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Using Active Learning to Develop Machine Learning Models

for Reaction Yield Prediction

Simon Viet Johansson®,*® Hampus Gummesson Svensson®,*®" Esben Bjerrum,” Alexander Schliep,"
Morteza Haghir Chehreghani,™ Christian Tyrchan, and Ola Engkvist®™ "

Abstract: Computer aided synthesis planning, suggesting
synthetic routes for molecules of interest, is a rapidly
growing field. The machine learning methods used are
often dependent on access to large datasets for training,
but finite experimental budgets limit how much data can
be obtained from experiments. This suggests the use of
schemes for data collection such as active learning, which
identifies the data points of highest impact for model
accuracy, and which has been used in recent studies with
success. However, little has been done to explore the
robustness of the methods predicting reaction yield when
used together with active learning to reduce the amount of

experimental data needed for training. This study aims to
investigate the influence of machine learning algorithms
and the number of initial data points on reaction yield
prediction for two public high-throughput experimentation
datasets. Our results show that active learning based on
output margin reached a pre-defined AUROC faster than
random sampling on both datasets. Analysis of feature
importance of the trained machine learning models
suggests active learning had a larger influence on the
model accuracy when only a few features were important
for the model prediction.
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Introduction

The recent advances in computer aided synthesis planning
(CASP)"® have made it a promising tool for finding and
assessing plausible chemical routes. Accurately finding and
assessing chemical routes can help to reduce the time
required to find novel drugs and materials.”” One goal
within CASP is to increase the likelihood of finding efficient
routes to produce a target compound. This uses forward
prediction: predicting reaction outcomes in a forward
synthesis.®'% Current research in forward prediction utilizes
machine learning (ML) to build models to more rapidly
evaluate a suggested reaction, i.e., predicting whether the
reaction is plausible or not. Accurate ML methods are
usually data hungry, which can become a problem when
the data is not always consistent, if at all available in a
machine-readable format.!""

High-throughput experimentation (HTE) has emerged as
a time- and material efficient technique for producing large
amounts of chemical reaction data.'*'® HTE is thus a
suitable approach to generate combinatorial datasets for
CASP,™™ which requires large training sets. Recent develop-
ments in HTE, and automation in general, have enabled
platforms that can conduct and analyse thousands of
experiments per day as demonstrated for batch
chemistry™® as well as for flow chemistry."” However, it is
not feasible to use HTE to investigate all necessary
permutations of reaction variables in a typical reaction."®
Therefore, it is important to identify the most informative
data points, e.g., finding the smallest subset of data points
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that provides the most information about a reaction to a
given machine learning model.

Active learning (AL) is a subfield of machine learning
exploring different strategies of finding the most informa-
tive data points."” The aim is to determine which subset of
data points that maximises the learning and performance of
a machine learning model. During training, the learning
model then autonomously queries those points to be
labelled and uses these labels to incrementally improve.™™
One approach to active learning, called pool-based
sampling,” assumes a small pool of labelled data L and a
large pool of unlabelled data U.”?” Labels of unlabelled data
are obtained by querying the labels of data points of U
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Figure 1. The pool-based active learning cycle.

from an oracle, e.g., previously known results or conducted
experiments. These data points are then added to the pool
of labelled data L and used to improve the model, as
illustrated in Figure 1. The goal in this case is to find the
optimal model with the smallest possible pool of labelled
data since each query of labels is associated with a cost,
such as the cost of conducting an experiment. The problem
is then to determine the data points that are most
informative and whose labels therefore should be queried
from the oracle. The data points that should be included in
each query are determined by an acquisition function that
estimates the informativeness of each data point. One
popular type of active learning strategies is uncertainty
sampling where the most uncertain data points, i.e., the
data points the learning model knows the least about, are
assumed to be most informative. A pre-determined acquis-
ition function then determines the most uncertain batch of
unlabelled data points whose labels should be queried
from the oracle. Thus, data points that the model is already
confident about are avoided.

In computational chemistry, active learning has been
applied for several applications including drug design.?>¥
For HTE, recent studies have applied active learning to
select data points for neural network models.” These had
positive impact on reducing the number of experiments
needed to generate a training set for predicting the
reaction yield.”® However, active learning still struggles to
show a significant performance gain compared to randomly
selecting data points to query, so called random sampling,
when only a few data points have been labelled.” It is also
possible that the performance of active learning differs
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depending on settings such as initial size and machine
learning algorithm used.

In this work, we have explored different settings of
active learning in HTE to better understand when and if
active learning can help a machine learning model reach a
pre-defined level of accuracy for reaction yield prediction
faster than random sampling. We investigated this in a
forward prediction setting where reactions are predicted to
be either successful or unsuccessful depending on the
reaction yield. The rationale for using a binary classification
model is that in discovery chemistry a reaction only needs
to provide sufficient yield.””? The aim is to develop a model
that covers the whole design space of building blocks and
reaction conditions. This is different from process chemistry
where the objective is to find the reaction conditions that
maximizes the yield. In particular, we have investigated
uncertainty-based active learning with the Margin strategy
on different machine learning models and different num-
bers of initial (labelled) data points for modelling of reaction
data.

Methods

We explored different settings for active learning for
predicting the reaction vyield of two combinatorially
generated datasets. The model used for prediction and
initial size were varied. The goal is to develop a machine
learning model with a pre-defined accuracy for binary
classification of the reaction yield with the labels “success-
ful” reaction and “unsuccessful” reaction.
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Figure 2. The distributions of reaction yield of the 4068 reactions in the Buchwald-Hartwig and Suzuki datasets.

Datasets

Previous studies from HTE provide fully combinatorial
datasets that can be used to benchmark active learning
strategies. Thus, this is a retrospective study where all true
labels are known beforehand. This changes the question to
an interpolation problem with the goal to reduce the
number of experiments. We assume that only the true
labels of the initial training and queried data points are
known at each active learning cycle. We explored a
Buchwald-Hartwig reaction dataset""® and a Suzuki reaction
dataset."” The Suzuki dataset consists of 5769 Suzuki-
Miyaura couplings with five varied reaction variables,
namely, reactant 1, reactant 2, ligand, base and solvent. We
discarded the fourth choice of reactant 2 to obtain a fully
combinatorial dataset which consisted of 4608 data points.
The Buchwald-Hartwig dataset consists of 4608 cross-
couplings of aryl halides with four reaction variables, aryl
halide, additive, ligand and base.

One-hot encodings were used to represent the different
combinations of reaction variables described above in the
datasets. Both datasets consisted of the reaction yield of
every combination of reaction variables. The distribution of
reaction yields for all 4608 reactions in each dataset are
displayed in Figure 2. This is a study from the discovery
chemistry perspective, rather than process optimization.*”
As such, we are not interested in necessarily finding the
optimal conditions w.r.t reaction yield. Instead, the impor-
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tant result is whether or not a reaction is possible with
“sufficient” yield. Therefore, a hard threshold of 20% yield
was used to determine the label of each data point, i.e.,
one combination of reaction variables. A reaction with a
yield above this threshold was labelled as a “successful”
reaction, encoded as class 1. In the same way, a reaction
with a yield below 20% was labelled as an “unsuccessful”
reaction, encoded as class 0. The proportion of “successful”
reactions in the Buchwald-Hartwig and Suzuki dataset are
54% and 65%, respectively. In order to evaluate the
performance of the machine learning models on these
datasets, each dataset was randomly split into a training
and evaluation set consisting of 80% and 20 %, respectively,
of the whole dataset. In combinatorial library design, we are
interested in reducing the needed data rather than
predicting particular, hold-out, features. For this reason, we
do not follow the experimental design used by Ahneman et
al to show model generalizability."® We evaluated the
performance on the evaluation set in terms of the area
under the receiver operating characteristic curve (AUROC)
with the goal of reaching the largest AUROC with the least
number of labelled training data points from each dataset.
To be robust against fluctuations in the predictions, we
used a moving average to determine if an experiment
reached the pre-defined desired AUROC. A run was
determined to have reached the (desired) AUROC after
k queries if:

Mol. Inf. 2022, 41, 2200043 (3 of 15) 2200043

85U8017 SUOWILIOD BAITR1D) 8|qeot|dde ayy Aq pausenob ae ssppie YO ‘88N J0 S8|ni 10y Ariq1T 8UIIUO AB|IAA UO (SUORIPUOD-PUR-SWLBHWI0D A8 | IMAeIq 1 BUIUO//SANY) SUORIPUOD pue WS | 83U 89S *[£202/60/LT] U0 AriqIT8UIIUO AB|IM ‘85'SIBW BYI@ RqUBW-<YIe|0qqIus> AQ £70002202 JuIW/Z00T OT/I0p/LLI0o" A3 1M ARe.d 1 jpuljuo//Sdiy Wwoiy papeojumod ‘2T ‘220g ‘TSLT898T


www.molinf.com

www.molinf.com

3 Hidden
layers

1 Hidden layer
of 10 neurons

100, 50, 25
neurons

Omm@ﬂ@@uﬂﬂ@[r
informatics

100 Decision

4 Latent dims -

200 Burn-in
iterations

1000 Sampling
iterations

200 Samples

Figure 3. Schematic illustration of the different machine learning models that were investigated.
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where AUROC; is the AUROC after the i-th query,
AUROC,, ¢ is the desired AUROC and n is the number of
values of the moving average considered before and after
the k-th query. In this study, n = 3. Zero-padding was used
to obtain a moving average for all number of queries.

Initial Pool of Labels

In order to investigate how the initial size affects the
performance of active learning, we evaluated three different
initial sizes of labelled training data for active learning,
namely, 10, 100 and 1000 labelled (training) data points.
Five sets were randomly selected for each initial size, which
gives 15 different initial pools per dataset in total.

Models

For both datasets, we investigated four different model
types: (1) simple neural network; (2) complex neural
network; (3) Bayesian matrix factorization model;*® (4)
random forest classifier®*® from scikit-learn.”"” The models
are visualised in Figure 3. We trained the models using
cumulative learning, i.e., each model was retrained after
every query. Cumulative learning usually obtains better
results in active learning compared to incremental
learning.®?
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Neural Networks

The neural networks were implemented using PyTorch
1.3.15¥ together with the PyTorch wrapper PyTorch Light-
ning 1.0.8.%Y The experiments were conducted using Nvidia
K80 GPUs with driver version 450.80.02, CUDA 11.0. The
simple neural network had one hidden layer with 10
neurons; while the complex neural network had three
hidden layers with 100, 50 and 25 neurons, respectively.
The initially designed architectures displayed reasonable
performances and no further attempts to optimize the
architectures were tried. The output layers consisted of two
neurons (one for each class) and the input layer corre-
sponded to the one-hot encoding. The complex neural
network used dropout with probability 0.5 while the simple
neural network used no dropout. Moreover, the networks
used Leaky ReLUP as activation functions for the hidden
layers and softmax as the activation function of the output.
Optimization of the parameters was performed using
AdamWP with a learning rate of 0.001, B, =0.9, 3,=0.99,
£=10"% a weight decay of 0.01 and a mini-batch size of 8.
The networks were trained for 50 epochs after each query
of active learning. For each initial pool (of labels) of a
specific initial size, the same initial weights were used in
every first epoch of training. Since training was cumulative,
this means that the same initial weights were used to
retrain the neural networks after each query.

Bayesian Matrix Factorization

The matrix factorization method Macau®” in the Smurff
0.16.0”® framework was used for Bayesian matrix factoriza-
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tion. The model used four latent dimensions and 1200
training iterations using a probit noise model, of which 200
where burn-in samples and 1000 used for Bayesian
sampling. We sampled every 5" iteration, which yielded 200
predictions. The probability assigned to a label was the
frequency that the label had been estimated to be the most
likely label in the 200 predictions.

Random Forest

The random forest classifier in Scikit-learn 0.24.2 was
used.®" The random forest model consisted of 100 decision
trees. The model used the Gini impurity criterion for
assessing the quality of the node splits. On initialisation of
each iteration, the individual trees were given bootstrapped
datasets.

Active Learning

As seen in Figure 1, when the machine learning model had
been trained on the labelled data, a query strategy was
used to determine the most informative data point of the
unlabelled data pool. In this work, we have investigated an
uncertainty-based active learning strategy called Margin.””
Margin queries data points based on the output margin

* . A A~
x = argmin[Py(y;| X) — Py(y| x)],

where P,(y|x) is the probability, of an arbitrary classification
algorithm, that the true label of a data point x is label y,
and ¥y, and y, are the most and second most probable
labels, respectively, according to the classification algo-
rithm. If we have binary labels and model them as Bernoulli
random variables, ranking unlabelled data points based on
maximal variance will provide the same order as using
Margin. Hence, for binary labels, Margin will try to reduce
the variance of the predictions of the unlabelled data.
Moreover, better performance of Margin compared to other
strategies, such as querying based on the maximum
entropy and random sampling, has been observed in prior
workP>*® Margin was compared to random sampling,
where every unlabelled data point is assumed to be equally
informative. Hence, when using random sampling, data
points were labelled at random, rather than using the
trained machine learning model to determine the most
informative ones to label. Furthermore, for both Margin and
random sampling, we evaluated the active learning setting
where a batch of one (1) data point is queried (and
subsequently labelled) for each active learning cycle. That
is, at every cycle, the label, i.e., the true reaction yield, of
one (1) combination of reaction variables was queried and
subsequently added to the training data. Consequently, this
single new label and previously known labels were used to
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retrain the machine learning model.We investigated how
the different combinations of model, query strategy (either
random sampling or Margin), and initial size affect the
required number of labelled data points to achieve specific
pre-defined levels of AUROC. The pre-defined levels of
AUROC were 0.800, 0.850, 0.900, 0.950 and 0.975. For each
combination of model, query strategy and initial size, we
investigated the performance until all training data points
had been labelled. Moreover, each combination was run
five times to investigate the stochastic behaviours of the
models and query strategies.

Results

In this section, we present our comparison of different
settings of active learning: initial size, machine learning
model and dataset. The objective was to develop a model
for reaction vyield prediction, with specific performance
requirements. We compared the number of data points that
had to be labelled to reach the pre-defined levels of AUROC
on the evaluation set: 0.800, 0.850, 0.900, 0.950 and 0.975.
Random sampling was used as a baseline to compare the
effects these settings have on active learning. During each
active learning cycle, using either Margin or random
sampling, one (1) data point was queried. To avoid any
potential bias in the initial data, each combination of
settings was investigated with five different initial sets.
Computations for each initial set were repeated five times,
for a total of 25 runs. We show these results in Figures 4
and 5 for the Buchwald-Hartwig reaction data, and Figures
6 and 7 for the Suzuki reaction data. To show the variation
within each setting, Figures 4 and 6 make use of boxplots
to display the outliers, the minimum (excluding outliers),
the maximum (excluding outliers), the sample median, the
first quartile and the third quartile. Furthermore, Tables 1
and 2 highlight the difference between the average number
of labels that was queried within each setting to reach the
pre-defined levels of AUROC.

Buchwald-Hartwig Reaction Data

Figures 4(a)-(c) show boxplots that illustrate the required
number of labelled data points to reach an AUROC of 0.800,
0.850 and 0.900, respectively, for the Buchwald-Hartwig
reaction data when starting with either 10 or 100 labelled
data points. These boxplots were extracted from the
computed AUROCs of each active learning cycle, which are
displayed in Figure S1. Note that, the labelled data points
include the initial points (labels). Starting with 1000 labelled
data points reached the target AUROC scores using only
the initial data points and are, therefore, omitted in these
figures. Hence, when utilizing 1000 initial points, no addi-
tional data were needed to obtain an AUROC of 0.800,
0.850 and 0.900. When utilizing Margin with the complex
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Figure 4. Boxplots showing the number of required labelled data points for the Buchwald-Hartwig reaction to achieve an AUROC of (a)
0.800, (b) 0.850, (c) 0.900, (d) 0.950 and (e) 0.975. When using an initial size of 1000, all models reached the AUROC of 0.800, 0.850 and 0.900
by using only the initial labels and, therefore, these models are not shown.

Wiley Online Library © 2022 Wiley-VCH GmbH Mol. Inf. 2022, 41, 2200043 (6 of 15) 2200043

95UB01 T SUOWILLIOD) SAIERID 3|l jdde au) Aq peusenob ake sspile VO ‘SN Jo Sa|nJ 10} AIqITaUIUQ AS]IA UO (SUORIPUOD-PUE-SWS)W0D A8 1M A eIq1jBul [UO//Sdy) SUONIPUOD pue swis 1 8y} 89S *[€202/20/LT] Uo ARIqITauluQ AB]IM ‘85'SieW Y@ Bquiswi-<ypoqqius> Aq £/0002202 JUIU/Z00T OT/I0p/Wod A8 i AReiqijpuljuo//sdny Wwolj papeojumod ‘2T ‘220z ‘TSLT898T


www.molinf.com

www.molinf.com

10 initial pts

1.0 1

0.8

0.2

0.0

0 500 1000 1500 2000 2500 3000 3500
Number of labelled points

(a)

1.0

0.8

0.2

001 -

0 500 1000 1500 2000 2500 3000 3500

Number of labelled points
(c)

100 initial pts

Omm@ﬂ@@uﬂﬂ@g
informatics

1000 initial pts

0.8

Margin

0.2

0.0 L—

0 500 1000 1500 2000 2500 3000 3500
Number of labelled points

(b)

1.0

0.81

Margin

0.4

0.2

0.01

0 500 1000 1500 2000 2500 3000 3500
Number of labelled points

(d)

Figure 5. Output margins of queried data points, averaged over the 25 runs, for (a) matrix factorization, (b) random forest, (c) complex
neural network and (d) simple neural network when starting with 10 labels and using Margin as acquisition function on the Buchwald-
Hartwig reaction data. Displays the 95 % approximate confidence intervals of the averages over the 25 runs.

and simple neural network on the Buchwald-Hartwig data,
starting with 10 labelled data points seems to require a
lower number of labelled data points to achieve an AUROC
of 0.800 or 0.850, compared to starting with 100 labelled
data points. Utilizing matrix factorization and random forest
starting with either 10 or 100 labelled data points show no
substantial difference of required data points to label to
reach an AUROC of 0.850. No substantial difference is
displayed when utilizing random sampling compared to
Margin to obtain an AUROC of 0.800, 0.850 and 0.900.
Figures 4(d)—(e) display boxplots of the required number
of labelled data points to reach an AUROC of 0.950 and
0.975, respectively, when starting with either 10, 100 or
1000 labelled data points. Both figures show a lower
number of required labelled data points when using
Margin, compared to using random sampling. The greatest
difference is observed when we want to obtain an AUROC
of 0.975. Random forest was not able to achieve this
AUROC. When utilizing Margin, matrix factorization and the
simple neural network seems to show a similar perform-
ance, compared to random sampling where they show
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more distinguishable performances. In particular, this trend
is visible when using 10 or 100 initial points. Also, we can
see that the variation seems to be greater when using
random sampling.

In Figures 4(a)-(e) we see that using Margin together
with the complex network consistently requires a lower
number of labelled data points, while random forest
consistently requires a greater number. In general, the
difference seems become greater for every greater AUROC
that we want to achieve.

Table 1 shows the differences of the number of queried
labels required between random sampling and Margin
averaged over all 25 runs of each setting on the Buchwald-
Hartwig dataset. Note that, the queried labels exclude the
initial points (labels). A positive difference means that
Margin requires less labels to reach the target AUROC, while
a negative difference means that random sampling requires
less labels to be queried. We see that to obtain an AUROC
of 0.800, the differences are both negative and positive,
meaning that Margin and random sampling seems show
similar performances. On the other hand, when we want to
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Figure 6. Boxplots showing the number of required labelled data points of the Suzuki reaction dataset to achieve an AUROC of (a) 0.800, (b)
0.850, (c) 0.900 and (d) 0.950. When using an initial size of 1000, all models reached an AUROC of 0.800, 0.850 and 0.900 by using only the
initial labels and, therefore, these setting are not displayed. No setting reached an AUROC of 0.975.

obtain a better AUROC, in particular 0.900 or higher, we
only see positive differences and the differences increases
as the target AUROC is increased. Hence, we see that
Margin requires fewer number of labels, compared to
random sampling, as we increase the target AUROC.

Figure 5 displays output margins of the queried points
of all models averaged over all 25 runs using 10 initial
points and Margin as acquisition function. For matrix
factorization we see no significant difference between
starting with either 10, 100 or 1000 points. For the random
forest model, simple neural network and complex neural
network, there is a substantial difference when starting with
1000 points compared to starting with either 10 or 100
points. For all number of starting points, the output margins

Wiley Online Library © 2022 Wiley-VCH GmbH

are around 0 in the beginning and then increases as the
number of labels increases, until they converge to 1. This
means starting with 1000 points gives lower output margin
for the same number of labels, compared to using 10 or
100 initial points. Moreover, we found that the complex
neural network needs the fewest number of labels for the
output margins to converge to 1, in particular when using
10 or 100 initial points.

Suzuki Reaction Data

Figures 6(a)-(d) display boxplots showing the required
number of labelled data points to obtain an AUROC of

Mol. Inf. 2022, 41, 2200043 (8 of 15) 2200043
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neural network and (d) simple neural network when starting with 10 labels and using Margin as acquisition function on the Suzuki reaction
data. Displays the 95 % approximate confidence intervals of the averages over the 25 runs.

0.800, 0.850, 0.900 and 0.950, respectively, for the different
settings on the Suzuki reaction data. These boxplots were
extracted from the computed AUROCs of each active
learning cycle, which are displayed in Figure S2. Note that,
the labelled data points include the initial points (labels).
None of the settings obtained an AUROC of 0.975 and,
therefore, this target AUROC is omitted for the Suzuki
reaction data. For settings where not all the 25 runs reached
the pre-defined level of AUROC, the numbers above the
boxplots denote the number of runs that successfully
reached the pre-defined level. The settings starting with
1000 labelled data points reached the three lowest levels of
pre-defined AUROC by only using the initial data points
and, therefore, these are omitted in Figures 6(a)—(c).

As seen in Figure 6(d), the complex neural network,
simple neural network and random forest are able to obtain
an AUROC of 0.950. However, none of the runs of matrix
factorization reaches this AUROC. When we want to achieve
an AUROC of 0.950, there is a substantial difference
between the complex neural network and random forest; in
particular when starting with either 10 or 100 labelled data
points. Also, it should be noted that matrix factorization is

Wiley Online Library © 2022 Wiley-VCH GmbH

able to achieve the highest possible pre-defined level of
AUROC for the Buchwald-Hartwig reaction data, while
random forest is not.

Figures 6(a)-(d) show that to achieve an AUROC of
either 0.800 or 0.850, random forest using random sampling
consistently requires the smallest amount of (labelled) data.
For an AUROC of 0.900, matrix factorization utilizing Margin
seems to be the best choice; while the complex neural
network using Margin is the best choice when we want to
obtain an AUROC of 0.950.

Table 2 shows the differences between the average
number of queried labels needed to reach the different
target AUROCs between random sampling and Margin on
the Suzuki reaction data. The averages are over all 25 runs
of each setting and the 95% approximate confidence
intervals of the differences are displayed. A positive differ-
ence means that, on average, Margin needed fewer queried
labels to obtain a specific target AUROC, while a negative
difference means that random sampling needed to query
fewer labels. Note that, the number of queried labels does
not include the initial points. No model reached an AUROC
of 0.975 and, therefore, this target is omitted from the table.
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On Hyperparameter Tuning, Generalizability and Choice
of Features

The focus of this study is on elucidating the impact of query
strategy on the convergence of ML training. Consequently,
we explored this over a wide range of ML methods using
identical hyperparameters for the different query strategies
to not confound results with performance differences
depending on distinct hyperparameter choices.

Furthermore, since the HTE design typically spans a
combinatorial space, it contains inherent correlations when
varying one dimension if the other dimensions are fixed.
These correlations are captured in one-hot encoding, even
without providing chemical information, which greatly
reduces the number of parameters that we need to provide.
This is faster than structural featurization but is not optimal
for out-of-box predictions as new data with unseen
conditions is not fully supported in all dimensions by
previous data. On some results where the most similar
reaction conditions yield consistent results, it might be
possible on a case-by-case basis to generate useful
heuristics, but a general reactivity model based on one-hot
encoding should not be attempted and is not the goal of
this work.

Feature Importance Analysis

Here we investigate the underlying reasons of why there is

a difference in both model performance and impact of
learning strategy between the datasets. We do this by
analyzing the feature importance across both datasets. We
have computed the permutation importance of each
feature (reaction condition) for the random forest and
matrix factorization model, and the Integrated Gradient for
the complex and simple neural network. For the random
forest and matrix factorization models, the permutation
importance was analysed for all number of labelled data
points when using an initial size of 10 labels and utilizing
Margin to query labels. For the matrix factorization model,
the permutation importance averaged over all 25 runs on
both the Buchwald-Hartwig and Suzuki reaction data are
shown in Figures8 (a) and 9 (a), respectively. The
corresponding values for the random forest model are
shown in Figures 8 (b) and 9 (b), respectively. By inspecting
the computed label frequencies of both datasets in
Table S1, this analysis shows that a high frequency was
directly related to a lower importance to the model
predictions in the Buchwald-Hartwig reactions, and we see
similar trends for the Suzuki counterparts. However, our
analysis was not able to explain this relationship.

To do the same analysis for the complex and simple
neural network, we computed the Integrated Gradients
(1Gs),B?" with the zero vector as baseline, for each reaction of
the Buchwald-Hartwig and Suzuki datasets. Similar to the
random forest and matrix factorization case, this was done

Mol. Inf. 2022, 41, 2200043 (11 of 15) 2200043
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Figure 8. Permutation importance of (a) matrix factorization and (b) random forest, and Average Integrated Gradients of (c) complex and (d)
simple neural network on the Buchwald-Hartwig reaction data. These were computed for the setting of 10 initial labels and using Margin
acquisition function. All show the average over all 25 runs and the corresponding 95 % approximate confidence interval.

for all number of labelled data points for the setting using
an initial size of 10 labels and utilizing Margin to query
labels. The IGs for each dataset were averaged over all
reactions to obtain a single value for each feature, which
we call Average Integrated Gradients. This means that for
each run we obtain an Average IGs value. For the complex
neural network, the Average IGs averaged over all 25 runs
on the Buchwald-Hartwig and Suzuki data are shown in
Figures 8 (c) and 9 (c), respectively. The corresponding
values for the simple neural network are shown in Figures 8
(d) and 9 (d), respectively. This provides a way to compare
the relative importance of the features. For the Buchwald-
Hartwig data, we see that the aryl halide and additive are
the most important features which is consistent with the
permutation importance obtained by the random forest
and matrix factorization model. For the Suzuki data,
reactant 1 and Ligand seem to be the most important
features for the complex neural network when inspecting
the Average IGs, while the reactant 1 and reactant 2 seem
to be the most important features for the simple neural

Wiley Online Library © 2022 Wiley-VCH GmbH

network. Hence, the order of feature importance of the
simple neural network is consistent with ones of the
random forest and matrix factorization model, while the
complex neural network displays a different order on the
Suzuki data. Moreover, compared to the Buchwald-Hartwig
data, the absolute importance is not as substantial for the
most important features.

This allows us to conclude that for all models, two
features in the Buchwald-Hartwig dataset accounted for
most of the prediction outcome with reasonably high
AUROC, which is a good indication that the dataset was
easy to learn for all models. On the other hand, for the
Suzuki more features seem to play an important role in the
prediction outcome and no features are as important as for
the Buchwald-Hartwig data. Since each feature individually
plays a larger role and a higher dimensional space of
knowledge is needed to make the decision, this indicates
that the Suzuki reaction dataset is more complex to learn
using the observed models.
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Figure 9. Permutation importance of (a) matrix factorization and (b) random forest, and Average Integrated Gradients of (c) complex and (d)
simple neural network on the Suzuki reaction data. These were computed for the setting of 10 initial labels and using Margin acquisition
function. All show the average over all 25 runs and the corresponding 95 % approximate confidence interval.

It is of note that our feature importance does not match
that of Chuang & Keiser, performed on the Buchwald-
Hartwig reaction dataset.”” We attribute this to our setup
of binary classification with a_specific threshold, compared
to minimizing the RMSE of regression. That is, as the
variations of the binding affinity caused by a feature (e.g.,
additive) could all be within the same binary label, a feature
can have a high importance with respect to the regression
while not having an effect on the classification.

Applicability of Results

We want to emphasize that the applicability of the study is
meant for combinatorial library design, which is used to
limit the number of different combinations of conditions
one need to acquire for one study. Here, our results show
that classification models reach a high accuracy already at a
couple of hundred data points (~10% of the total data)
with low marginal gain for conducting the rest of the

Wiley Online Library © 2022 Wiley-VCH GmbH

experiments. Furthermore, in the best-case scenario, the
Margin acquisition function reduced the number of needed
data points by several hundreds to up to a thousand,
considerably reducing the experimental budget to reach an
‘acceptable’” model.

Besides showing that there might be a relation between
the models learning the observed space and how well that
Margin performed, the results of this study imply that there
is no drawback to implementing an active learning strategy
starting at a small number of labelled data points. We
observed that the Margin acquisition function always
performed at least as well compared to a random scheme.
As both learning schemes operate within the same space of
data, fully trained models should converge towards the
same AUROC, at which point active learning becomes
irrelevant. The benchmarking used in this study focused on
minimizing the experimental cost by looking at which point
a desired AUROC was met and found an observable
advantage of active learning. It is important to note
however, that these experiments were computed with a
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query consisting of a batch of one data point. The
experimental designs of full batches of HTE experiments, as
used in the Buchwald-Hartwig dataset, are typically of sizes
96, 384 or 1536. Thus, the results of this study might not be
directly translatable to batch processes. However, if analysis
time can be reduced to the same time-scale as the
conducted experiments, the results could be of interest in
flow-process design as one experiment is added at a time.
While HTE setups in flow processes are less common they
do exist, such as in the generation of the Suzuki dataset.

Conclusions

We have explored active learning on two different high-
throughput experimentation datasets. The aim was to
investigate if active learning can be used to efficiently learn
to predict reaction yields with a certain AUROC. We focused
on comparing the uncertainty-based active learning strat-
egy Margin to random sampling, and investigated matrix
factorization, random forest, simple and complex neural
networks. Moreover, in our study we explored initial sizes of
10, 100 and 1000 data points.

We have observed that active learning, in particular the
Margin strategy, can arrive at a model of pre-defined
AUROC with a smaller number of labelled data points. In
fact, the higher the model AUROC we want to achieve, the
more evident is the gain in AUROC that can be obtained
using active learning. This study also shows, that for binary
classification of reaction activity, the models achieve an
AUROC of more than 0.9 by using 10% of the experimental
data. After this point, the marginal gain severely decays.
Depending on how high the accuracy requirements are,
this study implies that acceptable performance might be
reached by just a fraction of the data. Moreover, we have
observed that the reduction in number of required labelled
data points with active learning differs between different
datasets. This could be due to different complexity of the
datasets. Our feature importance analysis suggests that the
models reach a higher AUROC when only few features were
important.

To conclude, using active learning to create optimal
training sets to build machine learning models for reaction
yield prediction is an efficient way to reduce the exper-
imental efforts needed.
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