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Abstract

Background: As microRNAs (miRNAs) genes are short sequences, and, by themselves, uninformative, miR-

NAs discovery tools usually have an embedded predictive model that uses characteristic features from miRNA

precursors (pre-miRNAs) for the identification of miRNAs. To accommodate the peculiarities of plant and animal

miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the

species for which they were primarily developed and, consequently, their predictive performance on data sets from

other species of the same kingdom may not hold. While these biases are intrinsic to the species, the characteriza-

tion of their occurrence can lead to computational approaches able to diminish its negative effect in the accuracy

of pre-miRNAs predictive models. For such, we investigate in this study how 45 predictive models induced for

data sets from 45 species, distributed in eight subphyla/classes, perform when applied to a species different from

the species used in its induction.

Results: Our experimental analyzes show that the classification complexity is species-dependent and no

feature set can uniquely represent instances from all species, even those from the same subphylum/class. To

further support this statement, we show that an ensemble of classifiers reduced the classification errors for all 45

species. As the ensemble members were obtained using meaningful, and yet computationally viable feature sets,

the ensembles also have a lower computational cost than single classifiers that relied on energy stability parameters,
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which are distinct pre-miRNAs features, but of prohibitive computational cost in large scale applications.

Conclusion: In this study, the combination of multiple pre-miRNAs feature sets and multiple learning biases

enhanced the predictive accuracy of pre-miRNAs classifiers of 45 species. This is certainly a promising approach

to be incorporated in miRNA discovery tools towards more accurate and less species-dependent tools.

Background

MicroRNAs (miRNAs) constitute one of the most widely-studied class of endogenous small (approx. 22

nucleotides) non-coding RNAs genes, due to their regulatory role in pos-transcription gene regulation in

animals, plants and fungi [1,2]. The miRNAs biogenesis involves the participation of several enzymes, which

depend on the origin (e.g. intergenic or intronic miRNAs) and on the kingdom of the species. However, all

miRNAs are processed from long primary miRNA transcripts (pri-miRNAs), which are processed to hairpin-

shaped intermediates (pre-miRNAs) and, subsequently, to a double strand RNA (miRNA:miRNA*) and a

terminal loop. In the cytoplasm of animal and plant cells, the mature miRNA enters in the RNA-induced

silencing complex (RISC) to silence target messenger RNAs (tmRNAs) by partial or near-perfect antisense

complementarity. Partial antisense complementarity inhibits the translation of tmRNAs, whereas the later

causes the degradation of tmRNAs. Reviews on biogenesis, diversification and evolution of miRNAs can be

obtained at [2–4].

RNAseq methods, followed by computational analysis, became the de facto approach for miRNA

discovery [4]. These methods, also called deep sequencing of transcriptome, can reveal the identities of most

RNA species inside a cell, providing tens to hundreds of millions of sequence “reads” [5]. These reads provide

both the sequence and the frequency of RNA molecules present in a cell. When applied to detect miRNAs,

the RNA material is isolated through a procedure of size selection, such that only small reads (approx. 25

nt long) are sequenced [5]. The computational challenge consists in distinguishing miRNAs from other small

RNA (sRNA) types and degradation products [4, 6].

The challenge of building a multi-species miRNA prediction tool can be inferred from the

sensitivity ranges estimated from eight deep sequencing miRNA prediction tools, when they were applied

to data sets from H. sapiens, G. Gallus and C. elegans by [7]. Taking apart the average performance of

each tool, the sensitivity ranges varied between 24% and 38%. For example, the sensitivity of the tool

with the highest average sensitivity (68%) varied between 55% (H. sapiens) and 78% (G. Gallus) and the

sensitivity of the tool with lowest average sensitivity (15%) varied between between 0% (H. sapiens) 25%
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(C. elegans). The species bias is also present in the analysis performed with miRDeep2 [8], a newer version

of miRDeep [6], which incorporated new features to increase the detection of known and novel miRNAs

in all animal major clades. Even though the average sensitivity of miRDeep2 (80%) has clearly increased,

compared to its first version, it still ranged from 71% (Sea squirt) to 90% (Anemone). In order to identify

the source of these variabilities, it is imperative to explore how the main factors involved in the development

of such computational tools vary throughout species.

As miRNAs are processed from hairpin regions, computational tools developed to predict miRNAs

from RNA-seq libraries include at least four steps: pre-processing; read mapping to a reference genome;

detection of energetically stable hairpins in the genomic region surrounding the mapped read and; detection

of miRNAs biogenesis ‘signature’. The latter is derived from the abundance and from the distribution of

the reads across the hairpin and is fundamental to reduce false detections, since the hairpin shape structure

is a necessary but not sufficient condition to process miRNA. Three criteria have been used as evidence of

miRNAs biogenesis: a) the frequency of the mature strand is higher than the frequencies of the corresponding

star and loop strands; b) the positions of the Drosha and Dicer cleavage sites in the 5’ ends of the putative

miRNA and miRNA* are nearly uniform and; c) the putative miRNA and miRNA* sequences align in the

hairpin keeping approx. 2 nt overhang in the 3’ end [4]. Nevertheless, the hairpin analysis is possibly the

most critic step affecting negatively the sensitivity of the tools, since the biogenesis signature analysis is

performed either after the selection of the energetically most favorable hairpin containing the mapped read

stack (e.g. as in miRanalyzer [9]) or concomitantly with hairpin features (as in miRDeep2 [8]).

The hairpin analysis has been performed mostly through machine learning based predictive models.

To obtain these models, a feature set (feature vectors) describing sequence and/or structural aspects of

pre-miRNAs sequences (+) and hairpin like (-) sequences is extracted to create a training data set, which

is subsequently fed to a machine learning algorithm. An investigation on human pre-miRNAs classifiers

ndicated that the feature set, instead of the learning algorithm, had the major effect in the classification

accuracy of the induced models [10]. However, it remained to be investigated the relevance of those features

for the correct classification of pre-miRNAs from other species.

Since miRNA systems in plants and animals differ substantially [4], computational tools for

plant and animal miRNAs discovery have been developed separately (eg. [9,11]). However, in practice, even

instances of species from the same kingdom apparently diverge substantially regarding their intrinsic and

extrinsic features. Therefore, in order to develop miRNA discovery tools less sensitive to species-specific

characteristics, one first step is to determine if a unique feature set can capture the diversification of pre-
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miRNAs throughout species. Moreover, it is important to establish the boundaries of the applicability of

cross-species miRNAs predictive models, since the relevance of any tool depends on its ability to detect

the miRNAs present in the data set under analysis. Another important aspect to be considered is the

computational cost of extracting a feature set, since this cost can be prohibitive for some distinct pre-

miRNAs features (e.g. energy stability parameters) it they are to be computed from millions of hairpins.

These issues were addressed in this study, considering eight feature sets investigated in [10], three learning

algorithms and 45 species representing eight subphyla/classes.

Our experimental results showed that the classification complexity of pre-miRNAs is

species-dependent, albeit some feature sets and learning algorithms were more likely to maximize the

predictive accuracy of pre-miRNAs classifiers for most species (first subsection of the Results and Discus-

sion section). To interpret this dependency, in the following subsections, we analyzed how relevant are the

features extracted from instances of one species for the classification of instances of other species. These

analyzes indicated that pre-miRNAs classifiers restricted to predict instances of species from the same sub-

phylum of the species used on its induction (training species), instead of the same kingdom, are more likely

to achieve higher accuracies. Nevertheless, our results also showed that ensembles of classifiers obtained with

computationally less costly feature sets reduced significantly the relevance of the subphylum membership

of training species. Therefore, the relevance of the ensemble approach can be accounted by its potential to

enhance the applicability of a pre-miRNA predictive model to a broader number of species, while keeping the

computational cost close to that of single classifiers that also do not include computationally costly features.

Material and Methods
Experimental design

The analyzes carried out in this study were based on the accuracy of classifiers obtained in two steps: (1)

create pre-miRNA data sets and (2) induce and test classifiers for classification of pre-miRNAs. In the step

(1), for each species, 30 sequences from each class were randomly sampled from the pre-processed positive

and negative sets to compose the test sets. From the remaining sequences, 60 sequences from each class were

randomly sampled to construct the training set. Afterwards, all features were extracted from each sequence.

This first step was repeated 10 times. As these data sets were built by species, they are also referred as

training and test species. In the step (2), instances from all test sets were classified by the classifiers obtained

with the training data built in the step (1). The accuracy of these classifiers were analyzed under the two-way

analysis of variance (anova) equations 1 and 2.
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The sizes of the training and test sets were, respectively, 2/3 and 1/3 of the smallest number of positive

non-redundant sequences, shown in the Additional file 1. By fixing the sizes of training and test sets, we

reduced the sources of random variations, i.e., variations that cannot be assigned to a main factor. However,

since our main goal was to study the effect of the training species (S) in the predictive accuracy of pre-

miRNAs classifiers, we considered the effects of the classification algorithm and the feature set in a unique

factor, represented here by M . Therefore, considering three algorithms and eight feature sets, the number

of levels of the factor M is 24 (or 3× 8).

Anova 1: M × S

The first analysis was performed to study the relationshipM×S in order to identify the levels ofM that led

to higher predictive accuracies for each species. For such, we considered the Equation 1, where the accuracies

were estimated considering the same training and test species.

Aijk = µ+Ml + Si +MSli + elik, (1)

such that:

l = 1..24 indexes the classifiers,

i = 1..45 indexes the species,

k = 1..10 indexes the repetition,

Alik = accuracy of the classifier l, obtained with the training species i in the repetition k,

µ = overall mean accuracy,

Ml = effect of the classifier l,

Si = effect of the species i,

MSli = interaction between the effects of the classifier l and the species i, and

elik = random error, or part of Alik that could not be assigned to the classifier l, the species i and the

repetition k; e ∼ N(0, σ2).

Anova 2: cross-species classifiers

To investigate the suitability of instances from one species to build pre-miRNAs predictive models for other

species, we fixed a classifier l, l = 1..24, and varied the training and test species. The accuracies were

analyzed according to Equation 2:

Alijk = µ+Mli + Tj +MTlij + elijk, (2)
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such that:

l indexes one out the 24 classifiers,

i, j = 1..45 indexes training and test species,

k = 1..10 indexes the repetition,

Alijk = accuracy of the classifier l, obtained with data from the species i, in predicting the classes of instances

from the species j in repetition k,

µ = overall mean accuracy,

Mli = effect of a species i,

Tj = effect of the species j,

MTlij = effect of the interactions model species l and test species j, and

elijk = random error, or part of Alijk that could not be assigned to the species i, the test species j and the

repetition k; e ∼ N(0, σ2).

Clustering algorithm

The equations 1 and 2 are particularly useful to estimate the variance of random errors (σ2). Once this

variance is known, we can decide how typical are the variances estimated from the controlled factors (e.g.

M , S and MS), compared to σ2, using the p-value obtained from the F -test. In this work, significant

p-values were lower or equal to 0.05 (p<0.05). Since significant p-values of F -test on a factor only supports

the inference that the at least two levels of that factor had different average effects, we applied the clustering

algorithm Scott and Knott [12] to identify the levels of each factor in equations 1 and 2 that led to non-

significantly different accuracies, using the R package ScottKnott [13].

Data sets
Positive sequences

To construct positive data sets, we downloaded all pre-miRNAs from miRBase release 20. This release

contains 24,521 miRNA loci from 206 species, processed to produce 30,424 mature miRNA products [14].

However, only 65 species had at least 100 pre-miRNAs. From these 65 species, 48 had at least 90 non-

redundant sequences (see criterion in the pre-processing subsection). Based on the availability of sequences

that could be used to generate negative examples, positive sequences from only 45 species were considered.

The identification of these species per phylum/division, subphylum/class, the acronyms used in their iden-

tification, the amount of available and non-redundant pre-miRNAs, the mean and the standard deviation of
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their sequence length are shown in Table 6, Additional file 1.

Negative sequences

Negative data sets were constructed from a pool of 1,000 pseudo hairpins per species. These pseudo hairpins

were excised from Protein Coding Sequences (CDS) or pseudo gene sequences, downloaded from the repos-

itories: Metazome v3.0, Phytozome v9.0 or ncbi. The excision points were randomly chosen in the interval

[0, L − lpse − 100], where L was the sequence length of the CDS or pseudo gene and lpse was the length

of the excised sequence. The number of pseudo hairpins of length lpse were determined in accordance with

the length distribution of the available pre-miRNAs from each species. Afterwards, the excised sequence

was evaluated for the resemblance with real pre-miNAs. Sequences that passed the criteria described in the

items 1 to 4 below were stored as pseudo hairpins, and those that failed any of these criteria were discarded.

These criteria were:

1. fold-back structure (FB);

2. bp ≥ 18, bp = base pairing;

3. Qseq ≥ 0.9, Qseq = sequence entropy;

4. Minimum Free Energy of folding (MFE) rules:

MFElpse ≤ −10.0, if lpse < 70

MFElpse
≤ −18.0, if 70 < lpse ≤ 100

MFElpse
≤ −25.0, if lpse > 100.

Qseq was used to filter out meaningless sequences, since genomic sequences are usually contiguously padded

with "N" characters and the MFE rules were derived to accommodated the correlation between MFE and

L.

Pre-processing

Genes in a miRNA family can have about 65% or more sequence identity [15]. Since the number of miRNA

families is relatively small compared to the number of positive examples available, redundancy removal is an

important pre-processing procedure to avoid overfitted predictive models. We used dnaclust [16] to remove

redundant sequences, prior to the sampling of examples to compose training and test sets. With dnaclust,

sequences in positive sets of each species were clustered such that the similarities between sequences within
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a cluster were at least 80%. Afterwards, one sequence from each cluster was randomly sampled to construct

the positive non-redundant sets. The same pre-processing procedure was applied to the sets of negative

sequences, but very few sequences were removed from each set, since the excision from random positions

reduces the chances of obtaining similar pseudo hairpins.

Feature sets

The eight features sets primarily studied in this investigation were extensively evaluated on human sets by

Lopes et al. [10]. Here, these feature sets are referred by the same notation (FSi, i ∈ {1, .., 7} and SELECT).

These feature sets contain most of the features used in computational pipelines for pre-miRNA discovery.

References of computational pipelines that used these feature sets and their composition can be seen in

Table 1. This table also shows two important aspects of these feature sets: feature diversity and feature

sets overlapping. For example, FS1, FS2, FS7 and SELECT have 13 overlapping features, from which five

are also in FS3. Features in these sets are measures of different characteristics of the sequences, whereas the

features in FS4, FS5 and FS6 are mostly sequence-structure patterns.

Learning algorithms

The learning algorithms used in this work were Support Vector Machines (SVMs), Random Forest (RF) and

J48. These algorithms have different learning biases, which is important for the present work, since learning

biases may favor a feature set over others. SVMs and RFs are the algorithms most used for pre-miRNA

classification and J48 was chosen because of its simplicity and interpretability.

J48 implements the well known C4.5 algorithm [17]. As one of the most popular algorithm based on the

divide-and-conquer paradigm, C4.5 recursively divides the training set into two or more smaller subsets, in

order to maximize the information entropy. The J48 implementation builds pruned or unpruned decision

trees from a set of labeled training data. We used RWeka [18], an R interface of Weka [19], with the default

parameter values. RWeka induces pruned decision trees from a data set.

To train SVMs, we used a Python interface for the library libsvm 3.12 [20]. This interface implements

the C-SVM algorithm using the RBF kernel. The kernel parameters γ and C were tuned by 5-fold cross

validation (CV) over the grid (C; γ) = (2−5, 2−3, ..., 215; 2−15, 2−13, ..., 23). The pair (C; γ) that led to the

highest CV predictive accuracy in the training subsets was used to train the SVMs using the whole training

set. The resulting classifier was applied to classify the instances from the corresponding test set.

RF ensembles were induced over the grid (30, 40, 50, 60, 70, 80, 90, 100, 150, 250, 350, 450)×[ (0.5, 0.75,
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1, 1.25, 1.5)*
√
d ], representing respectively the number of trees and the number of features. The value

√
d

is the default number of features tried in each node split, where d is the dimension of the feature space or

the number of features in the feature set. We chose the ensemble with the lowest generalization error over

the grid, according to the training set, and applied it to classify the instances of the corresponding test set.

The ensembles were obtained using the randomForest R package [21] in in house R pipeline.

Ensembles and other feature sets

Besides the predictive accuracy, the applicability of any pre-miRNA classifier to larger data sets may be

limited by the computational time necessary to compute the feature set representation of each pre-miRNA

candidate. To increase the predictive accuracy while keeping the computational cost under feasible limits,

subsets of the existing features sets, removing features computed from shuffled sequences, were employed

to construct ensemble of classifiers. These subsets were named Ss1 and Ss7, such that: Ss1 = FS1 −

{zG, zP, zQ, zD, zF} and Ss7 = {orf,%LCRs, loops,A(((, C(((, G(((, U(((}. Ss1 features measure the largest

variety of pre-miRNA characteristics, whereas Ss7 combine features widely used in pre-miRNA classification

(A(((, C(((, G(((, U((() with three features introduced in pre-miRNA classification in [22]. The first subset

was evaluated individually, and combined with the latter (Hyb17 = Ss7 ∪ Ss1). The subset Ss7 was also

combined with the feature sets FS3 (Hyb37 = FS3 ∪ Ss7) and SELECT (HybS7 = Ss7 ∪ SELECT). The

prefix Hyb is used to represent these ‘hybrid’ feature sets.

An ensemble of classifiers combine the prediction of a set of individual classifiers. The ensembles used in

this study are described in Table 2, along with all other classifiers investigated. The computational time for

the extraction of the feature sets used in the ensembles are close to the time spent to extract the feature set

SELECT and presented in [10]. As shown in this table, the final prediction of the ensembles were defined by

the majority vote (ensemble Emv) and weighted vote (ensemble Ewv). Each ensemble, therefore, combines

the class prediction, class vote, from each one of its classifiers. In the first approach, the class predicted by

the majority of the classfiers is the ensemble class prediction. In the weighted approach, the vote of each

classifiers was weighted by its predictive accuracy in the training set. Ties were resolved by random choice.

Results and discussions
Predictive accuracy of pre-miRNA classifiers by species

As the F -test on the effect of MS in Equation 1 was highly significant (p < 0.001), the effect of the simple

factor M was studied within fixed levels of S (M/Sj , j = 1..45), and vise-verse (S/Ml, l = 1..24). The
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analyzes of M/Sj , j = 1..45, are summarized in Figure 1 and Table 3. The green bars in Figure 1 indicate

the pre-miRNA classifiers whose obtained accuracy is within the cluster of maximal accuracies C1. As

indicated in Figure 1, SVMs and RFs obtained using the feature sets FS3, FS6, FS7 and SELECT achieved

accuracies within C1 for most species. These results agree with the results reported in [10], which used larger

training and test sets of human instances.

Figure 1 indicates only the algorithms and feature set combinations more likely to produce pre-miRNAs

classifiers of maximal accuracy, but the maximal depends on the species, as it can be observed in Table

3. According to this table, the mean accuracy in C1 varied from 86% (cin) to 96% (ssc). As the clusters

were obtained for each species using the estimated accuracies of the same 24 classifiers and the number of

clustes varied from two (bfl, dme, hsa, ath, lus, mdm, ptc, osa, zma) to five (gga), Table 3 indicates that

either the instances from some species are easier to classify than instances from other species, or that pre-

miRNAs of different species carry specific features that identify related characteristics. In both cases, these

results indicate that the incorporation of intrinsic characteristics of the species could improve the accuracy

of pre-miRNAs predictive models in the classification of sequences from different species.

Table 4 presents the results of the analyzes of S/Ml, l = 1..24. Similar to what was observed in the

analyzes of M/Sj , j = 1..45, the number of clusters and the corresponding centers depended on the levels of

M . However, the number of clusters and the accuracy intervals (Range columns) in both tables show that

the effect of S in the accuracy of pre-miRNA classifiers is broaden than the effect of M . For example, the

number of clusters in Table 4 varied from two to six and the ranges varied from 14% (FS7-RFs) to 41% (FS1-

J48). Moreover, although the average accuracies estimated from 17 out of 24 pre-miRNA classifiers were

above 95% for some species (column c1), the average accuracies of the same level Mi for other species were

as low as 57%. In fact, no Ml, l = 1..24 led to classifiers of accuracies within c1 for all species, supporting

again the conjecture that the learning complexity of pre-miRNAs is species-dependent.

In the next subsection, we discuss the representativeness of the instances from the 45 species considered

in this work for the induction of classifiers able to predict the classes of each other’s instances, given a

classification algorithm and a feature set. In addition, we discuss the occurrence of species-specific features

and their effect in the predictive accuracy of cross-species pre-miRNAs classifiers.

Cross-species pre-miRNAs classifiers: Ml × T

Given a learning algorithm and a feature set, the relevance of the instances of a species i (training species)

in the prediction of instances from a species j (test species), i 6= j, can be inferred from the effects of the
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factors in Equation 2. Since the F -test on the interaction MlT was significant (p < 0.05), the factor Ml was

analyzed within each level of the factor T (Ml/Tj , j = 1..45), and vise-verse (T/Mli, i = 1..45). The results

of the analyzes of Ml/Tj , j = 1..45 indicate the training species that resulted in pre-miRNA classifiers of

higher accuracies (c1) for each test species. From the results of the analyzes of T/Mli, i = 1..45, we discussed

the learning complexity of pre-miRNAs from the 45 species.

Choosing the training species - Ml/T

By clustering the average accuracies Ālij., within j, i, j = 1..45, we identified the training species i that led

to accuracies within c1 for each test species j. Figure 2 shows these cases in green (c1) and red (c2,...,c6),

where i is shown in the Y -axis and j in the X-axis. The results for the other 20 models were similar. As the

black frames enclose species from the same subphylum/class and within each frame the green pixels are more

numerous than the red ones, we conclude that a pre-miRNAs classifiers was more likely to achieve predictive

accuracies within c1 when the species i and j were from the same subphylum/class. In particular, Ālij. were

always assigned c1 when i = j (diagonal), indicating that species-specific classifiers is a good approach to

improve the predictive accuracy of pre-miRNAs predictive models.

Figure 2 also shows that instances from some species were systematically harder to classify than instances

from other species, which can be inferred through the number of red pixels by column. Among them,

instances from bmo were typically harder to classify than instances from other species. The columns showing

the clusters associated with different training species in the classification of instances from B. mori (bmo)

and L. usitatissimum (lus) illustrate these cases. Particularly, the average of the clusters obtained from

SVMs_SELECT classifiers generated with instances of all species in predicting the classes of bmo instances

were 80% (c1), 70% (c2) and 65% (c3), whereas the corresponding measures for lus were 98% (c1), 93% (c2),

89% (c3), 80% (c4) and 65% (c5).

Although the phylogenetic proximity of training and test species is fundamental to obtain pre-miRNAs

classifiers of higher accuracies, the learning biases of the classification algorithm may increase or decrease the

relevance of the subphylum/class membership, as Figure 2 shows. In this figure, SVMs were more sensitive

to the phylogenetic proximity of training and test species. An interpretation for this pattern is provided in

the subsection Feature importance.
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Inferring learning complexity - T/Ml

In these comparisons, we clustered the accuracies estimated from all test sets, fixing the training species and

a level of M . These clusters are displayed in Figure 3, for four levels of M . In this figure, a row shows the

test species (X-axis) assigned to the cluster c1 (green) or to another cluster (orange), when its instances

were classified using a training species i (Y -axis). The highest quantities of green pixels clearly associated

with the Angiosperm test species suggest that instances from Angiosperm test species were easier to classify

than instances from other test species, particularly vertebrates.

Although this pattern was consistent in all 24 level of M , we also looked into the learning complexity by

analyzing the importance of the 85 unique features in the classification of instances from all species. The

idea was to indirectly compare the similarities between the instances from different species, using a feature

importance measure obtained during the induction of RF classifiers. These results are discussed next.

Feature importance

Given a feature set, the importance of each feature for the correct classification of the test set instances

can be estimated by a feature importance measure, which in this work was taken from the RF results. The

rationale of investigating the relevance of the RNA features used in this work for the correct classification of

pre-miRNAs of different species is to infer, at least indirectly, if the phylogenetic proximity of these species

is a valid criterion to choose a feature set.

The feature importance measure (FI) used in this study estimates the increase of misclassified OOB

(Out-Of-Bag) instances when that feature is permuted in the training vectors. Since that measure is an

absolute value, to allow its comparison for different classifiers induced with instances of different species,

its values were re-scaled to the interval [0, 1] by the formula RFI = (FI − FImin)/(FImax − FImin).

The maximum (FImax) and minimum (FImin) FI values were obtained from the subset of features used

in the induction of each pre-miRNA classifier. We estimated the RFI values for each of the 85 unique

features considered in this work feature, when they were simultaneously fed to the RF algorithm to induce

pre-miRNA classifiers for each of the 45 species. These estimates were discussed based on two criteria: the

pairwise Pearson correlation coefficient between species and the distributions of the RFI for the 45 species.

Pearson correlation coefficients of RFIs between species

Figure 7 shows the pairwise Pearson correlation coefficients of RFI for all pairs of species. These correlations

are in the interval [0, 1], where the black pixels indicate zero correlation and the white pixels indicate
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correlation one. Therefore, white or light gray pixels represent the cases where the pre-miRNAs of the two

corresponding species shared most of the features. As the red frames indicate, these cases are more likely if

the two species are from the same subphylum/class. However, there are many exceptions within and outside

the subphylum/class umbrella. For example, with few exceptions (e.g. ame, bmo and bta), the features

that are important for the correct classification of instances from the species bfl, cin, cbr, cel and aae, were

also important for the correct classification of instances from other species. Differently, the difficulty in

establishing a general rule on the association between phylogenetic proximity and feature conservation using

the RFI criteria can be observed by the majority of dark pixels associated with Hexapoda species. This

exceptions and the features with the highest RFI are presented next.

RFI distributions

The FRI distributions are shown in Table 5, omitting the cases where RFI ≤0.1 for all species. According

to this table, only 40% of the features met this criterion. Among them, p and MFEI1 obtained RFI

larger than 0.6 for 89% (p) and 94% (MFEI1) of the species, whereas the FRI distributions of the other

features were closer to a right-tailed distribution. In fact, the RFI estimates of 75 out of 85 of features

were lower than 0.3 for 80% of the species. These small amount of highly relevant features helps to interpret

the tendency of SVMs to reduce the predictive accuracy when the training and the test species were more

distantly related, as those from Chordate and Angiosperm (Figure 2). Since SVMs use the full feature space

and RFs use only subspaces of it, the classification by RFs may have been dominated by features that are

more conserved throughout species. The interactions between the learning biases and the species is also

analyzed through the classification errors of the three learning algorithms in the next subsection.

Classification error

The classification errors of a particular instance by different classifiers can provide information on how

typical that instance is, assuming that atypical instances or outliers are more likely to be misclassified by

most classifiers. Moreover, the classification errors estimated from test sets of instances from different species

by multiple classifiers is also informative of the separability of classes, in the instance space of each species.

To facilitate the notation, the errors e1, e2, .., e7 are defined as exclusive classification errors of SVM (e1),

RF (e2), J48 (e3), SVM and RF (e4), SVM and J48 (e5), RF and J48 (e6) and SVM and RF and J48 (e7).

Since e1, .., e7 are exclusive errors, they sum one or 100%, symbolically:
∑7

i=1 ei = 1 or
∑7

i=1 ei = 100%.

These errors are shown in Figure 4, for FS1, FS6 and SELECT.
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As can be observed in Figure 4, the error distributions were strongly dependent on the species, which

shows in another way the classification biases associated with species sequence data. For example, Figure

4 (a) shows that e1 was zero for 15 species (cbr, tca, aca, gga, eca, ggo, ptr, cgr, ppt, aly, ath, mdm, ptc,

osa, zma). Nevertheless, this same figure also shows e1 of up to 80% for other species (e.g., bfl, cin, ame,

mtr, stu, sbi). In these cases, and others where the exclusive error of a classifier induced by one of the three

algorithms is higher than the errors achieved simultaneously by at least two classifiers induced by different

algorithms, the separability of the classes is a matter of choosing an algorithm with the appropriate learning

bias. On the other hand, the cases where e7 > 50% (e.g. mdm) could be better described by other feature

spaces or by a combination of subspaces.

To summarize, the classification errors in each feature space, the errors e1, .., e7, were summed up for the

45 species and represented in Venn diagrams. Figure 6 shows the cases FS1, FS6, FS7 and SELECT. The

interaction between learning algorithm and feature set, indicated by the significant variation of the areas of

the circles, between feature sets, is the most noticeable pattern in this figure. For example, classification

models induced by J48 tended to achieve higher exclusive error rates (e3) in higher dimensional feature

spaces. Moreover, the proportion of instances misclassified simultaneously by classifiers induced by the

three algorithms varied varied between 3.2% to 6.7% (3.7% ≤ e7 ≤ 6.7%), which is a 3.5% interval. These

two factor alone are sufficient to conjecture that the combination of multiple hypotheses may lead to pre-

miRNA classifiers of higher accuracies than a single hypothesis, for a larger number of species. To provide a

preliminary insight on this conjecture, we carried out additional computational experiments, using ensemble

approaches to combine multiple hypothesis to improve the predictive accuracy of pre-miRNA classifiers.

These results from these experiments are presented and discussed in the next subsection.

Ensembles

Figure 5 shows the comparisons between the 44 classifiers, as defined in Table 2. According to Figure 5,

the ensembles Emv24, Ewv24, Emv8-RF, Emv8-SVMs, Ewv8-RF, Ewv8-SVMs, Ewv24 and the classifiers

obtained with the new feature sets presented better predictive accuracies than the 24 previously discussed,

for many species, although none of the them achieved predictive accuracies within C1 for all 45 species.

Moreover, it is important to remind that these ensembles and the new feature sets do not include features

extracted from shuffled sequences. Figure 5 also shows that the simple combination of different hypotheses

can increase the predictive accuracy, even using the algorithm J48, which typically led to equal or lower

classification accuracies than RFs and SVMs.
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Based on the results shown in figures 5 and 7, and in Table 5, we can state that it is unlike that a

unique learning algorithm and a unique set of features is able to produce the best pre-miRNA predictive

model for all species. In fact, the experimental results obtained in this study suggested that the learning of

good predictive models for pre-miRNAs classification depends on the learning complexity inherited of the

problem and the peculiarities of the instances from different species. Since ensembles apparently provide

an alternative and efficient approach to accommodate these peculiarities, an appropriate construction of

hypothesis diversity (e.g. [23]) may enhance the performance of miRNA discovery tools in the classification

of pre-miRNAs of different species.

1 Conclusion

The computational analysis of large amounts of sequencing data to detect miRNAs has increased the sequence

analysis capacity and supported the recent advances in the discovery of novel miRNAs from over a hundred

species. Albeit miRNA systems vary throughout species, miRNA discovery tools from the literature have not

addressed the impact of these differences in the performance. As a consequence, the performance of these

tools is usually reduced when data sets from species not used in their development are analyzed. For different

reasons, to build species-specific miRNA discovery tools may not be viable. Since the detection of putative

pre-miRNAs is an important step in the development of miRNA discovery tools, it is important to investigate

how the peculiarities naturally occurring in pre-miRNAs throughout species relates with the learning bias

of machine learning approaches. In this study, we presented the results of a systematic investigation on

the automatic learning of pre-miRNAs of 45 species, using techniques traditionally employed by miRNA

discovery tools from the literature. The results presented in this study not only showed the need to develop

new approaches to handle the intrinsic characteristics of pre-miRNAs from different species, but we also

indicated the way to go.
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Figure 6 - Venn diagram of the classification errors of the classification algorithms, by feature set.
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Table 1: Feature set composition, dimension, literature reference and associated literature tool.

FEATURE FEATURE SET
FS1 FS2 FS3 FS4 FS 5 FS6 FS7 SELECT

Di-nucleotide frequencies (XY, X, Y ∈ {A, C, U, G}) x
%G + C x x x
Maximal length of the amino acid string without stop codons (orf) x
Percentage of low complexity regions (%LCRs) x
Triplets x x
Stacking triplets (X(((, X ∈ {A, C, G, U}) x
Motifs (ss−substrings) x
Minimum free energy of folding (MF E) x
Randfold (p) x
Normalized MFE (dG) x x x x x
MFE index 1 (MF EI1) x x x x x
MFE index 2 (MF EI2) x x x x x
MFE index 3 (MF EI3) x x x x
MFE index 4 (MF EI4) x x x
Normalized Ensemble Free Energy (NEF E) x x x x
Normalized difference (MF E − EF E) (Diff) x x x x
Frequency of the MFE structure (F req) x
Normalized base-pairing propensity (dP ) x x
Normalized Shannon entropy (dQ) x x x x x
Structural diversity (Diversity) x x x
Normalized base-pair distance (dD) x x
Average base pairs per stem (Avg_Bp_Stem) x x x
Normalized A-U pairs counts (|A− U |/L) x x x
Normalized G-C pairs counts (|G− C|/L) x x x x
Normalized G-U pairs counts (|G− U |/L) x x x x
Content of A-U pairs per stem (%(A− U)/stems) x x x
Content of G-C pairs per stem (%(G− C)/stems) x x x
Content of G-U pairs per stem (%(G− U)/stems) x x x x
Cumulative size of internal loops (loops) x
Structure entropy (dS) x x x x
Normalized structure entropy (dS/L) x x x x
Structure enthalpy (dH) x
Normalized structure enthalpy (dH/L) x
Melting energy of the structure x
Normalized melting energy of the structure x
Topological descriptor (dF) x x x x x
Normalized variants (zG, zP and zQ) x
Normalized variants (zD) x x x
Normalized variants (zF ) x
DIMENSION 48 21 7 32 1300 34 28 13
REFERENCE [24] [24] [25] [26] [27] [28] [22] [10]
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Figure 1: Frequencies of species for who each classification model achieved accuracies in the clusters C1-C5.
MeanC1 ≥ .. ≥MeanC5 .

Table 2: Definition of all 44 classification models compared in this work, according to feature sets and
learning algorithms. Mij is the classifier induced with the feature set i and algorithm j, i = 1..12 and
j = 1, 2, 3, and wij is the accuracies of the classifier Mij . M̂ij is the predicted class by Mij , M̂ij ∈ {−1, 1}.
Emv=Ensemble majority votes, Ewv=Ensemble weighted votes.

1. SVMs 2. RF 3. J48
1. FS1 M11 M12 M13

2. FS2 M21 M22 M23

3. FS6 M31 M32 M33

4. FS7 M41 M42 M43

5. FS3 M51 M52 M53

6. FS4 M61 M62 M63

7. FS5 M71 M72 M72

8. SELECT M81 M82 M83

9. Hyb37 M91 M92 M93

10. HybS7 M101 M102 M103

11. Hyb17 M111 M112 M113

12. Ss1 M121 M122 M123

Emv8
∑

M̂i1, i = 5..12
∑

M̂i2, i = 5..12
∑

M̂i3, i = 5..12
Ewv8

∑
wi1M̂i1, i = 5..12

∑
wi2M̂i2, i = 5..12

∑
wi3M̂i3, i = 5..12

Emv24
∑

M̂ij , i = 5..12 and j = 1, 2, 3
Ewv24

∑
wijM̂ij , i = 5..12 and j = 1, 2, 3
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Figure 2: Accuracy cluster membership for cross-species pre-miRNAs classifiers. Green= c1; red=other;
y-axis=model species; x-axis=test species; black frames encloses species from the same subphylum/class.
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Figure 3: Accuracy cluster membership for cross-species pre-miRNAs classifiers. Green= c1; red=other;
y-axis=model species; x-axis=test species; black frames encloses species from the same subphylum/class.
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(a) FS1 (b) FS6 (c) SELECT

Figure 4: Distribution of classification errors per species. Exclusive errors by SVMs (e1), RF (e2), J48 (e3),
SVMs and RF (e4), SVMs and J48 (e5), RF and J48 (e6) and SVMs and RF and J48 (e7).
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Figure 5: Distribution of the accuracies of 44 classifiers within the accuracy clusters.MeanC1 > ... > MeanC5 .
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(a) FS1 (b) FS6

(c) FS7 (d) SELECT

Figure 6: Venn diagram of the classification errors of the classification algorithms, by feature set. Results
were obtained from the classification of 27000 = 45 (test species) ×10 (repetitions) ×60 (30+,30-).
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Figure 7: Pairwise Pearson correlation coefficient of FRI throughout species.
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Table 3: Centers of accuracy clusters from 24 classification models, per species. Range = Maximum - minimum.

Acronym for species C1 C2 C3 C4 C5 Range
bfl 94 83 - - - 15.0
cin 83 79 75 68 - 19.0
cbr 93 85 79 - - 17.0
cel 92 87 81 75 - 20.0
aae 95 90 80 - - 18.0
ame 85 78 72 - - 20.0
api 92 88 82 73 - 22.0
bmo 84 79 71 57 - 31.0
dme 91 78 - - - 22.0
tca 89 82 76 - - 18.0
aca 93 86 80 - - 16.0
xtr 97 87 82 - - 18.0
gga 95 90 85 76 68 27.0
cfa 91 83 75 - - 22.0
eca 93 86 77 - - 20.0
mdo 87 79 71 - - 21.0
mml 89 82 75 - - 17.0
ggo 89 77 66 - - 27.0
hsa 88 77 - - - 16.0
ptr 89 82 73 - - 23.0
oan 88 83 77 70 - 23.0
cgr 92 88 84 78 - 16.0
mmu 85 79 72 - - 17.0
rno 93 88 81 - - 17.0
bta 84 80 75 68 - 18.0
oar 91 86 77 - - 18.0
ssc 90 85 79 64 - 29.0
dre 93 86 80 - - 17.0
ola 92 88 80 68 - 26.0
ppt 93 84 76 - - 20.0
aly 95 88 81 - - 17.0
ath 94 83 - - - 15.0
mes 98 91 85 - - 14.0
gma 91 86 79 - - 18.0
mtr 86 82 72 - - 21.0
lus 97 84 - - - 18.0
mdm 98 85 - - - 15.0
ppe 95 87 80 - - 18.0
ptc 94 83 - - - 16.0
stu 93 87 82 - - 16.0
vvi 93 86 78 - - 20.0
bdi 91 87 75 - - 22.0
osa 87 77 - - - 16.0
sbi 96 89 81 - - 20.0
zma 96 82 - - - 17.0
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Table 4: Centers of accuracy clusters obtained from classification models induced with examples from different
species, per combination of feature set and learning algorithm. Range = Maximum - minimum.

FEATURE SET ALGORITHM c1 c2 c3 c4 c5 c6 Range
FS1

SVM

95 88 78 - - - 21
FS2 96 92 87 80 - - 20
FS3 95 90 85 - - - 15
FS4 92 86 81 77 - - 22
FS5 94 90 86 80 - - 20
FS6 93 88 83 - - - 17
FS7 95 88 - - - - 16
SELECT 96 92 86 80 - - 20
FS1

RF

97 92 87 82 72 - 30
FS2 97 93 89 83 - - 20
FS3 95 88 84 - - - 18
FS4 91 87 84 79 - - 18
FS5 92 85 77 - - - 19
FS6 95 88 - - - - 16
FS7 96 89 - - - - 14
SELECT

J48

96 92 86 78 - - 21
FS1 98 91 85 75 67 57 41
FS2 96 90 84 77 - - 24
FS3 97 92 87 81 - - 21
FS4 84 79 75 69 - - 21
FS5 83 78 75 71 - - 17
FS6 97 93 89 83 78 72 27
FS7 96 91 87 81 - - 21
SELECT 97 92 86 80 74 - 26
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Table 5: Relative feature importance (FRI) distributions. Omitting those of RFI ≤ 0.1 for all species.

No FEATURE RF I intervals
≤0.3 (0.3,0.4 (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] ≥1.0

1 p 4 0 4 2 9 13 16 51
2 MF EI1 4 0 4 0 7 4 22 58
3 dP 33 29 20 11 7 0 0 0
4 ZG 36 9 9 16 7 2 4 18
5 orf 36 31 4 11 9 2 4 2
6 dG 47 20 13 11 7 2 0 0
7 ZP 53 13 9 2 7 2 0 13
8 Avg_Bp_Stem 53 33 9 4 0 0 0 0
9 EAF E 64 20 4 7 2 2 0 0

10 MF EI3 67 13 9 4 2 0 2 2
11 MF EI4 80 9 7 0 0 2 2 0
12 |A− U |/L 80 16 4 0 0 0 0 0
13 ZQ 82 2 4 2 0 2 2 4
14 ZD 84 0 2 4 2 2 2 2
15 A((( 89 9 0 2 0 0 0 0
16 T m 93 7 0 0 0 0 0 0
17 dQ 93 7 0 0 0 0 0 0
18 Diversity 98 2 0 0 0 0 0 0
19 U((( 98 0 2 0 0 0 0 0
20 MF E 98 0 2 0 0 0 0 0
21 %(A− U)/stems 100 0 0 0 0 0 0 0
22 dD 100 0 0 0 0 0 0 0
23 Diff 100 0 0 0 0 0 0 0
24 T m/L 100 0 0 0 0 0 0 0
25 %UU 100 0 0 0 0 0 0 0
26 dm 100 0 0 0 0 0 0 0
27 %G + C 100 0 0 0 0 0 0 0
28 MF EI4 100 0 0 0 0 0 0 0
29 A... 100 0 0 0 0 0 0 0
30 %GA 100 0 0 0 0 0 0 0
31 C... 100 0 0 0 0 0 0 0
32 dH/L 100 0 0 0 0 0 0 0
33 G... 100 0 0 0 0 0 0 0
34 %UA 100 0 0 0 0 0 0 0

29



Table 6: Phylum/division, subphylum/class, species, acronyms, number of positive examples available at
miRBase 20, mean and standard deviation of the length distributions. NR=Non-Redundant.

Phylum/Division Subphylum/Class Species genus Acronym #pre-miRNA Length
All NR (Mean ± SD)

Chordate

Cephalochordata Branchiostoma floridae bfl 156 143 87 ± 13
Urochordata Ciona intestinalis cin 346 331 63 ± 16

Nematoda Caenorhabditis briggsae cbr 177 148 92 ± 19
Caenorhabditis elegans cel 233 214 89 ± 17

Hexapoda

Aedes egypti aae 101 90 94 ± 21
Apis mellifera ame 218 215 100 ± 20
Acyrthosiphon pisum api 117 101 66 ± 9
Bombyx mori bmo 489 432 100 ± 22
Drosophila melanogaster dme 238 236 95 ± 23
Tribolium castaneum tca 220 210 95 ± 22

Vertebrate

Anolis carolinensis aca 282 272 89 ± 9
Xenopus tropicalis xtr 189 163 83 ± 11
Gallus gallus gga 734 695 92 ± 17
Canis familiaris cfa 324 280 69 ± 14
Equus caballus eca 341 298 78 ± 15
Monodelphis domestica mdo 460 370 67 ± 12
Macaca mulatta mml 615 524 86 ± 17
Gorilla gorilla ggo 332 313 105 ± 12
Homo sapiens hsa 1,872 1,640 82 ± 17
Pan troglodytes ptr 659 542 90 ± 17
Ornithorhynchus anatinus oan 396 327 100 ± 24
Cricetulus griseus cgr 200 199 82 ± 12
Mus musculus mmu 1,186 1,078 83 ± 19
Rattus norvegicus rno 449 428 92 ± 17
Bos taurus bta 798 710 80 ± 13
Ovis aries oar 105 96 97 ± 18
Sus scrofa ssc 280 247 81 ± 10
Danio rerio dre 346 240 93 ± 18
Oryzias latipes ola 168 146 95 ± 9

Bryophyta Musci Physcomitrella patens ppt 229 204 161 ± 56

Angiospermae

Eudicotyledons

Arabidopsis lyrata aly 298 177 183 ± 100
Arabidopsis thaliana ath 298 257 183 ± 103
Manihot esculenta mes 153 109 117 ± 38
Glycine max gma 505 361 131 ± 47
Medicago truncatula mtr 672 373 165 ± 91
Linum usitatissimum lus 124 100 144 ± 34
Malus domestica mdm 206 90 130 ± 66
Prunus persica ppe 180 147 136 ± 51
Populus trichocarpa ptc 352 246 128 ± 46
Solanum tuberosum stu 224 163 95 ± 43
Vitis vinifera vvi 163 131 127 ± 56

Monocotyledons

Brachypodium distachyon bdi 258 228 178 ± 101
Oryza sativa osa 592 482 153 ± 77
Sorghum bicolor sbi 205 174 142 ± 54
Zea mays zma 172 133 132 ± 45
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