resolvable matrix with good properties [18], we
propose a modification to the Chinese Remainder Sieve Algorithm to produce vec-
tors with an exact Hamming weight k.

The construction goes as follows: we begin by selecting exactly k unique primes (or
powers thereof) so that their sum is as close as possible, but below, our value m.
The value k is set to m ∗ b/d ∗ ln(2) as in the CHE-algorithm. For each power of
prime pi chosen we construct a submatrix with dimensions pi x n, consisting entirely
of zeroes. For each column in such a submatrix, enumerated by their index i, we set
the value to 1 at the index i%pi. When this procedure is finished for every column,
we vertically concatenate the matrices in an arbitrary order. This entire procedure

21

4. Results

can of course in practice be performed in a single pass for every submatrix as the
pseudocode outlines.

Given the algorithms construction, each vector will get a Hamming weight equal to
the number of primes chosen. From [18] we know that a matrix constructed using
the Chinese Remainder Sieve is d-disjunct up to d for values chosen so that:∏

p
ej

j ≥ nd (4.1)
Hence for fixed values of m and n, as in our case, we seek to chose exactly k powers
of primes as to maximize ∏k

j=1 p
ej

j but still be constrained such that ∑k
j=1 p

ej

j ≤ m.
If the product of these powers of primes is large, it will allow a higher value for d,
which improves the disjunct properties of the matrix. This property gives a matrix
construction where for small values d the matrix will only result in collision errors,
and for larger d its performance should be equivalent to or better than the resolvable
matrices introduced in [18]. We note here the relaxation that the powers of primes
do not necessarily need to sum to exactly m, it is enough that the sum is sufficiently
close. However, a downside to this algorithm is that it might be impossible to choose
k primes for all parameters. Consider for example a filter of size m = 512 and d = 2.
Then k = 512/2 ∗ ln(2) ≈ 177, which will be impossible to select. In this case, the
algorithm will have to suffice with the largest number of primes it can accommodate
without their sum exceeding m.

Algorithm 5 Modified Chinese Remainder Sieve
M := m x n matrix with zero at every index

2: Choose k powers of primes pi so that ∑k
i=1 p

ei
i ≤ m, where each pi is unique.

for i = 1 to k do
4: for x = 0 to pi − 1 do

for j = 0 to n− 1 do
6: if x == j%pi then M[x+∑i−1

l=1 p
el
l][j] = 1

return M
8: End

A strength of both this algorithm and the regular CRS-algorithm is that their con-
struction is deterministic: given the stored primes a column in the matrix can be
reproduced from just a single seed value over the universe n. A description of a
run-time construction using this fact will appear in the upcoming section.

4.3 Run-time pattern construction
An increased number of patterns typically result in a lower FPR since the collision
probability decreases. Thus, we are also interested in the possibility of generating
patterns at run-time with a low amount of auxiliary memory, while still gaining per-
formance compared to computing k hash functions. Informally described: Is there
a deterministic approach to pattern generation which can outperform the standard
Bloom filter implementation? Here we identify three key aspects:

22

4. Results

1. Performance should be better or equal to a regular Blocked Bloom filter in
terms of FPR

2. Memory usage should be significantly lower than a BBFBP.
3. If the performance is equal to a standard Bloom filter the computation time

must be better or equivalent to a standard Bloom filter.

While this question has frequently been approached in the literature previously,
it gains new relevance with the knowledge that optimal pattern construction is
equivalent to good non-adaptive matrix design. Hence it is not impossible that the
union of the fields of both group testing and Bloom filter analysis can produce a
stronger algorithm. In the following subsections, we describe two basic algorithms
for this type of run-time construction.

4.3.1 Linear Congruential Generators
Linear Congruential Generator (LCG) is one of the oldest ways of generating pseudo-
random numbers from some seeded value and is therefore a prime target for study,
using the generated hashes as seed values. LCG also has the added advantage that
it can construct a column independent from the rest of the matrix, thus potentially
resulting in better performance. LCG are frequently used in a myriad of different
contexts due to their simple implementation and seemingly good random spread.
Given an item to insert or test we can calculate the pattern in the following manner:
Of course to get a good spread across the indexes of a pattern it is important to

Algorithm 6 LCG-pattern generation
k := ln(2) ∗m/d

2: b := Vector with m bits set to 0.
seed := hash(item)

4: for i = 1 to k do
seed = (a ∗ seed+ c)%mod

6: b[seed %m] = 1
return b

8: End

choose the values for a, c and mod carefully. Poorly chosen values can lead to un-
wanted clustering of 1’s in the vectors, leading to a higher FPR. The choice of initial
parameters are according to [30] with c = 0, giving us a Lehmer random number
generator. These parameters are used in, for example, the c++ minst_random-
function and Haskells repa-library, among others.

We note here that the general complexity of designing a pattern in this fashion
requires 2 ∗ k modulo operations, as well as several multiplications. Computing
the indices can sadly not be performed in parallel since these indices are heavily
dependent on each other. Thus for this approach to be practical, we require it to
have significantly lower FPR than a regular Bloom filter.

23

4. Results

4.3.2 Chinese remainder methods revisited
As mentioned in the previous section, it is possible to reconstruct columns of a
(d,ε)-disjunct matrix independently from a seed value over the universe n using any
of the two algorithms based on the Chinese remainder sieve presented pre. However
here the value n is not constrained by the cache-size but of the function [18]:∏

p
ej

j ≥ nd (4.2)

This deterministic construction is also the one used in the recent EGH-filter [12],
with the sole difference is that here the number of powers of primes are chosen to be
exactly k as in the MCRS-algorithm. To maximise the size of the universe we set
d = 1, knowing that when using resolvable matrices as patterns the FPR decreases
for growing n [9]. Hence we want such a large universe as possible. Now, given a set
of k powers of primes, we can construct a vector of Hamming weight k using k + 1
modulo operations and one hash function. The construction goes as follows:

Algorithm 7 MCRS-pattern generation
n = ∏k

i=1 p
ei
i

2: b := Vector with m bits set to 0.
primes := the set of k primes.

4: seed := hash(item) % n
for i = 1 to k do

6: index = seed % primes[i] + ∑i−1
j=1 primes[j]

b[index] = 1
8: return b

End

The advantages of this method compared to the LCG-generator mainly comes from
the computations: given the same value for k we only need to compute about
half the modulo operations needed for the LCG-generator. Another difference is
in the Hamming weight since the CRS-generators do not generate patterns with
replacement, this will result in a slightly higher average Hamming weight for the
CRS-algorithm. We should also note that, since the universe is constrained by the
product of the chosen primes, for small values of k the universe will be smaller
than for large values, meaning that the collision probability goes up. The number of
available primes is also constrained bym as outlined in the description of the MCRS-
algorithm, and hence the FPR will probably be worse for small d. We expect to see
differences between these two methods in both performance and FPR as d increases.

24

4. Results

4.4 Neighbourhood level result
The results of the neighbourhood level experiments can be seen below. From the
graphs it can clearly be observed that using any mixture of two different levels only
results in higher FPR for all problem instances.

Figure 4.1: FPR for neighbourhood levels of different p as a func-
tion of d. m=512

These results are surprising, given the knowledge that optimal FPR is obtained by
a probability distribution of the n vectors which support is a weak antichain. Hence
these graphs will be discussed in more detail in the upcoming chapter. The local
peaks in the FPR at around 120 items comes from rounding the value of k, leading
to sub-optimal performance.

25

4. Results

4.5 FPR comparisons for group testing algorithms
In this section we compare existing group testing designs to one another in terms of
the FPR.

4.5.1 FPR for a single block
Figure 4.2 shows how the patterns behave for a single block. Since a BBFBP with
just a single block will obviously have all items stored in the same block, we can get
a good overview for how the pattern designs fare in comparison to each other.

(a) n = 1500 (b) n = 1500

(c) n = 3000 (d) n = 3000

Figure 4.2: FPR for a single block for various n. m=512

In the graph above we see the resulting FPR for the designs discussed in chapter 3
for different amounts of patterns. Figure (a) and (c) details how the designs behave
for small amounts of stored items, Figure (b) and (d) details for larger amounts of
insertions. This divide is motivated by the large divergence of the CRS-algorithm
which would otherwise dwarf the differences for small values for d. These amounts of
tested patterns are also not unreasonably low: 3000 patterns is enough to almost fill
the entire L2 cache of a consumer grade laptop, and 1500 patterns may be plausible
to fit on the L1 cache for higher grade computers. It is interesting to note that the

26

4. Results

MCRS-algorithm results in lower FPR than all other approaches, especially for a
small amount of patterns. Hence the this algorithm looks particularly good, at least
for such a small filter.

4.5.2 FPR for multiple blocks

We study how the pattern fare at larger Bloom filter with a higher amount of items
inserted. By introducing multiple blocks we can also see how the pattern designs
fare when the amount of items is not guaranteed to be equal in each block.

(a) n = 1500 (b) n = 1500

(c) n = 4096 (d) n = 4096

Figure 4.3: FPR for large filters for various n. m=512, b=512

While the above example is still fairly small, with the filter only containing 262144
bits, it is still indicative that the performance of the designs scale well as the number
of blocks grow, with the MCRS-algorithm being slightly better than the standard
as the number of items in the filter increases. However we observe that for both a
single- and multiple blocks the difference between the CHE- and MCRS-algorithm
in terms of FPR decreases as n grows. This can also be seen in Figure 4.4.

27

4. Results

(a) d = 100 b = 1 (b) d = 51200, b = 512

(a) d = 60 b = 1 (b) d = 30750, b = 512

Figure 4.4: FPR for patterns as n increases, m = 512

The above FPR comparison for growing n closely resembles how the collision prob-
ability for patterns behaves. Each designs difference in FPR seems to come from
the different containment values, which adds a constant factor to each designs per-
formance. Hence, these result indicates that the containment probability does not
seem to worsen as n increases which is an interesting proposition.

28

4. Results

4.5.3 FPR for real-world data
In realistic applications it is not at all certain that the items will be so uniformly
distributed among the blocks as they tend to be from a random value generator. For
real world applications, the distribution over the blocks tends to leave some blocks
overcrowded while others empty, thus affecting the FPR [13]. Below we see how the
FPR varies for real-world data, for both single and multiple blocks.

(a) n = 1511, b = 1 (b) n = 1511, b = 1

(a) n = 4096 b = 1 (b) n = 1511, b = 1

Figure 4.5: FPR for patterns of various n and b, m = 512. The
data is taken from the Babesia Bovis single cell parasite genome.

Some immediate observations of interest are the much higher deviation compared
to theoretical data. Again, this is not surprising, but the above graphs also show
that the relative performance of the group testing designs are about the same for
realistic and theoretical data.

29

4. Results

4.6 FPR comparison for run-time generated pat-
terns

The resulting FPR for the LCG- and MCRS-generators can be seen below. Since
we are using a simple LCG scheme for the experiments we set the m and b values to
primes to ensure a better spread over the entire universe. The graph is divided into
two to more accurately display the differences in FPR for small values of d which
would otherwise be dwarfed when d grows.

Figure 4.6: Comparison between the theoretical LCG-generated,
MCRS-generated and the theoretical Bloom filter as a function of
the number of items stored in the filter. m = 509, b = 1. The values
used for the LCG-generator are modulus = 2147483647, multiplier
= 48271, increment = 0. The primes are chosen in the same manner
as in the MCRS-algorithm

While the LCG-generator is consistently equal in performance to the regular BloomRedo graphs with
better accuracy
and actual filter

Redo graphs with
better accuracy
and actual filter filter, the MCRS-algorithm is more interesting: It performs equally well for large

amounts of insertions, i:e a low bit-per-element ratio, but worse for low amounts
of insertions. This behaviour will be described in greater detail in the upcoming
chapter. While not shown here, the LCG-generators performance quickly deterio-
rates if the vector length m is not prime, making the generator unsuitable if correct
bitlength is not chosen. However, for realistic application there is often a close
enough prime so that this is not an issue.

30

5
Discussion

In this chapter the results obtained and presented in the following chapter will be
discussed in greater detail. It also contains basic analysis of the new algorithm and
concludes with short segment regarding open questions posed by the found results.

5.1 Neighbourhood levels
In this section we will discuss our finding regarding the neighbourhood levels and
their significance.

We note that, as observed in the previous chapter, our results indicate no benefits
on mixing patterns on different levels. In fact, the FPR increases continuously for
each new increase in probability of having a higher level pattern. However we yet
again note from [9] that the exact level k vectors cannot result in optimal FPR.
Hence these results are surprising at first glance, and warrant further inspection.

5.2 Group testing algorithm results
The baseline that each algorithm is compared against is the CHE algorithm since it
is the standard approach of pattern construction. As such, looking at the results in
Figure 4.6 there is really only one algorithm that has a better FPR than the CHE al-
gorithm: the MCRS algorithm. Typically for all the other algorithms we have found
that the level k of their generated patterns is higher than the optimal k, which has
a huge effect on FPR. Because of this we only discuss the MCRS algorithm further.

For small amounts of patterns such as n = 1500, the MCRS-algorithm consistently
performs better than the CHE-algorithm. The difference between the two algorithms
becomes even greater as the number of stored items d increases. However, for large
amount of patterns, the difference decreases to finally disappear completely, making
the two algorithms equal. This can be seen for designs up to 13000 patterns, which
is three times the size of the L2 cache on the simulation hardware. Of course these
values are quite dependent on the chosen parameters, but are still indicative of the
general performance.

One could argue however that the improvements made by the MCRS-algorithm are
not sufficiently large to be useful since the improvements are mainly at display when
the bits per element ratio is low and the number of patterns are relatively small.

31

5. Discussion

However apart from the improved FPR, the MCRS-algorithm has other beneficial
properties which comes from its determinism.

Firstly, there is a benefit in the construction-phase since no randomness is required.
It is well known that true randomness is hard to find and is, more importantly, a
limited resource. Hence if the BBFBP is used in a context where randomness already
is a sparse resource it might be expensive to actually construct the patterns when
doing it with the traditional approach. Secondly, the determinism gives the user a
sense of security since the matrix will always look the same for equal parameters.
For CHE it is entirely possible to generate a set of patterns that result in a very
high FPR compared to the average. When using the MCRS-algorithm the user is
given a guarantee that poor performance of the structure is not entirely based on
bad luck at initialization.

Another important point is that it is not necessarily useful to fill the entire L2 cache
with patterns. Putze Et al. suggests that when fetching a pattern from a filled
cache-memory it might result in a cache-error which is equivalent to a cache-miss
in computation time [13]. They go on to argue that to gain any noticeable speed
benefits from using BBFBP it is not suitable to fill the entire L2 cache but rather
use slightly less patterns. In these cases the MCRS-algorithm is a good choice since
it, as previously stated, has better performance compared to the CHE-algorithm
when n is small.

5.3 Run-time generated patterns
This section is dedicated to a discussion regarding the run-time algorithms and their
respective properties. While none of the proposed algorithms achieved better per-
formance than the regular Bloom filter, they are some interesting observations that
are of interest.

That the LCG- and MCRS-generators have equal performance is not surprising
for large insertions: In some sense they are representative of the CHE- and MCRS-
algorithm for infinite amounts of patterns. While LCG-generator does not guarantee
that each vector has a fixed level k, this should be the case for most vectors, thus
making it a suitable representation of the CHE-algorithm for comparison against
the MCRS-algorithm. As we have already discussed the performance of these two
algorithms converges when n grows, and for almost infinite number of patterns the
collision probability all but disappears. This leaves only the containment rate for
vectors with Hamming weight k and as such the performance should be equivalent
to a regular Bloom filter.

While unsurprising, since the LCG-filter did not achieve any better performance it
can safely be discarded as a Bloom filter alternative. This comes from the lack of
parallelism available in the algorithm, since each new index set to 1 is dependent on
the previous being already set. In a classic Bloom filter each index can be computed
completely in parallel and as such will be k times fast than the LCG-filter, especially

32

5. Discussion

if its hardware-implemented.

The MCRS-generator however is of greater interest. Like the classic Bloom filter it
can compute each index completely in parallel after the initial hash-function. These
indices are also calculated by simple modulo operations. Compared to the EGH-
filter it computes less of these operations, and the EGH-filter is already noticed to be
faster than Bloom filters that use hashing heavier than simple modulo-hashing [12].
Hence the MCRS-generator will be at least equivalent to a Bloom filter in speed, and
with equal practical performance for large values of d it is certainly an interesting
candidate for further study. Sadly however it has worse performance for small
values of d, which may result in it being unsuitable for certain applications. This
behaviour comes from how the 1’s are placed in a vector by the MCRS-algorithm.
The algorithm constrains each 1 to a small subset of all the available indices. As an
example if the first prime chosen is 3 then the first 1 can only be placed somewhere
among the three first indices. If we than have a value d above 3, then the probability
that each of the three first indices is set to 1 approaches 1 as d increases, making
the first 1 virtually unnecessary for querying membership. In practice this would
then entail that the level of the pattern is not equal to what would be optimal to
use for low FPR.

5.4 Analysis of the MCRS-algorithm
Since the MCRS-algorithm works well both for pregenerated- and run-time gener-
ated patterns we dedicate this section to analyzing its properties. For both analyzes,
we consider a case where we select k = ||m

d
∗ ln 2|| powers of primes p1..pk.

5.4.1 Run-time generation
To analyze the properties when the patterns are generated at run-time is an easier
task and is therefore put first. We now calculate the probability that an index in
our generated pattern is already set to 1 by some previous insertion.

Given the construction of the algorithm, the first index of a pattern will exist some-
where in the p1 first indices. Hence after d insertions, the probability that this index
is 1 is:

1− (1− 1
p1

)d

The second 1 will exist in the range p1 to p2 + p1 and so on. The probability that a
pattern is contained in the filter already is then:

k∏
i=1

(1− (1− 1
pi

)d)

This equation again reaffirms our aim to have a maximum product of primes for the
algorithm, which is trivially obtained by taking k primes (or powers thereof) close to

33

5. Discussion

each other. In general, it is not necessary to choose powers of primes for low values
of m since the gap between low-number primes is usually small. However, when m
grows it can be challenging to find primes sufficiently close to each other since the
Prime number theorem states that the average gap between primes increases as the
universe, in our case the value m, grows. In these cases it is often beneficial to take
some powers of primes instead, resulting in the selected values being closer, giving
us a higher product. The equation also illustrates our previous point regarding that
some submatrices will be dense. If d > pk then that index will be less and less useful
as d increases to lower the FPR.

5.4.2 Preconstructed patterns
We begin our analysis by a specific case of the matrix construction before moving
into a more general proof. But first we give a timecomplexity for constructing the
patterns.

Proposition 5.0.1. Given that the primes are selected the construction of the
MCRS-matrix runs in O(kn).

Proof. For each column in the matrix k 1’s are inserted by performing k modulo
operations. For n columns this leads to a complexity of O(kn).

This relatively low complexity indicates that the major time sink when initializing
a BBFBP with this algorithm comes from selecting the primes if a good algorithm
for that task is not deployed. But it also indicates that if the structure is initialized
with the primes already chosen then the initialization will be much faster than the
standard approach of sampling which requires random values. This makes it bene-
ficial to use this algorithm for example transferring the filter since only the blocks
along with the primes need to be transmitted, and the patterns can quickly be re-
constructed on the other end. It is also of note that each column can be constructed
independently and as such the matrix can be constructed entirely in parallel.

Lemma 5.1. Let p1, p2 be the two smallest primes selected by the MCRS-algorithm.
If n < p1∗p2, then the patterns constructed by the MCRS algorithm form a (m,n, 2∗
(k − 1), k)-constant-weight binary code C.

Proof. By virtue of [23], we know that a group testing matrix is equivalent to an
ECC C, with each column in the matrix being a codeword in C. A pattern in
a BBFBP is also equivalent to a column in a group testing matrix [9], therefore
it follows that a pattern in a BBFBP is equivalent to a codeword in some ECC.
Since each pattern created by the MCRS-algorithm has constant Hamming weight
it also follows that the MCRS-algorithm creates a constant weight binary code with
n codewords of length m with weight k. Now, if n < p1 ∗ p2 then the MCRS-
algorithm will construct pattern that have at most one bit set to 1 in common,
since the first time two bits will be set in common is at pattern p1 ∗ p2 due to
the fact that gcd(p1, p2) = 1. Therefore the minimum pairwise Hamming distance

34

5. Discussion

between patterns equal 2 ∗ (k − 1), and hence the MCRS-algorithm constructs a
(m,n, 2 ∗ (k − 1), k)-constant-weight binary code C.

This property of the MCRS-algorithm is important for further analysis as d grows,
however it also gives us the following insight for small values of d:

Corollary 5.1.1. Let p1, p2 be the two smallest primes selected by the MCRS-
algorithm. If n < p1 ∗ p2, then the patterns constructed by the algorithm form a
(k-1)-disjunct matrix.
Proof. This follows immediately from a theorem presented in [23] which states that
a (m,n, h, w)-constant-weight binary code gives a w−1

w−h/2 -disjunct matrix, where h in
our case equals 2 ∗ (k − 1) and w = k according to Lemma 1.

While this is interesting, it does not help us much since k is typically smaller than
d/b, at least for genomic applications. We also previously stated that we are more in-
terested in almost disjunct matrices due to their lower need for tests, so we continue
by analyzing the algorithms performance in constructing (d, ε)-disjunct matrices.
To do that we will apply a recent bound found in [], however to do that we need the
help of the following proposition:

Proposition 5.1.1. Let p1, p2 be the two smallest primes selected by the MCRS-
algorithm. If n < p1 ∗p2, then the average Hamming distance between patterns equal
2 ∗ (k + α− 1), where α = ∑k

i=1
1
pi

Proof. To come.
Using this average distance and the established properties of the algorithm as a
constant-weight binary code, we can now apply a more general bound established
in [] to approximate the containment rate for slightly higher values of d: <proof to
come>

While this case initially seems constrained since it requires n < p1 ∗p2, we note that
it is not unlikely that this is in fact the case for practical applications.

For example, the application outlined by Evangelos Georganas et al. uses Bloom
filters with a 5% FPR, translating into roughly 5 bits per element in a standard
filter [2]. Let us consider this filter as a BBFBP with m = 512 and n = 4096 and a
arbitrary amount of blocks, filling the entire L2 cache with patterns on a consumer
computer. In such a case, the number of primes selected is around k = 4 which
could result in the primes {113, 127, 131, 137}. Since the two smallest primes here
are 113 and 127 we get 113 ∗ 127 = 14351 patterns before the minimum Hamming
weight drops, which is larger than n by a significant margin. Hence all of the above
mentioned properties hold if we chose to design the patterns using the MCRS-
algorithm.

35

5. Discussion

5.5 Future work and unsolved problems
In this section we outline some aspects that we have found interesting but not had
time to pursue. This includes a rundown of some attributes of the MCRS-algorithm,
and also a discussion regrading our evaluation of run-time patterns.

5.5.1 Unsolved problems regarding the MCRS-algorithm
While the MCRS-algorithm works better than the CHE-algorithm for smaller amounts
of patterns (and is equal in performance for larger pattern-sets), the deterministic
construction raises some question whether it could be optimised further. As outlined
in the previous section, the minimal Hamming distance in an MCRS-set decrease
(together with the average Hamming distance) when the number of patterns grows.
Guided by the bounds established by Mazumdar on constant weight codes [28], we
know that an efficient design has a high average pairwise Hamming distance between
patterns, together with a high minimum Hamming distance. An approach to get
a higher distance could be to use some mixture of patterns on two neighbourhood
levels, as outlined in the conjecture found in [9]. However, this must also be done so
that the ratio between 0’s and 1’s in the filter after d insertions is still approximately
50/50 and without lowering the minimal Hamming distance. While our results did
not give any support for the conjecture for a random design (see chapter 4), we
have certain indicators that it might be usable in conjunction with the deterministic
design of the MCRS-algorithm.

The primary indicator for this is the fact that the k 1’s in a pattern generated by the
MCRS-algorithm are not uniformly distributed. In fact, the submatrix constructed
by the smallest prime while have significantly higher density than the other subma-
trices, as seen by example in Figure 5.1. While this is generally not a problem for
precomputed patterns, since the collision probability dwarfs the containment prob-
ability for values of d where this difference is apparent, this is an issue at run-time
construction as shown in the results. We can remedy this somewhat by modifying
the run-time construction. If the level k chosen results in a lowest prime pi so that
d > pi, we can decrease the level k by 1 and chose new primes. Motivating this
is the fact that this submatrix will be essentially useless to determine membership
since its density is too high, and will as such only constrain the size of the other
primes, lowering the overall FPR. By instead constructing the vectors on a lower
level we essentially check the same number of indices, but they have a larger space
in which they can exist. While this solution does lower the FPR for small d, it is
still a factor above the regular Bloom filter in terms of performance. Hence we are
wondering if a better solution to this problem exists without lowering the level of
the vectors.

Another indicator of a possible performance weakness is the constrained amount
of patterns that can be created. Our results indicate that the FPR decreases as n
grows for the MCRS-design, albeit slowly. However, the number of unique vectors
that can be generated by the MCRS-algorithm is significantly smaller than what can

36

5. Discussion

Figure 5.1: The MCRS-algorithm for m=15, n=20 with k=3. The
primes selected are 3, 5 and 7. From this example one can clearly
see that the first 3 rows have a significantly higher density than
the 7 last. The maximum number of unique patterns that can be
generated by these primes is 3*5*7 = 105. We also see that both
the average and minimal Hamming distance decreases as we add
pattern 16, which is equal to pattern 1 in two bits.

be generated by the CHE-algorithm. We illustrate this by example in Figure 5.1:
Since the primes chosen are 3, 5 and 7 the maximum amount of patterns that can be
constructed are 3*5*7=105. However, with random sampling, it would be possible
to construct

(
m
k

)
different vectors, in our case

(
15
3

)
= 455. It might be possible to

increase the number of available patterns by adding patterns on a neighbourhood
level, yet again motivated by the fact that the optimal support can be found on a
weak antichain [9], and that vectors with constant weight cannot be optimal. While
this is often not needed when using precomputed patterns since the cache size con-
strains the number of patterns that can be used, this might give improvements when
computing vectors at run-time.

A motivating factor behind further research into this is the fact that the run-time
construction of these patterns achieved equal performance to a regular Bloom filter
in practice for small bits-per-element ratios. Any improvements to this algorithm
that can also be carried over to a run-time scenario might in turn help construct a
new data structure with better performance than the regular Bloom filter.

5.5.2 Run-time construction evaluation
In our comparison between run-time constructed patterns we only considered the
FPR between generators and gave just small indications of the actual performance

37

5. Discussion

in rejection time. This is mainly due to that real-world implementation of filters can
be hardware implemented, or at least fully parallel at a filter level. Since we decided
on the FPR as the focal point our parallelism lay much higher than the individual
filter and could thus give no good values for the actual time it took to query the
filter. Hence we have no conclusive results on how efficient the pattern generators
really are in terms of computational speed. It would be interesting to see how these
fare in "real" applications, especially for the MCRS-generator.

5.5.3 The relation between patterns and blocks
While this thesis did in general only concern itself with finding a good pattern design
for a prescribed value n, there is another aspect to FPR-minimisation for BBFBPs
that we did not consider. As outlined previously, both the patterns and the blocks
need to fit on the cache for efficiency in execution for the filter. While increasing the
number of patterns reduces the collision probability, it also constrains the number
of blocks that can be hosted on the cache. Hence it may not always be beneficial
to increase n, especially if it means that we have to reduce our number of blocks,
giving in practice a smaller bit per element ratio. An open problem thus remains
what the optimal ratio of blocks to patterns are for a fixed number of insertions.
We note however that the MCRS-algorithm works comparatively better than the
CHE-algorithm for small blocks and will as such be a better choice for pattern
construction should the optimal number of patterns be small.

38

6
Conclusion

In the thesis we have analysed different group testing algorithms as patterns in
BBFBP in terms of FPR, together with investigations on how the FPR behaves for
neighbourhood levels k and k + 1 for patterns. Our main result, however, comes in
the form of a modification to the Chinese Remainder Sieve algorithm. We show that
when using the resulting matrix as patterns in a BBFBP the resulting FPR is lower
for all problem instances compared to the regular pattern design, and especially for
low amounts of patterns. The design is deterministic and can be reconstructed from
just a small amount of auxiliary memory which, apart from superior FPR, gives cer-
tainty for the user concerning performance. It also enables the filter to quickly be
transmitted by just sending the blocks together with the chosen primes. The design
works particularly well when the amount of bits per element is low which makes it
a viable alternative for genomic applications where the number of insertions is high.
While it is not yet strong enough to rival regular Bloom filters when generating
patterns at run-time, we have identified several key features of the algorithm which
could be improved upon which could result in better performance than a regular
Bloom filter.

While our results do improve the FPR for BBFBPs we also know that the new
algorithm does not construct patterns with optimal FPR. Hence this area is still
in need of continuous work to improve both the group testing algorithms and, in
turn, improving Bloom filters with bit patterns. Any improvements in this area
will lead to faster and safer data structures, and their recent prominence in the
field of bioinformatics gives ample motivation for further studies in optimising these
structures.

39

6. Conclusion

40

Bibliography

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[2] E. Georganas, S. Hofmeyr, L. Oliker, R. Egan, D. Rokhsar, A. Buluc, and
K. Yelick, “18 extreme-scale de novo genome assembly,” Exascale Scientific
Applications: Scalability and Performance Portability, p. 409, 2017.

[3] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A
survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp.
4:1–4:26, Jun. 2008.

[5] J. K. Mullin, “Optimal semijoins for distributed database systems,” IEEE
Transactions on Software Engineering, vol. 16, no. 5, pp. 558–560, 1990.

[6] R. S. Roy, D. Bhattacharya, and A. Schliep, “Turtle: Identifying
frequent k -mers with cache-efficient algorithms,” Bioinformatics, vol. 30,
no. 14, pp. 1950–1957, 2014. [Online]. Available: +http://dx.doi.org/10.1093/
bioinformatics/btu132

[7] P. Pandey, M. A. Bender, R. Johnson, R. Patro, and B. Berger, “Squeakr: an
exact and approximate k-mer counting system,” Bioinformatics, vol. 34, no. 4,
pp. 568–575, 2018.

[8] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in dna sequences
using a bloom filter,” BMC bioinformatics, vol. 12, no. 1, p. 333, 2011.

[9] P. Damaschke and A. Schliep, “An optimization problem related to bloom filters
with bit patterns,” in SOFSEM 2018: Theory and Practice of Computer Sci-
ence, A. M. Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen, and J. Wiedermann,
Eds. Cham: Springer International Publishing, 2018, pp. 525–538.

[10] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’14. New York, NY, USA: ACM, 2014, pp. 75–88.
[Online]. Available: http://doi.acm.org/10.1145/2674005.2674994

[11] A. Pagh, R. Pagh, and S. S. Rao, “An optimal bloom filter replacement,”
in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’05. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2005, pp. 823–829. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1070432.1070548

41

+ http://dx.doi.org/10.1093/bioinformatics/btu132
+ http://dx.doi.org/10.1093/bioinformatics/btu132
http://doi.acm.org/10.1145/2674005.2674994
http://dl.acm.org/citation.cfm?id=1070432.1070548
http://dl.acm.org/citation.cfm?id=1070432.1070548

Bibliography

[12] S. Z. Kiss, E. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich, “Bloom
filter with a false positive free zone,” 2018.

[13] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient bloom
filters,” J. Exp. Algorithmics, vol. 14, pp. 4:4.4–4:4.18, Jan. 2010.

[14] R. Dorfman, “The detection of defective members of large populations.” The
Annals of Mathematical Statistics, vol. 14, no. 4, p. 436–440, 1943.

[15] E. Barillot, B. Lacroix, and D. Cohen, “Theoretical analysis of library screening
using a n-dimensional pooling strategy,” Nucleic acids research, vol. 19, no. 22,
pp. 6241–6247, 1991.

[16] E. S. Hong and R. E. Ladner, “Group testing for image compression,” IEEE
Transactions On image processing, vol. 11, no. 8, pp. 901–911, 2002.

[17] D. Du, F. Hwang, and E. C. (e-book collection), Pooling designs and nonadap-
tive group testing: important tools for DNA sequencing. New Jersey: World
Scientific, 2006, vol. 18.

[18] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg, “Improved combinatorial
group testing algorithms for real-world problem sizes,” SIAM Journal
on Computing, vol. 36, no. 5, pp. 1360–1375, 2007. [Online]. Available:
https://doi.org/10.1137/050631847

[19] C. L. Chan, P. H. Che, S. Jaggi, and V. Saligrama, “Non-adaptive probabilistic
group testing with noisy measurements: Near-optimal bounds with efficient al-
gorithms,” in 2011 49th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), Sept 2011, pp. 1832–1839.

[20] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms: Bounds
and simulations,” IEEE Transactions on Information Theory, vol. 60, no. 6, pp.
3671–3687, June 2014.

[21] A. J. Macula, “A simple construction of d-disjunct matrices with certain con-
stant weights,” Discrete Mathematics, vol. 162, no. 1-3, pp. 311–312, 1996.

[22] W. J. Bruno, E. Knill, D. J. Balding, D. Bruce, N. Doggett, W. Sawhill,
R. Stallings, C. C. Whittaker, and D. C. Torney, “Efficient pooling designs
for library screening,” Genomics, vol. 26, no. 1, pp. 21–30, 1995.

[23] W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,” IEEE
Transactions on Information Theory, vol. 10, no. 4, pp. 363–377, 1964.

[24] L. Gyorfi, J. Massey et al., “Constructions of binary constant-weight cyclic
codes and cyclically permutable codes,” IEEE Transactions on Information
Theory, vol. 38, no. 3, pp. 940–949, 1992.

[25] F.-W. Fu, A. H. Vinck, and S.-Y. Shen, “On the constructions of constant-
weight codes,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp.
328–333, 1998.

[26] E. Porat and A. Rothschild, “Explicit non-adaptive combinatorial group testing
schemes,” in International Colloquium on Automata, Languages, and Program-
ming. Springer, 2008, pp. 748–759.

[27] A. Mazumdar, “Nonadaptive group testing with random set of defectives,”
IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 7522–7531,
2016.

[28] A. Barg and A. Mazumdar, “Group testing schemes from codes and designs,”
IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7131–7141, 2017.

42

https://doi.org/10.1137/050631847

Bibliography

[29] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30,
1998.

[30] S. K. Park and K. W. Miller, “Random number generators: good ones are hard
to find,” Communications of the ACM, vol. 31, no. 10, pp. 1192–1201, 1988.

43

Bibliography

44

A
Framework usage tutorial

This chapter outlines a tutorial for using the framework for testing pattern designs.
The framework allows users to send custom pattern designs to a BBFBP and com-
pare its performance in terms of false positives to other designs. The complete
code can be found at https://github.com/Cannonbait/master-thesis. The README
for this project is at the time of writing identical in purpose to the one found in
this appendix. The framework is built, and tested, for Ubuntu 16.04 with experi-
mental support for Windows OS. We do not have any guarantees for other setups.
The BBFBPs provided here are not written, or optimized, for commercial use, as
they lack support for SIMD-instructions which is necessary for efficient filters of
this type. We note however that many modern processors have built-in support for
SIMD-instructions which allows for usage without hand-written assembly code. The
Ubuntu installation should work for most recent nix-systems but is only tested for
Ubuntu systems.

A.1 Installation
The analysis tools are built in Python while the inner loop is written in C++.
Bindings between these are provided by Cython and as such Python3 and the g++
compiler must be installed (at least version 14), The instructions below assume that
both Python3 and g++ exist on the users current machine.

A.1.1 Windows
Install GMP (high precision library), Cython and Boost

Note: The windows build is highly experimental. Should you manage to successfully
install GMP, Cython and boost the setup in the following section should work.
However we will not guide you through that process.

A.1.2 Ubuntu 16.04

\$ apt−get i n s t a l l python3−numpy python3−tk
\$ apt−get i n s t a l l l i bboo s t−dev libgmp3−dev
\$ pip3 i n s t a l l cython matp lo t l i b pandas

I

A. Framework usage tutorial

A.2 Setup
After cloning the repository, move into the master-thesis/code-framework/ folder
and execute the following commands. Given that all dependencies are installed as
specified above, it will create a .so file which can be imported into python separately
or used with the pre-built analysis program.

A.2.1 Windows

\$ cd <your path>/master−t h e s i s /code−framework/cython
\$ python3 setup_serial_framework_win . py

Should the build fail it might be because of invalid pathings to the libraries (GMP
etc). Check the setup_serial_framework_win.py file as well as the serial_framework.pxd
and serial_framework.pyx files to correct the paths as installed on your system.

A.2.2 Ubuntu 16.04

\$ cd <your path>/master−t h e s i s /code−framework/cython
\$ python3 setup_serial_framework_nix . py bui ld_ext −−i np l a c e

A.3 Running the analysis tool
The analysis tool can be executed either from the command line for existing designs
or through Python code with a few lines. Below are instructions on both of these
cases.

A.3.1 Command line
From the command line the analysis tool can run for a number of parameters and
existing designs. While this is not immediately useful since you cannot pass new
designs into the program this way, it helps the user get familiar with the parameters
and how they can vary.
To run a quick demo of the program, use the following commands which should
yield the following output:

\$ cd <your path>/master−t h e s i s /code−framework/python
\$ python3 ana l y s i s . py −che −comp
Found no " source " argument , t r i a l s w i l l be run with random
input
I n i t i a l i z i n g f i l t e r s . . .

This will run a quick demo comparing the CHE (Cache- Hash- efficent) and COMP
(Combinatorial Orthogonal Matching Pursuit) algorithms as pattern designs for

II

A. Framework usage tutorial

some default parameters. The execution time can vary from machine to machine
depending on the cachesize. This should in the end display a graph looking like this:

Figure A.1

Where the Y-axis represents the false positive rate (FPR) with standard deviation
and the X-axis the number of insertions into the filter (d). The exact visual presen-
tation will vary since the FPR is not guaranteed to be the same for each run of the
program. The supplied parameters can be customized be various flags at application
start. The customizable parameters can be seen on the following page.

III

A. Framework usage tutorial

• -m=x where x is the number of bits in the filter (defaults to 512)
• -n=x where x is the number of patterns in the filter (defaults to 4096)
• -d=x where x is the number of insertions in the filter (defaults to 120)
• -b=x where x is the number of blocks in the filter (defaults to 1)
• -tests=x where x is the number of tests on datapoints towards the filter.

(defaults to 10000)
• -y_step=x where x is the step size on the varying parameter y as

explained below (defaults to 1)
• -pattern_trials=x where x is the number of times the patterns should

be regenerated according to the specified designs and tested. This pa-
rameter affects the standard deviation in the graph (defaults to 5)

• -interpret Interprets the labels for ease of reading the plots, for example
turns "d" to "inserted items" when plotting the data.

• -comp the COMP-algorithm as a pattern design (used for comparative
purposes)

• -che the CHE-algorithm as a pattern design (used for comparative pur-
poses)

• -mcrs the MCRS-algorithm as a pattern design (used for comparative
purposes)

• -source="<file>" a source file with precomputed data in number for-
mat, separated by line break. The framework allows for high precision
and can parse numbers up to 120 characters long. These numbers are
then hashed using modulo hashing for a more uniform distribution.

To be able to get a visualization, one or two parameters must vary. This is done by
adding a new flag on the varying parameter(s) with "_end" appended. For example,
if one wants to experiment for varying values of d as in the example, one can choose
the flags -d=120 and -d_end=160. The parameters that can vary are m, n, d and b.
If two parameters vary, the displayed graph will be in three dimensions, for example:

\$ python3 ana l y s i s . py −mcrs −comp −d=1200 −d_end=1600
−n=1500 −n_end=2000 −b=10 −d_step=100 −n_step=100
Found no " source " argument , t r i a l s w i l l be run with random
input
I n i t i a l i z i n g f i l t e r s . . .

IV

A. Framework usage tutorial

Figure A.2

For reasons of readability, standard deviation will not be displayed when plotting
the data in 3D. One should also note that generating 3D-plots take significantly
more time than a standard 2D-plot.

A.3.2 Python code
To run the program from Python, three steps need to be completed. Setting the
various parameters for the experiments as outlined above, generating data and dis-
playing it. This is done in the following fashion:

import sys

from analysis_settings import AnalysisSettings
from display import display_data
from data_generator import generate_data

settings = AnalysisSettings(sys.argv)
(result, deviation) = generate_data(settings)
display_data(result, deviation , settings)

V

A. Framework usage tutorial

Data can of course be generated without displaying it. If you do not want to set
the flags at upstart, the argumentline can be changed to any list of strings which
contains flags. For example, this is also valid code:

import sys

from analysis_settings import AnalysisSettings
from display import display_data
from data_generator import generate_data

sys.argv[1:] = ["−d_end=151", "−d_step=10", "−b_step=2",...
"−b_end=21", "−che", "−comp"]
settings = AnalysisSettings(sys.argv)
(result, deviation) = generate_data(settings)
display_data(result, deviation , settings)

VI

A. Framework usage tutorial

A.4 Writing new patter-design generators

Writing a new generator is a fairly easy task. Provided for guidance is an interface
called IPatternGenerator located in the

master-thesis/code-framework/python/pattern_design

folder. This interface is required of the generators to implement but only de-
mands two definitions: get_name and generate_patterns(m,n,d,b), where
generate_patterns should return a matrix of dimensions mxn as patterns in
the BBFBP. The get_name method is only used in the visualization for easy of
identifying the new algorithm. Below is an example of a (stupid) pattern generator:

from pattern_design.pattern_interface import IPatternGenerator
import numpy as np

class ExampleGenerator(IPatternGenerator):

def generate_patterns(m,n,d,b):
patterns = np.zeros((m,n), dtype= ' bool ')
for i in range(n):
patterns[i % m][i] = 1

return patterns

def get_name():
return "Example Generator"

Any generator created in this way can be added to the settings as displayed above
(using the add_designs method). This can be done in the following fashion:

import sys

from analysis_settings import AnalysisSettings
from pattern_design.example import ExampleGenerator
from display import display_data
from data_generator import generate_data

settings = AnalysisSettings(sys.argv)
settings.add_designs([ExampleGenerator])
(result, deviation) = generate_data(settings)
display_data(result, deviation , settings)

The add_designs method can take multiple generators in its parameter list.

VII

A. Framework usage tutorial

A.5 Generating data
To use a source-file in the framework, i:e some real data, the file must be formatted
in a special way. Each line in the file must contain only numbers which are then
parsed into the program. These numbers may be of any length, but be warned that
the string representation will be used in the program to make sure that we do not
count true negatives. Hence if the string representation becomes to long, and to
many items are stored in the filter, then we can still fail while allocating memory.
The need for high precision comes from the framework being tested on biomedical
data, which can be generated from .fastq files in the following fashion:

\$ cd <your path>/master−t h e s i s /code−framework/data−gene ra t i on
\$ python3 data_preparat ion . py −−source="<your␣ f i l e >"
Reading from f i l e : <your f i l e >
Trans la t ing cha ra c t e r s
Writing output to : <your f i l e >.prep

What this does is taking a file consisting of characters G, A, T, C and N, convert-
ing these to an integer based on their binary mapping and then finally writing the
data to a .prep file, which can be used as a source file for the framework. All other
characters will be ignored by this. Separate from this framework, the data can also
automatically be constrained through modulo-operations by supplying the following
flags (for example for usage in Turtle or other k-mer counting software).

• threads=x where x is the number of threads in the application
• patterns=x where x is the number of patterns in the filter
• blocks=x where x is the number of blocks in the filter
• -h or –help Displays example usage of the program
• –output=<filename> Specifies another filename for the output.

VIII

B
Primeselection in the
MCRS-algorithm

Below is a simple, greedy, algorithm for selecting k primes for use in the MCRS-
algorithm. Although far from perfect, this can give an initial approach for future
implementations. For efficiency this algorithm does not calculate which numbers
that actually are prime, but assumes that all primes below some fixed, realistic
number exists as a header definition.

The approach is as follows: Take k unique primes so each is as large as possible,
but below m

k
. This ensures that their sum does not exceed m. Then do a second

pass through the selected primes, starting with the lowest prime. See if this prime
can be replaced by a larger, as of not yet selected prime so that the sum of primes
is still below m. The replacement prime does not necessarily have to conform to
the constraint to be below m

k
. Return the selected primes as primes for the MCRS-

algorithm.

Algorithm 8 Greedy Prime selection algorithm
selected := {}

2: for i = 1 to k do
selected[i] := the largest prime p ≤ m

k
, p 6∈ selected.

4: for i = k to 1, i– do
check if selected[i] can be replaced with a larger prime p such that∑
selected < m, p 6∈ selected. If so, replace selected[i] with p.

6: return selected
End

IX

B. Primeselection in the MCRS-algorithm

X

C
MCRS-primes

Since the primes used by the MCRS-algorithm were predetermined for experimental
purposes, the chosen primes are listed below for possible experimental reevaluation.
18 is the maximum number of primes that can be chosen for m = 512

k Chosen primes
1 509
2 241,269
3 151,179,181
4 127, 131, 137, 113
5 101, 103, 107, 73, 127
6 61, 79, 83, 89, 97, 101
7 83, 59, 61, 67, 71, 73, 97
8 47, 53, 59, 61, 67, 71, 73, 79
9 43, 47, 53, 59, 61, 67, 71, 73, 37
10 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
11 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 79
12 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67
13 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 97
14 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 67, 79
15 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 7
16 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 73
17 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 73
18 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61

XI

	List of Figures
	List of Tables
	Introduction
	Background
	Problem description
	Related work
	Ethical considerations of this work

	Theory
	Preliminaries
	Bloom filters
	Standard Bloom filters
	Blocked Bloom filters with bit patterns
	A conjecture regarding neighbouring levels

	Group testing
	Non-adaptive group testing
	Relationship to Bloom filters

	Group testing algorithms
	COMP - Combinatorial Orthogonal Matching Pursuit
	CHE - Cache- Hash- efficient
	RrSD - A random r-size design
	CRS - Chinese Remainder Sieve

	Binary constant-weight codes

	Method
	Experiment on precomputed patterns
	Theoretical testing
	DNA-sequence testing
	Neighbourhood level analysis

	Results
	Experimental outline
	MCRS - Modified Chinese Remainder Sieve
	Run-time pattern construction
	Linear Congruential Generators
	Chinese remainder methods revisited

	Neighbourhood level result
	FPR comparisons for group testing algorithms
	FPR for a single block
	FPR for multiple blocks
	FPR for real-world data

	FPR comparison for run-time generated patterns

	Discussion
	Neighbourhood levels
	Group testing algorithm results
	Run-time generated patterns
	Analysis of the MCRS-algorithm
	Run-time generation
	Preconstructed patterns

	Future work and unsolved problems
	Unsolved problems regarding the MCRS-algorithm
	Run-time construction evaluation
	The relation between patterns and blocks

	Conclusion
	Bibliography
	Framework usage tutorial
	Installation
	Windows
	Ubuntu 16.04

	Setup
	Windows
	Ubuntu 16.04

	Running the analysis tool
	Command line
	Python code

	Writing new patter-design generators
	Generating data

	Primeselection in the MCRS-algorithm
	MCRS-primes

