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ABSTRACT
Motivation: DNA arrays are a very useful tool to quickly
identify biological agents present in some given sample,
e.g. to identify viruses causing disease, for quality control
in the food industry, or to determine bacteria contaminating
drinking water. The selection of specific oligos to attach to
the array surface is a relevant problem in the experiment
design process. Given a set S of genomic sequences
(the target sequences), the task is to find at least one
oligonucleotide, called probe, for each sequence in S. This
probe will be attached to the array surface, and must be
chosen in a way that it will not hybridize to any other
sequence but the intended target. Furthermore, all probes
on the array must hybridize to their intended targets under
the same reaction conditions, most importantly at the
temperature T at which the experiment is conducted.
Results: We present an efficient algorithm for the probe
design problem. Melting temperatures are calculated for
all possible probe—target interactions using an extended
nearest-neighbor model, allowing for both non-Watson—
Crick base-pairing and unpaired bases within a duplex.
To compute temperatures efficiently, a combination of
suffix trees and dynamic programming based alignment
algorithms is introduced. Additional filtering steps during
preprocessing increase the speed of the computation.
The practicability of the algorithms is demonstrated by
two case studies: The identification of HIV-1 subtypes, and
of 28S rDNA sequences from >400 organisms.
Availability: The software is available on request.
Contact: kaderali@zpr.uni-koeln.de
Supplementary information: http://www.zaik.uni-koeln.
de/bioinformatik/arraydesign.html

INTRODUCTION

Efficient diagnostic tests to probe genomic information
are of great interest for a wide range of applications, for
example in medicine or biology. DNA arrays can probe

*To whom correspondence should be addressed.

a large number of targets simultaneously, thus reducing
time and cost considerably. It is thus not surprising that
they have gained such wide interest in recent years.
Applications range from gene expression analysis over
medical diagnosis to genetic fingerprinting and pathogen
identification; for example, Fox (2000) describes an
assay to identify bacteria contaminating drinking water;
(Delpech, 2000) describes applications in diagnostics in
medicine.

For such DNA array experiments to succeed, appropri-
ate oligonucleotide probes have to be selected for each of
the sequences to be identified, i.e. for each individual spot
on the array surface. Given a set of genomic sequences,
called target sequences in the following, the objective is to
find one oligonucleotide (called probe here) for each target
sequence in the set. These probes will then be attached to
the array surface. Each probe on the array should hybridize
only to the intended target, and not to any other sequence
in the target set, i.e. a probe must have a high specificity
in detecting the target. The problem is further complicated
as all probes must work under the same hybridization con-
ditions, most importantly, at the same temperature. The
problem can be formalized as follows: Given n target se-
quences f1, 2, ..., I, find a temperature 7 and n probe
sequences pi, p2, ..., P such that

Ty(pi.ti) —e>T >Ty(pi, k) +€ (n

for all k # i,i = 1,...,n, where Ty (x,y) is
the temperature below which the two strands x and y
are bound, and above which they denature. 7 is the
temperature at which the experiment should be carried
out. The additional temperature margin € compensates for
example for model errors and imprecisions.

Melting theory and nearest neighbor model

The computation of Ty, for a given duplex is based on
the assumption that we deal with two-state transitions:
Either the DNA is in the double helical state, or it
is in the random coil, denatured state. Clearly, this
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presents a simplification. Synthetic polymers with simple
repeat sequences usually melt in a single cooperative
transition, however, natural polymers with heterogeneous
sequences may melt with many stable intermediate states,
and accurate predictions require a statistical mechanical
partition function approach (Santalucia, 1998). Such an
approach, however, is too complex for a full all-against-
all melting temperature computation as we suggest for
probe design, and we assume that a two-state model will
reasonably well approximate the true melting behavior of
short oligonucleotides as used on DNA chips.

We consider the two-state reversible equilibrium an-
nealing reaction of two DNA single strands (compare
(Owczarzy et al., 1997))

K
S +S8 =D )

where K p is the equilibrium constant.

Ty is defined as the temperature at which 50% of the
strands are in the double stranded and 50% in the random
coil, denatured state. It can be shown that (cf. Freier et al.,
1986; Ornstein and Fresco, 1983; Owczarzy et al., 1997,
Rychlik and Rhoads, 1989):

AH

TM = —?
AS+ RInCr/4

3

where AH and AS are enthalpy and entropy changes of
the nucleation reaction, R is the Boltzmann constant, and
Cr = [S1]+ [S2] + 2[ D] is the total molar concentration
of strands.

This concentration dependence of Tj; induces some
problems to our ansatz of calculation, as target DNA
concentration is unknown in DNA array experiments.
Thus the calculation cannot be accurate. However, (Li and
Stormo, 2001) report that T}, is still sufficiently precise
for probe evaluation. They suggest using a constant of
1 x 107M for C7.

Interactions between bases in nucleic acids are of two
kinds (Cupal, 1997):

e Base pairing in the plane of the bases due to hydrogen
bonding between base pairs in the two opposing
strands, and

e Base stacking perpendicular to the plane of the bases
due to London dispersion forces and hydrophobic
effects.

Both quantum chemical calculations and thermodynamic
measurements suggest that base pairing contributions to
total energy depend exclusively on base pair composition,
while stacking contributions depend on base pair com-
position and base sequence along the chain. Obviously,
models based solely on base composition neglect stacking

contributions, and yield less precise results (Rychlik and
Rhoads, 1989).

As the major contribution to the overall stabilizing
energy of nucleic acid structures results from short-range
interactions, we assume that the stability of a base pair
(and its contribution to enthalpy and entropy of the
duplex) depends only on the identity of its immediate
up- and downstream neighbors. This assumption leads
to the Nearest Neighbor (NN) Model. In this model
one assumes that AH and AS of the melting reaction
can be calculated by summing up the contributions of
the individual neighboring pairs. AH and AS can then
be used with Equation (3) to calculate the melting
temperature of the strands.

Usually, thermodynamic parameters for the nearest
neighbor model are determined from UV-absorbance vs
temperature profiles of a number of different, short oligo-
nucleotides. By fitting the measured curves to the model,
parameters can be obtained that according to Santal.ucia
on average fit AG, AH, AS, and Ty within 4%, 7%,
8% and 2 degrees Celsius, respectively (SantalLucia et al.,
1996). Parameters are available for DNA-DNA (Allawi
and SantalLucia, 1997, 1998a,b,c; Breslauer et al., 1986;
Gotoh and Tagashira, 1981; Peyret et al., 1999; Quartin
and Wetmur, 1989; Santalucia et al., 1996; Santal.ucia,
1998; Sugimoto et al., 1996), RNA-RNA (Freier et al.,
1986; SantalLucia and Turner, 1997; Xia et al., 1998)
and DNA-RNA (Gray, 1997) duplexes, a number of those
with additional corrective factors to adjust for nonstandard
hybridization conditions.

ALGORITHM

Probes should bind specifically to the target sequences.
Therefore, Kurtz et al. (2001) suggest using probes that
are complementary to their respective target sequence, and
that are unique up to k errors. They use a suffix tree to
identify such unique candidates, and suggest using other
software to select the actual probes to be used in the ex-
periment. Similarly, we consider only probes that are per-
fectly complementary to their respective target sequence,
and that are unique. These probes are then evaluated fur-
ther using the Nearest Neighbor Thermodynamic Model.
It should be noted that in some cases admitting probes
with mismatches can increase specificity if the target se-
quences are very similar. Our algorithm will not consider
such probes for complexity reasons.

To select optimum complementary probes, melting tem-
peratures between the complements of all substrings of
all target sequences (the probe candidates) and all targets
have to be computed. Application of the NN model re-
quires knowledge about which basepairs are going to form
in the duplex; hence an alignment of the probe and the
target sequence is required, and the alignment resulting
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Fig. 1. Method overview for probe selection algorithm.

in the highest T); is desired. Furthermore, as it is possi-
ble that the probe—target duplex involves more complex
secondary structure, combinations containing mismatches
and unpaired bases within the duplex (bulges, loops, etc.)
will be considered as well. Note that foldback of a target
sequence onto itself and target—target interactions can im-
pede probe—target binding, and that consideration of such
cases would require a native unimolecular folding algo-
rithm such as MFOLD (Zuker, 1989) to be executed for
all probe—target and target—target interactions. In the case
of very complex target mixtures, such interactions may
have an important effect on the outcome of hybridizations,
but they can not be computed sufficiently efficient for our
purposes.

Figure 1 gives an overview of the probe design algo-
rithm. Given the DNA target sequences, our goal is to
exclude infeasible probe candidates as early as possible.
Infeasible probes are probes that are too short or too long,
occur more than once in different targets, or do not ful-
fill other relevant criteria. Thermodynamic computations,
which are quite time-consuming, will only be done for the
remaining probe candidates.

The algorithm begins by constructing a generalized
suffix tree ST from the inverse complements of all target
sequences. A suffix tree is a data structure allowing for

fast recognition of repetitive subsequences in strings.
This property is used to identify non-unique probes, i.e.
probes forming perfect duplexes with more than one
target, which are subsequently removed from the probe
candidate set. Also, some other criteria are used to
remove infeasible probes, such as the probe length and the
melting temperature of the probe with its Watson—Crick
complement. We will come back to this point later. Note
that additional criteria can be included easily.

Given the target DNA sequences and probe candidates,
the algorithm computes melting temperatures for all
combinations of probe-target interactions, i.e. melting
temperatures between all probe candidates paired with
all target sequences. As DNA is known to be highly
repetitive (cf Gusfield, 1997, p.286) much time can be
saved by avoiding recomputation of melting temperatures
for subdomains of probes with some given target that have
already been considered. The probes are stored in the
generalized suffix tree ST in the preselection step, and this
suffix tree is used further in the algorithm to avoid such
redundant computations.

Finally, probes and melting temperatures are output, and
oligos for the array can be chosen from suggestions made
by our software.

Thermodynamic alignment

To apply the nearest neighbor model, we need to know
which bases are going to form basepairs in the duplex.
Unfortunately, this is not clear at all if the strands are not
perfectly complementary to one another in the Watson—
Crick sense. Worse yet, bases may remain unpaired within
a duplex, and the duplex will still be quite stable (Ke
and Wartell, 1995; LeBlanc and Morden, 1991; Turner,
1992). The problem is related to finding the minimum
energy RNA secondary structure, which can be solved by a
dynamic programming based algorithm similar to the one
presented here (Zuker, 1989). The algorithm they present
solves the folding problem exactly, also considering
several more complex structures such as multiloops which
our algorithm does not consider, however, at the expense
of a considerable running time, making its adaptation
infeasible for our application.

We compute an alignment of the two sequences, allow-
ing for gaps. The alignment and T), are interdependent:
We cannot compute 73y without knowing the alignment,
and the alignment should maximize Tj;. Enumerating all
possible alignments and computing their respective melt-
ing temperatures to choose the maximum thereof is infea-
sible, as the number of alignments grows exponentially
with sequence length and the problem would quickly be-
come computationally intractable.

The problem of aligning two sequences given a weight
function w(-,-) is one of the standard bioinformatics
problems. A dynamic programming algorithm due to
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Needleman—Wunsch (Durbin et al., 1998; Gusfield, 1997,
Waterman, 1995) can be used to find an alignment
maximizing w(-, -). The general idea is to consecutively
extend the alignment, starting with an alignment of
prefixes of the two sequences x and y.

We have modified this algorithm to calculate AH and
AS for all prefix-alignments, choosing the one resulting in
the highest local melting temperature: Our alignment cost
function is the T, function from Equation (3), storing A H
and AS at every position in the table. Then, the dynamic
programming recursion becomes

AHi,Ljfl-i-AAH(xi,yj) ift=0
AH,"J' = AHi*l,j + AAH(xi, —) ifr =1
AH[’j_l—i-AAH(—,yj) ift =2
4)
AS; 1j—1+AAS(x;, y)) ift=0
AS,‘J = ASi—l,j + AAS(xi, —) iftr=1 (5
AS; 1+ AAS(—, y)) ifr =2
and r € {0, 1, 2} is to be chosen such that
. AHi
Tm(i, j) = (6)

ASI"J' + RInCr/4

is maximal. Note, that AAH (x;, y;) and AAS(x;, y;)
denote the nearest neighbor parameters for enthalpy and
entropy changes, respectively, when the ith base of x, x;
and the jth base of y, y; are paired in the alignment. ‘~’
stands for a gap in the alignment, representing an unpaired
base in the duplex. Note also, that AAH and AAS depend
not only on the current basepair, but also on the one
before (the nearest neighbor). However, implementing this
dependency is straightforward. We neglect this issue here
for the sake of simplicity.

By initializing the border of the dynamic programming
table with zeros, we assure that initial gaps do not lower
Ty by looking for the result not just in cell (|x|, [y]), but
in cells (s, |y]) and (|x|, ¢) foralls = 1..|]x| and t = 1..|y|
and choosing the maximum value found, the same is true
for terminal gaps. Furthermore, a special symbol is used to
denote the beginning and the end of a sequence, allowing
the use of dangling end thermodynamic parameters in the
computation (Bommarito et al., 2000).

Unfortunately, the melting temperature Equation (6)
does not show strict monotonicity, which can cause the
the alignment algorithm to return a suboptimal alignment
in some cases. An example is given below. To assess
the quality of the approximation using the alignment
algorithm with parameters listed in Kaderali (2001),
we have enumerated all perfect Watson-Crick duplexes
of length up to 15 nucleotides, and shown that the
algorithm finds the optimum alignment in all these cases.
Furthermore, for over 100,000 random Watson—Crick
duplexes of length up to 250, not a single error was made

either. In the case where the most stable duplex contains
one single unpaired nucleotide, the greedy approach may
fail. Consider, for example, the duplex

0123456789
GTGTGCAAAA
- CCACGTTTT
MMMMMMMMM

with a melting temperature Ty = 27.2°C, whereas the
alignment algorithm finds

01234567829
GTGTGCAAAA
C-CACGTTTT
M. MMMMMMMM

with T)y = 15.4°C. The difference is caused when the
algorithm is forming the G/C pair in position 2. It has to
decide between either the GT/C- alignment or the GT/-
C alignment. The alignment resulting in the higher local
melting temperature is chosen—but unfortunately, when
more bases are added after the G/C pair, it turns out that
the wrong choice has been made.

To be able to estimate the magnitude of the error, two
Monte Carlo computer experiments have been made:

(1) Generate two random sequences of random lengths
between minlen and maxlen nucleotides; note that
the two sequences generated may be of different
length. The nucleotides in each sequence are drawn
independently and from an identical, fixed distri-
bution. Run the thermodynamic alignment algo-
rithm to calculate the alignment melting temperature
T;f[l '8" In parallel, enumerate all possible align-
ments, calculate their respective melting tempera-
tures, and save the maximum 7" thereof.

(2) Generate one random sequence of random length
between minlen and maxlen, using the same pro-
cedure as above. Then construct a second sequence
as the Watson—Crick complement, and introduce
at most maxmut insertions, deletions or substi-
tutions. Again, run the thermodynamic alignment
algorithm to calculate the alignment melting tem-

perature Tﬁ‘flhg”. In parallel, enumerate all possible
alignments, calculate their respective melting tem-
peratures, and save the maximum 7" thereof.

Computer experiment 1 has been carried out with
minlen = 10 and maxlen = 15 for 2500 random se-
quences. The results are reassuring. Figure 2 depicts the
difference Ty, — Tfj’g" between the melting tempera-
ture of the optimum alignment and the solution found by
our algorithm (rounded up to the next integer), the bars

showing how many of the 2500 computations had an error
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Fig. 2. The diagram shows the error made by the algorithm for
alignments of random sequences of lengths between 10 to 15
nucleotides, the bar indicating how many of the 2500 alignments
calculated showed an error of the respective magnitude.

of the respective magnitude. The average error made was
3.13 degrees Celsius, the maximum error observed was
35.46 degrees.

The case where the calculated temperature is too low
when the sequences forming the duplex have only little
similarity is not really a problem—the actual melting
temperature of the duplex will be too low to play a role in
probe design anyway. Therefore, the results of experiment
2 are even more interesting. Again, the experiment was
conducted for 2500 alignments with at most one mutation.
In that case, no error was made in 87.12% of the cases. An
error of not more than three degrees was made in 90.12%
of the alignments. The average error made was 1.27°C, the
maximum error was 34.3 degrees Celsius.

Suffix trees

The algorithmic idea introduced in this section will reduce
running time further. Nothing is lost in terms of result
quality, all we need is a little more memory and an
additional data structure.

The underlying idea is straightforward. Assume we have
just computed the dynamic programming table for the two
sequences ‘GATTACA’ and ‘CTAAGGT’. Further assume
we need to align ‘GATTACA’ and ‘CTAATGA’ sometime
thereafter. Then, the two dynamic programming tables
share the subtable for ‘GATTACA’ and ‘CTAA’. We need
not recompute this part of the dynamic programming table
for the latter alignment, but may use the subtable from
the former alignment and compute only the remaining,
different entries. To identify common prefixes of substring
pairs of all the different sequences under consideration,
we use a generalized suffix tree. Note, that the same tree
is used in both probe preselection and alignment.

A suffix tree for the sequence ‘TACTACA’ is shown in

Input: TACTACA

Fig. 3. Suffix tree for the sequence ‘TACTACA’. Note how all the
suffixes “TACTACA’, ‘ACTACA’, ‘CTACA’, ‘TACA’, ‘ACA’, ‘CA’,
‘A’ and the empty suffix are described by a unique path from the
root node to one of the leaves, and how every leaf uniquely yields
one such suffix. The symbol ‘$’ denotes the end of a string.

Figure 3. Its defining property is that each path from the
root node to a leaf corresponds to a suffix of the string
represented by the tree, and vice versa. Note that, by
appending the unique character ‘$’ at the end of the string,
we guarantee that every suffix ends at a leaf. Otherwise,
the suffix ‘A’ of “TACTACA’, i.e. the suffix consisting of
only the last character of the original sequence, would
end within the ‘AC’ edge. This problem arises whenever
a suffix of the string is a prefix of another suffix.

Suffix trees can be constructed in linear time in the
length of the given string. Esko Ukkonen (Ukkonen, 1995)
devised a straightforward O(n) algorithm in 1995. An
excellent description of that algorithm can be found in
Gusfield (1997).

A Generalized Suffix Tree is a suffix tree containing all
suffixes of a finite number of strings. Only slight modifica-
tions are required to construct generalized suffix trees with
Ukkonen’s algorithm, and the resulting algorithm still runs
in linear time.

Probe preselection

As mentioned above, we need to compute melting tem-
peratures (and alignments) between all probe candidates
and all sequences in the target set. Therefore, it seems
worthwhile to put some effort into reducing the number
of probe candidates before doing so. There are several
criteria that help exclude infeasible probes:

e Probe Length: Usually, there are some restrictions to
probe length. These may be due to technical limitations
in the process of array manufacturing, as well as
limitations given by the user or other external causes.
Without going into more detail at this point, we
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assume that we have variables minlen and maxlen
with minlen < |probe;| < maxlen, where |probe;|
is the length of probe i, and all feasible probes have to
satisfy that inequality.

e Unique Probes: If a given probe is the perfect Watson—
Crick complement to substrings of two or more target
sequences, that probe will hybridize to both targets
with the same melting temperature. Therefore, such
probes cannot be used for array experiments, as
both targets would hybridize against the same spot
on the array. We will allow only probes that are
complementary to exactly one substring of all target
sequences. Furthermore, a probe can even be excluded
if it contains a substring longer than some given length
[ (say, 80%), that is complementary to more than one
substring of all target sequences. Such substrings can
easily be identified using hashing-techniques.

e Probe Melting Temperature: Last but not least, one can
impose some constraints on the minimum temperature
that a probe—target duplex should be able to withstand.
The array experiment will be carried out at some
temperature 7', therefore Tys(target, probe) > T
must hold. Of course, the problem of determining 7
and the probes to be used are not independent from one
another. However, we assume some bound T < T
to be given that can be used to exclude probes with
Ty (probe, target) < Tp from further consideration.

The algorithm to preselect probes starts with the set of
complements of all substrings of all the target sequences.
Every substring of a string is a prefix of a suffix of that
string. Therefore, a generalized suffix tree can be used
to represent all substrings. By following a unique path
from the root to another node, either leaf or internal, all
substrings can be retrieved from the tree (the path may
end somewhere within an edge, i.e. it need not necessarily
terminate at a node). Similarly, each substring corresponds
to one such path starting at the root node. Note, however,
that one path may correspond to two (equal) substrings
from the same or different sequences.

After the generalized suffix tree ST containing the
complements of all target sequences has been constructed,
applying the above criteria and removing all infeasible
probes from the tree is straightforward. This pruning of
the tree yields the suffix tree ST, yneq, Which is then used
further in the following steps.

Thermodynamic tree alignment

Recall, that our objective is to determine an oligo probe
for each of the n genomic sequences that will hybridize
only to its respective target, and not to any of the
other sequences. Hence, we need to compute the melting
temperatures of the most stable duplex formed between

Target Sequence

. . GCTCAGTTGATCGTCGTG. .

DFS-Path in
Probe Tree
&
7] Ic!
o kS
&7 1A alignment
s submatrix
»

of the
.TATACATA... Note that if the alignment of the sequence
TAGTA and the same target has been computed before, the upper
part of the dynamic programming table can be reused.

Fig. 4. Alignment target sequence with probe

each probe left after preprocessing and each target. The
final step of selecting probes from the output of the
thermodynamic tree alignment algorithm will be described
in the next section.

To compute the melting temperatures, begin with the
complements of all substrings of the n target sequences.
This is done by constructing generalized suffix tree ST
containing the complements of all target sequences, as
described above. Then, all substrings are contained in that
tree. The second step is to reduce the number of substrings
stored in the tree, this is taken care of as described in
the previous section on probe preselection, yielding the
pruned tree STy uned-

Finally, all that remains to be done is the computation of
the melting temperatures of the duplexes formed between
all substrings left in the tree and all target sequences; i.e.
each substring and each target have to be aligned using the
thermodynamic alignment algorithm described above, and
the maximum melting temperature must be determined.
Doing so is extremely time-consuming. We will therefore
use the pruned suffix tree ST yneq from the preprocessing
step to reduce running time.

Repetitive subsequences in DNA are quite common.
Thus, whenever calculating alignments of two strings, we
may be able to reuse parts of the dynamic programming
table from a previously computed alignment, if the strings
from that prior alignment share prefixes with the actual
strings.

Fortunately, we can use the tree ST)ryneq constructed
during preprocessing to identify such common prefixes
of probes. The tree induces an ordering of the probes,
grouping probes with common prefixes together. This
helps to calculate such groups at a time and to avoid the
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storage of different subtables, which reduces the overall
memory requirements of the program. Our empirical
results as well as some theoretical considerations indicate
that the suffix tree increases the computation speed by a
factor of around five. Note that each path in the suffix
tree is aligned against all target sequences, but the target
sequences are not stored in a tree. Obviously, storing the
target sequences in a second tree and aligning the two trees
could result in additional speed gains. We are currently
investigating this idea further.

A second trick introduced to speed up the alignment
computation is to check, if the two sequences under
consideration share a complementary substring-pair of at
least some given length k. If this is not the case, we assume
that the resulting melting temperature will be very low, and
skip its computation.

Oligo probe selection

The thermodynamic tree alignment algorithm determines
probe candidates according to certain criteria, and returns
melting temperatures Ty (probe, target) for all (probe
candidate, target) pairs, i.e. all probe candidates and all
target sequences.

Given the output list from the thermodynamic tree
alignment algorithm, our objective now is to select a
temperature 7 and one probe from the list for each of
the target sequences, such that the array experiment can
be carried out at temperature 7, and the probes selected
will hybridize only to their intended target sequence, and
not to any of the other sequences. This problem can be
formalized as follows:

Given n DNA or RNA target sequences f1, 3, .., t,
given furthermore for each target sequence #; a finite set of
probe sequences P;, where P; (| P; = @ foralli, j;i#j.
Furthermore given for all target sequences #; and all
probe candidates p; € | J;_, Px the melting temperatures
Ty (t;, pj) at which target #; and probe p; dissociate.

Find a temperature 7 and, for each target sequence t;,
select one probe py € P; s.t.

Ty (i, pr) = T > Ty(tj, pr) @)
forall j #1.

The temperature 7 is a temperature that must hold
for all probes selected; the inequality above must be
satisfied by all probes selected for all targets with the
same temperature 7". This implies that for two selected
probes p; for target t; and p; for target ¢, the inequalities
Ty (i, pi) > Twm@j, pi), Tu(i, pi) > Tu(ti, pj),
Ty(tj, pj) > Tm(ti, pj) and Ty (), pj) > Ty(tj, pi)
must hold: All ‘desired’ hybridizations have melting
temperatures higher than all ‘undesired’ cross-hybridiza-
tions.

B
)
K|
[aV)
6=
]
8
[ep]
B
)
8
- >
™

Fig. 5. Probe selection. The X-axis represents the melting
temperature, the Y-axis the different probes. Probe indices are of
the form ¢.p, where ¢ refers to the target sequence the respective
probe is intended for, and p is the number of the probe for that
target. For each probe, the right end of the dark bar shows T of the
perfect duplex formed between the probe and its respective target,
the light gray bar shows the temperature range where the probe
will crosshybridize. For the temperature represented by the line
vertically crossing all probes, probes 1.2, 2.1 and 3.2 would yield
a feasible set of probes. The algorithm starts with the maximum
melting temperature found for some duplex, and decreases 7 until
such a set is found.

This problem can be solved in polynomial time. The
idea is to sort the probes for each target according to
their melting temperature. Then, starting with the highest
temperature T, consecutively lower T, and remove all
probes that will crosshybridize at the new temperature.
This is iterated until either a feasible, unambiguous probe
is found for every target, or until all probes have been
removed. Figure 5 illustrates the procedure.

IMPLEMENTATION

The algorithms presented here have been implemented
in C++. The PROBESEL program combines probe prese-
lection and the thermodynamic alignment algorithm and
calculates melting temperatures between probe candidates
and all target sequences. The Pickprb program imple-
ments the Probe Selection Problem (PSP) Algorithm to
select one probe for each target sequence from the output
generated by Probesel.

The program code has been tested on Intel-PCs under
Windows NT 4.0 with Microsoft’s Visual C++ 6.0, on Sun
Ultra Enterprise 4000 running Solaris 7 with the GNU g++
compiler, and on DEC Alpha / Compaq Tru64 UNIX V5.1
with Compaq’s cxx compiler, version 6.20.
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DISCUSSION
Identifying HIV-1 subtypes

Besides running on randomly generated sequences of
different lengths, the algorithm has been used to find
oligos to be used for the identification of different
HIV-1 subtypes. The complete HIV-1 reference subtypes
database from Los Alamos National Laboratory, USA
(LANL, 1999) has been processed. This database contains
58 sequences of average length around 9300 nucleotides.
All oligos of length between 19 and 21 nucleotides with a
melting temperature above 70°C have been evaluated. The
parameter / (maximum permissible length of consecutive
Watson—Crick basepairs in an unintended duplex) was
set to 12, i.e. probes sharing a reverse-complemented
subsequence of length > 12 bases with false binding
sites were excluded from the probe set, and Tj; was
considered negligible for duplexes with less than ten
consecutive basepairs (parameter k), i.e. for those, no
alignment was calculated. The entire computation took 61
minutes for the Probesel program, and only a couple of
seconds for Pickprb on a Compaq Tru64 machine with
four DEC Alpha EV6.7 processors each operating at 667
MHz, and equipped with an alpha internal floating point
processor. Note that the present version of the program
runs single-threaded and hence makes no use of the
multiple processors available.

Probes were found for all 58 sequences, with melting
temperatures between 73° and 87° C. The highest temper-
ature for which crosshybridizations are predicted is 53° C,
which gives a margin of 20°. The program suggests con-
ducting the experiment at a temperature of 63° C. Both
the input file and the probes selected by the algorithm are
available from our website for review.

Application to 28S rDNA sequences

The algorithms presented here have been applied to a
database of 1230 28S rDNA sequences from different
organisms (Markmann, 2000). Those 1230 sequences are
of length between 160 and 6198 bases, with an average
length of 676 nucleotides. As the database contains
sequences with very high similarity (> 95%), it was
filtered before starting the Probesel program. To do so,
pairwise Smith—Waterman alignments of all sequences
were computed, using edit distance as distance function.
Then, for each aligned pair of sequences, all matches
between the two sequences were counted. This was set
in relation to the length of each of the sequences in
the alignment, including internal gaps, but not counting
initial and terminal gaps. Whenever some sequence was
over 95% similar to another sequence according to that
measure, it was removed. If both sequences had relative
similarity of over 95% to one another, the shorter one was
removed.

487 sequences remained in the database after this
preprocessing step. Then, the Probesel algorithm was
started with probe length 29-30 and minimum probe-
target melting temperature 60° C. No unique probes could
be found for 44 sequences, which Probesel reported after
approximately 2 minutes.

For k = 10 and /[ = 12, the computation took
less than 1 hour, however, no probes could be found
for 186 of the 443 target sequences when requiring a
distance of 10 degrees between the lowest temperature
for intended hybridizations and the highest temperature
for crosshybridizations. For the remaining 257 sequences,
the algorithm suggests to conduct the experiment at a
temperature of 60 degrees.

To improve on that result, the program was run again,
this time with k = 0 and + = 15, i.e. no probes
were excluded based on consecutive basepairs formed
with unintended targets. Under those circumstances, the
computation took considerably longer, approximately 7
hours. Therefore, probes were found for all but 46 targets,
with a temperature margin of 10 degrees. The algorithm
suggests washing the array at 66 degrees. If a temperature
margin of only 5 degrees is required, oligo probes were
found for all but 35 of the 443 sequences.

Experimental evaluation

To evaluate the sensitivity and specificity of the crosshy-
bridization predictions made by our software, predicted
pairwise melting temperatures were compared against
hybridizations observed in an experiment conducted at
Los Alamos National Laboratory. In this experiment, 25
oligonucleotides (tags) and their complements (anti-tags)
were synthesized. The tags were attached to plastic beads,
and the anti-tags flourescently labeled. Then, one anti-tag
was brought to reaction with all tags at a time, and the
results were read using a flow cytometer. Figure 6 shows
the results. All pairwise interactions were then simulated
in silico using our melting temperature algorithm, the
results are also shown in the figure (all reactions with TM
above 60 degrees shown). Note that the crossreactions for
tag S7 with all other anti-tags have been confirmed to be
experimental artefacts.

Experimental evaluation of the probes selected by the
algorithm for the 28S rDNA application is under way.
Results will be published elsewhere.

Outlook

First results of using the algorithm to find probes for
all yeast ORFs indicate that it is feasible to apply
this approach to genome-scale applications. Both plus
and minus strand of the whole yeast genome were
evaluated, resulting in 6165 target sequences after filtering
as described in the 28S rDNA case. The program ran
for about 2 weeks. This is clearly acceptable, especially

1347



L.Kaderali and A.Schliep

Fig. 6. This plot shows experimentally determined (top) and
calculated (bottom) crossreactions for 25 oligonucleotides of length
20.

when considering that the algorithm could easily be
parallelized, and the software is currently not optimized
for speed. Probes were found for 4431 of the ORFs,
with an experimental temperature of 65 degrees. Note,
that careful selection of filtering criteria and choice of
parameters can greatly affect running time, which makes
a complexity analysis of the algorithm extremely difficult
and which we therefore cannot provide at this time.

Already the 28S rDNA example reported above indi-
cates that it is very hard to find oligonucleotides for larger
datasets. This problem becomes much worse for genome-
scale applications, for which we suggest three solutions:
Either use longer probes, adding to the difficulties and
costs of manufacturing the array; conduct several exper-
iments at different temperatures, each experiment testing
a subset of the target sequences; or attach several different
short oligonucleotides for the same target to the array sur-
face. Such oligonucleotides will show crosshybridization.
However, provided they are appropriately chosen, it is pos-
sible to derive the expression level for each target strand.
(Knill et al., 1996) solve a similar problem using Markov
chain Monte Carlo methods; further research following
this idea is currently being conducted at the University of
Cologne.
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