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ABSTRACT

Scaffolding is an important subproblem in de novo genome assembly, in which mate pair
data are used to construct a linear sequence of contigs separated by gaps. Here we present
SLIQ, a set of simple linear inequalities derived from the geometry of contigs on the line that
can be used to predict the relative positions and orientations of contigs from individual mate
pair reads and thus produce a contig digraph. The SLIQ inequalities can also filter out
unreliable mate pairs and can be used as a preprocessing step for any scaffolding algorithm.
We tested the SLIQ inequalities on five real data sets ranging in complexity from simple
bacterial genomes to complex mammalian genomes and compared the results to the ma-
jority voting procedure used by many other scaffolding algorithms. SLIQ predicted the
relative positions and orientations of the contigs with high accuracy in all cases and gave
more accurate position predictions than majority voting for complex genomes, in particular
the human genome. Finally, we present a simple scaffolding algorithm that produces linear
scaffolds given a contig digraph. We show that our algorithm is very efficient compared to
other scaffolding algorithms while maintaining high accuracy in predicting both contig
positions and orientations for real data sets.
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1. INTRODUCTION

De novo genome assembly is a classical problem in bioinformatics, in which short DNA sequence reads

are assembled into longer blocks of contiguous sequence (contigs), which are then arranged into linear

chains of contigs separated by gaps (scaffolds). Previously, only single-end short reads were available from

sequencing experiments. Modern genome sequencing technology allows reporting reads in pairs, commonly

known as mate pairs or paired end. The distance between the two reads of a pair plus the two read lengths (the

insert length) approximately follows a normal distribution determined during the experimental construction
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of the library. Some genome projects also include mate-pair libraries with several different insert lengths.

Although there are experimental differences between mate pairs and paired-end reads, we will refer to them

interchangeably as mate pairs since we can treat them identically from an algorithmic point of view. Mate

pairs are particularly important for de novo assembly since, in addition to building contigs, we can now

hypothesize about neighbors of a contig whenever the reads of a pair fall on different contigs. This opens the

possibility of scaffolding contigs.

Computational genome assembly is typically performed in at least two stages—the contig building stage

and the scaffolding stage. In this article we do not address the contig building problem but rather assume

that we have access to a set of contigs produced by an independent algorithm. However, we discuss the

relationship of the contig building and scaffolding stages later in the discussion. The scaffolding problem

tries to string contigs into a chain such that the order of the contigs in the scaffold reflects their real order in

the genome. For the scaffolding problem, the most popular strategy is to construct the contig graph in

which nodes represent contigs and edges represent sets of mate pairs connecting two contigs (i.e., the two

reads of the mate pair fall in the two different contigs). The edges are given weights equal to the number of

mate pairs connecting the two contigs.

We then try to find a walk in the graph such that the minimum number of mate pairs are violated. A mate

pair is violated when the contigs it is connecting do not have the relative orientation or position suggested

by the mate pair. Just finding the optimal orientation assignment is reducible to the Maximum Cut problem,

which is known to be NP-complete (Garey, 1979). Consequently, finding the optimal walk to get the

optimal scaffolding is also NP-complete. The genome can (and often does) have repeated regions; e.g.,

approximately 50% of human genome is accounted for by repeats (Haubold and Wiehe, 2006). But the

contig builder is likely to report one contig per repeated region. This repetitive structure of the genome

makes scaffolding harder as it introduces loops and cycles in the contig graph. We also have false edges

resulting from misassembly of reads into contigs. Unfortunately, the number of false edges is not negli-

gible, and so, filtering them is a major preprocessing step.

A common procedure is to filter out unreliable edges by picking a small threshold (commonly 2–5)

and removing all edges with weight less than that threshold. For the remaining edges, a majority vote is

used to decide on the relative orientation and position of the contigs. This simple majority voting

strategy is implemented in a number of commonly used assemblers and stand-alone scaffolders, in-

cluding ARACHNE (Batzoglou et al., 2002), BAMBUS (Pop et al., 2004), SOPRA (Dayarian et al.,

2010), and SOAPdenovo (Li et al., 2010), with various choices of threshold. Opera (Gao et al., 2011)

and the Greedy Path-Merging algorithm (Huson et al., 2002) use a different strategy to bundle edges.

Given a set of mate pairs connecting two contigs, these algorithms calculate the median and standard

deviation of the insert lengths of the set of mate pairs and create a bundle using only mate pairs with

insert length that are close to the median. ALLPATHS (Butler et al., 2008) and VELVET (Zerbino and

Birney, 2008) do not build the contig graph and thus do not have a read-filtering step similar to the other

assemblers mentioned. The majority voting procedure implicitly assumes that misleading mate pairs are

random and independently generated and that majority voting should eliminate the problematic mate

pairs. However, this assumption is often not true because of the complex repeat structure of large

genomes, such as human.

In this article, we show that unreliable mate pairs can be reliably filtered using SLIQ, a set of simple

linear inequalities derived from the geometry of contigs on the line. Thus, SLIQ produces a reduced subset

of reliable mate pairs and thus a sparser graph, which results in a simpler optimization problem for the

scaffolding algorithm. More importantly, SLIQ can be used to predict the relative positions and orientations

of the contigs, yielding a directed contig graph. Our experiments show that both SLIQ and majority voting

are very accurate at predicting relative orientations, but SLIQ is clearly more accurate at predicting relative

positions for complex genomes.

The simplicity of SLIQ makes it very easy to integrate as a preprocessing step to any existing scaffolders,

including recent scaffolders such as MIP scaffolder (Salmela et al., 2011), Bambus 2 (Koren et al., 2011),

and SSPACE (Boetzer et al., 2011). To illustrate the effectiveness of SLIQ, we implemented a naive

scaffolding algorithm that produces linear scaffolds from the contig digraph. We show that despite its

simplicity, our naive scaffolder provides very accurate draft scaffolds, comparable to or improving upon the

more complicated state of the art, very quickly. These scaffolds can either be output directly or used as

reasonable starting points for further refinement with more complex scaffolding algorithms. An im-

plementation of naive assembler using the inequalities is available online.
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2. ALGORITHMS

We begin with a high level outline of our algorithm for constructing a directed contig graph (Algorithm 1).

The crux of the algorithm is SLIQ, a set of simple linear inequalities that are used to filter mate pairs and

predict the relative position and orientation of contigs. In subsequent sections, we will present proofs for the

SLIQ inequalities and a detailed version of the digraph construction algorithm (Algorithm 2). Finally, we

will present a simple scaffolding algorithm (Algorithm 3) that uses the contig digraph to construct draft

scaffolds. Throughout the article, we will abbreviate mate-pair reads as MPR.

Algorithm 1. Construct Contig Digraph (Outline)

Require: input: P = a set of MPRs that connect two contigs, C = a set of contigs

1: Construct the contig graph G with vertex set C and edges representing MPRs from P that pass a certain majority

cutoff.

2: Find a good orientation assignment for the contigs (Y = fY1‚Y2‚ . . .g) where Yi is the orientation of the ith

contig, for example, by finding a spanning tree of G.

3: Define Mp to be the set of MPRs that satisfies the SLIQ inequalities

4: Construct a directed contig graph Gd with vertex set C and edges representing MPRs from Mp that pass certain

criteria.

2.1. Definitions and assumptions

For the sake of deriving the SLIQ inequalities, we assume that we know the position of the contigs on the

reference genome. However, this information cancels out later on, which allows us to analyze the MPRs

without access to prior contig position information. For the derivation, we also assume that all the contigs

have the same orientation. Later, we will not need this information.

Let Pi be the position of contig Ci in the genome, and li be the length of the contig (Fig. 1). We define gap

gij to be the difference between the start position of contig Cj, and the end position of contig Ci, and

similarly for gji:

gij = Pj - Pi - li‚

gij = Pi - Pj - lj:
(1)

We assume that the maximum overlap of two contigs is one read length, R. In practical contig-building

software based on De Bruijn graphs, the maximum overlap is usually one k-mer where R > k, so our

assumption is valid.

2.2. Derivation of two gap equations

If we assume that Pi < Pj as in Fig. 1, and that the maximum overlap between two contigs is R (i.e., the

minimum gap gij is - R), then

Pj - Pi - liq - R‚

Pj - Piqli - R: (2)

FIG. 1. The geometry of two contigs, Ci and Cj, arranged on a line with relevant quantities indicated. Here, L is the

insert length, Pi is the start position of contig Ci, li is the length of the contig Ci, oi is the offset of the read of the mate-

pair read (MPR) that falls on Ci, R is the read length. gij = Pj - Pi - li. The quantities for Cj are defined similarly.
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Now consider the quantity gij - gji. Using Equation (1), we can derive the following inequality, which we

call Gap Equation 1

gij - gji = 2‚ (Pj - Pi) + (lj - li)

q2li - 2R + lj - li

qli + lj - 2R: (3)

Therefore, we have shown that (Pi < Pj) 0 (gij - gji ‡ li + lj - 2R). Next consider the quantity gij + gji. We

can easily derive Gap Equation 2:

gij + gji = - (lj + li): (4)

Now, we will prove the other direction of the implication in Gap Equation 1, and show that (gij - gji ‡ li +
lj - 2R) 0 (Pi < Pj). Using Gap Equation 1 and Equation (1), we get

gij - gjiqli + lj - 2R‚

2(Pj - Pi) + (lj - li)qli + lj - 2R‚

2(Pj - Pi)q2li - 2R‚

Pj - Piqli - R:

(5)

No contig length can be less than R, the length of a read. In practice, contigs of lengths R are not very

reliable. Our experiments show that such contigs almost always fail to align to the reference. We suggest

scaffolders enforce a minimum contig length, which is > R. We make the assumption li - R > 0 and that

gives us Pj - Pi > 0 or Pi < Pj. Therefore, (gij - gji ‡ li + lj - 2R) 0 (Pi < Pj) and together we have proven,

(gij - gjiqli + lj - 2R)*0(Pi < Pj): (6)

2.3. Using the gap equations to predict relative positions

Our definitions in Equation (1) used the quantities Pi and Pj, which are not available in practice in

de novo assembly. Thus, we need to define the gaps gij and gji in terms of quantities we know, such as the

insert length L and the read offsets relative to the contigs oi and oj. Note that the insert length for each

MPR is an unknown constant, so treating it as a constant in the proof is justified. In practice, we use

L = �L + 2r, where �L is the reported or computed mean and r is the standard deviation of the insert length

distribution.

FIG. 2. Plot of Equation (5)

showing the dependence of the

quantity gij - gji on the relative po-

sitions of the contigs.
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Let L be the insert length, oi and oj be the offsets of the start positions of the paired reads in Ci and Cj,

respectively, and Yi and Yj be the orientations of Ci and Cj, respectively. To simplify the notation we

abbreviate Yi = Yj as Yi = j and Yi sYj as Yisj. Then, if Pi < Pj and Yi = j (Fig. 3), we can redefine the

gaps gij and gji without using the contig start positions Pi and Pj:

gij = L - li + oi - oj - R‚

gji = - L - lj + oj + R - oi: (7)

Note that these definitions remain consistent with Gap Equation 2 [Equation (4)]. Taking the difference of

Equations (6) and (7), we can similarly remove Pi and Pj from Gap Equation 1:

gij - gji = 2L - 2R + 2(oi - oj) + (lj - li): (8)

Using Equations (8) and (5), we derive the following inequality:

2L - 2R + 2(oi - oj) + (lj - li)qli + lj - 2R‚

2L + 2(oi - oj) + (lj - li)qli + lj‚

L + (oi - oj)qli:

Consequently, we obtain that (Pi < Pj)^Yi = j 0 L + (oi - oj) ‡ li. Negating the implication gives

:(L + (oi - oj)qli)0:((Pi < Pj) ^Yi = j)‚

L + (oi - oj) < li0(Pi > Pj) _Yi6¼j:

Now, without loss of generality, we can assume that Yisj is false. This is possible because our experiments

later show that the SLIQ or majority voting procedures are both very accurate at predicting relative

orientation (Table 2) so we can first determine the relative orientations of the contigs and flip the orientation

of one contig if required. Thus we have

L + (oi - oj) < li0(Pi > Pj): (9)

In addition, we introduce two filters that are very useful in practice for removing unreliable MPRs. To

derive the first filter, if Pj < Pi,

L = lj - oj + gji + oi + R‚

qlj - oj - R + oi + R‚

oj - oiqlj - L‚

oi - oj< - lj + L: (10)

The second filter is to discard an MPR if it passes the test for both Pi < Pj and Pj < Pi.

2.4. Using the Gap Equations to Predict Relative Orientations

So far, we have only predicted relative positions when Yi = j. Now we show that we can also use the gap

equations to infer the relative orientations of the contigs. First, if (Pi < Pj) and the minimum gap is - R,

then we have

FIG. 3. The geometry of two contigs arranged on a line in terms of quantities known in de novo assembly.
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gij = L - li + oi - oj - Rq - R: (11)

Similarly, if (Pj < Pi), then we define �gji and write

�gji = L - lj + oj - oi - Rq - R: (12)

Note that �gji is different than gji, which we defined under the assumption Pi < Pj in Equation (7).

Since (Pi < Pj) and (Pj < Pi) are mutually exclusive and exhaustive neglecting Pi = Pj, at least one of the

Equations (11) and (12) will be true. Note that possibly also both could be true. For example, if Pi < Pj then

gij ‡ - R. Now (Pj < Pi) must be false, but that does not imply that �gjiq - Ris false. If both Equations (11)

and (12) are true, then we can add them to get 2L ‡ li + lj. To summarize,

((gijq - R) ^ (�gjiq - R))02Lqli + lj‚

2L < li + lj0(:(gijq - R) _ :(�gjiq - R))

Recalling again that at least one of the Equations (11) and (12) are true, we see that 2L < li + lj is a sufficient

condition for mutual exclusion (the XOR relation is denoted by 4):

Yi = j ^ (2L < li + lj)0(gijq - R)� (�gjiq - R)‚

:((gijq - R)� (�gjiq - R))0:(Yi = j ^ (2L < li + lj))‚

:((gijq - R)� (�gjiq - R))0(Yi 6¼j _ (2Lqli + lj)):

If we use this equation only when the MPR and contigs satisfy the inequality 2L < li + lj, we can then make

the relative orientation prediction

:((gijq - R)� (�gjiq - R))0Yi 6¼j: (13)

Intuitively, the condition 2L < li + lj means that the contig lengths should be large relative to the insert

length in order for the SLIQ method to work. To find contigs of the same orientation, we arbitrarily flip one

contig and run the above tests again, only this time if Equation (13) holds, then we conclude that the contigs

were actually of the same orientation. Say we flip Ci. We call the new offset oî. Then

:((g
bij
q - R)� (�g

jbi
q - R))0Y

bi 6¼j
0Yi = j:

Again, we introduce two additional filters that are very useful in practical applications. First, if we find an

MPR that predicts both Yisj and Yi = j, then we leave it out of consideration. Second, if the SLIQ equations

imply Yisj, then we require that both the reads of the MPR have the same mapping directions on the

contigs and similarly for Yi = j.

We summarize our results in the following lemmas and Algorithm 2.

Lemma 1. If the maximum overlap between contigs is R and 2L < li + lj, then

:((gijq - R)� (�gji � q - R))0Yi 6¼j‚

:((gîjq - R)� (�gĵiq - R))0Yi = j:

Lemma 2. If the maximum overlap between contigs is R, the contigs have the same orientation, (i.e.,

Yi = j), then

(L + (oi - oj) < li)0(Pi > Pj):

We also summarize the SLIQ inequalities,

gij - gjiqli - lj - 2R‚

gij + gji = - (lj + li)‚

(gij - gjiqli + lj - 2R)*0(Pi < Pj)‚

gij - gji = 2L - 2R + 2(oi - oj) + (lj - li):
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2.5. Illustrative cases and examples from real data

In this section, we present two illustrative cases that provide the intuition underlying the SLIQ equations.

The ideal case for an MPR connecting two contigs is illustrated in Figure 1. In that case, the contigs are

long compared to the insert length, and the reads are mapped to the ends of the contigs. However, this

situation does not always occur. Suppose the contigs are short such that the two reads of an MPR fall

exactly in the center of the contigs. Then, the right-hand side of Equation (8) reduces to 2L - 2R. So for both

cases, Pi < Pj and Pj < Pi, the right-hand side of Equation (8) has the same value, making it impossible to

predict the relative positions of the two contigs. This situation is illustrated in Figure 4 on the left. It is easy

to see that prediction becomes easier as the contigs get longer and the reads move away from the center of

the contigs.

Now assume that the working assumption is Pi < Pj but in reality, the reverse (Pj < Pi) is true. Then

given that the contigs are long and reads map to the edges of the contigs, the insert length L would suggest

the scenario depicted in Figure 4 (right side). This would make both gij and gji [as calculated from

Equations (6) and (7)] smaller than they should be. In reality, the position of the contigs is similar to that

shown in Figure 1, where we see that both gij and gji are larger than in Figure 4 (right side). These wrong

FIG. 4. Illustrative cases in which both reads of the MPR fall in the center of the contigs (left) and the contigs have

reversed positions (right).

Algorithm 2. Construct Contig Digraph

Require: input: M = a set of MPRs connecting contigs, C = a set of contigs, w = cutoff weight

1: Define E0 = {(Ci,Cj) : an MPR connects Ci and Cj}

2: Let wt(i,j) = (number of MPRs suggesting that Ci and Cj have the same orientation) - (number of MPRs suggesting

that Ci and Cj have different orientations)

3: E = {(Ci,Cj) : (i,j) 2E0 ^wt(i,j) ‡ w}

4: Construct a contig graph G with vertex set C and edge set E.

5: Find a good orientation assignment (Y = fY1‚Y2‚ . . .g) for the contigs, for example, by finding a spanning tree

of G.

6: Set Mp = {}

7: for all p : p 2 M do

8: Let Ci and Cj be the contigs connected by p.

9: if Yi = j then

10: if (L + (oi - oj) < li) AND (oi - oj < - li + L) then

11: predict Pi > Pj

12: Mp = Mp W {p}

13: end if

14: if (L + (oj - oi) < lj) AND (oj - oi < - lj + L) then

15: predict Pi < Pj

16: Mp = Mp W {p}

17: end if

18: end if

19: end for

20: Let E(i,j) be the set of MPRs from Mp that predict Pi < Pj and E(j,i) be the set of MPRs from Mp that predict

Pj < Pi.

21: Define Ed = {(Ci,Cj) : jE(i,j)j > jE(j,i)j}
22: Output a contig digraph Gd with vertex set C and edge set Ed.
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values would then be too small to satisfy the left-hand side of Equation (5) and this would demonstrate that

the working assumption of Pi < Pj is wrong.

It is also instructive to consider examples from real data. We show three cases from a real data set: One

in which SLIQ made a correct prediction, one in which SLIQ made a wrong prediction, and one where

SLIQ did not make any predictions (Fig. 5). We explain precisely which inequalities are violated in the

figure caption. The real examples show the difficulties of making SLIQ predictions when the reads fall

close to the center of a contig or when the contig lengths are small relative to the insert size.

2.6. Naive scaffolding algorithm

The contig digraph constructed in Algorithm 2 can be directly processed to build linear scaffolds. To

illustrate this point, here we present a naive scaffolding algorithm (Algorithm 3).

Algorithm 3. Naive Scaffolder

1: G(V,E) = Construct Contig Digraph (Algorithm 2)

2: Identify and remove junctions from G. Junctions are defined as articulation nodes with degree ‡ 3 that connect at

least 3 subgraphs of G of size larger than some given threshold. The size of a subgraph is defined as the sum of all

contig sizes in that subgraph.

3: Identify all simple cycles in G and remove the edge with the lowest weight from each simple cycle.

4: If G still contains strongly connected components, those components are removed. G is now a directed acyclic

graph.

5: Output each weakly connected component of G as a separate scaffold.

6: The order of contigs in each scaffold is computed by taking the topological ordering of the nodes of their respective

weakly connected component in G.

To analyze the computational complexity of the naive scaffolding algorithm, let N be the number of MPRs

in the library. Constructing G takes O(N) time. Finding articulation points takes O(n + m) time, where n = jV j
and m = jEj(Hopcroft and Tarjan, 1973). If we have a articulation nodes, then finding junctions takes O(an)

time. Identifying and breaking simple cycles takes O((n + m)(c + 1)) time, where c is the number of simple

cycles ( Johnson, 1975). Finally, topological sorting takes O(n + m) time. In total, the complexity of the naive

scaffolding algorithm is O(N) + O(n + m) + O(an) + O((n + m)(c + 1)) = O(N) + O(an) + O((n + m)(c + 1)). In

practical data sets, a and c are small constants and N [n,m. Thus, for practical purposes the time complexity

of the algorithm is O(N).

3. EXPERIMENTAL RESULTS

To demonstrate the performance of our algorithms in practice, we ran them on five real data sets and two

synthetic data sets. The data sets represent genomes ranging in size from small bacterial genomes (3 Mb)

FIG. 5. Three real examples of SLIQ predictions from the PSY dataset. For the correct prediction, the equation

L + (oi - oj) < li evaluates to 3385 < 5043. In the wrong prediction, it should have satisfied L + (oj - oi) < lj but one of the

contigs is smaller than the insert length so it evaluates to 262 < 217 (false). However L + (oi - oj) < li evaluates to

498 < 863 so the wrong prediction is made. In the no-prediction case, the condition oi - oj < - lj + L is violated. Even if

that did not fail, since one of the offsets falls almost in the center of a contig, both the conditions L + (oj - oi) < lj,

(299 < 1384) and L + (oi - oj) < li, (461 < 506) are satisfied, and we would not give a prediction for this MPR. To simplify

the calculations we used L = 80.
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to large animal genomes (3.3 Gb) (see Table 1 for details). More importantly, they also vary in

repetitiveness—from almost nonrepetitive bacteria to moderately repetitive drosophila to highly repetitive

human genomes.

For each data set, we obtained a publicly available mate-pair library. We used publicly available pre-

built contigs for the Drosophila simulans (DS) and human (HS) (Gnerre et al., 2011) data sets. Pre built

contigs were not available for the three microbial data sets—P. suwonensis (PSU), P. syringae (PSY), and

P. stipitis (PST) — so we used the short read assembler VELVET (Zerbino and Birney, 2008) to construct

contigs. All software parameters and sources for the data are provided in Table 4. For the two synthetic

datasets, C. elegans (SY_CE) and human (SY_HS), we constructed contigs by mapping reads back to the

reference genome and declaring high-coverage regions to be contigs. So, for these experiments, we have

synthetic contigs but real reads. We will discuss the performance of the algorithms on the synthetic data

sets at greater length in the Discussion. We mapped the reads to the contigs using the program Bowtie

(v. 0.12.7) (Langmead et al., 2009). Below we only report results for the uniquely mapped reads because we

know the ground truth for them.

3.1. Comparison of SLIQ and majority voting predictions

On all the real data sets, SLIQ was highly accurate in predicting both relative orientation ( > 75%) and

position ( > 80%) (Table 2). For orientation prediction, SLIQ and majority filtering produced almost

identical accuracies except for the case of P. stipitis (PST), where SLIQ had lower accuracy (75% vs 97%).

One possible reason might be that the PST library used long mate-pair reads, which may be more inaccurate

than the other libraries we tested. Conversely, for PST, majority voting gave far worse accuracy (16.5%)

than SLIQ (75%) in relative position prediction, confirming that this data set is an outlier.

Focusing only on the position predictions, SLIQ showed a significant advantage in both the number and

accuracy of the predictions compared to majority voting for the more complex genomes — D. simulans and

human (Fig. 6). Importantly, the improvement was particularly large for the human genome.

Table 1. Descriptive Statistics About the Datasets

Set ID Organism Size Ref. genome Read lib R cov L Lr r

PSU P. suwonensis 3.42 Mb CP002446.1 SRR097515 76 870x 300 188.78 18.77

PSY P. syringae 6.10 Mb NC_007005.1 (Farrer et al., 2009) 36 40x 350 384.11 67.13

SY-CE C. elegans 100.26 Mb NC_003279-85 SRR006878 35 38x 200 232.13 54.44

PST P. stipitis 15.40 Mb (Chapman et al., 2011) (Chapman et al., 2011) 75 25x 3.2K 3.27K 241.50

DS D. simulans 109.69 Mb NT_167066.1-68.1,

NT_167061.1,

NC_011088.1-89.1,

NC_005781.1

SRR121548,

SRR121549

36 62x N/A 187.99 61.47

SY-HS H. Sapiens 3.30 Gb NCBI36/ hg18 ERA015743 100 45x 300 310.63 20.74

HS H. Sapiens 3.30 Gb NCBI36/ hg19 ERA015743 100 45x 300 310.63 20.74

R, read length; cov, coverage; L, reported insert length; Lr, the real insert length calculated by mapping reads to the reference

genome; r, standard deviation of Lr.

Table 2. Summary of the Results of SLIQ vs. Majority Filtering for Contig Graph Edges

of Five Real Datasets

Set ID n we no eo np ep wm n0o e0o n0p e0p

PSU 4454 2 2507 99.69% 3803 99.21% 4 3942 99.59% 3925 94.87%

PSY 2086 2 1628 98.40% 1852 95.62% 4 2019 98.56% 1990 98.59%

PST 2291 1 1233 75.18% 1516 87.33% 2 1365 97.87% 1336 16.54%

DS 8738 1 6305 92.18% 7097 80.55% 2 6390 91.87% 5861 77.25%

HS 36346 1 31799 79.56% 31153 89.71% 2 32676 79.14% 25750 75.62%

n, total number of edges connecting two different contigs; we, minimum wieght of an edge for SLIQ prediction; no, the number of

edges for which we can predict relative orientation, eo, the accuracy of relative orientation prediction, np, the number of edges for

which we can predict relative position; ep, the accuracy of relative position prediction; wm, minimum weight of an edge for majority

prediction. The same notations are used for majority filtering except with prime.
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Finally, Table 3 gives a more detailed comparison of cases in which the SLIQ and majority voting

predictions disagreed. When the two methods disagreed, SLIQ clearly outperformed majority voting

procedure. For example, for human, when the methods disagreed, SLIQ was right in 1852 cases and

majority voting in only 165 cases. SLIQ was also generally more accurate when considering only the

predictions made uniquely by each method, except in one case (PSY).

3.2. Computing the optimal insert length

In our experiments, we found that using a slightly larger value for L (e.g., 20 bp for PSY) than that

reported or estimated increased both np(by 49), the number of MPRs for which we could make a relative

position prediction, and ep (by 2%), the accuracy of relative position prediction. This may seem surprising

at first given Equation (9). However, for np, it can be seen from Figure 1 that underestimating L would

reduce gij, which would lead to more overlaps between contigs. Since we assume that the maximum contig

overlap is R, underestimating L would remove many MPRs from the predictions. However, at the moment

we do not have an explanation for the observed increase in ep, the prediction accuracy.

On the other hand, using a slightly smaller value for L increased no, the number of MPRs for which we

could make a relative orientation prediction, while eo, the prediction accuracy for orientation, remained

constant. We suspect that a lower L makes Equations (11) and (12) harder to pass and thus less MPRs are

excluded by the mutual exclusion test.

3.3. Computing the rank of MPRs

Our experimental results also agree with our illustrative cases (section 2.5) in that the prediction ac-

curacy decreases as 2(oi - oj) gets closer to (li - lj) which intuitively means that the reads are falling closer

to the center of the contigs. To address this issue we can rank the MPRs by the minimum value of c for

Table 4. Parameter Values Used in the Analysis of all Datasets

Data set v Contig construction Contig mapping

PSU 2 (velvet) Hash length = 21, cov_cutoff = 5, min_contig_lgth

= 150

(vmatch) Min match length l = 150,

Hamming distance h = 0

PSY 0 (velvet) Hash length = 21, cov_cutoff = 5, min_contig_lgth

= 150

(vmatch) Min match length l = 150,

Hamming distance h = 0

PST 0 (velvet) Hash length = 35, cov_cutoff = auto,

min_contig_lgth = 100

(vmatch) Min match length l = 200,

Hamming distance h = 5

SY-CE 1 (synthetic) Cov cutoff = 5, min contig len = L Available from synthetic construction

DS 2 accession number AASR01000001-AASR01050477 (vmatch) Min match length l = 200,

Hamming distance h = 5

SY-HS 2 (synthetic) Cov cutoff = 3, min contig len = 2R Available from synthetic construction

HS 3 Accession number AEKP01000001:AEKP01231194 (vmatch) Min match length l = 300,

Hamming distance h = 0

v is the number of mismatches allowed in read mapping (Bowtie v.0.12.7).

Table 3. Comparison of Position Predictions Between the SLIQ and Majority Voting Methods

Set ID na nd nde ndm n0e eq n0m em

PSU 3089 646 643 3 68 95.58% 190 90.52%

PSY 1519 287 235 52 46 86.95% 184 96.19%

PST 290 794 784 10 432 58.56% 252 25.00%

DS 2447 820 804 16 409 93.15% 2035 76.41%

HS 16425 2017 1852 165 12711 85.67% 7308 52.73%

na, the number of predictions where the methods agreed; nd, the number of predictions where the methods disagreed; nde, the number

of predictions not in agreement where SLIQ was correct, ndm, the number of predictions not in agreement where majority voting was

correct; n0e, is the number of predictions made only by SLIQ; eq, the accuracy of predictions made only by SLIQ; n0m, the number of

predictions made only by majority voting; em, the accuracy of predictions made only by majority voting.
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which they fail to pass the more stringent inequality j2(oi - oj) - (li - lj)j > cR. We say that an MPR has rank

c if and only if c is the smallest positive integer such that j2(oi - oj) - (li - lj)j £ cR, and MPRs with higher

rank are considered more confident with regards to their prediction. Figure 7 shows how the prediction

accuracy depends on the rank of the MPRs in the PSY dataset.

3.4. Effect of the number of Mate Pairs

More mate pairs connecting different contigs give better confidence in scaffolding. But we observed that

this improvement is significant up to a certain threshold (4–5 for majority voting and 2–3 for the SLIQ

equations). After that, the improvement in correctness in scaffolding is not worth the reduction in number

of edges in the contig graph. For example, for the DS dataset, if we increase the cutoff by 1, the position

prediction improves by 3% but reduces the number of edges by 1520. This reduction also depends on the

coverage of the read library. For the high coverage PSU dataset, an increase of 1 in cutoff has almost no

effect– a reduction of 50 edges. And of course, all this is assuming that the contigs are of reasonable

FIG. 7. Change in the prediction

accuracy, ep, as we restrict our

analysis to MPRs of higher rank (c).

FIG. 6. Comparison of the accu-

racy of SLIQ and majority voting

for relative position prediction

using that same data shown in

Table 2.
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quality. If you have mis-assembled or chimeric contigs, more mate pairs can create more loops and high-

degree nodes in the contig graph, which are not removed by the cutoff threshold and result in worse

scaffolding.

3.5. Performance of the naive scaffolder

We summarize the results of our naive scaffolder on the five real data sets in Table 6 and Table 7. For all

data sets, the orientation accuracy was very high ( > 97%) and the position accuracy was also high ( > 89%).

While the genome coverages of PSU and DS may appear surprising, note that the PSU library had a very

high coverage while the DS library had low coverage and was also made up of a number of different

D. simulans strains. It is likely that the PSU contigs include misassembled fragments in the contigs, making

the total length of the contigs larger than the genome size. For DS, the combination of low coverage and

relatively high rates of sequence differences between the different D. simulans strains likely resulted in

lower genome coverage.

4. DISCUSSION

In conclusion, we have presented a mathematical approach and an algorithm for constructing a contig

digraph that encodes the relative positions of contigs based on mate-pair read data. Our main insight is the

Table 6. Summary of the Results of Our Naive Scaffolder on Real Data

Data set N50 Genome coverage Orientation accuracy Position accuracy

PSU 17K 116.1% 99.64% 97.95%

PSY 75K 90.98% 98.26% 93.42%

PST 215K 97.89% 98.90% 89.89%

DS 942 59.48% 97.52% 96.07%

HS 18K 79.27% 98.28% 98.03%

N50 is the length n such that 50% of bases are in a scaffold of length at least n. The position accuracy measures how many

neighboring contigs in the scaffold were placed in the correct order.

Table 7. Run time Comparison of Our Naive Scaffolder with Two Other State-of-the-Art

Scaffolders, SOPRA and MIP Scaffolder

Data set Naive Scaffolder SOPRA MIP Scaffolder

PSU 6m40.39s 237m27.237s 23m32.55s

PSY 59.36s 44m57.604s 3m14.03s

PST 67.21s 3009m29.224s 124m42.68s

DS 7m7.449s N/A 36m42.05s

HS 241m33.928s N/A N/A

All times are the sum of the user and system times reported by the Linux time command. We ran all software on a 48 core Linux

server with 256GB of memory.

Table 5. Summary of the Results of Majority Prediction for Synthetic Datasets

for C. elegans (SY_CE) and Humans (SY_HS)

Data set n wm no eo np ep

SY-CE 17620 3 17620 99.52% 17532 99.85%

SY-HS 878380 3 878380 98.93% 868877 99.47%

n, total number of edges connecting two different contigs; wm, minimum weight of an edge for majority prediction; no, the number of

edges for which we can predict relative orientation; eo, the accuracy in relative orientation prediction; np, the number of edges for

which we can predict relative position; ep, the accuracy in relative position prediction.
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derivation of a set of simple linear inequalities derived from the geometry of contigs on the line that we call

SLIQ. We can use SLIQ both to efficiently filter out unreliable mate-pair reads (MPR) and predict the

relative positions and orientations between contigs. We have shown that SLIQ outperforms the commonly

used majority voting procedure for the prediction of relative position of contigs while both methods are

very accurate for orientation prediction. The contig digraph can also be directly processed into a set of

linear scaffolds and we have presented a simple scaffolding algorithm for doing so. Our naive scaffolder

has high accuracy on all data sets tested and is very efficient—for practical purposes, as it takes time linear

in the size of the mate pair library and it is also very fast compared to other state-of the art scaffolders. The

output of our naive scaffolder can either be used directly as draft scaffolds or used as a reasonable starting

point for refinement with more complex optimization procedures used in other scaffolders.

One interesting and unexpected finding of our experiments was that the simple majority voting procedure

performs very well for predicting the relative positions of contigs if the contigs have few errors. This can be

seen by the performance of the majority voting procedure when using synthetic contigs that are not

constructed using de novo assembly tools but rather by mapping the reads back to a reference genome and

identifying regions of high coverage, which is expected to produce much higher quality contigs (Table 5).

This observation suggests a novel way to approach the scaffolding problem in which the contig builder

would output smaller but higher quality contigs and allow the scaffolder to handle the remainder of the

assembly. We believe this is a significant change in philosophy of genome assembly programs to date in

which during the contig building step, one generally attempts greedily to build contigs that are as long as

possible. This viewpoint also differs considerably from previous approaches to scaffolding in which the

focus was on resolving conflicts between mate pairs that gave conflicting information about the relative

orientation and position of contigs.

Finally, we are exploring several possible extensions of the SLIQ method. The first extension is to find

the optimal value for L, the insert length, so that we optimize the number and accuracy of relative position

and orientation predictions. The second extension is to assign numerical values to the accuracy of pre-

diction of MPRs of a particular rank. Finally, for the multiply mapped MPRs, which were not included in

the results, we plan to identify the most likely mapping for the MPR, for example, by using their ranks.
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