Computer Science and Engineering
 Gothenburg University | Chalmers

Home page

Home page  Contact us  Site map 




Ranking and Selecting Clustering Algorithms Using a Meta-learning Approach

M.C.P. de Souto, R.B.C. Prudencio, R.G.F. Soares, D.A.S. Araujo, I.G. Costa, T.B. Ludermir and A. Schliep

In Proceedings of the International Joint Conference on Neural Networks, IEEE Computer Society, 2008.

We present a novel framework that applies a metalearning approach to clustering algorithms. Given a dataset, our meta-learning approach provides a ranking for the candidate algorithms that could be used with that dataset. This ranking could, among other things, support non-expert users in the algorithm selection task. In order to evaluate the framework proposed, we implement a prototype that employs regression support vector machines as the meta-learner. Our case study is developed in the context of cancer gene expression microarray datasets.