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ABSTRACT OF THE DISSERTATION

Improving genome assembly by identifying reliable

sequencing data

by

Rajat Shuvro Roy

Dissertation Director: Alexander Schliep

De novo Genome assembly and k-mer frequency counting are two of the classical prob-

lems of Bioinformatics. k-mer counting helps to identify genomic k-mers from sequenced

reads which may then inform read correction or genome assembly. Genome assembly

has two major subproblems: contig construction and scaffolding. A contig is a continu-

ous sub-sequence of the genome assembled from sequencing reads. Scaffolding attempts

to construct a linear sequence of contigs (with possible gaps in between) using paired

reads (two reads whose distance on the genome is approximately known). In this the-

sis I will present a new computationally efficient tool for identifying frequent k-mers

which are more likely to be genomic, and a set of linear inequalities which can improve

scaffolding (which is known to be NP-hard) by identifying reliable paired reads.

Identifying reliable k-mers from Whole Genome Amplification (WGA) data is more

challenging compared to multi-cell data due to the coverage variation introduced by

the amplification step (MDA, MALBEC, etc.), which implies that applying a simple k-

mer frequency cutoff is unreasonable. We observed that with sufficient coverage, using

partial reads (read prefix of a certain length) of length approximately twice or less than

that of the k-mer length recovers a large proportion of genomic k-mers while keeping
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the proportion of erroneous k-mers low. We show that using partial reads for assembly

and gene prediction recovers a significant proportion of genes and propose to use this

approach for rapid pathogen detection in combination with Single Cell Genomics (SCG).

Thanks to SCG, it is now possible to isolate one single cell from environmental sam-

ple, extract its DNA and perform genetic sequencing without any need for culturing

the cell in the lab. We show that current bioinformatic tools are capable of charac-

terizing a novel organism by producing a draft genome assembly and gene annotation

from single cell data of a MAST-4 stramenopile. This demonstrates the potential of

SCG for genetic study of the vast majority of environmental organisms that has so far

eluded scientists as they cannot be brought into culture, typically a necessity for future

studies.
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Chapter 1

Introduction

Genome sequencing has revolutionized many fields of biological research. In 1953,

James Watson and Francis Crick presented the structure of the DNA-helix (WATSON

and CRICK, 1953), the molecule that carries genetic information from one generation

to the other. For this, they were awarded the Noble prize in physiology in 1962. A few

years earlier, in 1944, Oswald Avery et al. (Avery et al., 1944) demonstrated that genes

were characterized by nucleic acids. This paved the way to the discovery of the genetic

code (how a series of three nucleotide acids encode a protein) (Crick et al., 1961) that

eventually enabled us to characterize genes as a sequence of nucleotides that encode

proteins. Naturally, this led to the realization that the genotypic differences between

individuals and organisms can be attributed to their genetic differences. Researchers

realized the potential of determining the genomic (DNA) sequence of organisms and

individuals in order to get more insight into evolution, phylogeny, or diseases like cancer

and research into determining the genomic sequences of organisms began.

1.1 Genome sequencing and assembly

Genome sequencing is the process of experimentally determining the Deoxyribonucleic

acid (DNA) sequence which can be thought of as long string made up of four charac-

ters ‘A’, ‘C’, ‘G’ and ‘T’. Unfortunately current technology only produces very short

subsequences (called reads) of the genome. The goal is to assemble the reads into

longer contiguous sequences (or contigs) so that important genomic entities like pro-

tein coding genes may be identified. The process of assembly is complicated by the

fact that the reads are short, they may contain errors (base substitutions, insertions
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or deletions) and that the genome can be repetitive in structure. Assembly is gener-

ally divided into contig building, scaffolding and finishing, each step trying to improve

on the previous stage to produce longer sequences until we have the complete genome

or set of chromosomes. This gives rise to several interesting computational problems

like reconstructing a (super) string from (erroneous) short substrings, error correction

of substrings, relative ordering and orientation of contigs into scaffolds, etc. For small

sized genomes that are not very repetitive, like those of viruses or bacteria, considerable

progress have been made over the last few decades. However, as we move on to more

challenging cases like mammalian and plant genomes which are longer and have a more

complicated repeat structure, meta-genomes (a set of genomes sequenced together) or

single-cell libraries where the sequencing shows extreme coverage variation, the com-

putational problems get harder and often extremely resource intensive. Therefore, the

community has a great demand for better computational solutions and my research

is focused on developing efficient algorithms for some of these classical bioinformatic

problems.

1.2 Characterizing organisms from their genomes

The genome contains hereditary information in the form of protein coding genes. As

proteins are the building blocks of the body, identifying genes can provide a lot of

information about the capabilities of an organism and is therefore of great importance to

life scientists. Since the genome encodes the genes, reconstructing the genomic sequence

(by genome sequencing and assembly) is so important to the community. Moreover,

as the genome is the carrier of hereditary information, the genomic sequence can also

inform us about phylogeny, the study of evolutionary relationships between organisms.

Genetics is also playing a key role in understanding important evolutionary mechanisms

like Horizontal gene transfer (HGT), medical phenomenon like development of cancer

or drug-resistance.

Scientists have very successfully performed genetic analysis for multi-cell organisms

and unicellular microbes that can be cultured in labs. But the vast majority of the

Earth’s biodiversity is in microbes which cannot be brought into culture (Pawlowski
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et al., 2012; Guiry, 2012) and for these we have to resort to either Metagenomics

(MG) or SCG. Metagenomics also informs about the biodiversity and collaborative

metabolism of a microbial community. Both these areas have the potential to make

huge impacts in medicine and life sciences but currently face significant challenges in

genome assembly. Some of these challenges may be overcome by improved sequencing

methods like reduced coverage bias for WGA libraries, which is an active area of re-

search (Zong et al., 2012; Stepanauskas, 2012a), while others (like reducing chimeric

contigs in meta-genomic assembly) are computational in nature. Thus, the computa-

tional and sequencing methods are co-evolving into a powerful tool for environmental

biology.

1.3 Rapid pathogen detection

For the medical community, quick and accurate diagnosis is a major concern for appro-

priate therapy. Culture-based methods have dominated pathogen detection for more

than a century and the adoption of modern methods have been slow (van Belkum et al.,

2013). Nucleic acid detection based methods, which depend on detecting genomic se-

quences that serve as identifiers, have recently replaced some traditional methods but

identification of drug-resistance is still lagging behind (Ecker et al., 2010). Whole

Genome Sequencing (WGS) is expected to provide a better alternative to understand-

ing drug-resistance by producing a draft genome assembly which then allows you to

make in silico protein predictions. The challenge is to avoid the time-consuming step

of culturing, which is possible with SCG but introduces sequence analysis challenges

in the form of amplification bias. If we can overcome these challenges, WGS can be a

very effective, accurate and fast diagnostic tool.

1.4 Thesis overview

Counting k-mer frequencies is one of the fundamental problems of bioinformatics and

have been used to inform error correction (Kelley et al., 2010; Yang et al., 2010;

Medvedev et al., 2011), de novo assembly (Yang et al., 2013), etc. For large read
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libraries, computing k-mer frequencies can be a major computational challenge. In

Chapter 3, we present a tool named Turtle (Roy et al., 2014b) that is capable of count-

ing frequencies of frequent k-mers from a 44x Human library in approximately 110

minutes using 109 GB of space. Our method improves running time by using cache-

efficient algorithms. Our space efficiency is due to the use of compact data structures

like Bloom filters and contiguously allocated fixed sized arrays.

In Chapter 4, we present a set of linear equations capable of filtering out unreli-

able paired-reads and also predicting the relative position and orientation of contigs

connected with paired-reads. This greatly simplifies the scaffolding problem and we

show (Roy et al., 2012) that a very simple scaffolding algorithm is capable of out-

performing state of the art scaffolders. The equations are derived from the linear

geometry of contigs on the genome that dictates that two contigs cannot overlap by a

large number of bases. Our experiments also show that correct contigs produce a much

cleaner contig graph and thereby further simplify the scaffolding problem instances.

In Chapter 5, we present a study where we use SCG to generate the first draft

genome assembly from a cell belonging to the broadly distributed group of MAST-4

marine stramenopiles (Roy et al., 2014a). Since these cells cannot be cultured, we

used WGA methods for whole genome sequencing and performed sequence analysis

using a set of in-house and third party tools. We performed genome assembly with

specialized single-cell assemblers and then made gene predictions to identify ca. 7,000

protein-encoding genes in the MAST-4 genome. Using the identified protein-encoding

genes, we were able to robustly position the marine organism into the Tree of life (ToL)

using multigene phylogenetics and thus gain insights into its metabolic capabilities.

This project not only produced the first draft genome for the MAST-4 family, but

also demonstrated the feasibility of producing a reasonable characterization of small

eukaryotes using available bioinformatic tools and sequencing methods.

SCG can be very effective against rapid pathogen detection as it allows us to circum-

vent the time consuming step of culturing. However, assembly and analysis of single cell

libraries is complicated due to the high coverage bias introduced by the WGA process

required to produce enough DNA material for sequencing. This results in high rate
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of erroneous k-mers which makes sequence analysis like assembly difficult. In Chapter

6, I present our ongoing work that shows that using partial reads (a prefix of a fixed

length of the read), we can reduce the proportion of erroneous k-mers while still pro-

ducing reasonable assembly and gene prediction which may be used for rapid pathogen

detection and understanding its drug resistance.



6

Chapter 2

Basic concepts

In this chapter, I will introduce some basic concepts of sequence analysis and efficient

computation. These concepts will be frequently used in later chapters where I present

my contributions in more details.

2.1 The Genome

The genome is the carrier of the complete hereditary information of an organism. In

most organisms, it is encoded by DNA, and in some viruses, by RNA (Ribonucleic acid).

From a computational perspective, the DNA molecule is a string of four characters A,

C, G, T, representing the four distinct unit molecules Adenine, Cytosine, Thymine and

Guanine (called bases). The DNA comes as a pair of strands (Fig 2.1) where bases

from opposite strand couple with each other—Adenine with Thymine and Cytosine

with Guanine. Because of this coupling, one strand of the DNA can be used to unam-

biguously determine the other. These strands are said to be reverse complements of

each other. The genome may be present as a single sequence (e.g. in most prokaryotes)

or in multiple pieces called chromosomes. Depending on the number of copies of each

chromosome present, an organism may be categorized as haploid (e.g. E. coli), diploid

(e.g. humans) or polyploid (e.g. corn).

2.2 Genome sequencing

The process of experimentally determining the DNA sequence is known as genome

sequencing. Unfortunately, current technologies are incapable of reading complete DNA

sequences. Depending on the technology used, we can reliably (with small error rate)

read only a few hundred base pair from the ends of a DNA fragment. Therefore, the
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Figure 2.1: The structure of DNA with details of the structure of the four bases, adenine,
cytosine, guanine and thymine, and the location of the major and minor groove (source
http://en.wikipedia.org/wiki/DNA).

genome is first sheared into small fragments and the ends of the fragments are sequenced

to produce small sub-sequences of the DNA string known as reads.

Though the structure of the DNA was known since 1953, a few decades were required

to establish reliable methods of reading the DNA molecule. The 1970’s saw several no-

table developments in the field of sequencing, the most notable one being that by

Frederick Sanger—“DNA sequencing with chain-terminating inhibitors” (Sanger et al.,

1977), also commonly known as Sanger sequencing, earning him the Noble prize in

chemistry in 1980. Since its discovery, Sanger sequencing has been the sequencing

method of choice for large scale genome projects like the International Human Genome

Consortium (Lander et al., 2001), The Human genome project (Venter et al., 2001),

Mouse Genome Sequencing Consortium(Consortium et al., 2002), etc., till the recent

development of Next Generation Sequencing (NGS) or High Throughput Sequencing

(HTS) in the mid-2000’s. Though the quality and efficiency of Sanger sequencing im-

proved over the years, the cost of sequencing (see Table 2.1) was too high for routine

sequencing in most laboratories. Some of the NGS technologies are briefly compared

in Table 2.1. Note that, the NGS platforms provide much shorter and more erroneous
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Table 2.1: Some common Next Generation Sequencing technologies, compared to first
generation (Sanger) sequencing. (Sources: Hoff (2009), Gilles et al. (2011), Quail et al.
(2012))

Generation Company Platform Read length error rate (%) cost per kb

First/Sanger Life Technologies 3730xl 600 - 1000 0.001-1 $10.00
Next Roche/454 GS Junior 400 0.02-50 $0.031
Next Illumina MiSeq 36-250 0.8 $0.0005
Next Ion torrent PGM 200 1.71 $0.001
Next Pac Bio RS 1500 12.86 $0.002

reads compared to Sanger sequencing but are considerably cheaper. This cost effective-

ness have enabled genome sequencing to become a routine procedure, but the length of

the reads, amount of data and their error rate demanded new algorithms for their anal-

ysis. We will briefly describe such algorithms in Section 2.3. Recently, NGS alone have

been used to produce assemblies for mammalian genomes like Giant panda (Li et al.,

2010c) and Chinese human (Li et al., 2010a). In some cases, e.g. Gorilla genome (Scally

et al., 2012), researchers are using a combination of Sanger (long) and Illumina (short)

sequencing data to produce assemblies. Such combinations are very helpful for assem-

bling repeat rich genomes like those of mammals and plants (English et al., 2012).

Hopefully, such combination will be more routine with improvements in Next genera-

tion long read platforms like Pac Bio which currently have a very high error rate (Table

2.1).

2.2.1 Paired sequencing

To overcome the limitations of short length, paired read sequencing was introduced,

where reads are sequenced in pairs. Ideally, reads of a pair should have a fixed distance

on the genome but in reality, this distance between follows a distribution. Paired

read sequencing comes in two flavors: paired-end and mate-pairs. Paired-end involves

reading from both ends of a DNA fragment and is mostly done in Illumina platform.

The DNA fragment size (or insert length) is limited to < 1000 (Donmez, 2012).

Mate-pair sequencing allows a much larger insert length (≤ 20kbp) (Donmez, 2012)
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and is not limited to Illumina platform only, but the tedious procedure of library prepa-

ration and the probability of chimeric pairing (two separate DNA fragments mistakenly

concatenated and sequenced to produce a false pair) limits the use of this method.

It must be mentioned that the insert length distribution may be very difficult to

control and varies from one library preparation technique to another. The uncertainty

of the insert length must be carefully taken into consideration for all analysis involving

paired reads.

2.3 Genome Assembly

Current sequencing technologies allow reliable reading of a DNA fragment that is only a

few hundred bases in length (Table 2.1). Unfortunately, this is far shorter than bacterial

genomes (usually a few Mega base pairs in length) and extremely short for mammalian

genomes (usually Giga base pairs in length). Therefore, the complete genome has to

be assembled from much shorter sequenced reads using computational methods. This

is known as genome assembly.

2.3.1 Challenges

Note that, the sequenced DNA reads are assumed to originate from uniform random

positions of the genome. In an effort to ensure that every position of the genome is

covered by at least a few reads, some over-sampling is performed. This over-sampling is

quantified in terms of “coverage”, the ratio of the total number of base pairs sequenced

to the size of the genome. Higher coverage is desirable for completeness of assembly,

but this also increases the amount of sequencing data, which, in the presence of errors,

complicates the assembly process. The assumption of uniformity of coverage is also not

correct: it is known that certain parts of the genome are more difficult to sequence than

others (Benjamini and Speed, 2012).

Apart from the technical difficulty of sequencing, the structure of the genome under

consideration also introduces additional challenges—prokaryotic genomes usually con-

tain less repeated structures compared to eukaryotic genomes (e.g. 3.4% for yeast vs.
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44% for humans) (Brown, 2002), some eukaryotic genomes (e.g. mammals and plants)

have multiple copies of their chromosomes (termed ploidity), etc. Over the decades, a

few major approaches to genome assembly have emerged. We provide a brief overview

of these approaches in the next subsection.

2.3.2 Assembly approaches

Early assembly tools like the Staden package (Staden, 1979) were designed to assist hu-

mans to identify and merge overlapping sequence reads. As the size of the dataset grew

to billions of reads, fully automated computational tools were developed for assembly

(called assemblers). Early tools followed a greedy approach— find overlaps between

each pair of reads, merge the reads sharing the best overlap (provided it is more than

a required minimum) and iterate the procedure till reads can be merged (Simpson,

2012). Special care were needed to handle merging reads coming from similar repeats.

Moreover, it was difficult to formally argue anything about the quality of the assembly.

In an effort to formalize the genome assembly problem, Kececioglu and Myers for-

mulated it as the Shortest Common Superstring problem (Kececioglu and Myers, 1993).

They represented the reads and the overlap between them in an overlap graph where

each read was a node and two nodes are connected by an edge if the corresponding

reads had significant overlap. Then, the assembly problem can be stated as finding a

walk through each node (the Hamiltonian path problem). Since overlap computation

can take O(n2) where n is the total number of bases in the read library and comput-

ing Hamiltonian path is NP-Complete, computationally, this method was not a very

attractive option. In practice however, the overlap computation stage was found to be

the major bottleneck. Various methods for improving the overlap computation have

been proposed, the most notable one being that by Simpson and Durbin (Simpson and

Durbin, 2012) that brought the computational complexity down to O(n). Collectively,

this strategy of genome assembly is known as the Overlap Layout Consensus (OLC)

assembly.

In 2001, Pavel Pevzner proposed an alternative formulation known as the de Bruijn

graph approach (Pevzner et al., 2001) of assembly where the reads are initially broken
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into k-mers (subsequences of length k) and a graph is built using exact overlap between

(k − 1)-mers: each k-mer represents an edge connecting two k − 1-mers produced by

taking the first and last (k − 1) bases of that k-mer. In the graph, Eulerian paths are

determined and these paths spell out the underlying genomic sequence. The simplicity

of the graph structure, the efficiency of Eulerian path computation (computable in linear

time), and the success with which it handled repetitive sequences made this approach

very popular for high throughput, short sequence reads like NGS data.

2.3.3 Error correction

Unfortunately, sequencing data comes with errors (substitutions, insertions or dele-

tions) and such errors makes the computational process of genome assembly harder

and more resource intensive. For example, in a de Bruijn graph approach, the amount

of space required is proportional to the number of distinct k-mers in the read library. A

single base call error in a read can introduce up to k erroneous k-mers. Thus, erroneous

k-mers may out-number correct k-mers in the read library (Roy et al., 2014b). While

assembling large genomes such as mammals or plants, this can lead to computational

in-feasibility due to very high memory requirements. Therefore, researchers have pro-

posed error correction as a preprocessing step for large assembly problems. It has also

been claimed that error correction improves assembly quality (Yang et al., 2013) and

therefore, error-correction is now recommended to be a standard procedure for large

genome assembly projects (e.g. Li et al. (2010c,a)).

2.3.4 Scaffolding

The assembly procedures described above produces ‘contigs’ (a contiguous subsequence

of the genomic sequence). Usually, the assembly is broken into contigs due to lack

of coverage or the presence of repeats. Using paired reads, contigs may be oriented

and arranged in a linear order (with possible gaps in between) called a scaffold such

that the orientation and order reflects their true orientation and order in the genome.

The most popular scaffolding strategy is to construct a contig graph in which nodes

represent contigs and edges represent sets of paired-reads connecting two contigs (i.e.,
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the two reads of the mate pair fall in the two different contigs). The edges are given

weights equal to the number of paired-reads connecting the two contigs. Ideally, we

would like to find an orientation and order assignment of the contigs such that the

minimum number of paired-reads are violated. A paired-reads is violated when the

contigs it is connecting do not have the relative orientation or position suggested by

the paired-reads.

Just finding the optimal orientation assignment is reducible to the Maximum weight

Cut problem, which is known to be NP-complete. Consequently, finding the optimal

walk to get the optimal scaffolding is also NP-complete. The genome can (and often

does) have repeated regions; e.g., approximately 44% of human genome is accounted

for by repeats (Brown, 2002). Ideally, the contig graphs should have a linear structure,

but due to repetitive structures of the genome, loops and cycles are introduced; making

the problem more difficult to solve. Scaffolding is an active area of research which has

produced several scaffolders in recent years (Salmela et al., 2011; Koren et al., 2011;

Dayarian et al., 2010; Donmez and Brudno, 2013).

2.4 Characterizing an organism from assembled genome

Once a draft genome assembly is available, there are several ways to learn more about

the organism. In silico gene prediction tools can predict genes from the assembly which

can enable phylogenetic analysis. Using homologs of the predicted proteins, we can also

learn about the metabolic capabilities of the organism. In the following subsections, we

briefly discuss currently available methods.

2.4.1 Gene prediction

Gene prediction involves identifying regions of the genome that encodes genes. In ear-

lier days, gene finding was mostly performed by wet-lab experiments on living cells and

organisms. But now, with the advances in genome sequencing, most of gene predic-

tions are performed using computational tools. However, confirming a predicted gene

still demands an in vivo process with gene knockouts and other assays (Sleator, 2010).
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Computational gene prediction tools are largely categorized into two classes: ab ini-

tio tools that use known genes to learn gene structures and make further predictions

and similarity-based tools that use sequence homology to known proteins (Stanke and

Waack, 2003). In the presence of a similar gene, similarity-based methods often outper-

form ab initio gene predictors but obviously, when such similar genes are not available,

the ab initio methods present a more general approach (Stanke and Waack, 2003).

Similarity-based tools rely on sequence alignment for finding genes in the assembled

genome. Once they find sufficient similarity between a genomic region and a known

Expressed sequence tag (EST), Protein or Gene encoding region of the genome, this

similarity is used to infer gene structure and function of the gene. Obviously, this

method is limited by the availability of known EST, proteins or gene encoding genomic

regions.

Ab initio gene prediction tools are more powerful because they use gene structure

to train parameters in their models of the biological signals and models for coding

and non-coding regions. They rely on two types of sequence information: signal sen-

sors (e.g. splice sites, branch points, start and stop codons, etc.) and content sensors

(codon usage) (Wang et al., 2004). The Hidden Markov Model (HMM) based tools like

Augustus (Stanke and Waack, 2003), GENSCAN (Burge and Karlin, 1997), etc. have

proved to be the most successful. The major limitations for these methods is the lack

of knowledge of gene structure for novel organisms. Fortunately, some proteins are ex-

pected to be present in all organisms (also known as core proteins) of a domain and these

core proteins can be used to learn gene structures of novel organisms. CEGMA (Parra

et al., 2007) is an alignment based specialized gene prediction tool that identifies the

core proteins in an assembly and combined with an ab initio gene prediction tool can

provide a mechanism for gene prediction for novel organisms.

2.4.2 Phylogenetic analysis

Members of the same species have largely similar physiological capabilities. Closely

related species have somewhat similar and distantly related organisms are expected to

be very different in terms of physiological capabilities. Since the genome is the carrier of
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hereditary information, in terms of genetics, this means that closely related organisms

have similar gene inventory while distantly related ones are expected to have different

gene sets. Therefore, sequence similarity of proteins or the gene encoding regions of

the genome can provide a measure of phylogenetic distances between both inter and

intra species organisms. This measure of distance may be used to build a phylogenetic

tree of life (ToL). Various paradimgs of phylogenetic tree constructions exist. Some of

the widely used ones are neighbor-joining, UPGMA, maximum parsimony and maxi-

mum likelihood (Rizzo and Rouchka, 2007). Constructing the optimal tree using many

of these techniques is NP-hard (Roch, 2006) and therefore, heuristic search and op-

timization methods are used in combination with tree-scoring functions to identify a

reasonably good tree that fits the data.

Although this idea is very intuitive, applying it to distantly related organisms can

be challenging due to the following reasons. Distantly related organisms may have

very different gene sets and therefore selecting an appropriate subset of (common)

phylogenetically stable genes for comparison is difficult but critical to accurate mea-

surements (Capella-Gutierrez et al., 2014). The ribosomal genes (16s/18s) have been

widely used as phylogenetic markers due to their ubiquity, ease of amplification and ap-

propriate level of conservation for most purposes (Capella-Gutierrez et al., 2014). Many

other phyogenetic markers have been introduced, some of them for a specific taxa or

only suitable for specific taxonomic levels. Previous studies have shown that different

genes may be better suited to resolve different parts of the phylogeny (Townsend, 2007),

and hence it is important to consider the resolving power of combinations of marker

genes. Ideally, we would like to have the minimal set of genes that has sufficient in-

formation to reconstruct a phylogeny. In the previous subsection, we introduced the

core proteins which are expected to be present in all organisms of a domain. Our work

presented in Chapter 5 show that in the absence of any specific information about the

phylogenetic relation between a set of organisms, the core proteins are well suited for

phylogenetic study.
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2.4.3 Understanding metabolic capabilities

A metabolic pathway is a series of chemical reactions occurring within a cell. It involves

step-by-step modification of initial molecules to products needed for the cell. Gener-

ally speaking, the biological function of the living cell is a result of many interacting

molecules and cannot be attributed to just a single gene or a single molecule (Kanehisa

and Goto, 2000). KEGG (Kanehisa and Goto, 2000) attempts to link a set of genes

with a network of interacting molecules in the cell, such as a metabolic pathway or

a complex, representing a higher order biological function. By knowing the genes an

organism possesses, it is possible to predict its higher order capabilities like photosyn-

thesis, the existence of urea or Kreb cycle, etc. Thus we can predict an organism’s

physiological capabilities and if desired, can design targeted experiments for validating

them too.

2.5 Single Cell Genomics (SCG)

Genome assembly can be a very powerful tool for scientific discovery. Certain parts

of the genome, known as genes, encode proteins in the form of amino acid sequences.

Proteins perform important cellular functions in organisms (Lodish et al., 2004) and

can provide valuable information about evolutionary relationship between organisms,

an organism’s capabilities or its metabolic functions. Traditionally, an organism would

be cultured in laboratory and its mRNA would be sequenced and assembled (also

known as Transcriptome assembly) to identify candidate proteins for further analysis

like mass spectrometry-based identification (Evans et al., 2012). A broad swath of

microbial biodiversity cannot be cultivated in the lab and is therefore inaccessible to

such conventional approaches. Researchers are interested to gain knowledge about

such organisms to elucidate their genome evolution, their places in the ToL and their

metabolic capacities. SCG is a recent promising approach whereby an individual cell

is captured from nature and genome sequencing data are produced from the amplified

single cell DNA. This data may be assembled and genes may be predicted in silico,

which in turn, opens up the possibility of genome-wide study of the organism.
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SCG may also be instrumental for rapid pathogen detection. Traditionally, iden-

tification of a pathogen involved isolation, culture and pathological testing. SCG can

eliminate the time consuming step of culturing and we envision a pipeline where the

pathological testing is replaced with parallel sequencing and bioinformatic analysis.

For conditions like sepsis, where the speed of diagnosis is crucial for reducing mortality,

having this faster pipeline can be a significant clinical advantage. However, there are

significant technical hurdles that needs to be overcome before this becomes a reality

as the sequence analysis becomes significantly complicated due to the coverage bias

introduced by the WGA step that is required to produce enough genetic material for

sequencing.

2.6 Efficient data structures and algorithms

NGS had made genome sequencing inexpensive and has led to a data generation rate

that has overtaken Moore’s law (Sboner et al., 2011). This implies that while we will

be able to generate more and more sequence bases at a fixed cost, we will soon lack

the facilities to store, process, analyze and maintain the data generated. Therefore, de-

sign and implementation of efficient bioinformatic tools is vital for continuing sequence

based analysis. Broadly speaking, computational efficiency involves two factors: space

(memory) and time. In this section, we introduce a space efficient data structure and

some basic concepts of how to achieve time efficiency by taking advantage of locality of

memory access.

2.6.1 Bloom filter

Suppose we are observing a stream of items and at any point, want to be able to answer

whether a given item has already been seen. We may maintaining the set of observed

items in a hash table or a binary search tree or any other efficient data structure which

enables efficient item lookups. However, this require explicit storage of the items. For

a large set of items, this can be very memory consuming. If the set membership query

can tolerate a small amount of false positive (an item that is not a member of the set
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Figure 2.2: An example of a Bloom filter, representing the set x, y, z . The colored ar-
rows show the positions in the bit array that each set element is mapped to. The element
w is not in the set x, y, z , because it hashes to one bit-array position containing 0. For
this figure, L = 18 and k = 3. Source:http://en.wikipedia.org/wiki/Bloom filter

is declared be be so), a much more memory efficient probabilistic data structure known

as the Bloom filter (BF) may be used.

A Bloom filter is a space efficient probabilistic data structure which can answer set

membership queries with some prescribed, small false positive rate. A Bloom filter

works as follows: A large bit-array(B) of size L is initialized to 0. Given an item x,

k hash values (h1, h2, . . . , hk) using k independent hash functions (within the range

[0, (L − 1)]) are computed. To insert the item into the Bloom filter, we set all of the

bits B[h1], . . . , B[hk] to ones. To check if x is in the Bloom filter, we check all the bits

B[h1], . . . , B[hk], and if they are all set to one, with high probability, this item is in

the Bloom filter. If not, it is certainly not in the Bloom filter. The reason we cannot

be absolutely sure about the presence of the item in the Bloom filter is because just

by chance, all of the bits B[h1], . . . , B[hk] might have been set by other items while

being inserted into the Bloom filter. Each item occupies k bits in the Bloom filter and

usually k is much smaller than the item itself. More interestingly, k is independent

of the size of the item. Under the assumption that the hash functions select a bit

position uniformly at random, the false positive rate of the Bloom filter is given by

(1− ekn/L)k(http://en.wikipedia.org/wiki/Bloom filter), where n is the number

of items inserted into the Bloom filter. This means that the false positive rate may

be reduced by increasing the size of the Bloom filter. The optimal number of hash
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functions k is approximated by L/n ln 2.

Cache-efficient Bloom filter

Note that, by design, the bit locations for an item are randomly distributed and this

results in better false positive rate. When the size of the Bloom filter is large, each bit

inspection and update is likely to incur one cache miss. So, the total number of cache

miss per item would be k. On the contrary, if the bit-locations are localized to a few

consecutive bytes (a block), each item lookup/update will have a small number of cache

misses. This can be done by restricting h1, . . . , hk to the range [h1(x), h1(x)+b] where b

is a small integer. The bit pattern for each item can also be precomputed. This is called

the Pattern-blocked Bloom Filter. Putze et al. (2010) observed that the increase in false

positive rate due to this localization and precomputed patterns can be countered by

increasing L by a few percent. Cache efficiency is a major issue for fast computation

since a cache miss is more than a hundred times slower than a cache hit (Levinthal,

2008). Therefore, using cache efficient Bloom filters is highly recommended for high

performance computation.

2.6.2 Cache-efficient algorithms

Cache efficiency has recently been identified as a major obstacle to achieving high

performance on modern architectures, motivating the development of cache-oblivious

algorithms and data structures (Bender et al., 2005) which optimize the cache behavior

without relying on information of cache layout and sizes. This becomes more impor-

tant when the dataset is large as it may be divided among various levels of memory

like Cache, RAM and Disk. Algorithm efficiency is traditionally reported in terms of

asymptotic running times like O(n), O(n log n), O(n2), . . ., etc., and usually a smaller

asymptotic complexity translates into faster algorithms in practice. But if two algo-

rithms differ in complexity by only a small factor (e.g. O(n) vs. O(n log n)), and the

asymptotically slower one is much more cache efficient, in practice, the asymptotically

slower algorithm may outperform the asymptotically faster one. In Chapter 3, we

report such a case and highlight the importance of cache-efficiency in designing high
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performance algorithms for Bioinformatics and Big data analysis.
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Chapter 3

Frequent k-mer counting

Counting the frequencies of k-mers in read libraries is often a first step in the analysis of

high-throughput sequencing data. K-mers play an important role in many methods in

bioinformatics because they are at the core of the de Bruijn graph structure (Pevzner

et al. (2001)) that underlies many of today’s popular de novo assemblers (Simpson

et al. (2009); Zerbino and Birney (2008a)). They are also used in assemblers based on

the overlap-layout-consensus paradigm like Celera (Miller et al. (2008)) and Arachne

(Jaffe et al. (2003)) as seeds to find overlap between reads. Several read correction tools

(Kelley et al. (2010); Liu et al. (2012); Medvedev et al. (2011)) use k-mer frequencies

for error correction. Their main motivation for counting k-mers is to filter out or

correct sequencing errors by relying on k-mers which appear multiple times and can

thus be assumed to reflect the true sequence of the donor genome. In contrast, k-mers

which only appear once are assumed to contain sequencing errors. The frequent k-mers

constitute a reduced but error-free representation of the experiment, which can inform

read error correction or serve as the input to de novo assembly methods.

We present a novel method that balances time, space and accuracy requirements to

efficiently extract frequent k-mers for high coverage libraries and large genomes such as

human. Our method is designed to minimize cache-misses in a cache-efficient manner

by using a Pattern-blocked Bloom filter to remove infrequent k-mers from consideration

in combination with a novel sort-and-compact scheme (instead of a Hash) for the actual

frequency counting. Whereas this increases theoretical complexity, the savings in cache

misses reduce the empirical running times. A comparison to the state-of-the-art shows

reduced memory requirements and running times.
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3.1 Publication Note

The work described in this chapter was previously published in Roy et al. (2014b).

The work described is the sole work of the author, under the supervision of his PhD

supervisors.

3.2 Related work

In a genome of size g, we expect up to g unique k-mers. This number can be smaller

due to repeated regions (which produce the same k-mers) and small k, since smaller

k-mers are less likely to be unique, but is usually close to g for reasonable values of k.

However, depending on the amount of sequencing errors, the total number of k-mers

in the read library can be substantially larger than g. For example, in the DM dataset

(Table 4.1), the total number of 31-mers is approximately 289.20M whereas the number

of 31-mers occurring at least twice is approximately 131.82M. The size of the genome

is 122 Mbp (Mega base pairs). This is not surprising because one base call error in

a read can introduce up to k false k-mers. Consequently counting the frequency of

all k-mers, as done by Jellyfish (Marcais and Kingsford (2011)), which is limited to

k ≤ 31, requires O(N) space where N is the number of k-mers in the read library.

This makes the problem of k-mer frequency counting very time and memory intensive

for large read libraries like Human. We encounter similar problems for large libraries

while using Khmer (Pell et al., 2012) which uses a Bloom filter (Bloom, 1970) based

approach for counting frequencies of all k-mers. Ideally, the frequent k-mer identifier

should useO(n) space where n is the number of frequent k-mers (n� N). The approach

taken by BFCounter (Melsted and Pritchard, 2011) achieves something very close to

this optimum by ignoring the infrequent k-mers with a Bloom filter and explicitly

storing only frequent k-mers. This makes BFCounter much more memory efficient

when compared to Jellyfish. However, the running time of BFCounter is very large for

two reasons. First, it is not multi-threaded. And second, both the Bloom filter and

the Hash table used for counting incur frequent cache misses. Additionally, BFCounter

is also limited to a count range of 0-255 which will often be exceeded in single-cell
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experiments due to the large local coverage produced by whole genome amplification

artifacts. A different approach is taken by DSK (Rizk et al., 2013) to improve memory

efficiency. DSK makes many passes over the reads file and uses temporary disk space

to trade off the memory requirement. Though Rizk et al. (2013) claimed DSK to be

faster than BFCounter, on our machine using an 18TB Raid-6 storage system, DSK

required more wall-clock time compared to BFCounter. Therefore, we consider DSK

without dedicated high-performance disks, e.g. solid state, and BFCounter to be too

slow for practical use on large datasets. A disk based sorting and compaction approach

is taken by KMC (Deorowicz et al., 2013), which was published while the manuscript

Roy et al. (2014b) was in preparation, and it is capable of counting k-mers of large read

libraries with limited amount of memory. However, in our test environment, we found

it to be slower than the method described here.

In this chapter, we present Turtle, our frequent k-mer counting tools that achieves

space efficiency by filtering out infrequent k-mers with a Pattern Blocked Bloom filter

and time efficiency by using cache-efficient sorting and compaction based frequency

counting algorithm. Turtle comes in two flavors: scTurtle and cTurtle. scTurte reports

k-mers with their frequency counts while cTurtle only reports the frequent k-mers. By

avoiding frequency counting, cTurtle is able to work with much larger datasets compared

to scTurtle.

3.3 scTurtle

By a k-mer, we always refer to a k-mer and/or its reverse complement. Our objective is

to separate the frequent k-mers from the infrequent ones and count the frequencies of

the frequent k-mers. To achieve this, first we use a Bloom filter to identify the k-mers

that were seen at least twice (with a small false positive rate). To count the frequency

of these k-mers, we use an array of items containing a k-mer and its count. These are

the two main components of our tool. Once the counts are computed, we can output

the k-mers having frequency greater than the chosen cutoff. For the sake of cache

efficiency, the Bloom filter is implemented as a Pattern-blocked Bloom Filter (Putze

et al., 2010). It localizes the bits set for an item to a few consecutive bytes (block)
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and thus reduces cache misses. The basic idea is as follows: when a k-mer is seen, the

Bloom Filter is checked to decide if it has been seen before. If that is the case, we store

the k-mer in the array with a count of 1. When the number of items in the array cross

a threshold, it is sorted in-place, and a linear pass is made, compressing items with the

same k-mer (which lie in consecutive positions of the sorted array) to one item. The

counts add up to reflect the total number of times a k-mer was seen. Note that, this

strategy is very similar to computing a run-length encoding (Salomon, 1997) the items.

Our benchmarking (Table 3.1) shows that this very simple approach of storing items

and their frequencies is faster than a Hash-table based implementation. An outline

of the algorithm is given in Algorithm 1. More details are provided in the following

subsections.

Note that the improved efficiency of sort and compaction also suggests that it can

speed up the k-mer counting step for all de Bruijn graph based assemblers where k-

mer counting is required for building the graph. We found that ABySS (Simpson et al.,

2009) and SPAdes (Bankevich et al., 2012) requires 3,660 and 2,144 seconds respectively

for k-mer counting on the DM dataset (see Table 4.1). But the sort and compaction

method takes only 523.41 seconds. We provide a single threaded preliminary tool that

implements this method for counting all k-mers and their frequencies called aTurtle.

Algorithm 1 scTurtle outline

1: Let, S be the stream of k-mers coming from the read library, BF be the Bloom
filter, A be the array to store k-mers with counts, t be the threshold when we apply
sorting and compaction.

2: for all k-mer∈ S do
3: if k-mer present in BF then
4: Add k-mer to A
5: end if
6: if |A| ≥ t then
7: Apply sorting and compaction on A
8: end if
9: end for

10: Apply sorting and compaction on A.
11: Report all k-mers in A with their counts as frequent k-mers and their counts.
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Table 3.1: Comparison of Sort and Compress and Hash table based implementations for
counting items and their frequencies. Jellyfish is a highly optimized hash table based
implementation for the k-mer counting problem. We also compare against general
purpose tools that uses Google sparse/dense Hash maps for storing k-mers and their
counts.

Method
Number of k-mers

458M 2.2B
Time [sec] Space [GB] Time [sec] Space [GB]

Sorting and
compaction

153.37 2.70 523.41 7.10

Jellyfish 296.49 2.40 1131.70 7.20

Google Dense
Hash

626.77 20.47 6187.95 40.38

Google Sparse
Hash

1808.48 7.44 28069.18 10.60

3.3.1 k-mer extraction and bit-encoding

For space efficiency, k-mers are stored in bit-encoded form where 2-bits represent a

nucleotide. This is possible because k-mers are extracted out of reads by splitting them

on ‘N’s (ambiguous base calls) and hence contain only A, C, G and T. As we consider a k-

mer and its reverse complement to be two representations of the same object, whenever

we see a k-mer, we also compute the bit representation of the reverse complement and

take the numerically smaller value as the unique representative of the k-mer/reverse

complement pair. Note that, we only need to compute a bit representation from the

whole k-mer at the start of the read. For the subsequent k-mers, just looking at the

next character and applying the appropriate bit shift and bit-wise OR operations can

produce the next pair of k-mer and its reverse complement. If we encounter an ‘N’, we

have to restart the whole process from the location after ‘N’. The (k− 1) bases skipped

due to the ‘N’ compensates for this restart.



25

3.3.2 Identification of frequent k-mers with Pattern-blocked Bloom

Filter

A Bloom filter (introduced in Chapter 2) is a space efficient probabilistic data structure

which can answer set membership queries with a small false positive rate. Thus by

maintaining a set of unique items seen, the Bloom filter can identify if an item was seen

before in a stream of items. We use this property of the Bloom filter to identify k-mers

that were seen at least twice. For improving performance, we use a modified version of

Bloom filter called the Pattern-blocked Bloom filter (also introduced in Chapter 2).

3.3.3 Counting frequencies with sorting and compaction

Our next objective is to count the frequencies of the frequent k-mers. The basic idea is

to store the frequent k-mers in an array A of size > n, where n is the number of frequent

items. When this array fills up, we sort the items by the k-mer values. This places the

items with the same k-mer next to each other in the array. Now, by making a linear

traversal of the array, we can replace multiple items with the same k-mer with one

item where a count field represents how many items were merged which is equal to how

many times this k-mer was seen; see Figure 3.1. Note that, this is very similar to run

length encoding. Here is a toy example: Say A = [. . . , (i, 1), . . . , . . . , (i, 1), . . . . . . , (i, 1)].

After sorting A = [. . . , . . . , (i, 1), (i, 1), (i, 1), . . . . . .] and compressing results in A =

[. . . , (i, 3), . . .]. We have to repeat these steps until we have seen all items. To reduce

the number of times we sort the complete array, we apply the following strategy. We

select a threshold n < t < |A|. We start with an unsorted k-mer array. It is sorted

and compacted (Phase-0 Sorted and Compacted array or Phase-0 SAC). We progress

in phases as follows. At phase i a certain number of items in the beginning of the array

are already sorted and compressed (Phase-(i− 1) SAC). The new incoming k-mers are

stored as unsorted items in the empty part of the array. Let m be the total number

of items in the array. When m > t, we sort the unsorted items. Many of these k-mers

are expected to exist in Phase-(i − 1) SAC. We make a linear traversal of the array

replacing k-mers present in both Phase-(i−1) SAC and the newly sorted part with one
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Figure 3.1: The Sorting and compaction mechanism. We start with an unsorted k-mer
array. It is sorted and compacted (Phase-0 SAC). The empty part is filled with unsorted
k-mers, sorted and compacted. After repeating this step several times, the compacted
new part almost fills up the whole array. Then all items are sorted and compacted to
produce Phase-1 SAC. This cycle repeats until all k-mers have been seen.

  

(i,2) (i,1) (i,1)…... …... …... …... …... …... …... …... …... …... …...

Unsorted (K-mer, count)  list

(i,2) (i,1) (i,1)…... …...…... …... …... …... …... …... …... …... …...

Sorted (K-mer, count)  list

(i,4)…... …...…... …... …... …... …...

Sorted & Compressed (K-mer, count) list (SAC)
…...

Empty

(i,4)…... …...…... …... …... …... …...

Phase-1 SAC (old part)

…...

Unsorted (new) part

(j,1) (i,1) (j,1)…... …... …... …...

(i,5)…... …...…... …... …... …... …...…...

New (SAC)
part

(j,2) …... …...

Empty

(i,5)…... …...…... …... …... …... …...…...

New part 

(j,2) …... …...

Empty

…...

(i,5)…... …...…... …... …... …... …...…...

Empty

…...

Phase-2 SAC

Phase-1 SAC

Phase-1 SAC

item in Phase-(i − 1) SAC. k-mers not present in Phase-(i − 1) SAC are represented

with one item in the newly sorted part. The counts are added up to reflect the total

number of times a k-mer was seen. This takes O(m) time. Note that this compaction

has sequential and localized memory access which makes it cache efficient. After a few

such compaction steps, m > t and we sort and compress all the items in the array to

produce Phase-i SAC.

By repeatedly applying this mechanism on the frequent items, we ultimately get the

list of frequent k-mers with their counts decremented by 1. This is due to the fact that

when inserted into the array for the first time, an item was seen at least twice unless

its a false positive. To offset this, we simply add 1 to all counts before writing them

out to a file.
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3.3.4 Parallelization

We implemented a one producer, multiple consumer model with a pool of buffers. The

producer extracts k-mers from the reads and distributes them among the consumers.

Each consumer has its own Bloom filter. Since a k-mer should always pass through

the same Bloom filter, we distribute the k-mers to the consumers using the modulo

operation which is one of the cheapest hash functions available. Since modulo a prime

number shows better hash properties compared to non-primes, it is recommended that

one uses a prime (or at least an odd) number of consumers as this spreads out the k-mers

more evenly among the consumers which is helpful for speeding up the parallelization.

k-mers are stored in buffers and only when the buffers fill up, they are transferred to

the consumer. Since consumers consume the k-mers at an uneven rate, having the same

fixed buffer size for all consumers may cause the producer to block if the buffer for a

busy consumer fills up. To reduce such blocking, we have a pool of buffers that has

more buffers than the number of consumers. If a consumer is taking longer to consume

its items, the producer has extra buffers to store its k-mers in. This improves the

speed-up.

With many consumers (usually > 13), the producer becomes the bottleneck. There-

fore, its important to make the producer more efficient. The two most expensive parts

of the producer are: converting reads to k-mers and the modulo operation required

to determine which consumer handles a particular k-mer. Modern computers support

SSE (Patterson and Hennessey (1998)) instructions that operate on 128-bit registers

and can parallely perform arithmetic/logic operations on multiple variables. We used

SSE instructions for speeding up bit-encoding of k-mers. It is also possible to design ap-

proximate modulo functions that execute much faster than regular modulo instruction

for some numbers (e.g. 5, 7, 9, 10, 63, etc) (Warren (2012)). But each of these function

have to be custom designed. If we restrict the number of consumers to the numbers

that have efficient modulo function, its possible to improve the producer’s running time

even further.
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3.3.5 Running time analysis

We first analyze the sort and compress algorithm. Let the total number of frequent

k-mers (those with frequency ≥ 2) be N and let n be the number of distinct frequent

k-mers. We use an xn, x > 1, sized array A for storing the frequent k-mers and their

counts. First consider the following simplified version of our algorithm: (x − 1)n new

items are loaded into the array and they are sorted and compacted. Since there are n

distinct k-mers, at least xn − n = (x − 1)n locations will be empty after sorting and

compaction. We again load (x − 1)n items and perform sorting and compaction. We

iterate until all N items have been seen. Each iteration takes O(xn log xn + xn) time

and we have at most N/(x− 1)n such iterations. So, the total time required is:

O

(
N

(x− 1)n
(xn log xn+ xn)

)
=O

(
x

(x− 1)
(N log xn+N)

)
≤O

(
x

(x− 1)
(N logN +N)

)
As discussed earlier, to reduce number of times sorting is performed, which is much more

expensive than compaction, we implemented a modified version of the above method

which delays sorting at the expanse of more compactions. Our benchmarking shows

this to be faster than the naive method. The algorithm we implemented progress in

phases as follows. At the beginning of phase i, the array is filled up with unsorted

elements. They are sorted and compacted (O(xn log xn + xn)). This is called the

Phase-(i− 1) SAC. Let e be the number of empty locations after each complete sorting

and compaction step. Then, (x − 1)n ≤ e ≤ xn. The new incoming k-mers are stored

as unsorted items in the empty locations. When the empty part is full, we sort the new

items (O(xn log xn)). Many of these k-mers are expected to exist in Phase-(i−1) SAC.

We make a linear traversal of the array replacing k-mers present in both Phase-(i− 1)

SAC and the newly sorted part with one item in Phase-(i−1) SAC. k-mers not present

in Phase-(i−1) SAC are represented with one item in the newly sorted part. The counts

are added up to reflect the total number of times a k-mer was seen. The total cost of a

lazy compaction is therefore upper bounded by O(xn log xn+ xn). This again creates

empty locations at the end of the array which allows us to perform another round of

lazy compression. We assume that the incoming items are uniformly distributed and
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every lazy compaction stage reduces the size of the empty part by an approximately

constant fraction 1/c. Therefore, on average, we expect to have c lazy compaction

stages. This completes Phase-i, the expected cost of which is upper bounded by:

O(xn log xn+ xn+ c(xn log xn+ xn))

=O((c+ 1)(xn log xn+ xn))

In order to compute how many phases are expected to consume all N items, we observe

that, at every phase, the lazy compaction steps consumes a total of at least (x−1)n{1+

(1− 1
c )+(1− 2

c )+ . . .+(1− c−1
c )} = (x−1)n(c+1)/2 items. So, on average, each phase

consumes at least (c+ 1)n(x− 1)/2 items and hence, the expected number of phases is

at most 2N/n(c+ 1)(x− 1). Therefore, the total expected cost would be:

≤ 2N

(c+ 1)n(x− 1)
O (xn(c+ 1) log xn+ xn(c+ 1))

=
2x

(x− 1)
O (N log xn+N)

≤ O
(

x

(x− 1)
(N logN +N)

)
Note that we obtained the same expression for the naive version of sorting and com-

paction. It is surprising that this expression is independent of c. As an intuitive

explanation, observe that more lazy compactions within a phase results in more items

being consumed by a phase, which in turn, decreases the number of phases. This inverse

relationship between c and the number of phases makes the running time independent

of c. We found the naive version to be slower than the implemented version in empirical

tests and therefore, believe our bound to be an acceptable approximation.

We now analyze the performance of sorting and compaction based strategy against

a hash table based strategy for counting frequency of items. Let p be the cache miss

penalty, h be the hashing cost, s is the comparison and swapping cost for sort and

compress and b be the number of items that fit in the cache. The cost of frequency

counting in the hash based method will be (p+ h)N since each hash update incurs one

cache miss. For sorting and compress, we will have one cache miss for every b operations

and so, the cost for sorting and compaction will be (p/b + s)a(N logN + N), where



30

a = x
(x−1) . To compute the value of N for which sorting and compaction will be faster

than a hash based method, we write:

(p+ h)N ≥(p/b+ s)a(N logN +N)

logN ≤ (p+ h)

(p/b+ s)a
− 1

Let a comparison and swap be one unit of work. A conservative set of values like

s = 1, p = 160 (Levinthal (2008)), h = 8, b = 256 (assuming 8 bytes items and 2KB

cache), a = 2 results in N ≤ 250. Therefore, for a large range of values of N , with a

fast and moderate sized cache, the sorting and compaction based method would run

faster than a hash based method.

Since every observed k-mer has to go through the Bloom filter, the time required in

the Bloom filter is O(M) where M is the total number of k-mers in the read library. So,

the total running time that includes the Bloom filter checks and sorting and compression

of the frequent items is O(M) + O(N logN + N). Our measurements on the datasets

used show that the total time is dominated by the Bloom filter updates (i.e. O(M) >

O(N logN +N)).

3.4 cTurtle

For larger datasets, where O(n) space is not available, the method mentioned above

will fail. We show that it is possible to get a reasonable approximate solution to this

problem by accepting small false positive and false negative rates. The method is based

on a counting Bloom filter implementation. The error rates can be made arbitrarily

small by making the Bloom filter larger. Since the count is not maintained in this

method, it only reports the k-mers seen more than once (with a small false positive and

false negative rate), but not their frequency.

When there are so many frequent k-mers that keeping an explicit track of the k-mers

and their counts is infeasible, we can obtain an approximate set of frequent k-mers by

using a counting Bloom filter. Note that, the number of bits required for a Bloom filter

for n items is O(n) but the constants are small. For example, it may be shown that for

a 1% false positive rate, the Bloom filter size is recommended to be approximately 9.6n
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bits (Fan et al. (2000)). On the other hand, with a k-mer size of 32 and counter size of 1

byte, the memory required by a naive method that explicitly keeps track of the k-mers

and their count is at least 9n bytes or 72n bits. With data compression techniques like

prefix of k-mers being implied from the context of the data structure as in Jellyfish and

KMC, this is less than 9n bytes but, from the memory comparison between Jellyfish

and cTurtle presented in Table 3, we believe it still remains considerably higher than

the 9.6n bits required by the Bloom filter.

The basic idea of our counting Bloom filter is to set k bits in the Bloom filter when

we see an item for the first time. When seen for the second time, the item is identified as

a frequent k-mer and written to disk. To record this writing, k′ more bits are set in the

Bloom filter. For all subsequent sightings of this item, we find the (k+ k′) bits set and

know that this is a frequent k-mer that has already been recorded. For cache efficiency,

we implement the counting Bloom filter as a Pattern-blocked counting Bloom filter as

follows. We take a larger Bloom filter (B) of size L. When an item x is seen, k values

(h1, h2, . . . , hk) within the range [h(x), h(x) + b], where h(x) is a hash function and b is

the block size, are computed using precomputed patterns. If this is the first appearance

of x, with high probability, not all of the bits B[h1], . . . , B[hk] are set to one and so we

set all of them. When we see the same item again, we will find all of B[h1], . . . , B[hk]

set to one. We then compute another set of locations (hk+1, hk+2, . . . , hk+k′) within the

range [h(x) + b, h(x) + 2b] using precomputed patterns. Again, with high probability,

not all of B[hk+1], . . . , B[hk+k′ ] are set to 1 and so we set all of them. At the same time

we write this k-mer to disk as a frequent k-mer. For all subsequent observations of this

k-mer, we will find all of B[h1], . . . , B[hk+k′ ] set to 1 and will avoid writing it to disk.

Note that a false positive in the second stage means that we don’t write the k-mer out

to file and thus have a false negative.

Currently, cTurtle reports k-mers with frequency greater than one. But this strategy

can be easily adopted to report k-mers of frequency greater than c > 1. We argue that

for most libraries with reasonable uniform coverage, c = 1 is sufficient. Let C be the

average nucleotide coverage of a read library with read length R. Then the average

k-mer coverage is Ck = C(R−k+1)
R (Zerbino and Birney (2008a)). Suppose we have an
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erroneous k-mer with one error. The probability that the same error will be reproduced

when reading the same site again is 1
3k where 1/k is the probability of choosing the same

position and 1/3 is the probability of making the same base call error. Therefore, the

expected frequency of that erroneous k-mer is 1 + Ck−1
3k . For R = 100, k = 31, this

expression is 1 + 0.0075C. So, we need C > 132.85 at a location for an erroneous 31-

mer to have frequency greater than 2. Since most large libraries are sequenced at much

lower depth (< 60x), such high coverage is unlikely except for exactly repeated regions

and therefore, our choice of frequency cutoff will provide a reasonable set of reliable

k-mers. However, this does not hold for Single Cell libraries which exhibit very uneven

coverage (Chitsaz et al. (2011)), but note that, frequent k-mers are considered reliable

only for uniform coverage libraries and thus single cell libraries are excluded from our

consideration.

The parallelization strategy is the same as that for scTurtle.

3.5 Experiments

The datasets we use to benchmark our methods are presented in Table 4.1. The library

sizes range from 3.7 Gbp to 146.5 Gbp for genomes ranging from 122 Mbp to 3.3 Gbp.

Experiments were performed on a 48-core computer with AMD OpteronTM 6174 pro-

cessors, clocked at 2.2 GHz, 256 GB of memory and 18 TB Raid-6 storage system and

an 80-core Intel machine with Intel R© Xeon R© CPU E7-4870 clocked at 2.40 GHz and

1 TB of memory.

According to our experiments, with limited memory, KMC (Deorowicz et al., 2013)

is the fastest open-source k-mer counter. DSK (Rizk et al. (2013)) is also memory

efficient but is quite slow. Khmer (Pell et al., 2012) and BFCounter (Melsted and

Pritchard (2011)) use Bloom filter based methods for reducing memory requirements.

We have a similar strategy for memory reduction but achieve a much better computa-

tional efficiency.
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3.5.1 Comparison with existing k-mer counters

We decided not to report times for any tool that required more than 10 hours of wall

clock time and therefore some data are missing in Table 3.3. KMC was able to perform

k-mer counting for all the datasets but was slower than Turtle for the larger datasets.

Note that for the sake of comparison, we allowed KMC to use the same amount of

memory that Turtle used but it is capable of performing the computation with smaller

amount of memory. Unexpectedly, on large datasets (ZM and HS), BFCounter required

more memory than scTurtle (over 128 GB vs. 109 GB). We suspect this is due to

the memory overhead required to reduce collusions in the hash table used for storing

frequent k-mers which we avoid using our sort and compaction algorithm. Rizk et al.

(2013) claimed DSK to be faster than BFCounter, but on our machine, which had a

18 TB Raid-6 storage system of 2 TB SATA disks, it proved to be slower (1,591 mins vs.

1,012 mins for the GG dataset). Rizk et al. (2013) reported performance using more

efficient storage systems (solid state disks). This might explain DSK’s poor performance

in our experiments. The detailed results are presented in Table 3.3 for multi-threaded

Khmer, KMC, scTurtle and cTurtle. Since BFCounter (single threaded) and DSK (4-

threads) do not allow variable number of threads, we present their results separately in

Table 3.5.

Jellyfish’s (Marcais and Kingsford, 2011) performance was inconsistent on the AMD

machine (details not shown). For example, while running with 17 threads, it started

with a near perfect CPU utilization of approximately 1700% but steadily declined to

approximately 100% resulting in an average CPU utilization of 290% only. The com-

putation required 16 hours and 56 minutes of wall clock time and 238 GB of memory.

This is inconsistent with Jellyfish’s performance on Intel machines reported in Mar-

cais and Kingsford (2011) and Rizk et al. (2013). Therefore, to compare our tools to

Jellyfish, we ran additional experiments on the Intel machine. Table 3.4 presents the

wall-clock times for Jellyfish, KMC, scTurtle and cTurtle run with 19 threads on an

Intel machine with 80 cores (Intel R© Xeon R© CPU E7-4870 clocked at 2.40 GHz) and

1 TB of memory for all the datasets. On this machine, Jellyfish’s count step had a CPU
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utilization of 1874.5% for 19 threads. We found KMC to be the fastest tool for the

small datasets (DM and GG) but for the two large datasets ZM and HS, Jellyfish and

cTurtles respectively were the fastest. Jellyfish had the highest memory requirements

for all datasets.

3.5.2 Improving the producer

To validate our claim that the wall-clock time (and therefore parallelization) may be

improved by speeding up the producer, we made special versions of scTurtle and cTur-

tle with are 31-threads and a fast approximate modulus-31 function. For the largest

library tested (HS), on average, the special version of scTurtle (counting only) produces

frequent 31-mers in approximately 73 minutes compared to approximately 90 minutes

by the regular version (a 19% speedup). As we use 64-bit integers for storing k-mers

of length 32 and less and 128-bit integers for storing k-mers of length in the range 33

to 64, the memory requirement for larger k-mers were also investigated. Again for the

largest dataset tested (HS), we found that scTurtle’s memory requirement increased

from 109GB for 0 < k ≤ 31 to 172GB for 32 ≤ k ≤ 64 (a 58% increase). Note that

the Turtles require less memory for up to 64-mers than Jellyfish for 31-mers. Detailed

results of all the datasets for the Turtles are presented in Table 3.6.

3.5.3 Error rates

We also examined the error rates for our tools and BFCounter. Note that, just like

BFCounter, scTurtle has false positives only and cTurtle has both false positives and

false negatives. We investigated these rates for the two small datasets (see Table 3.7)

and found error rates for all tools to be smaller than 1%. For the large datasets, due to

memory requirements, we could not get exact counts for all k-mers and therefore could

not compute these rates.

The error rates also increase if the expected number of frequent k-mers is underes-

timated. As discussed in the introduction, for a genome of size g, we expect to observe

approximately g frequent k-mers in the read library. To get an understanding of how
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Table 3.2: Descriptive statistics about the datasets used for benchmarking. The library
sizes range from 3.7Gbp to 146.5Gbp and the genome size ranges from 122Mbp to
3.3Gbp.

Set ID Organism Genome Size (Mbp) Read Lib Bases (Gbp)

DM D. Melanogaster 122 SRX040485 3.7
GG G. Gallus 1× 103 SRX043656 34.7
ZM Z. Mays 2.9× 103 SRX118541 95.8
HS H. Sapiens 3.3× 103 ERX009609 135.3

the underestimation of g drives up the error rates, we tested the DM dataset with ex-

pected number of frequent k-mers to be g, 0.9g, 0.85g and found the false positive rates

to be 1.87, 1.99 and 2 % respectively. However, the true number of frequent k-mers in

the DM library is ≈ 1.07g. Therefore, we recommend setting this parameter to ≈ 1.1g.

Software versions, commands and parameters used for producing the results pre-

sented in this paper are provided in Appendix B.
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Table 3.3: Comparative results of Wall clock time and memory between Jellyfish, Khmer, KMC, scTurtle and cTurtle. Each reported
number (except for the ones for for ZM and HS) is an average of 5 runs. For ZM (HS), each run of Jellyfish required approximately 3
(10) hours or more. This made multiple runs infeasible and therefore, to keep results comparable, we reported the time from one run
only for all tools. The k-mer size is 31. Recall that KMC, scTurtle, Khmer and Jellyfish report k-mers and their counts, while cTurtle
only reports the k-mers with count > 1.

Set ID Tool
Multi-threaded Wall clock time (min:sec) Memory

6 8 10 12 14 16 18 20 (GB)

DM

Jellyfish 4:59 4:00 3:24 2:59 2:42 2:22 2:13 2:12 7.4
Khmer 14:19 11:48 10:19 9:15 9:26 8:13 9:11 8:23 19.1
KMC 7:30 5:41 3:55 3:44 3:14 3:00 2:47 2:38 5.6
scTurtle 4:43 3:40 3:08 2:52 2:49 2:57 2:56 2:58 5.3
cTurtle 3:41 2:43 2:04 1:55 1:55 1:55 1:55 1:56 4.2

GG

Jellyfish 60:49 48:37 41:58 37:02 34:00 32:55 30:04 28:45 81.9
Khmer 156:03 119:22 96:59 95:37 91:41 80:13 71:20 71:17 59.7
KMC 70:52 67:01 43:54 52:06 44:17 32:58 32:01 33:40 46.8
scTurtle 57:52 45:09 42:48 37:07 38:59 33:15 31:28 31:29 44.9
cTurtle 45:16 33:04 23:40 21:37 21:06 21:16 21:34 21:21 29.9

ZM

Jellyfish 295.22 375:22 361:14 357:18 349:31 370:38 326:34 296:41 158.2
Khmer 427:14 419:16 300:13 293:00 310:02 235:56 236:19 185:00 234.4
KMC 194:57 184:22 115:58 107:24 106:15 86:30 87:48 82:55 82.0
scTurtle 159:49 122:42 104:22 84:48 79:25 80:39 84:26 86:31 82.1
cTurtle 131:00 98:48 72:48 65:12 65:36 65:12 63:24 63:48 51.6

HS

Jellyfish ≥600:00 ≥600:00 ≥600:00 ≥600:00 ≥600:00 ≥600:00 ≥600:00 ≥600:00 N/A
Khmer 549:05 479:24 455:11 308:19 281:31 289:43 277:40 239:08 234.4
KMC 253:18 303:8 170:42 149:22 147:40 129:47 121:14 111:27 108.8
scTurtle 219:21 157:26 127:21 110:05 111:04 112:05 112:16 116:30 109.5
cTurtle 171:00 123:12 98:00 87:12 91:12 89:24 88:00 90:24 68.5
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Figure 3.2: CPU utilization curve for scTurtle k-mer count stage only (left) and cTurtle
(right). The diagonal shows the theoretical optimum. The deviation from the optimum
is largely due to the bottleneck of having a single threaded producer for extracting and
distributing k-mers.

3.6 Discussion

Identifying correct k-mers out of the k-mer spectrum of a read library is an important

step in many methods in bioinformatics. Usually, this distinction is made by the fre-

quency of the k-mers. Fast tools for counting k-mer frequencies exist but, for large

read libraries, they may demand a significant amount of memory which can make the

problem computationally unsolvable on machines with moderate amounts of memory

resource (≤ 128 GB or even with 256 GB for large datasets). Simple memory efficient

methods, on the other hand, can be very time consuming. Unfortunately there is no

single tool that achieves a reasonable compromise between memory and time. Here we

present a set of tools that make some compromises and simultaneously achieves memory

and time requirements that are matching the current state of the art in both aspects.

In our first tool (scTurtle), we achieve memory efficiency by filtering k-mers of

frequency one with a Bloom Filter. Our Pattern-blocked Bloom filter implementation

is more time-efficient compared to a regular Bloom filter. We present a novel strategy

based on sorting and compaction for storing frequent k-mers and their counts. Due to

its sequential memory access pattern, our algorithm is cache efficient and achieves good

running time. However, because of the Bloom filters, we incur a small false positive
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Table 3.4: Comparative results of Wall clock time between Jellyfish, KMC, scTurtle
and cTurtle on a SMP server with 80 cores (Intel R© Xeon R© CPU E7-4870 clocked at
2.40GHz) and 1TB of memory. The input of a run is a single read file (FASTA or
FASTQ format) and the output is a text file containing k-mers and their frequencies
(FASTA or tab delimited format). The k-mer size is 31. Each tool was run 6 times
with 19 threads and the average was reported.

Set ID Tool
Wall-clock time Memory

(min:sec) (GB)

DM

Jellyfish 3:01 7.4
KMC 1:48 5.6

scTurtle 2:12 5.3
cTurtle 1:59 4.2

GG

Jellyfish 32:03 81.9
KMC 17:58 46.8

scTurtle 22:39 44.9
cTurtle 21:31 23.9

ZM

Jellyfish 42:44 158.2
KMC 90:36 82.0

scTurtle 60:15 82.1
cTurtle 58:43 51.6

HS

Jellyfish 197:42 238.0
KMC 103:27 108.8

scTurtle 88:31 109.5
cTurtle 85:39 68.5

Table 3.5: Performance of BFCounter and DSK (4 threads) for 31-mers. Some of the
results are not available since those computations could not be completed within a
reasonable time.

Set ID Tool Wall-clock time CPU Utilization Space
(min:sec) (%) (GB)

DM
BFCounter 78:35 99 3.24

DSK 170:37 318 4.86

GG
BFCounter 1011:51 99 29.26

DSK 1590:54 290 48.59

ZM
BFCounter >2289:00 NA >166.00

DSK >2923:00 NA NA

HS
BFCounter >3840:00 NA >128.00

DSK >1367:00 NA NA



39

Table 3.6: Performance of scTurtle (counting only) and cTurtle for 64-mers. The tools
ran with fast mod and 31 threads. Each reported number is an average of 5 runs.

k-mer size Set ID Tool Wall-clock
time

(min:sec)

CPU
Utilization

(%)

Space (GB)

31

DM
scTurtle 02:18 2335.8 5.50
cTurtle 1:28 580.0 4.20

GG
scTurtle 24:48 2388.0 47.10
cTurtle 28:51 413.2 29.90

ZM
scTurtle 55:57 1838.0 82.15
cTurtle 74:46 756.0 51.60

HS
scTurtle 73:24 1563.0 109.53
cTurtle 98:24 512.0 68.55

48

DM
scTurtle 2:33 1790.0 8.30
cTurtle 2:30 871.4 4.76

GG
scTurtle 25:11 1373.8 70.69
cTurtle 25:29 693.8 29.34

ZM
scTurtle 90:16 1125.0 129.09
cTurtle 81:28 782.0 52.35

HS
scTurtle 112:11 953.4 172.11
cTurtle 105:10 657.6 69.29

64

DM
scTurtle 1:40 948.0 8.30
cTurtle 1:28 580.0 4.76

GG
scTurtle 31:60 825.8 70.69
cTurtle 28:51 413.2 29.35

ZM
scTurtle 79:90 1037.0 129.09
cTurtle 74:46 756.0 52.35

HS
scTurtle 79:56 952.0 172.11
cTurtle 98:24 512.0 69.29

Table 3.7: False Positive and False Negative rates of scTurtle and cTurtle. For the
large datasets, due to memory constraints, the exact counts for all k-mers could not be
obtained and therefore these rates could not be computed.

Set ID
scTurtle BFCounter cTurtle

(FP only)(%) (FP only)(%) FP (%) FN (%)

DM 0.178 0.300 1.9× 10−4 2.3× 10−4

GG 0.848 0.027 0.31 0.08
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rate.

The second tool (cTurtle) is designed to be more memory efficient at the cost of

giving up the frequency values and allowing both false positives and false negatives.

The implementation is based on a counting Bloom filter that keeps track of whether a

k-mer was observed and whether it has been stored in external media or not. This tool

does not report the frequency count of the k-mers.

Both tools allow k-mer size of up to 64. They also allow the user to decide how much

memory should be consumed. Of course, there is a minimum memory requirement for

each dataset and the amount of memory directly influences the running time and error

rate. However, we believe, with the proper compromises, the approximate frequent k-

mer extraction problem is now computationally feasible for large read libraries within

reasonable wall-clock time using a moderate amount of memory.

From an algorithm development point of view, our major observation was the im-

portance of cache-efficiency. We showed that a cache-efficient (theoretically) slower

algorithm can outperform a (theoretically) faster but cache-inefficient algorithm even

for large datasets. For Bioinformatic tools that frequently have to deal with large

datasets, algorithms need to be optimized for performance and cache-efficiency will

play an important part in achieving this. Another recent development is the adoption

of external memory algorithms in Bioinformatics (e.g. the recently published k-mer

counter KMC). As datasets are growing in size, algorithms can no longer afford to ex-

clusively rely on main memory for storing their data structures and needs to adapt to

take advantage of external memory.
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Chapter 4

SLIQ: Simple Linear Inequalities for contig scaffolding

Scaffolding is an important subproblem in de novo genome assembly in which mate

pair data is used to construct a linear sequence of contigs separated by gaps. Here we

present SLIQ, a set of simple linear inequalities derived from the geometry of contigs

on the line that can be used to predict the relative positions and orientations of contigs

from individual Paired reads (PRs) and thus produce a contig digraph. The SLIQ

inequalities can also filter out unreliable paired reads and can be used as a preprocessing

step for any scaffolding algorithm. We tested the SLIQ inequalities on five biological

data sets ranging in complexity from simple bacterial genomes to complex mammalian

genomes and compared the results to the majority voting procedure used by many

other scaffolding algorithms. SLIQ predicted the relative positions and orientations of

the contigs with high accuracy in all cases and gave more accurate position predictions

than majority voting for complex genomes, in particular the human genome. Finally,

we present a simple scaffolding algorithm that produces linear scaffolds given a contig

digraph. We show that our algorithm is very efficient compared to other scaffolding

algorithms while maintaining high accuracy in predicting both contig positions and

orientations for biological data sets.

De novo genome assembly is a classical problem in bioinformatics in which short

DNA sequence reads are assembled into longer blocks of contiguous sequence (contigs)

which are then arranged into linear chains of contigs separated by gaps (scaffolds). Pre-

viously, only single end short reads were available from sequencing experiments. Mod-

ern genome sequencing technology allows reporting reads in pairs commonly known as

paired reads or paired end. The distance between the two reads of a pair plus the
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two read lengths (the insert length) approximately follows a normal distribution deter-

mined by the library preparation protocol and may be approximately determined by

mapping the pairs to sufficiently long contigs. Some genome projects also include mate

pair libraries with several different insert lengths. Although there are experimental

differences between mate pairs and paired-end reads, we will refer to them interchange-

ably as paired reads since we can treat them identically from a mathematical point of

view. Paired reads are particularly important for de novo assembly since, in addition

to building contigs, we can now hypothesize about neighbors of a contig whenever the

reads of a pair fall on two different contigs. This opens the possibility of scaffolding

contigs.

Computational genome assembly is typically performed in at least two stages —

the contig building stage and the scaffolding stage. Here we do not address the contig

building problem but rather assume that we have access to a set of contigs produced by

an independent algorithm. However we discuss the relationship of the contig building

and scaffolding stages later in the discussion. The scaffolding problem tries to string

contigs into a chain such that the order of the contigs in the scaffold reflects their

real order in the genome. For the scaffolding problem, the most popular strategy is

to construct a contig graph in which nodes represent contigs and edges represent sets

of paired reads connecting two contigs (i.e. the two reads of the mate pair fall in the

two different contigs). The edges are given weights equal to the number of paired reads

connecting the two contigs. We then try to find a walk in the graph such that the

minimum number of paired reads are violated (a mate pair is violated when the contigs

it is connecting do not have the relative orientation or position suggested by the mate

pair). Just finding the optimal orientation assignment is reducible to the Maximum

Cut problem which is known to be NP-complete (Garey, 1979). Consequently, finding

the optimal walk to get the optimal scaffolding is also NP-complete. The genome can

(and often does) have repeated regions; e.g. approximately 50% of human genome is

accounted for by repeats (Haubold and Wiehe, 2006). But the contig builder is likely

to report one contig per repeated region. This repetitive structure of the genome makes

scaffolding harder as it introduces loops and cycles in the contig graph. We also have
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false edges resulting from mis-assembly of reads into contigs. Unfortunately the number

of false edges is not negligible and so, filtering them is a important pre-processing step.

4.1 Publication Note

The work described in this chapter was previously published in Roy et al. (2012).

The work described is the sole work of the author, under the supervision of his PhD

supervisors and in collaboration with the co-authors.

4.2 Related work

A common procedure is to filter out unreliable edges by picking a small threshold

(commonly 2-5) and removing all edges with weight less than that threshold. For the

remaining edges, a majority vote is used to decide on the relative orientation and

position of the contigs. This simple majority voting strategy is implemented in a

number of commonly-used assemblers and stand-alone scaffolders including ARACHNE

(Batzoglou et al., 2002), BAMBUS (Pop et al., 2004), SOPRA (Dayarian et al., 2010)

and SOAPdenovo (Li et al., 2010b) with various choices of threshold. Opera (Gao et al.,

2011) and the Greedy Path-Merging algorithm (Huson et al., 2002) use a different

strategy to bundle edges. Given a set of paired reads connecting two contigs, these

algorithms calculate the median and standard deviation of the insert lengths of the set

of paired reads and create a bundle using only paired reads with insert length that

are close to the median. ALLPATHS (Butler et al., 2008) and VELVET (Zerbino and

Birney, 2008b) do not build the contig graph and thus do not have a read filtering step

similar to the other assemblers mentioned. The majority voting procedure implicitly

assumes that misleading paired reads are random and independently generated and

that majority voting should eliminate the problematic paired reads. However, this

assumption is often not true because of the complex repeat structure of large genomes,

such as human.

We show that unreliable paired reads can be reliably filtered using SLIQ, a set

of simple linear inequalities derived from the geometry of contigs on the line. Thus
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SLIQ produces a reduced subset of reliable paired reads and thus a sparser graph

which results in a simpler optimization problem for the scaffolding algorithm. More

importantly, SLIQ can be used to predict the relative positions and orientations of the

contigs, yielding a directed contig graph. Our experiments show that both SLIQ and

majority voting are very accurate at predicting relative orientations but SLIQ is clearly

more accurate at predicting relative positions for complex genomes.

The simplicity of SLIQ makes it very easy to be integrated as a preprocessing step

to any existing scaffolders, including recent scaffolders such as MIP scaffolder (Salmela

et al., 2011), Bambus 2 (Koren et al., 2011) and SSPACE (Boetzer et al., 2011). To

illustrate the effectiveness of SLIQ, we implemented a naive scaffolding algorithm that

produces linear scaffolds from the contig digraph. We show that despite its simplicity,

our naive scaffolder provides very accurate draft scaffolds, comparable to or improving

upon the more complicated sate of the art, very quickly. These scaffolds can either be

output directly or used as reasonable starting points for further refinement with more

complex scaffolding algorithms.

4.3 Intuition

We know that contigs can be linearly arranged on the genome. During construction,

contigs get fragmented due to either lack of coverage or failure to resolve a repeated

region. Neighboring contigs cannot have significant overlaps as that would dictate that

they be merged into one contiguous sequence (see Figure 4.1). Each paired read that

maps to two different contigs suggests a certain overlap or gap between the contigs given

the insert length and the relative position and orientation. Since the gap estimation

depends on the relative position and orientation of the contigs, an acceptable gap also

indicates a possible relative positioning and orientation for a pair of contigs. The

SLIQ equations suggests an acceptable relative position and orientation by detecting

acceptable gap and if a paired read fails to provide any such configuration, it is discarded

as being unreliable.
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Figure 4.1: Contigs are expected to be linearly arranged on the reference genome with-
out having significant overlap with each other.
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4.4 Algorithms

We begin with a high level outline of our algorithm for constructing a directed contig

graph (Algorithm 2). The crux of the algorithm is SLIQ, a set of simple linear inequali-

ties that are used to filter paired reads and predict the relative position and orientation

of contigs. In subsequent sections, we will present proofs for the SLIQ inequalities and

a detailed version of the digraph construction algorithm (Algorithm 3). Finally, we will

present a simple scaffolding algorithm (Algorithm 4) that uses the contig digraph to

construct draft scaffolds. Throughout the remainder of this chapter, we will abbreviate

paired reads as PR.

Algorithm 2 Construct Contig Digraph (Outline)

Require: input: P = a set of PRs that connect two contigs, C = a set of contigs
1: Construct the contig graph G with vertex set C and edges representing PRs from
P that pass a certain majority cutoff.

2: Find a good orientation assignment for the contigs (Θ = {Θ1,Θ2, . . .}) where Θi is
the orientation of the ith contig, for example by finding a spanning tree of G.

3: Define Mp to be the set of PRs that satisfy the SLIQ inequalities
4: Construct a directed contig graph Gd with vertex set C and edges representing PRs

from Mp that pass certain criteria.

4.4.1 Definitions and Assumptions

For the sake of deriving the SLIQ inequalities, we assume that we know the position

of the contigs on the reference genome. However, this information cancels out later on

which allows us to analyze the PRs without access to prior contig position information.
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For the derivation we also assume that all the contigs have the same orientation. Later

we will not need this information.

Figure 4.2: The geometry of two contigs, Ci and Cj , arranged on a line with relevant
quantities indicated. Here, L is the insert length, Pi is the start position of contig Ci,
li is the length of the contig Ci, oi is the offset of the read of the PR that falls on Ci,
R is the Read length. gij = Pj − Pi − li. The quantities for Cj are defined similarly.

✲ ✲

Ci Cj

Pi Pj

L

✲ ✛

oi oj oj +R

gij

−gji

li lj

Let Pi be the position of contig Ci in the genome and li be the length of the contig

(Fig. 4.2). We define gap gij to be the difference between the start position of contig

Cj and the end position of contig Ci, and similarly for gji:

gij = Pj − Pi − li, (4.1)

gji = Pi − Pj − lj .

We assume that the maximum overlap of two contigs is one read length, R. In practical

contig building software based on De Bruijn graphs, the maximum overlap is usually

one k-mer where R > k so our assumption is valid.

4.4.2 Derivation of Two Gap Equations

If we assume that Pi < Pj as in Fig. 4.2 and that the maximum overlap between two

contigs is R (i.e. the minimum gap gij is −R), then

Pj − Pi − li ≥ −R,

Pj − Pi ≥ li −R. (4.2)
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Now consider the quantity gij − gji. Using (4.1), we can derive the following inequality

which we call Gap Equation 1

gij − gji = 2 (Pj − Pi) + (lj − li)

≥ 2li − 2R+ lj − li

≥ li + lj − 2R. (4.3)

Therefore, we have shown that (Pi < Pj) ⇒ (gij − gji ≥ li + lj − 2R). Next consider

the quantity gij + gji. We can easily derive Gap Equation 2:

gij + gji = −(lj + li). (4.4)

Now we will prove the other direction of the implication in Gap Equation 1 and

show that (gij − gji ≥ li + lj − 2R)⇒ (Pi < Pj). Using Gap Equation 1 and Equation

(4.1), we get

gij − gji ≥ li + lj − 2R,

2(Pj − Pi) + (lj − li) ≥ li + lj − 2R,

2(Pj − Pi) ≥ 2li − 2R,

Pj − Pi ≥ li −R.

(4.5)

No contig length can be less than R, the length of a read. In practice, contigs of lengths

R are not very reliable. Our experiments show that such contigs almost always fail to

align to the reference. We suggest scaffolders enforce a minimum contig length which

is > R. We make the assumption li −R > 0 and that gives us, Pj − Pi > 0 or Pi < Pj .

Therefore, (gij − gji ≥ li + lj − 2R)⇒ (Pi < Pj) and together we have proven,

(gij − gji ≥ li + lj − 2R) ⇐⇒ (Pi < Pj). (4.6)

4.4.3 Using the Gap Equations to Predict Relative Positions

Our definitions in Equation (4.1) used the quantities Pi and Pj which are not available

in practice in de novo assembly. Thus we need to define the gaps gij and gji in terms
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Figure 4.3: The geometry of two contigs arranged on a line in terms of quantities known
in de novo assembly.

- -
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−gji

of quantities we know such as the insert length L and the read offsets relative to the

contigs oi and oj . Note that the insert length for each PR is an unknown constant so

treating it as a constant in the proof is justified. In practice, we use L = L̄+ 2σ, where

L̄ is the reported or computed mean and σ is the standard deviation of the insert length

distribution.

Let L be the insert length, oi and oj be the offsets of the start positions of the

paired reads in Ci and Cj respectively and Θi and Θj be the orientations of Ci and Cj

respectively. To simplify the notation we abbreviate Θi = Θj as Θi=j and Θi 6= Θj as

Θi 6=j . Then, if Pi < Pj and Θi=j (see Fig. 4.3), we can redefine the gaps gij and gji

without using the contig start positions Pi and Pj :

gij = L− li + oi − oj −R, (4.7)

gji = −L− lj + oj +R− oi. (4.8)

Note that these definitions remain consistent with Gap Equation 2 (Equation (4.4)).

Taking the difference of Equations (4.7) and (4.8) we can similarly remove Pi and Pj

from Gap Equation 1:

gij − gji = 2L− 2R+ 2(oi − oj) + (lj − li). (4.9)

Using Equations (4.9) and (4.5), we derive the following inequality:
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2L− 2R+ 2(oi − oj) + (lj − li) ≥ li + lj − 2R,

2L+ 2(oi − oj) + (lj − li) ≥ li + lj ,

L+ (oi − oj) ≥ li.

Consequently we obtain that (Pi < Pj) ∧ Θi=j ⇒ L + (oi − oj) ≥ li. Negating the

implication gives

¬(L+ (oi − oj) ≥ li)⇒ ¬((Pi < Pj) ∧Θi=j),

L+ (oi − oj) < li ⇒ (Pi > Pj) ∨Θi 6=j .

Now without loss of generality we can assume that Θi 6=j is false. This is possible be-

cause our experiments later show that the SLIQ or majority voting procedures are both

very accurate at predicting relative orientation (Table 4.3) so we can first determine

the relative orientations of the contigs and flip the orientation of one contig if required.

Thus we have

L+ (oi − oj) < li ⇒ (Pi > Pj). (4.10)

In addition, we introduce two filters that are very useful in practice for removing unre-

liable PRs. To derive the first filter, if Pj < Pi,

L = lj − oj + gji + oi +R,

≥ lj − oj −R+ oi +R,

oj − oi ≥ lj − L,

oi − oj < −lj + L. (4.11)

The second filter is to discard an PR if it passes the test for both Pi < Pj and Pj < Pi.

4.4.4 Using the Gap Equations to Predict Relative Orientations

So far we have only predicted relative positions when Θi=j . Now we show that we can

also use the gap equations to infer the relative orientations of the contigs. First, if
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(Pi < Pj) and the minimum gap is −R then we have

gij = L− li + oi − oj −R ≥ −R. (4.12)

Similarly, if (Pj < Pi), then we define ḡji and write

ḡji = L− lj + oj − oi −R ≥ −R. (4.13)

Note that ḡji is different than gji which we defined under the assumption Pi < Pj in

Equation (4.8).

Since (Pi < Pj) and (Pj < Pi) are mutually exclusive and exhaustive neglecting

Pi = Pj , at least one of Equations (4.12) and (4.13) will be true. Note that possibly

also both could be true. For example, if Pi < Pj then gij ≥ −R. Now (Pj < Pi) must

be false, but that does not imply that ḡji ≥ −R is false. If both Equations (4.12) and

(4.13) are true, then we can add them to get 2L ≥ li + lj . To summarize,

(
(gij ≥ −R) ∧ (ḡji ≥ −R)

)
⇒ 2L ≥ li + lj ,

2L < li + lj ⇒
(
¬(gij ≥ −R) ∨ ¬(ḡji ≥ −R)

)
Recalling again that at least one of Equations (4.12) and (4.13) are true, we see that

2L < li + lj is a sufficient condition for mutual exclusion (the XOR relation is denoted

by ⊕):

Θi=j ∧ (2L < li + lj)⇒ (gij ≥ −R)⊕ (ḡji ≥ −R),

¬
(
(gij ≥ −R)⊕ (ḡji ≥ −R)

)
⇒ ¬

(
Θi=j ∧ (2L < li + lj)

)
,

¬
(
(gij ≥ −R)⊕ (ḡji ≥ −R)

)
⇒

(
Θi 6=j ∨ (2L ≥ li + lj)

)
.

(4.14)

If we use this equation only when the PR and contigs satisfy the inequality 2L < li + lj ,

we can then make the relative orientation prediction

¬
(
(gij ≥ −R)⊕ (ḡji ≥ −R)

)
⇒ Θi 6=j . (4.15)

Intuitively, the condition 2L < li + lj means that the contig lengths should be large

relative to the insert length in order for the SLIQ method to work. To find contigs of
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the same orientation, we arbitrarily flip one contig and run the above tests again, only

this time if Equation (4.15) holds, then we conclude that the contigs were actually of

the same orientation. Say we flip Ci. We call the new offset ôi. Then

¬
(
(ĝij ≥ −R)⊕ (ḡjî ≥ −R)

)
⇒ Θî 6=j ⇒ Θi=j .

Again, we introduce two additional filters that are very useful in practical applica-

tions. First, if we find an PR that predicts both Θi 6=j and Θi=j then we leave it out

of consideration. Second, if the SLIQ equations imply Θi 6=j , then we require that both

the reads of the PR have the same mapping directions on the contigs and similarly for

Θi=j .

We summarize our results in the following lemmas and Algorithm 3.

Lemma 1 If the maximum overlap between contigs is R and 2L < li + lj, then

¬
(
(gij ≥ −R)⊕ (ḡji ≥ −R)

)
⇒ Θi 6=j ,

¬
(
(ĝij ≥ −R)⊕ (ḡjî ≥ −R)

)
⇒ Θi=j .

Lemma 2 If the maximum overlap between contigs is R, the contigs have the same

orientation, (i.e. Θi=j), then

(
L+ (oi − oj) < li

)
⇒ (Pi > Pj).

We also summarize the SLIQ inequalities,

gij − gji ≥ li − lj − 2R,

gij + gji = −(lj + li),

(gij − gji ≥ li + lj − 2R) ⇐⇒ (Pi < Pj),

gij − gji = 2L− 2R+ 2(oi − oj) + (lj − li).

4.4.5 Illustrative Cases and Examples from biological data

In this section we present two illustrative cases that provide the intuition underlying

the SLIQ equations. The ideal case for an PR connecting two contigs is illustrated in
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Algorithm 3 Construct Contig Digraph

Require: input: M = a set of PRs connecting contigs, C = a set of contigs, w =cutoff
weight

1: Define E′ = {(Ci, Cj) : an PR connects Ci and Cj}
2: Let wt(i, j) = (number of PRs suggesting that Ci and Cj have the same orientation)
− (number of PRs suggesting that Ci and Cj have different orientations)

3: E = {(Ci, Cj) : (i, j) ∈ E′ ∧ wt(i, j) ≥ w}
4: Construct a contig graph G with vertex set C and edge set E.
5: Find a good orientation assignment (Θ = {Θ1,Θ2, . . .}) for the contigs, for example,

by finding a spanning tree of G.
6: Set Mp = {}
7: for all p : p ∈M do
8: Let Ci and Cj be the contigs connected by p.
9: if Θi=j then

10: if
(
L+ (oi − oj) < li

)
AND (oi − oj < −li + L) then

11: predict Pi > Pj

12: Mp = Mp ∪ {p}
13: end if
14: if

(
L+ (oj − oi) < lj

)
AND (oj − oi < −lj + L) then

15: predict Pi < Pj

16: Mp = Mp ∪ {p}
17: end if
18: end if
19: end for
20: Let E(i, j) be the set of PRs from Mp that predict Pi < Pj and E(j, i) be the set

of PRs from Mp that predict Pj < Pi.
21: Define Ed = {(Ci, Cj) : |E(i, j)| > |E(j, i)|}
22: Output a contig digraph Gd with vertex set C and edge set Ed.

Figure 4.4: Illustrative cases in which both reads of the PR fall in the center of the
contigs (left) and the contigs have reversed positions (right).

✲ ✲

L
✲ ✛

✲

Pi

✲Pj

L

✛

✲

gij

gji
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Fig 4.2. In that case the contigs are long compared to the insert length and the reads

are mapped to the ends of the contigs. However, this situation does not always occur.

Suppose the contigs are short such that the two reads of an PR fall exactly in the center

of the contigs. Then the right hand side of Equation (4.9) reduces to 2L− 2R. So for

both cases Pi < Pj and Pj < Pi, the right hand side of Equation (4.9) has the same

value, making it impossible to predict the relative positions of the two contigs. This

situation is illustrated in Fig. 4.4 on the left. It is easy to see that prediction becomes

easier as the contigs get longer and the reads move away from the center of the contigs.

Now assume that the working assumption is Pi < Pj but in reality, the reverse

(Pj < Pi) is true. Then given that the contigs are long and reads map to the edges of

the contigs, the insert length L would suggest the scenario depicted in Fig. 4.4 (right

side). This would make both gij and gji (as calculated from Equations (4.7) and (4.8))

smaller than they should be. In reality, the position of the contigs is similar to that

shown in Fig. 4.2 where we see that both gij and gji are larger than in Fig. 4.4 (right

side). These wrong values would then be too small to satisfy the left hand side of

Equation (4.6) and this would demonstrate that the working assumption of Pi < Pj is

wrong.

It is also instructive to consider examples from biological data. We show three cases

from a biological data set: one in which SLIQ made a correct prediction, one in which

SLIQ made a wrong prediction and one where SLIQ did not make any predictions (Fig.

4.5). We explain precisely which inequalities are violated in the figure caption. The

biological examples show the difficulties of making SLIQ predictions when the reads

fall close to the center of a contig or when the contig lengths are small relative to the

insert size.

The ultimate aim of SLIQ is to produce better contig graphs for scaffolding and in

many cases, the SLIQ inequalities successfully produced a much cleaner contig graph.

In Figure 4.6, we present one such case from a Drosophila melanogaster dataset where a

complex contig graph with loops is reduced to a chain— the desired ideal contig graph

structure.
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Figure 4.5: Three real examples of SLIQ predictions from the PSY dataset. For the
correct prediction the equation L+(oi−oj) < li evaluates to 3385 < 5043. In the wrong
prediction, it should have satisfied L + (oj − oi) < lj but one of the contigs is smaller
than the insert length so it evaluates to 262 < 217 (false). However L + (oi − oj) < li
evaluates to 498 < 863 so the wrong prediction is made. In the no prediction case, the
condition oi− oj < −lj +L is violated. Even if that did not fail, since one of the offsets
falls almost in the center of a contig, both the conditions L+(oj−oi) < lj , (299 < 1384)
and L+ (oi − oj) < li, (461 < 506) are satisfied and we would not give a prediction for
this PR. To simplify the calculations we used L = 380.

✲ ✲

li = 3149 lj = 5049

Correct Prediction

oi = 3051 oj = 46
✲ ✲

lj = 217 li = 863

Wrong Prediction

oj = 99 oi = 217

✲ ✲

li = 506 lj = 1384

No Prediction

oi = 275 oj = 194

4.4.6 Naive Scaffolding Algorithm

The contig digraph constructed in Algorithm 3 can be directly processed to build lin-

ear scaffolds. To illustrate this point, here we present a naive scaffolding algorithm

(Algorithm 4).

Algorithm 4 Naive Scaffolder

1: G(V,E) =Construct Contig Digraph (Algorithm 3)
2: Identify and remove junctions from G. Junctions are defined as articulation nodes

with degree ≥ 3 that connect at least 3 subgraphs of G of size larger than some
given threshold. The size of a subgraph is defined as the sum of all contig sizes in
that subgraph.

3: Identify all simple cycles in G and remove the edge with the lowest weight from
each simple cycle.

4: If G still contains strongly connected components, those components are removed.
G is now a directed acyclic graph.

5: Output each weakly connected component of G as a separate scaffold.
6: The order of contigs in each scaffold is computed by taking the topological ordering

of the nodes of their respective weakly connected component in G.

To analyze the computational complexity of the naive scaffolding algorithm, let N be

the number of PRs in the library. ConstructingG takesO(N) time. Finding articulation

points takes O(n+m) time where n = |V | and m = |E| (Hopcroft and Tarjan, 1973). If
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Figure 4.6: A component of the contig graph from a Drosophila melanogaster dataset is
presented at the top with a minimum weight cutoff of 2 imposed on the edges. Below,
we present the graph obtained by filtering the paired reads connecting the same set of
contigs as on the graph on the top with SLIQ inequalities and a minimum weight cutoff
of 2.
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we have a articulation nodes, then finding junctions takes O(an) time. Identifying and

breaking simple cycles takes O((n + m)(c + 1)) time where c is the number of simple

cycles (Johnson, 1975). Finally, topological sorting takes O(m logm) time. In total the

complexity of the naive scaffolding algorithm is O(N) +O(m logm) +O(an) +O((n+

m)(c+1)). In practical data sets, a and c are small constants and N >> n,m,m logm.

Thus for practical purposes the time complexity of the algorithm is O(N).

4.5 Experiments

4.5.1 Datasets

To demonstrate the performance of our algorithms in practice, we ran them on five

biological data sets and two synthetic data sets. The data sets represent genomes

ranging in size from small bacterial genomes (3Mb) to large animal genomes (3.3Gb)

(see Table 4.1 for details). More importantly, they also vary in repetitiveness– from

almost non-repetitive bacteria to moderately repetitive drosophila to highly repetitive

human genomes.

For each data set, we obtained a publicly available mate pair library. We used pub-

licly available pre-built contigs for the Drosophila simulans (DS) and human (HS) (Gn-

erre et al., 2011) data sets. Pre-built contigs were not available for the three microbial

data sets — P. suwonensis (PSU), P. syringae (PSY) and P. stipitis (PST) — so we

used the short read assembler VELVET (Zerbino and Birney, 2008b) to construct con-

tigs. All software parameters and sources for the data are provided in Table 4.2. For

the two synthetic datasets, C. elegans (SY CE) and human (SY HS), we constructed

contigs by mapping reads back to the reference genome and declaring high coverage

regions to be contigs. So, for these experiments, we have synthetic contigs but real

reads. We will discuss the performance of the algorithms on the synthetic data sets

at greater length in the Discussion. We mapped the reads to the contigs using the

program Bowtie (v. 0.12.7) (Langmead et al., 2009). Below we only report results for

the uniquely mapped reads because we know the ground truth for them.
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Table 4.1: Descriptive statistics about the datasets. R is the read length, cov is the coverage, L is the reported insert length, Lr is the
real insert length calculated by mapping reads to the reference genome and σ is the standard deviation of Lr.

Set ID Organism Size. Ref. Genome Read Lib R cov L Lr σ

PSU P. suwonensis 3.42 Mb CP002446.1 SRR097515 76 870x 300 188.78 18.77
PSY P. syringae 6.10 Mb NC 007005.1 (Farrer

et al., 2009)
36 40x 350 384.11 67.13

SY-CE C. elegans 100.26 Mb NC 003279-85 SRR006878 35 38x 200 232.13 54.44
PST P.stipitis 15.40 Mb (Chapman

et al., 2011)
(Chapman

et al., 2011)
75 25x 3.2K 3.27K 241.50

DS D.simulans 109.69 Mb NT 167066.1-
68.1,
NT 167061.1,
NC 011088.1-
89.1,
NC 005781.1

SRR121548,
SRR121549

36 62x N/A 187.99 61.47

SY-HS H.Sapiens 3.30 Gb NCBI36/ hg18 ERA015743 100 45x 300 310.63 20.74
HS H.Sapiens 3.30 Gb NCBI36/ hg19 ERA015743 100 45x 300 310.63 20.74
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Table 4.2: Parameter values used in the analysis of all datasets. v is the number of mismatches allowed in read mapping (Bowtie v.0.12.7).

Data Set v contig construction contig mapping

PSU 2 (velvet) Hash length=21, cov cutoff=5,
min contig lgth=150

(vmatch) min match length l = 150,
Hamming distance h = 0

PSY 0 (velvet) Hash length=21, cov cutoff=5,
min contig lgth=150

(vmatch) min match length l = 150,
Hamming distance h = 0

PST 0 (velvet) Hash length=35, cov cutoff= auto,
min contig lgth=100

(vmatch) min match length l = 200,
Hamming distance h = 5

SY-CE 1 (synthetic) cov cutoff=5, min contig len=L available from synthetic construction
DS 2 AASR01000001-AASR01050477 (vmatch) min match length l = 200,

Hamming distance h = 5
SY-HS 2 (synthetic) cov cutoff=3, min contig len=2R available from synthetic construction

HS 3 AEKP01000001:AEKP01231194 (vmatch) min match length l = 300,
Hamming distance h = 0
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4.5.2 Comparison of SLIQ and Majority Voting Predictions

On all the biological data sets, SLIQ was highly accurate in predicting both relative

orientation (> 75%) and position (> 80%) (Table 4.3). For orientation prediction,

SLIQ and majority filtering produced almost identical accuracies except for the case of

P. stipitis (PST) where SLIQ had lower accuracy (75% vs 97%). One possible reason

might be that the PST library used long mate pair reads which may be more inaccurate

than the other libraries we tested. Conversely, for PST, majority voting gave far worse

accuracy (16.5%) than SLIQ (75%) in relative position prediction, confirming that this

data set is an outlier.

Focusing only on the position predictions, SLIQ showed a significant advantage

in both the number and accuracy of the predictions compared to majority voting for

the more complex genomes — D. simulans and human (Fig. 4.7). Importantly, the

improvement was particularly large for the human genome.

Finally, Table 4.4 gives a more detailed comparison of cases where the SLIQ and

majority voting predictions disagreed. When the two methods disagreed, SLIQ clearly

outperformed majority voting procedure. For example, for human, when the methods

disagreed, SLIQ was right in 1852 cases and majority voting in only 165 cases. SLIQ

was also generally more accurate when considering only the predictions made uniquely

by each method, except in one case (PSY).
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Table 4.3: Summary of the results of SLIQ vs. majority filtering for contig graph edges of five biological datasets. Here, n is the total
number of edges connecting two different contigs, we is the minimum wieght of an edge for SLIQ prediction, no is the number of edges
for which we can predict relative orientation, eo is the accuracy of relative orientation prediction, np is the number of edges for which
we can predict relative position, ep is the accuracy of relative position prediction and wm is the minimum weight of an edge for majority
prediction. The same notations is used for majority filtering except with prime.

Set ID n we no eo np ep wm n′o e′o n′p e′p

PSU 4454 2 2507 99.69% 3803 99.21% 4 3942 99.59% 3925 94.87%
PSY 2086 2 1628 98.40% 1852 95.62% 4 2019 98.56% 1990 98.59%
PST 2291 1 1233 75.18% 1516 87.33% 2 1365 97.87% 1336 16.54%
DS 8738 1 6305 92.18% 7097 80.55% 2 6390 91.87% 5861 77.25%
HS 36346 1 31799 79.56% 31153 89.71% 2 32676 79.14% 25750 75.62%
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Table 4.4: Comparison of position predictions between the SLIQ and majority voting
methods. Here, na is the number of predictions where the methods agreed, nd is the
number of predictions where the methods disagreed, nde is the number of predictions
not in agreement where SLIQ was correct, ndm is the number of predictions not in
agreement where majority voting was correct, n′e is the number of predictions made
only by SLIQ, eq is the accuracy of predictions made only by SLIQ, n′m is the number
of predictions made only by majority voting, em is the accuracy of predictions made
only by majority voting.

Set ID na nd nde
ndm

n′e eq n′m em

PSU 3089 646 643 3 68 95.58% 190 90.52%
PSY 1519 287 235 52 46 86.95% 184 96.19%
PST 290 794 784 10 432 58.56% 252 25.00%
DS 2447 820 804 16 409 93.15% 2035 76.41%
HS 16425 2017 1852 165 12711 85.67% 7308 52.73%

4.6 Discussion

4.6.1 Computing the Optimal Insert Length

In our experiments, we found that using a slightly larger value for L (e.g. 20bp for

PSY) than that reported or estimated increased both np(by 49), the number of PRs

for which we could make a relative position prediction, and ep (by 2%), the accuracy

of relative position prediction. This may seem surprising at first given Equation (4.10).

However, for np it can be seen from Fig. 4.2 that underestimating L would reduce gij

which would lead to more overlaps between contigs. Since we assume that the maximum

contig overlap is R, underestimating L would remove many PRs from the predictions.

However, at the moment we do not have an explanation for the observed increase in ep,

the prediction accuracy.

On the other hand, using a slightly smaller value for L increased no, the number of

PRs for which we could make a relative orientation prediction, while eo, the prediction

accuracy for orientation, remained constant. We suspect that a lower L makes Equation

(4.12) and (4.13) harder to pass and thus less PRs are excluded by the mutual exclusion

test.
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Figure 4.7: Comparison of the accuracy of SLIQ and majority voting for relative posi-
tion prediction using that same data shown in Table 4.3
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Figure 4.8: Change in the prediction accuracy, ep, as we restrict our analysis to PRs of
higher rank (c)

4.6.2 Computing the Rank of PRs

Our experimental results also agree with our illustrative cases (section 4.4.5) in that

the prediction accuracy decreases as 2(oi − oj) gets closer to (li − lj) which intuitively

means that the reads are falling closer to the center of the contigs. To address this

issue we can rank the PRs by the minimum value of c for which they fail to pass the

more stringent inequality |2(oi − oj)− (li − lj)| > cR. We say that an PR has rank c if

and only if c is the smallest positive integer such that |2(oi − oj)− (li − lj)| ≤ cR and

PRs with higher rank are considered more confident with regards to their prediction.

Fig. 4.8 shows how the prediction accuracy depends on the rank of the PRs in the PSY

dataset.

4.6.3 Effect of the Number of paired reads

More paired reads connecting different contigs give better confidence in scaffolding.

But we observed that this improvement is significant up to a certain threshold (4-5
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Table 4.5: Summary of the results of majority prediction for synthetic datasets for C.
elegans (SY CE) and humans (SY HS). n is the total number of edges connecting two
different contigs, wm is the minimum weight of an edge for majority prediction, no is
the number of edges for which we can predict relative orientation, eo is the accuracy
in relative orientation prediction, np is the number of edges for which we can predict
relative position and ep is the accuracy in relative position prediction

Data Set n wm no eo np ep

SY-CE 17620 3 17620 99.52% 17532 99.85%
SY-HS 878380 3 878380 98.93% 868877 99.47%

Table 4.6: Summary of the results of our naive scaffolder on biological data. N50 is
the length n such that 50% of bases are in a scaffold of length at least n. The position
accuracy measures how many neighboring contigs in the scaffold were placed in the
correct order.

Data Set N50 Genome
Coverage

Orientation
Accuracy

Position
Accuracy

PSU 17K 116.1% 99.64% 97.95%
PSY 75K 90.98% 98.26% 93.42%
PST 215K 97.89% 98.90% 89.89%
DS 942 59.48% 97.52% 96.07%
HS 18k 79.27% 98.28% 98.03%
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for majority voting and 2-3 for the SLIQ equations). After that the improvement in

correctness in scaffolding is not worth the reduction in number of edges in the contig

graph. For example, for the DS dataset, if we increase the cutoff by 1, the position

prediction improves by 3% but reduces the number of edges by 1520. This reduction

also depends on the coverage of the read library. For the high coverage PSU dataset, an

increase of 1 in cutoff has almost no effect– a reduction of 50 edges. And of course, all

this is assuming that the contigs are of reasonable quality. If you have mis-assembled

or chimeric contigs, more paired reads can create more loops and high degree nodes

in the contig graph which are not removed by the cutoff threshold and result in worse

scaffolding.

4.6.4 Performance of the Naive Scaffolder

We summarize the results of our naive scaffolder on the five biological data sets in Table

4.6 and Table 4.7. For all data sets, the orientation accuracy was very high (> 97%)

and the position accuracy was also high (> 89%). While the genome coverages of PSU

and DS may appear surprising, note that the PSU library had a very high coverage

while the DS library had low coverage and was also made up of a number of different

D. simulans strains. It is likely that the PSU contigs include misassembled fragments

in the contigs, making the total length of the contigs larger than the genome size.

For DS, the combination of low coverage and relatively high rates of sequence differ-

ences between the different D. simulans strains likely resulted in lower genome coverage.

4.6.5 SLIQ on synthetic contigs

One interesting and unexpected finding of our experiments was that the simple majority

voting procedure performs very well for predicting the relative positions of contigs if

the contigs have few errors. This can be seen by the performance of the majority voting

procedure when using synthetic contigs that are not constructed using de novo assembly

tools but rather by mapping the reads back to a reference genome and identifying regions

of high coverage which is expected to produce much higher quality contigs (Table 4.5).
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Table 4.7: Run time comparison of our Naive Scaffolder with two other state-of-the-art
scaffolders, SOPRA and MIP Scaffolder. All times are the sum of the user and system
times reported by the Linux time command. We ran all software on a 48 core Linux
server with 256GB of memory.

Data Set Naive Scaffolder SOPRA MIP Scaffolder

PSU 6m40.39s 237m27.237s 23m32.55s
PSY 59.36s 44m57.604s 3m14.03s
PST 67.21s 3009m29.224s 124m42.68s
DS 7m7.449s N/A 36m42.05s
HS 241m33.928s N/A N/A

This observation suggests a novel way to approach the scaffolding problem in which the

contig builder would output smaller but higher quality contigs and allow the scaffolder

to handle the remainder of the assembly. We believe this is a significant change in

philosophy of genome assembly programs to date in which during the contig building

step, one generally attempts greedily to build contigs that are as long as possible. This

view point also differs considerably from previous approaches to scaffolding in which the

focus was on resolving conflicts between paired reads that gave conflicting information

about the relative orientation and position of contigs.
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Chapter 5

Single cell genome analysis of an uncultured marine

stramenopile

Genomic studies traditionally works with DNA material from thousands or millions

of cells obtained directly or from culture (Macaulay and Voet, 2014). Recent ad-

vances in WGA has made it possible to amplify the minute amount of genetic material

from a single cell (e.g. a diploid human cell contains approximately 7 pg of genetic

DNA (Macaulay and Voet, 2014)) and thereby enable their genetic sequencing. This

is known as SCG where we study the genetic material from one single cell. Using this

technology, single cell microbial organisms which have so far evaded genetic analysis,

since they could not be brought into culture in the lab, can now be studied. Although

WGA has many imperfections which may considerably effect downstream analysis, it

has proven to be a very effective tool for SCG which stand poised to revolutionize many

fields of biology and medicine by allowing genetic study at cellular granularity. Given

a clean sample, ecologists can now study the genetic material of a unicellular microbe

from the environmental, physicians can explore genetic heterogeneity in both healthy

and unhealthy tissue, pathogens may be isolated and identified using genetic analysis

which may greatly improve diagnosis time. In this chapter and the next, I present two

projects that harness the power of SCG. This chapter presents genetic analysis of an

uncultured MAST-4 straminopile and the next one proposes an improved bioinformatic

pipeline for rapid pathogen detection.

A broad swath of eukaryotic microbial biodiversity cannot be cultivated in the

lab and is therefore inaccessible to conventional genome-wide comparative approaches.

SCG offers a promising approach whereby an individual cell is captured from nature

and genome data are produced from the amplified DNA. Using this genome data, we
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may gain knowledge about ecologically important protists by elucidating their genome

evolution, their places in the tree of life (ToL), etc. Although this approach is widely

used to analyze complete or near-complete bacterial genomes, application to draft eu-

karyotic genome assembly (especially from WGA single cell data) is poorly developed.

However, we wanted to investigate the utility of an incomplete assembly in charac-

terizing an uncultured organism as this, if successful, would open the possibilities of

studying a very diverse range of unculturable microbial eukaryotes.

Using a single cell dataset of a marine stramenopile, we demonstrated that with a

contamination free dataset, current bioinformatic tools may generate a reasonable draft

assembly which can be the basis of further in silico analysis like protein prediction,

phylogeny and metabolic pathway analysis. Our success does not imply that any un-

culturable organism can now be successfully studied at the genetic level, however, it

certainly extends the range of possibilities of such analysis.

5.1 Publication Note

The work described in this chapter was previously published in Roy et al. (2014a). It

focuses on the bioinformatic methods which were primarily performed by the author

under the supervision of his PhD supervisors.

5.2 Related work

Multigene phylogenetic analysis using cultivated microbial eukaryotes (protists) has

provided an important backbone to the eukaryote ToL (Parfrey et al., 2010) but has

failed to address a fundamental problem: sparse taxon sampling. This issue arises

because many key lineages, and in general most protist taxa cannot be successfully

cultivated (Pawlowski et al., 2012; Guiry, 2012). Therefore our understanding of the

protist ToL is skewed by a preponderance of data from important parasites or easily cul-

tivated free-living lineages. Another confounding issue is foreign gene acquisition either

as a result of plastid endosymbiosis (i.e., endosymbiotic gene transfer; EGT (Moustafa

et al., 2009; Curtis et al., 2012)) or HGT from non-endosymbiotic sources (Keeling and
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Palmer, 2008; Chan et al., 2012; Bhattacharya et al., 2013) that generates a reticulate

history for many nuclear genes.

A commonly used approach to address the massive scale of microbial eukaryotic

biodiversity (Pawlowski et al., 2012) is DNA “barcoding” (e.g., using rDNA hyper-

variable regions (Behnke et al., 2011)) to identify uncultured lineages. These data are

however often insufficient to reliably reconstruct ToL phylogenetic relationships and

do not address genome evolution. SCG shows promise in this regard and can be used

to interrogate lineages on a cell-by-cell basis to understand their phylogeny and biotic

interactions (Stepanauskas, 2012b; Yoon et al., 2011; Bhattacharya et al., 2012).

We used SCG to generate the first draft genome assembly from a cell belonging to

the broadly distributed group of MAST-4 uncultured marine stramenopiles. Ab initio

gene prediction methods were deployed to identify ca. 7,000 protein-encoding genes in

the MAST-4 genome, robustly position it in the ToL using multigene phylogenetics, in-

vestigate its metabolic pathways and gain insights into its complex evolutionary history

of HGT.

5.3 Sample collection and preliminary analysis

A water sample collected from Narragansett, Rhode Island, USA was sorted using flow

cytometry. Single heterotrophic cells < 10µm in size lacking chlorophyll autofluores-

cence were retained for Multiple Displacement Amplification (MDA) prior to rDNA

identification and phylogenomic analysis. Analysis of 18S rDNA sequence from one of

the samples showed that it was related to uncultured stramenopiles identified in the

English Channel and from Saanich Inlet in Vancouver, Canada (Figure 5.3). High se-

quence identity of the stramenopile rDNA to taxa within the marine stramenopile group

4 (MAST-4; e.g., accessions RA010412.25, 14H3Te6O0, RA080215T.0778) identifies this

cell as a member of this abundant, globally distributed member of the plankton that

consumes bacteria and picophytoplankton (Lin et al., 2012; Massana et al., 2004).
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Figure 5.1: Phylogenetic position of the Rhode Island single cell isolate used for genome
sequencing. NCBI “gi” numbers are shown for each rDNA sequence. The members of
the MAST-4 clade (Lin et al., 2012) are shown in red text.
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Figure 5.2: Phylogenetic distribution of all trees derived from maximum likelihood
(RAxML) analysis of proteins predicted from the stramenopile MAST-4 SCG assembly
are shown with the blue bars. The red bars show the number of trees in which the
MAST-4 protein in the underlying alignment comprises ≥70% of the length of the
reference protein at NCBI. No bootstrap cut-off was used to sort these trees.
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5.4 Genome assembly and gene prediction

A total of 6.62 Gbp of Illumina paired-end reads were generated from the MAST-

4 MDA sample and assembled using SPAdes 2.4 (Bankevich et al., 2012). Because

local alignment (using BLAST) of predicted proteins (using Augustus (Stanke and

Morgenstern, 2005)) for the MAST-4 cell showed a vast majority of top hits to be

eukaryotic (Figure 5.3), we expected this sample to be largely free of contaminant

DNA and proceeded with further analysis.

Assembly of the MAST-4 SCG reads resulted in a 16.93 Mbp assembly. Use of the

Core Eukaryotic Genes Mapping Approach (CEGMA (Parra et al., 2007)) identified

159 of 458 conserved eukaryotic proteins in the MAST-4 SCG assembly. The genes

encoding these proteins were then used to predict 6996 proteins using ab initio gene

predictor Augustus (Stanke and Morgenstern, 2005), of which 3072 had a significant

(e-value ≤1e-10) BLASTP hit with an alignment of at least 70% of the length of the

protein to an existing sequence in our in-house peptide database (Supplementary Table

1). For more details on all these steps please see subsection 5.7.2.

To explore the efficacy of our assembly and protein prediction methods, we gener-

ated three independent MDA samples from total DNA prepared from a unialgal culture

of the diatom Thalassiosira pseudonana that has a completed genome (Armbrust et al.,

2004) of length 32.61 Mbp. Illumina paired-end data generated from the diatom MDA

samples were assembled (Table 5.1) and genes predicted (Table 5.2) as described above.

The fraction of diatom reference proteins (Armbrust et al., 2004) having at least 70%

coverage with a BLASTP hit to the predicted proteins was 64%, 65%, 68%, and 71%,

respectively in the individual and combined diatom MDA-derived genome data. In

comparison, CEGMA recovered only 86.7% of the core proteins in the diatom refer-

ence assembly (that included organelle DNA) and the predicted proteins encompassed

73.40% of the reference diatom proteins with ≥70% coverage. Analysis of core CEGMA

proteins within the predicted data from the MAST-4 SCG and diatom showed that ap-

proximately 60% and ≥90%, respectively, of the 458 genes were identified when mapped

to the Arabidopsis thaliana reference. These results demonstrate that gene prediction
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Table 5.1: Assembly statistics for three (A, B, C) MDA-derived diatom samples. The
reference assembly is 32.61Mbp. Scaffolds with ≥ 90% alignment to reference assembly
were considered correct.

Dataset Total Data Assembly Correct No of N50 Max
scaffolds scaffolds scaffold

[Gbp] [Mbp] [Mbp] [Kbp] [Kbp]

A 1.30 45 33.80 38245 7 101
B 0.98 41 21.43 22838 25 204
C 1.18 44 25.79 23466 17 168

Combined 3.46 48 28.48 27397 16 201

Table 5.2: Protein prediction results for the three (A, B, C) diatom MDA samples.
The reference protein library has 11849 proteins. CEGMA presents 458 core eukaryotic
proteins. A predicted protein is considered correct if it has a ≥ 70% alignment to a
reference protein. We also report the number of proteins with ≥ 60% alignment to a
A. thaliana core protein.

Dataset Predicted Correct Complete core Homologous to
proteins proteins proteins a A. thaliana

core protein

A 13523 7500 373 398
B 13022 7658 397 421
C 14933 8060 397 432

Combined 16439 8341 398 421
Reference 9413 8644 396 413

from SCG data can detect a significant number of proteins in a microbial eukaryote

without an available reference genome or transcriptome data. The ca. 30% difference

between the efficiency of recovery of the core set between the MAST-4 and diatom MDA

samples most likely reflects the fact that the diatom DNA was derived from a culture

and therefore many copies of each chromosomal region were available for WGA. In con-

trast, the MAST-4 SCG data were derived from a single copy of the template DNA and

some genome regions were apparently not (or poorly) sampled by MDA (Yoon et al.,

2011; Lloyd et al., 2013).
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5.5 Analysis of MAST-4 and T.pseudonana predicted proteins using

KEGG

To summarize the functions encoded by MAST-4 predicted proteins, we mapped these

sequences to the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.

genome.jp/kegg/) categories. Given the incomplete assembly, we assumed in the

KEGG analysis that missing proteins are randomly distributed across pathways. There-

fore if a particular pathway is present in the MAST-4 cell, then it would be partially

filled and if a pathway is absent in the KEGG analysis, then it very unlikely to be

solely due to an incomplete assembly, but rather indicates true absence. Given this hy-

pothesis, the KEGG analysis (Figure 5.3) demonstrates that many conserved pathways

are present (e.g., TCA cycle), whereas others such as the urea cycle and photosynthe-

sis are absent and presumably do not exist in the MAST-4 cell (no light harvesting

chlorophyll complex proteins were found in the MAST-4 cell). Also missing are the

nuclear encoded photosystem II precursors such as psbO and psbM. On the other hand,

genes present in MAST-4 that are missing in the diatom include a member of glycosyl-

transferase family 29 involved in galactose metabolism (protein 230; EC:3.2.1.23) and

several enzymes involved in amino acid and nucleotide metabolism (Figure 5.3). Anal-

ysis of proteins involved in protein synthesis [e.g., ribosomal proteins, aminoacyl-tRNA

biosynthesis (Figure 5.4)] and metabolic functions [e.g., purine metabolism, fatty acid

metabolism (Figure 5.5)] shows that the majority of these pathway components are

present in MAST-4.

5.6 Multigene phylogenomics

Phylogenomic analysis of individual MAST-4 proteins demonstrated the expected sister-

group relationship to stramenopiles (e.g., diatoms and oomycetes) and minimal evidence

of contaminating DNA (i.e., 94.8% of the trees summarized in Figure 5.3 show an

eukaryotic affiliation for MAST-4 proteins). To test the usefulness of these data for

inferring the eukaryotic ToL, we generated a concatenated alignment from a broad

collection of completed genomes that incorporated the 458 CEGMA proteins (i.e., with

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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Figure 5.3: Comparison of the KEGG metabolic pathway inferred from the completed
genome of the photosynthetic diatom, T. pseudonana and from the MAST-4 SCG data.
Pathway components present in each genome are shown with the green lines.
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Figure 5.4: KEGG metabolic pathway map of predicted proteins from the stramenopile
MAST-4 SCG that are involved in informational functions such as DNA transcription
and translation (Jain et al., 1999). Pathway components (proteins) present in the
MAST-4 cell assembly are marked with the green boxes, whereas the red boxed mark
proteins present in the reference genome assembly from the model diatom Thalassiosira
pseudonana.
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Figure 5.5: KEGG metabolic pathway map of predicted proteins from the stramenopile
MAST-4 SCG that are involved in operational housekeeping functions (Jain et al.,
1999). Pathway components (proteins) present in the MAST-4 cell assembly are marked
with the green boxes, whereas the red boxed mark proteins present in the reference
genome assembly from the model diatom Thalassiosira pseudonana.
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Figure 5.6: Analysis of proteins derived from MAST-4 SCG data. Phylogenetic tree
inferred from the concatenated alignment of the core 458 CEGMA proteins with the
results of 100 bootstrap replicates (when ≥ 50%) shown at the branches. The numbers
in Italics below the branches derive from a RAxML bootstrap analysis using a subset
of 159 CEGMA proteins that were full- length in the MAST-4 SCG assembly.
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some missing data from MAST-4 and other taxa). This alignment had a length of

25,145 amino acids and maximum likelihood analysis shows 100% RAxML bootstrap

support for the phylogenetic affiliation of MAST-4 with other stramenopiles in a tree

that provides robust bootstrap support for many other nodes (Figure 5.6). RAxML

analysis of a reduced dataset of 159 CEGMA proteins (12627 amino acids) that were

complete in the MAST-4 assembly provided similar results (Figure 5.6). These results

demonstrate the utility of SCG data for inferring the phylogenetic position of uncultured

eukaryotes.
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5.7 Methods

5.7.1 Cell collection and DNA preparation

Cell collection and DNA preparation were performed by our collaborator Hwan Su

Yoon. For the sake of completeness, we are presenting the relevant section from Roy

et al. (2014a) here.

A 500 mL sample of estuarine water was collected at low tide from the Pettaquam-

scutt River, Narragansett, Rhode Island, USA (41◦ 26’ 57.32” N 71◦ 26’ 59.49” W)

on September 16th, 2009. The sample was kept in the dark and low temperature (-4◦

C) until processing, which was ≤ 6 hours thereafter. Environmental samples were pre-

screened through a 70 mm mesh-size strainer (Becton Dickinson). A 3 mL subsample

was incubated with the Lysotracker Green DND-26 (75 nmol L-1; Invitrogen) for 10

min in order to stain protist food vacuoles using pH-sensitive green fluorescence (Rose

et al., 2004). Target cells were identified and sorted using a MoFloTM (Beckman-

Coulter) flow cytometer equipped with a 488 nm laser for excitation. Prior to target

cell sorting, the cytometer was cleaned thoroughly with bleach. A 1 NaCl solution (0.2

µm filtered and UV treated) was used as sheath fluid (Stepanauskas and Sieracki, 2007).

Heterotrophic protist identification, single cell isolation, and total DNA amplifications

were carried out as described by Yoon and co-authors (Yoon et al., 2011). Two criteria

were used for the heterotrophic cell sorting, the presence of Lysotracker fluorescence

and <10 µm cell diameter. Cells were deposited into a 384-well PCR plate containing

0.6 mL of 1X TE buffer, centrifuged briefly and stored -80◦ C until further processing

(plate no. AB108). Cells frozen in TE buffer were exposed to cold KOH for cell lysis

and DNA denaturation (Raghunathan et al., 2005). Cell lysate genomic DNA was am-

plified using multiple displacement amplification (MDA (Dean et al., 2002)). The single

cell amplified genomes were diluted 100-fold in sterile TE buffer, then screened by PCR

and sequencing of conserved 18S rDNA. All sample 18S rDNA sequences were compared

against RefSeq (http://www.ncbi.nih.nlm.gov/refseq) and their phylogenetic po-

sitions inferred based on a maximum likelihood tree with 100 bootstrap replications

http://www.ncbi.nih.nlm.gov/refseq
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(RAxML Version 7.2.830). One MDA sample, AB108-RIc103, was identified as a mem-

ber of the uncultured MAST-4 stramenopiles and another (AB108-RIc31) was identified

as a member of the cercozoan clade. Both samples were re-amplified using the REPLI-g

Midi Kit (Qiagen) following the manufacturer’s instructions. The second MDA reaction

was treated with the QIAqick PCR purification Kit (Qiagen).

5.7.2 Single cell genome assembly

Multiple Displacement Amplification (MDA) facilitates whole genome amplification

(WGA) to generate sufficient DNA from single cells for next generation sequencing (the

recently described MALBAC (Zong et al., 2012) procedure offers another promising ap-

proach). MDA may, however, produce significant coverage bias, resulting in fragmented

and incomplete assemblies (Woyke et al., 2009; Rodrigue et al., 2009; Chitsaz et al.,

2011). Therefore, it is clear that SCG may not provide complete genome assemblies, the

challenge nonetheless is to maximize the quantity and quality of the data from uncul-

tured taxa. Given these constraints, we applied a specialized assembler to the SCG data.

SPAdes 2.4 (Bankevich et al., 2012) was used because it demonstrates high performance

when assembling bacterial single cell libraries (http://bioinf.spbau.ru/spades/).

Initial assembly of the read library with default settings demonstrated that despite

the maximum read length of 250 bp, the median insert size was only 130 bp (with a

standard deviation of 65 bp). In addition, the distribution of the library insert sizes

varied widely and a significant amount of paired-end reads were of length 100-150 bp

or shorter; many of the reads overlapped by 100-200 bp. In an attempt to improve the

original data quality we removed reads shorter than 150 bp in length, which increased

the median insert size up to 200 bp but the resulting assembly was very fragmented

due to loss of coverage. The unique iterative mode in SPAdes was used to recover the

usable insert length and to preserve as much coverage as possible. The program was

run using k-mer lengths set of 21, 33, 55, 85, 95, and 127 in ‘careful’ mode. Using this

approach, shorter k-mer lengths allowed us to keep the coverage and longer k-mers ex-

ploited the usable part of insert size distribution to provide proper repeat resolution. In

order to predict genes we used a pipeline combining the Core Eukaryotic Gene Mapping

http://bioinf.spbau.ru/spades/
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tool CEGMA (Parra et al., 2007) and the ab initio gene predictor Augustus (Stanke

and Morgenstern, 2005). Ab initio gene prediction tools such as Augustus need a set

of training genes to “learn” gene models. Parra and co-authors (Parra et al., 2007)

reported a set of 458 core proteins shared by all eukaryotes. These core proteins may

be used to produce a set of training examples using CEGMA. CEGMA extracted 159

(35%) core genes from the MAST-4 SCG draft assembly, which was used to train Au-

gustus to make gene predictions. Note that, CEGMA only predicts genes for which it

finds a full-length homolog. Therefore, the fragmented nature of our assembly may have

been one of the major reasons for detecting only 35% of the core proteins. Interestingly

the set of proteins predicted by Augustus contained 243 core proteins (with at least

60% coverage to a known Arabidopsis thaliana core protein), which is about 53% of the

core set.

As might be expected with MDA-derived genome data, we found a considerable

fraction of over-assembly of diatom reads when compared to the T. pseudonana ref-

erence genome. The assemblies were larger than the reference genome (32.61 Mbp)

by 38%, 25%, and 35% respectively for the three independent MDA samples and 47%

for the combined data. It should however be noted that SCG assemblers such as

IDBA-UD (Peng et al., 2012) and SPAdes 2.4 (Bankevich et al., 2012) were tested

and optimized for bacterial datasets and there exists no dedicated SCG assembler for

larger, more complex eukaryotic genomes. Therefore, we were not expecting a perfect

or near-perfect assembly from either the reference diatom or the MAST-4 genome. As

such, we strove to generate as complete a set of predicted genes as possible from the

fragmented assembly.

5.7.3 Phylogenomics

Phylogenomic analysis was performed as described in (Moustafa et al., 2009; Bhat-

tacharya et al., 2013; Price et al., 2012). Briefly, the MAST-4 predicted proteins were

used in a BLASTP query against an in-house peptide database consisting of ca. 16.9 mil-

lion sequences derived from RefSeq v.51 with the addition of sequenced eukaryote (e.g.,
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Fungi, Metazoa, Vididiplantae, and stramenopiles) taxa from the Joint Genome Insti-

tute (http://www.jgi.doe.gov) and 6-frame translated eukaryote EST sequences re-

trieved from NCBI dbEST (http://www.ncbi.nlm.nih.gov/dbEST). A taxonomically

diverse set of target peptides were selected, aligned via MAFFT v641, and used for phy-

logenetic reconstruction under the PROTGAMMALG model of RAxML v.7.2.830. The

resulting trees were sorted for different patterns of monophyly with PhyloSort (Moustafa

and Bhattacharya, 2008). The number of trees having the MAST-4 protein and a par-

ticular phylum in the same monophyletic group (Figure 5.2) shows a strong phylogenetic

relationship between the single cell isolate and stramenopiles. From these distributions,

a set of possible taxa that MAST-4 might be most closely related to was selected. The

chosen phyla were: Viridiplantae, stramenopiles, Rhodophyta, Rhizaria, Opisthokonta,

Metazoa, Haptophyta, Glaucophyta, Fungi, Cryptophyta, Choanoflagellida, Alveolata,

and Amoebozoa. The remainder of the phylogenetic analysis was conducted with species

from these phyla only. We used a method similar to Robbertse and co-authors (Rob-

bertse et al., 2011) for building a species tree. Briefly, in this method the objective is

to create a super-protein alignment by concatenating all the alignments of the proteins

shared among the species and to create a phylogenetic tree using that super-protein

alignment. The resulting tree is considered to represent the species tree.

This procedure was performed as follows: the 458 conserved eukaryotic proteins

were aligned to our local protein database to identify homologs. Note that we used

159 conserved eukaryotic proteins as references from the MAST-4 SCG assembly and

for the remainder we used the conserved proteins in A. thaliana. For each conserved

protein, a multiple sequence alignment of the conserved protein and its homologs was

produced using MUSCLE (Edgar, 2004). Such alignments often contain non-conserved

blocks and it has been argued that using only conserved blocks produce a more reliable

phylogenetic tree (Talavera and Castresana, 2007). Therefore, Gblocks (Talavera and

Castresana, 2007) was used to extract conserved regions from the alignments and these

aligned conserved blocks were concatenated to produce the super-protein. This has the

added benefit of making the super-protein alignment shorter, which helps in more rapid

phylogenetic tree construction. The resulting super protein alignment was 25,143 amino

http://www.jgi.doe.gov
http://www.ncbi.nlm.nih.gov/dbEST
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acids in length. Lastly, the super protein alignment was used to build a phylogenetic

tree using RAxML (Stamatakis, 2006) with 100 bootstraps. This tree was considered

to be the species tree for the MAST-4 SCG (Figure 5.6).

5.8 Discussion

SCG is a rapidly developing field in medical and environmental science. In the latter

area, virtually all work done until now has focused on prokaryotic taxa that have

smaller, less complex genomes compared to eukaryotes. Prokaryotes are more amenable

to genome assembly when using MDA-derived sequence data. The initial work on

marine protist SCG showed complex biotic interactions for taxa (e.g., presence of prey

and pathogen DNA in the MDA sample) that precluded a robust assembly of the

host nuclear genome. Here we show that if a MDA sample derived from the natural

environment is largely free of contaminating DNA, that it is possible to generate a

useful, partial draft assembly from the cell. Applications of these SCG data include

generating a gene inventory for the uncultivated taxon to study metabolic pathways and

placing it in the ToL using multigene phylogenetics. Our results suggest that SCG data

can be used to create a draft genome assembly for uncultured eukaryotes which, after ab

initio gene predictions, can facilitate its positioning in a phylogenetic tree, explore its

metabolic pathways and investigate its evolutionary history. With regard to inferring

the ToL, we show that the CEGMA proteins appear to be well suited for training ab

initio gene prediction tools and for phylogenetic analysis of novel organisms even in

the face of significant HGT. Together, this opens up the possibility of creating a well-

sampled ToL without the need for culturing organisms in the laboratory. Generation

of protist (particularly picoeukaryotic) marine metagenome data should provide the

opportunity to elucidate the complex history of gene sharing via HGT and the global

distribution of microbial eukaryotes (Moustafa et al., 2009; Curtis et al., 2012; Keeling

and Palmer, 2008; Bhattacharya et al., 2013; Frommolt et al., 2008; Archibald et al.,

2003; Andersson, 2009).
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Chapter 6

Rapid pathogen detection with Single Cell Genomics

(SCG).

The desire to harness the power of genetics to improve clinical diagnosis is one of the

major driving forces behind improvements in sequencing and bioinformatics. Recent

developments in SCG has opened up new possibilities in genetics and researchers are

trying to apply it for improving the state of the art in various fields. One such area is

the identification of disease causing agent(s) and understanding its antimicrobial sus-

ceptibility as this is very important for positive patient outcomes. In cases like sepsis,

where the mortality rate rapidly increases with time, rapid identification of the dis-

ease causing pathogen is of utmost importance and may be the deciding factor in a

patient’s outcome. Though sepsis is one of the most common fatal diseases, unfortu-

nately, it receives very little in terms of publicly funded research (Figure 6.1). Whole

genome sequencing is becoming an increasingly important tool for pathogen detection

and understanding pathogenicity and possible antibiotic resistance. Single Cell Ge-

nomics (SCG) can be a powerful alternative to the time consuming step of pathogen

culturing. Moreover, for the vast majority of pathogens that cannot be cultured, SCG

may be the only option for genetic analysis based pathogen detection. Currently, bioin-

formatic analysis of sequencing data is performed after completion of sequencing. We

propose real-time bioinformatic analysis that is performed simultaneously with sequenc-

ing to facilitate rapid clinical response. To demonstrate the feasibility of our approach,

we show preliminary results with an MDA amplified E. coli dataset.
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Figure 6.1: Some facts about sepsis. While being one of the most common dis-
eases, sepsis receives very little research funds while being one of the most deadly.
Source:http://www.wfpiccs.org/projects/sepsis-initiative/.

6.1 Related work

In an ideal scenario, when diagnosing a disease, we should be able to identify the dis-

ease causing pathogen and also predict its drug resistance in a timely manner so that

appropriate measures can be taken as soon as possible. Traditional clinical methods

such as staining and microscopy, culturing can take an extended period of time while

still producing ambiguous results. For example, blood cultures for sepsis, which take

between 1-5 days (Ecker et al., 2010), are reported to be negative in more than 50% of

the cases where true bacterial or fungal infection is believed to exist (Dellinger et al.,

2008). For this reason, it is recommended that the treatment of sepsis be based on

clinical judgment rather than culture results. Thus, blood cultures are not a satisfac-

tory gold standard for bloodstream infections. DNA molecule based (also known as

molecular diagnosis) methods like SeptiFast (from Roche) identify more positive spec-

imens compared to blood culture methods, were often proved to be clinically relevant

based on chart review and clinical data, and many of them were later confirmed by

isolation of the pathogen from relevant clinical samples (Struelens, 2010). SeptiFast

reportedly identifies the 25 organisms that account for more than 90% of the culturable

pathogens associated with sepsis. Though SeptiFast is limited to culturable pathogens,

its analysis time is only 6 hours and therefore is much faster than blood-culture results.

Thus the sensitivity and speed of molecular diagnosis tools clearly establishes them as

a preferred tool of diagnosis of bloodstream infections. SeptiTest (from MolZym) and
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LOOXSTER/VYOO (from SIRS-Lab) are two more diagnosis tools of this family.

Polymerase chain reaction (PCR) amplification coupled with Electrospray ioniza-

tion/Mass Sepctrometry (PCR/ESI-MS) was initially developed for identification of

microbes, including previously unknown or unculturable organisms from samples that

contained multiple species, primarily for biodefense (Ecker et al., 2005) and is now being

adapted to pathogen detection (Ecker et al., 2010). This method uses primers designed

to identify highly conserved genomic regions (e.g. 16s rDNA, housekeeping genes like

tufB, prlB, valS, etc.) across bacterial or fungal domains. The mass spectrometry ef-

fectively weighs the PCR amplicons with sufficient accuracy so that the composition

of A, C, G and T can be deduced. This composition is then compared to database of

base composition signatures of known organisms derived from previously determined

PCR/ESI-MS. The advantage here is that a probe designed from the target nucleic acid

sequence is not needed— the amplicon is weighed, the base composition fingerprint is

computed and compared to all known organisms in the database. Thus PCR/ESI-MS is

equivalent to running thousands of specific tests, including those that have not yet been

developed, since the exact identity of the organism is not required for this method. In

addition to pathogen identification, drug-resistance may also be interrogated by search-

ing for markers like mecA for β-lactam antibiotic resistance, vanA and vanB genes for

vancomycin resistance and the blaKPC gene for resistance to the carbapenem class of

antibiotics. PCR/ESI-MS systems are available commercially and are being used for

research and disease surveillance at 20 cites in Europe and the USA (Ecker et al., 2010).

Currently, the complete process from sample collection to report generation can be com-

pleted within 4-6 hours. The mass spectrometer can analyze an amplification produce

in approximately 30 sec and thus can analyze approximately 3000 PCR reactions in

24 hours in a completely automated fashion. It does not even require any training in

Mass spectrometry (MS) for personnel who operate the instrument or for those who

interpret the results. One major limitation of PCR/ESI-MS is that only three types of

drug-resistance can be investigated with current technology. Understanding resistance

to other type of drugs require analysis of too many regions of the genome to be included

in the current assay format.
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Another important and relevant issue is responding to diseases like Tuberculosis

(TB). Though well known treatments of TB exist, diagnosis often delays appropri-

ate response. Bacteria culture is currently the gold standard for TB (M. tuberculo-

sis) detection due to its highest sensitivity (< 60%), but requires weeks to obtain

results (Liong et al., 2013). Such delayed case detection is associated with reduced

cure rates and provides opportunity for continued transmission, which became an even

more serious problem with the co-infections of HIV and the emergence of highly drug-

resistant TB (Pawlowski et al., 2012). Moreover, when diagnosing active TB infections

by staining the patients sputum for acid-fast positive bacilli, we may observe false-

positives in the presence of alternative mycobacterium species in patients that have

immuno-modulary diseases such as AIDS/HIV or are chronic smokers (Roth et al.,

1997). Developing a platform for fast and improved TB detection is thus considered

crucial for efficient TB control. Liong et al. (2013) reported a magnetic barcode based

genetic detection method for TB that can detect M. tuberculosis and also identify drug-

resistant strains in 2.5 hours from mechanically processed sputum samples. However,

this method needs systematic designing of magnetic barcode probes for the pathogen

under investigation which means that the identity of the pathogen and its drug-resistant

strains has to be anticipated and therefore, generalizing this method for rapid pathogen

detection for novel cases is non-trivial.

WGS is rapidly becoming an important, alternative tool for the diagnosis of infec-

tious disease (van Belkum et al., 2013; Liong et al., 2013; Ecker et al., 2010) in such

complex scenarios. As our understanding of the molecular nature of microbial drug

resistance improves enabling us to better predict which drug will be the most effective,

whole genome/exome sequencing based methods will increasingly replace conventional

culture based drug-susceptibility experiments. We can also envision using WGS to con-

tinuously monitor and analyze specimens at various stages of antimicrobial resistance

and thus better understand the complex process of developing drug-resistance. Though

sequencing data can provide desperately needed improvements, it is still lacking in

speed of discovery because pathogens need to be cultured to obtain sufficient amounts

of DNA for sequencing. Single cell genomics allows us to bypass the time consuming
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culturing stage as follows. Fluorescence-activated cell sorting (FACS) or micro-fluidic

methods can isolate individual cells and their genetic material can be extracted. The

minute amount of DNA obtained from a single cell can be amplified using WGA (Lepere

et al., 2011) methods like MDA (Lasken, 2007; Worden et al., 2011) or the MALBAC

procedure (Zong et al., 2012; Stepanauskas, 2012a) to an amount that can be used for

High Throughput Sequencing (HTS). Since, WGA processes like MDA amplifies DNA

material very unevenly from the various regions of the genome, the genome coverage is

highly variable (coverage refers to the number of sequence reads that align on average

beneath each nucleotide in an assembled piece of DNA; higher, uniform coverage is

better). This high degree of non-uniformity makes separation of genomic (error free)

sub-sequences from erroneous ones difficult. Therefore, at this point, the challenge for

the community is to design and implement advanced bioinformatic methods and tools

which can handle WGA sequencing data. We want to push even further and investigate

whether the bioinformatic analysis can be performed in parallel with the sequencing

experiment. Using an MDA amplified E. coli dataset, we demonstrate that with only

25bp partial reads, a vast majority of the proteins could be predicted which implies

that this organism could have been identified with partial sequencing data extracted

from an ongoing sequencing experiment.

6.2 Identifying reliable sequencing information

The fundamental problem that we are trying to address is the separation between

genomic (error-free) and erroneous sequences from WGA libraries. Our analysis is

based on k-mer frequencies. A k-mer is any sequencing read subsequence of length k.

As discussed earlier in Chapter 3, k-mers play an important role in many methods in

bioinformatics because they are at the core of the de Bruijn graph structure (Pevzner

et al., 2001) that underlies many of today’s popular de novo assemblers (Simpson et al.,

2009; Zerbino and Birney, 2008a). They are also used in assemblers based on the

overlap-layout-consensus paradigm like Celera (Miller et al., 2008) and Arachne (Jaffe

et al., 2003) as seeds to find overlap between reads. Several read correction tools (Kelley

et al., 2010; Liu et al., 2012; Medvedev et al., 2011) use k-mer frequencies for error
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correction. These methods were developed for multi-cell libraries where the coverage

is approximately uniform and therefore, are not applicable to single-cell libraries with

highly uneven coverage.

6.2.1 Multi-cell vs Single-cell libraries

For multi-cell libraries, which exhibit a near uniform genome coverage, k-mers which

appear multiple times can be assumed to reflect the true sequence of the donor genome

since it is very unlikely that random errors will generate the same k-mer multiple times.

Thus, k-mers which only appear once are assumed to contain sequencing errors (see Fig-

ure 6.3, left). Therefore, high frequency k-mers constitue a high quality representation

of the sample genome.

Unfortunately, due to the large coverage variation introduced by WGA methods,

such assumptions do not hold for amplified single-cell libraries. Regions of high coverage

can produce the same erroneous k-mer multiple times just by chance (see Figure 6.3,

right) and such high coverage regions are very common in WGA libraries (see Figure

6.2 (Chitsaz et al., 2011)), producing a large number of erroneous k-mers that appear

multiple times. We refer to the erroneous frequent k-mers as false frequent and the

error-free genomic frequent k-mers as true frequent. For downstream analysis such

as assembly, having a large number of false frequent k-mers usually results in very

fragmented contigs. Therefore, minimizing the proportion of false frequent k-mers

while ensuring a (near) complete set of true frequent ones is desirable.

6.2.2 Intuition

In order to counter the high coverage bias and obtain a reasonable coverage of the

genome, single cell read libraries typically have a high average coverage. Therefore,

partial reads (a fixed length prefix of the reads) are also expected to have sufficient

average coverage. Though using partial (shorter) reads would lead to a poorer genome

coverage and worse assembly contiguity, we are interested in exploring whether this is

sufficient for identifying a reasonable number of genes and understand an organism’s

pathogenic capabilities. Also, since the error rate usually increases towards the end
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Figure 6.2: Highly uneven genome coverage observed for MDA amplified E. coli read
library.

Sample Genome

DNA Sequencing 
Reads

Sequencing errors

k-merk-mer

Low coverage locus A

High coverage locus B
Multiple 

erroneous
reads

Error-free 
reading of 

k-mer

Frequently observed k-mers
covering loci A or B } erroneous k-mers

}} A B

Figure 6.3: Locus A is covered by several reads that contain sequencing errors. However,
not all reads contain errors in the k-mer covering this genome region and less than two
or more of the reads covering the locus contain the same sequencing error. In contrast
locus B is covered by many sequence reads due to to MDA-derived coverage bias and the
same sequencing error is observed several times. Consequently, additional, erroneous
k-mers are observed for this genome region.



91

of the reads, we expect partial reads to contain fewer erroneous k-mers while still

containing a large proportion of the genomic ones. Note that if this turns out to be

the case, partial reads would be enough to at least identify a pathogen, if not fully

characterize it.

6.2.3 Preliminary results

To get an understanding of what proportion of the genomic k-mers may be recovered

from partial reads and how the rate of false frequent k-mers increases with partial read

length, we performed the following experiments on two bacterial (E.coli 760.87x and

Salmonella bongori 107x average genome coverage) and one eukaryotic (the diatom T.

pseudonana 85x genome coverage) MDA-amplified Illumina datasets. We used sequenc-

ing libraries from biological samples, and simulated only the purely technical step of

producing partial reads. That is, we extracted the first 25, 35, 45, . . . nucleotides of

all reads and identified the k-mers that appeared at least twice in the partial reads.

Since reference genomes were available for all the datasets, we were able to identify the

number of genomic and erroneous k-mers. We found that (see Figure 6.4) for the high

coverage E. coli dataset (760.87-fold coverage), we recover 96.76% of all true 31-mers

from partial reads of length 45 nt, and only 27.46% of 31-mers appearing twice or more

are erroneous or False Frequent (FF). Similarly, for S. bongori we recovered 97.37% of

the true 31-mers from partial reads of length 39 nt, with a very low proportion of FF

k -mers of 9.97%. As the T. pseudonana dataset has a comparatively low coverage we

consider partial reads of length 55 nt from which we recover 97.89% of the true 31-mers

with a proportion of FF k -mers of 23.93%. This behavior is consistently observed for

other k -mer lengths (data not presented).

This clearly indicates that for a fixed k -mer length it is possible to extract almost

all true frequent k -mers from partial reads which have a length less than twice the

k -mer length. Even more striking, as partial read length increases, the very small

missing percentage (< 3%) of true frequent k -mers will be observed only at an enormous

cost of false observations: the proportion of FF k -mers in the set of frequent k -mers

increases dramatically, reaching 87.17% for E. coli, 35.48% for S. bongori and 43.50%
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Figure 6.4: The number of true frequent 31-mers (31-mers that are observed in the
genome, blue) and false frequent (green) 31-mers observed as a function of increas-
ing partial read length for two bacterial (E. coli, coverage 760.87x (top left) and
Salmonella bongori, coverage 107x, (top right)) and one eukaryotic (T. pseudonana,
coverage 85x(bottom)) MDA amplified Illumina datasets. Note that the blue curve
attains its maximal value rapidly while the green curve continues to grow at a speed
depending on the coverage and other variables.
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for T. pseudonana at full read length.

Specialized single cell assemblers like SPAdes and IBDB-UD (Peng et al., 2012)

perform assembly in iterative mode, i.e., in stages with increasing k-mer lengths (e.g.,

21, 31, 41, . . . , 127 ). Using this approach, shorter k -mer lengths maintain contiguity

at low coverage, whereas longer k -mers provide best possible repeat resolution at later

stages. We followed a similar strategy for assembly. We implemented an iterative

assembly software using ABySS as the assembler during individual iterations. Since

a large proportion of the genomic k-mers are available in partial reads, the iterative

assembly stage with k-mer length k can commence as soon as partial reads of length

slightly larger than k are available. We observed that similar to extracting true k-mers,

the relevant statistics of assembly quality such as contig length (a contig is an assembled,

contiguous fragment of the sequenced genome) increased rapidly, see Table 6.1. In

Wooley et al. (2010), Table 2, the authors notes that a sequence length of 1,000-5,000

is expected to contain information about multi-domain genes while a sequence length

of 5,000-10,000 is needed for identifying longer operons and cis-control elements. As

Table 6.1 shows, even with a partial read length of 25 nt, the average contig length is

more than 10,000 and indeed ≈ 80% of the predicted proteins had significant homologs.

Also note that over 83% of predicted proteins with annotated homologs were found

with partial reads of length 55 nt, in other words, with about half of the sequencing

completed. The high proportion of mapped contigs clearly indicates that this strategy

is successful at avoiding incorrect assemblies. Curiously, the assembly quality degrades

for full length reads, which is likely caused by an increased fraction of false frequent

k-mers in the k-mer spectrum. This indicates that better control of the proportion of

false frequent k-mers will improve assembly in general.
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Table 6.1: Quality measures of the iterative assembly of a MDA amplified Illumina library shows that even early iterations of the assembly
provide sufficiently large contigs for downstream analysis. Contigs were produced using ABySS from the paired partial (short) reads and
contigs from the previous assembly stage (considered long reads). A contig having an alignment of length ≥ 90% of its own length to
the reference genome is considered mapped. Proteins were predicted using GeneMark.hmm (Lukashin and Borodovsky, 1998). Again, a
protein having an alignment of length ≥ 70% of its own length to a reference protein is considered to have an annotated homolog. Both
contigs and proteins were aligned using Blast (Altschul et al., 1990).

Length (bp) Contigs
N50 (bp)

Contig length (bp) Assembly Proteins
k-mer Partial read No. Mapped Maximal Average size (bp) Predicted w/ Homologs

21 25 279 78.13% 56,502 198,314 12,057 3,364,177 3,637 2,894
31 35 203 56.15% 80,785 210,855 16,978 3,446,586 3,567 2,986
41 45 174 77.01% 82,593 210,871 19,894 3,461,679 3,526 2,978
51 55 170 79.41% 87,020 210,881 20,462 3,478,623 3,540 3,003
61 65 169 84.61% 87,030 210,891 20,698 3,498,110 3,539 3,017
63 75 141 82.27% 86,853 210,893 27,257 3,843,316 3,873 3,301

63 100 (full) 193 79.27% 67,732 178,496 22,409 4,324,941 4,523 3,592
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6.3 Discussion

For all the preliminary experiments, we worked with datasets that had a reference

genome. For unknown organisms, where we do not have any reference assembly, the

challenge would be to predict a partial read length such that a significant fraction of the

genomic k-mers appear as frequent while minimizing the rate of false frequent k-mers.

Note that, in this case, we only observe the frequent k-mers and cannot identify the

false frequent k-mers. However, we would like to have an estimate about how many

genomic k-mers have been seen and what is the proportion of false frequent k-mers

(False discovery rate). We propose to model this as a coupon collecting problem where

coupons are allowed to be damaged (a genomic k-mer becomes erroneous) and we are

only interested in coupons collected two or more times (the Double Dixie cup problem).

An important component of this problem is the frequency distribution of the k-mers

(coupons) being collected. Again, for multi-cell libraries where the genome coverage is

nearly uniform, we may assume a uniform distribution for k-mer frequencies. For our

model to be applicable to single cell libraries, we need a thorough understanding of

the k-mer frequency distribution of WGA libraries. The k-mer frequency distribution

for single-cell libraries are not well studied and understanding them is important not

only for our purpose but will also provide an important pillar for single-cell genomics

in general.

Genetics is a very potent tool for identifying and characterizing organisms. However,

traditional genetics lacks the speed necessary to be of use for rapid pathogen detection.

SCG promises to fill this gap and our proposal is to further speed it up with bioinfor-

matic analysis that is performed concurrently with sequencing. Our preliminary results

show that this is possible since partial reads may contain sufficient information for in

silico analysis and identification of pathogens and understanding their pathogenicity via

identification of genes. The challenge is to determine how much partial information is

sufficient. Our model requires knowledge of the k-mer frequency distribution for WGA

libraries. Currently this is an open problem and we believe, solving this will be an

important contribution to Single Cell Genomics.
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Chapter 7

Conclusion

In this thesis, I have presented my contributions regarding method development that

aim to improve genome assembly and some applications of assembly to single cell ge-

nomics. We began with one of the most fundamental problems of bioinformatics: k-mer

frequency counting. For large read libraries, computing k-mer frequencies can be a ma-

jor computational challenge. In Chapter 3, we present a tool named Turtle (Roy et al.,

2014b) that achieves improved performance by implementing algorithms designed to

reduce cache misses. We present a counter-intuitive approach of using O(n log n) al-

gorithms for a problem that may be solved in O(n). We argued and showed that an

O(n log n) algorithm that performs localized memory access can out-perform an O(n)

algorithm that performs random memory access simply because of having far fewer

cache misses. We also reduce memory requirements by using a Bloom filter to eliminate

infrequent k-mers and storing frequent ones in an array instead of a hash. However, as

sequencing library size increases, I believe future bioinformatic tools have to be designed

with external memory algorithms. Deorowicz et al. (2013) has already demonstrated

the potential of disk based external memory algorithms by building a k-mer counting

tool called KMC. I believe this is the correct future direction for bioinformatic algorithm

development.

Contig scaffolding is another classic problem in bioinformatics. Contig scaffolding

is usually formulated as a graph traversal problem where contigs are the vertices and

paired reads are represented as edges in the graph. An ideal contig graph should have

a linear structure. However, due to sequencing errors, ambiguous read mapping and

mis-assembly of contigs, the graph gets much more complicated in structure. Therefore,

filtering unreliable pairs (and thus edges) from the contig graph is very important for



97

improving scaffolding. In chapter 4, we present a set of linear equations capable of

filtering out such unreliable paired reads and also predicting the relative position and

orientation of contigs connected with paired reads. This greatly simplifies the scaffolding

problem and we show (Roy et al., 2012) that a very naive scaffolding algorithm is

capable of out-performing state of the art scaffolders. Our experiments also show that

correct contigs produce a much cleaner contig graph and thereby further simplifies the

scaffolding problem.

I also produced the first draft genome assembly of a single cell belonging to the

broadly distributed group of MAST-4 marine stramenopiles (Roy et al., 2014a). Using

specialized assemblers, we assembled an MDA amplified single-cell library and predicted

approximately 7,000 protein-encoding genes in the MAST-4 genome. With the identi-

fied protein-encoding genes, we were able to robustly position the marine organism into

the ToL using multi-gene phylogenetics and gain insights into its metabolic capabilities.

Our success demonstrates that Single cell genomics can be a powerful and effective tool

for studying the vast majority of organisms that cannot be cultured in the lab.

My current and final project is rapid pathogen detection using SCG. An ideal diag-

nostic tool would identify the pathogen and also inform about its drug resistance in a

timely manner so that appropriate therapy could begin as soon as possible. Traditional

clinical methods such as staining and microscopy, culturing can take an extended period

of time while still producing ambiguous results. The most successful rapid pathogen

diagnostic tools currently available are based on genetic markers. Though some of them

(e.g. PCR/ESI-MS) are very efficient at identifying a pathogen using markers such as

16s rDNA and housekeeping genes, they are very limited in terms of identifying drug-

resistance and providing a wholesome picture about the capabilities of the pathogen.

Whole genome sequencing provides an opportunity to overcome this but the traditional

techniques are limited due to culturing to produce enough genetic material. SCG is

capable of amplifying a very minute amount of genetic material to an amount that is

sufficient for further genetic analysis. However, the amplification process introduces

large amount of coverage variation in the data which makes sequence analysis diffi-

cult. We are currently working to identify reliable genetic information from amplified
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single-cell libraries in order to make sequence analysis feasible. We are developing novel

models for understanding the power of partial reads for performing sequence analysis

in parallel with sequencing to increase the speed of sequence analysis and ultimately

pathogen detection. This project also aims to characterize the coverage bias in MDA

which, if successful, will be an important contribution to single cell genomics. The

ability to genetically analyze and understand any organism’s capabilities merely from

sequence analysis of an environmental sample is the ultimate goal and I am thankful to

have the opportunity to participate in this endeavor. The community is vibrantly try-

ing to improve both data generation (WGA) and analysis (sequence analysis of WGA

libraries) and I believe, success is only a matter of time.
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Appendix A

Abbreviations

Abbreviations

BF Bloom filter.

DNA Deoxyribonucleic acid.

EST Expressed sequence tag.

HGT Horizontal gene transfer.

HTS High Throughput Sequencing.

MDA Multiple Displacement Amplification.

MG Metagenomics.

MS Mass spectrometry.

NGS Next Generation Sequencing.

PCR Polymerase chain reaction.

PRs Paired reads.

SCG Single Cell Genomics.

TB Tuberculosis.

ToL Tree of life.
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WGA Whole Genome Amplification.

WGS Whole Genome Sequencing.
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Appendix B

Running commands for the k-mer counting tools

compared in Chapter 3

In this section, we present the commands used for running the various k-mer counting

tools to produce the results presented in Tables 3.3, 3.5 and 3.6.

B.1 Jellyfish-1.1.11

Please note that the parameter -s was chosen to minimize the number of intermedi-

ate files generated while still fitting in memory as suggested by the Jellyfish manual.

jellyfish count -m 31 -C -s 270M -t num threads DM.fasta

jellyfish count -m 31 -C -s 2700M -t num threads GG.fasta

jellyfish count -m 31 -C -s 6G -t num threads ZM.fasta

jellyfish count -m 31 -C -s 6G -t num threads HS.fasta

The merge (where applicable) and dump commands are:

jellyfish merge mer counts *

jellyfish dump -L 2 -o jf kmers.fa mer counts merged.jf

B.2 Khmer-0.7.1

python load-into-counting.py -b -k 31 -x 5e9 -T num threads out.kh DM.fasta

python load-into-counting.py -b -k 31 -x 16e9 -T num threads out.kh GG.fasta

python load-into-counting.py -b -k 31 -x 64e9 -T num threads out.kh ZM.fasta

python load-into-counting.py -b -k 31 -x 64e9 -T num threads out.kh HS.fasta
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B.3 KMC 0.3

Please note that unlike the other tools, KMC does not allow one parameter for speci-

fying the number of threads to use. Instead there are separate parameters for choosing

the number of compacting threads (-sc), number of FASTQ reading threads (-sf), num-

ber of splitting threads (-sp), number of sorter threads (-sr) and number of threads per

single sorter (-so). KMC 0.3 was run using the following parameters for the various

number of threads:

5 threads:

kmc -k31 -cs65536 -sf1 -sc1 -sr3 -sp1 -so1 -mX -fa read library.fasta count dump

7 threads:

kmc -k31 -cs65536 -sf1 -sc1 -sr4 -sp2 -so1 -mX -fa read library.fasta count dump

9 threads:

kmc -k31 -cs65536 -sf1 -sc2 -sr5 -sp2 -so1 -mX -fa read library.fasta count dump

11 threads:

kmc -k31 -cs65536 -sf1 -sc2 -sr7 -sp2 -so1 -mX -fa read library.fasta count dump

13 threads:

kmc -k31 -cs65536 -sf1 -sc2 -sr8 -sp3 -so1 -mX -fa read library.fasta count dump

15 threads:

kmc -k31 -cs65536 -sf1 -sc3 -sr9 -sp3 -so1 -mX -fa read library.fasta count dump

17 threads:

kmc -k31 -cs65536 -sf1 -sc3 -sr9 -sp4 -so1 -mX -fa read library.fasta count dump

19 threads:

kmc -k31 -cs65536 -sf1 -sc5 -sr10 -sp4 -so1 -mX -fa read library.fasta count dump

The -m parameter was set to 6, 47, 82, 109 for the DM, GG, ZM, HS libraries respec-

tively. The dump command was run as follows:

kmc dump count dump kmer count.fa
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B.4 scTurtle-0.1

scTurtle32 -i DM.fasta -o kmer counts -k 31 -n 135000000 -t num threads

scTurtle32 -i GG.fasta -o kmer counts -k 31 -n 1150000000 -t num threads

scTurtle32 -i ZM.fasta -o kmer counts -k 31 -n 2100000000 -t num threads

scTurtle32 -i HS.fasta -o kmer counts -k 31 -n 2800000000 -t num threads

B.5 cTurtle-0.1

cTurtle32 -i DM.fasta -o kmer counts -k 31 -n 135000000 -t num threads

cTurtle32 -i GG.fasta -o kmer counts -k 31 -n 1150000000 -t num threads

cTurtle32 -i ZM.fasta -o kmer counts -k 31 -n 2100000000 -t num threads

cTurtle32 -i HS.fasta -o kmer counts -k 31 -n 2800000000 -t num threads

Please note that the results presented in Table 5 was also run using the same parameters

except for -k, the k-mer size.

B.6 BFCounter-0.2

BFCounter count -k 31 -n 135000000 -o 31 mer.bfc DM.fastq

BFCounter count -k 31 -n 1150000000 -o 31 mer.bfc GG.fastq

BFCounter count -k 31 -n 2100000000 -o 31 mer.bfc ZM.fastq

BFCounter count -k 31 -n 2800000000 -o 31 mer.bfc HS.fastq

The dump command was run as follows:

BFCounter dump -k 31 -i 31 mer.bfc -o 31 bfc.dump

B.7 DSK-1.4811

dsk DM.fasta 31 -t 2 -m 5000

dsk GG.fasta 31 -t 2 -m 50000

dsk ZM.fasta 31 -t 2 -m 80000
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dsk HS.fasta 31 -t 2 -m 100000
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