
The General Hidden Markov Model Library:
Analyzing Systems with Unobservable States

Alexander Schliep
�

Wasinee Rungsarityotin
�

Benjamin Georgi
�

Alexander Schönhuth
�

�

Max Planck Institute for Molecular Genetics, Berlin
�

ZAIK, University of Cologne

Abstract

Hidden Markov Models (HMM) are a class of statistical models which are widely
used in a broad variety of disciplines for problems as diverse as understanding speech to
finding genes which are implicated in causing cancer. Adaption for different problems is
done by designing the models and, if necessary, extending the formalism. The General
Hidden Markov Model (GHMM) C-library provides production-quality implementations
of basic and advanced aspects of HMMs. The architecture is build around the software
library, adding wrappers for using the library interactively from the languages Python
and R and applications with graphical user interfaces for specific analysis and modeling
tasks. We have found, that the GHMM can drastically reduce the effort for tackling
novel research questions. We focus on the Graphical Query Language (GQL) application
for analyzing experiments which measure the expression (or mRNA) levels of many
genes simultaneously over time. Our approach, combining HMMs in a statistical mixture
model, using partially supervised learning as the paradigm for training results in a highly
effective, robust analysis tool for finding groups of genes sharing the same pattern of
expression over time, even in the presence of high levels of noise.

1 Introduction

When we set out to analyze experimental mass data we have to ask ourselves what is the
nature of the underlying system generating the data — what is the physical, chemical or
biological process we are investigating and what is the, usually, limited and imperfect view
provided by our experimental instruments. Often the processes will be stochastic; moreover,
more often than not the experimental procedure will introduce another source of stochasticity.

Provided that they are sufficiently complex, the systems we are investigating will share
one commonality: the observations will be influenced by the state the system is in. Here state
very broadly encompasses the values of all variables which describe he system. However, the
state itself will be unobservable. This structure can for example be found in understanding
speech, where words correspond to states and the waveforms of the spoken word are ob-
served, or in finding genes in a DNA sequence, where the various structural elements of a

1

1 2

P P

A G TCA G TC

Figure 1: A discrete HMM. The underlying Markov process is depicted as a directed,
weighted graph, the states correspond to vertices and transitions to edges. The emissions
in each state are displayed as discrete distributions over the alphabet of the four nucleotides.
This model can be used to analyze segmentation of DNA based on nucleotide usage differ-
ences between the segments.

gene (e.g., exons, introns, splice sites, start and stop codons) are the states and we observe
the sequence of nucleotides.

For a multitude of analysis tasks — finding the most likely state given observations, classi-
fying observations into different groups — a stochastic model offering effective computation
of such processes with hidden states would be beneficial. If we make the assumptions, that

� the observations only depend on the state the system is in at the time of the observation
and thus are independent on prior observations as well as prior states, and

� the probability of a change from a state at time
�

to another state at time
�����

only
depends on the state at time

�
then the so-called Hidden Markov Models (HMM) provide an effective model class. In
essence they combine two stochastic processes. Consider a stochastic process on the dis-
crete and finite set of states � (extensions to continuous state spaces are routine), a sequence
of random variables �	��
�	
���������
�� �
such that the so called Markov property holds:

��� ��
��������
����"! ��
#�$�
�&%&%&%'�(�)�*�+�,�.-�� ��� ��
������$�
����	! ��
#�$�
�-/%
If we have a stochastic function 0213�546 7�8:9<; , where 7�8/9<; denotes the set of random
variables with outcomes 9 , such that for all = �>� � �&% %&% �@?A�

, 0B8C=; is a random variable taking
on values from 9 then �EDF
/�	
����G�HD�
 1 � 0B8 �I
 ;
is a HMM.

Hidden Markov Models in fact allow a wide range of variations with respect to emis-
sions, they can be discrete, continuous, or vector-valued, the densities controlling the random
variables 0 — for continuous emissions mixtures of Gaussian are routinely used — and the
details of the Markov process controlling the sequence of states.

The first publications on HMMs stem from the 1940s, but they have not found wide-
spread use until the 1970s when their effectiveness in modeling speech became obvious in

2

the push to implement speaker-independent speech recognition at AT&T. Today HMMs form
the basis for a wide range of solutions for data analysis and statistical modeling, from areas
such as guiding missiles [18], predicting crises in the Middle East [10] or finding genes in
human DNA sequence [7, 22]. While many applications can be addressed with standard
HMMs, often extensions to the basic method are required.

Our main contribution is two-fold. On one hand we have implemented our software in the
highly reusable, general library GHMM— licensed under the Library GNU Public License
(LGPL). We implemented the standard algorithms for computing with HMMs and a large
number of extensions, both to the model class and algorithms. So-called wrappers allow the
use of GHMM from interactive languages such as Python and R and a graphical application is
provided for editing HMMs. The GHMM thus creates a comprehensive, flexible framework
which substantially reduces the effort for implementing novel data analysis and modeling
solutions. The architecture allows interactive use, incorporation into other software package,
and — due to the licensing chosen — extension of the core functionality. Altogether, these
aspects lead to a considerable speed-up of research efforts using HMMs.

On the other hand we employ the HMM framework and the GHMM in particular to de-
sign a novel mixture of HMMs which performs very well for identifying groups of genes in
gene expression time-courses, due to the ability to use more prior knowledge than compet-
ing approaches and a large degree of flexibility in modeling the qualitative behavior of time
courses.

In the following we will describe out work on analysis of gene expression time-courses
in detail, list further application of the GHMM, and expand about the architecture of the
GHMM.

2 Analysis of gene expression time course data using mix-
tures of Hidden Markov Models

Microarray experiments have become a staple in the experimental repertoire of molecular ge-
netics. They can be used to detect or even quantify the presence of specific pieces of RNA in
a sample. The experimental procedure is based on hybridization of these RNA-sequences to
either oligonucleotide or cDNA probes which are affixed to the array. If probes for genes in
a cell are used, microarray experiments can measure the expression levels of up to thousands
of genes simultaneously. The resulting so-called expression profiles allow for example inves-
tigation of differences in distinct tissue types or between healthy or diseased tissues. When
microarray experiments are performed consecutively in time we call this experimental set-
ting a time course of gene expression profiles. The questions this experimental setting tries to
address are the detection of the cellular processes underlying the regulatory effects observed,
inference of regulatory networks and, in the end, assigning function to the genes analyzed in
the time courses.

Because of the large number of genes and their complex relationships in microarray mea-
surements, it has been a standard procedure to identify groups of genes with similar temporal
regulatory patterns or time-courses. When analyzing such gene expression time-courses a
number of problems should be addressed.

� Noise is omnipresent and of manifold nature. We need a good statistical model to deal
with it.

3

S1

(a)

S1 S32S

(b)

S1 2S

(c)

Figure 2: A number of prototype HMMs encoding distinct qualitative time-course behavior:
constant (a), up-down-up (b), cyclic up-down (c).

� Sometimes prior knowledge in form of high quality annotations regarding regulation
or function of the inspected genes is available. The method should thus allow for the
integration of readily labeled data.

� The computer aided analysis of gene expression experiments is an experimental help
for the biologist. This means that the tool should allow for a high degree of interactivity
and visualization.

� Very often only a small number of genes is decisively involved in the processes of
interest. The procedure should thus be able to output only few genes having highly
significant relationships if required.

� Genes can trigger the expression of other genes. So gene expression profiles which are
to be grouped together may exhibit similar expression patterns showing up at different
times.

� Sometimes experiments are (partially) corrupted leading to missing data.

� Genes may interact with other genes in more than only one context. This precludes
partitioning the data.

� Gene expression profiles are the result of a time course experiment. Methods which
take care of these so called horizontal dependencies should outperform those which do
not.

Prior approaches can be divided into two classes, depending on whether they are based on
statistical models or not. Methods in the second class require the definition of a distance mea-
sure describing the degree of similarity between two gene expression profiles. Note that these
methods mostly do not explicitly account for the high levels of noise in the data. Moreover
they do not allow for the inherent nature of the data, namely being time courses. Examples are
hierarchical [5, 6] and � -means clustering [19] or singular value decomposition [14]. Some
of them provide graphical user interfaces, some do not. None of these methods allows for
integration of prior knowledge.

Methods of the first class use statistical models to represent clusters. Cluster membership
is decided based on maximizing the likelihood of data points given the cluster models and

4

the assignment of data points to clusters. Model based procedures account for the horizontal
dependencies in the data. Moreover one can expect a larger robustness with respect to noise
as it mostly is explicitly modeled in these approaches. Examples of model-based clustering
used for analysis of expression time courses are based on cubic splines [1] and autoregressive
curves [12, 13].

2.1 Mixtures of Hidden Markov Models

To cope with the issues given, we model a set of gene expression time-courses as a mixture
model. The basic assumption of a mixture model is that the data has been generated by a
weighted superposition of model components coming from the same model class but differing
in their parameters and their weights. Besides from providing a “soft” assignment of time
courses to clusters mixture models also have proved to be more robust with respect to noise
when learned from data. The individual components we use are HMMs, mainly due to their
flexibility in encoding ’grammatical’ constraints of time-courses. Their graphical structure
benefits the analysis process, as it affords a high degree of interactivity and accessibility.

Simple model for time-courses

We use HMMs (see Rabiner [11] for an excellent introduction) with continuous emissions
governed by a normal distribution in each state. The HMM topology — the number of states,
the set of possible transitions — is essentially a linear chain (following Schliep et al. [15],
see Fig. 2), neglecting a possible transition from the last to the first state to accommodate
cyclic behavior. The states reflect regions of a time-course with similar levels of expression.
There are usually fewer states than time-points, as several similar successive measurements
will be accounted for by the same state by making use of its self-transition. It is important to
point out that our approach is not limited to such models but rather accommodates arbitrary
HMM topologies.

We deal with missing values in the following way. Each state of an HMM can either emit
a real-valued variate according to its Gaussian state emission pdf or, with a low probability
equal to the proportion of missing values in all the time-courses, a special missing symbol.

Learning Mixtures

We combine � of such HMMs �
�G�&%&%&%'�

��� to a probability density function (pdf) for a gene
expression time-course by use of a convex combination of the � component probability
density functions induced by the HMMs, denoted ���E8�� � �	�G; . The mixture pdf is parameterized
by

� 8�� �G�&% %&% � ��� � 8� �G�&%&%&%G� �� ; ; and defined as

� 8�� !
 ; 1 � ��

���
� ������,8�� � �	�G; %

As the former is just a usual mixture [8, 9], the well-known theory applies. The resulting
likelihood function can be optimized with the EM-algorithm [2, 3, 4, 21].

We additionally propose to use labeled data by extending the EM algorithm to gain from
prior knowledge. We show that there is a large improvement in convergence to good local
optima on typical data, even if only small amounts of labeled data are supplied.

5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Lo
gR

at
io

Timepoints

"G2-M"

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Lo
gR

at
io

Timepoints

"Phase1"

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Lo
gR

at
io

Timepoints

"Phase2"

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Lo
gR

at
io

Timepoints

"Phase3"

Figure 3: A group obtained by computing a mixture model using nine labeled and 2263 un-
labeled time-courses from the Whitfield data set (top left). It contains five of the labeled time
courses. The group was decomposed, using the Viterbi decomposition, into three subgroups,
corresponding to synchronous genes, resulting in a first subgroup containing mainly G2 genes
(bottom left, phase 1), the second having G2 as well as G2/M genes (top right, phase 2) and
the third having mostly G2/M genes (bottom right, phase 3).

To apply the EM-algorithm one assumes the existence of unobservable (or hidden) dataD � ��� � � , which indicates which component has produced each � �
in the set of time-courses�

. Thus, we can formulate a complete-data log-likelihood function ���	��
38
 ! � �@D ; .
If we are given additional labeled time-courses, we do not have to guess the corresponding� � . We denote the set of labeled time-courses with

��
and the set of unlabeled ones with

���
.

For a time-course � � from
���

we set the value of
� � to its component label � � and maintain

this assignment throughout the running time by setting � � � � ! � � -�� �
for � � � � and zero else.

The

are the estimates for the maximum likelihood in the
�
-th iteration), which splits into

two sums, � 8�
 �

; 1 � �

��������� ������� ! � �� � 8"� � ! �� � ;$# �
% ���&�'�)(% �

���
� �����38��� ���E8"� � ! �	�G; ;*� � � !

 � � � -/�
and for which the usual local convergence result holds.

Inferring Groups

The simplest way of inferring groups in the data, is to interpret the mixture components as
clusters and assign each time-course to the cluster which maximizes the probability of the
cluster given the time-course � , � � � � ! � -

. However, a mixture encodes much more infor-
mation. Inspection of the discrete distribution +�8"� ; 1 �5� � � � � ! � -:� �-, � , � reveals the level of
ambiguity in making the assignment, which can be quantified easily and sensibly by comput-
ing the entropy . 8"+ 8/� ; ; . Choosing a threshold on the entropy yields a grouping of the data

6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

Lo
gR

at
io

Timepoints

"G1-S"

Figure 4: Another group containing cell cycle related genes obtained by computing a mixture
model using nine labeled and 2263 unlabeled time-courses from the Whitfield dataset. This
group contains only genes belonging to phases G1/S and S, four of which were labeled input.

into � � �
groups, one group containing all profiles showing no significant membership to

one of the components.
Groups will typically contain time-courses having the same qualitative behavior. The time

at which, for example, an up-regulation occurs will often vary. Synchronous subgroups of
such clusters are found with the Viterbi-decomposition introduced in [15].

2.2 Results

Biological data

We used published data from a time-course experiment [20], in which the authors measured
genome wide gene expression of synchronized HeLa (cervical cancer cells) cells. Goal of
the experiment was the detection of genes regulating cell cycle. One cycle can be divided
into five phases each of which representing a section of life of a eukaryotic cell between two
typical events such as mitosis or division. Genes, which are involved in the regulation of the
cell cycle, are further classified according to their regulation levels in different phases. The
data was pre-processed by extracting all those genes with an absolute fold change of at least
two in at least one time point. This resulted in a data set containing 2272 expression time
courses.

The method was run using a collection of 35 random linear 24-state models. We used five
G2/M phase genes described above as a seed for one cluster and four genes of the G1/S phase
for a second one. We inferred two groups containing the labeled time-courses of size 91
and 14 respectively, see Figs. 3, 4. We computed a Viterbi-decomposition of the larger group
thus finding three subgroups, one containing only G2/M, the second containing G2/M and G2
genes and the third containing only G2 genes. The second cluster, see Fig. 4, contained twelve
G1/S and two S-phase genes. All time-courses that are assigned to the different phases of our
G2, G2/M phase cluster are known to be cell cycle regulated in their respective phase [20].
The same holds for the G1/S, S phase cluster. Thus, the modest amount of prior information
used resulted in highly specific (sub-)groups of synchronously expressed genes.

7

C1 C2 C3 C4 C5 C6

SIM

M1

M2

M3

M4

M5

M6

Figure 5: Artificial data allows easy comparison: Cluster assignment of time-courses in SIM:
The first column shows class C1-C6 from the simulated data set SIM as colored blocks, the
second to the seventh column shows the cluster assignments obtained by methods M1-M6
(see Table 1 for method descriptions). The class C1 correspond to up-regulated genes, C2 to
noise, C3 to down-regulated genes and C4-C6 are cyclic genes (see [16] for details).

Simulated Data

To facilitate benchmarking and evaluation we tried to design a method for creating simulated
data sets, which makes very mild assumptions about the nature of the data but reflects the
realities of microarray experiments. Our proposed approach is independent from the under-
lying assumptions and peculiarities of the statistical model in our method, as it is independent
from the assumptions in other methods.

As shown in Table. 1, two of the more involved methods, Caged [13] and the Spline
based clustering by Bar-Joseph et al. [1] only reach a specificity of less than 50%. The main
error made by Caged in deciding on too few clusters (this cannot be controlled by the user)
which leads to merging of several classes (C1 and C2 respectively C3-C6, cf. Fig. 5) into
one cluster. The HMM mixture perform quite well, achieving a high degree of over 90%
specificity and over 75% sensitivity. The tests also show very clearly the impressive effect of
partially supervised learning. It suffices to have labels for thirty, or less than one percent of
all time-courses (cf. M5 in Table. 1), to obtain a specificity and sensitivity exceeding 95%.
More labels do not yield further significant improvements.

3 Further applications

The GHMM is in use in a wide range of research, thesis and industrial projects. The fields
include computational finance (liquidity analysis), physiology (analysis of EEG data), com-
putational linguistics and astronomy (classifying stars). Projects in our group mostly address
problems from molecular biology, for example finding genes, assigning function to proteins,
and discovering hierarchical groups in protein space.

In the following we will briefly introduce two projects currently under research, which
are typical in the sense that they would not have been started without the library supplying
most of the necessary functionality.

8

Table 1: Results on the simulated data set SIM for � -means clustering, CAGED [13],
Splines [1], and HMM Mixtures with no, 0.9% (five per class) and 1.7% (ten per class)
labeled time-courses per class. By comparing the known classes in SIM with the computed
clustering for all pairs of time-courses we computed true and false positives as well as true
and false negatives, abbreviated � �

, � �
, �

?
and �

?
. True positive is defined as a pair

of time-courses with equal class which are assigned to the same cluster. To quantify the
performance we computed the standard sensitivity,

�����
�����

�
���
	 , and specificity,

�
���
�����

�
����� .

Method Description Specificity Sensitivity
M1 -means, Euclidean distance 85.55% 71.87%
M2 CAGED 41.00% 99.70%
M3 Splines 47.29% 39.38%
M4 HMM Mixtures 93.00% 79.14%
M5 HMM Mixtures, 0.9% labeled time-courses 96.40% 96.90%
M6 HMM Mixtures, 1.7% labeled time-courses 96.60% 96.99%

Figure 6: The method is implemented in a GUI-application written in Python using the highly
portable Tk widget set. The mixture estimation is also written in Python, as the function
calling overhead is negligble and all computationally intense work is handled by the GHMM
respectively by the Numeric package for Python.

9

Figure 7: Mating behavior of Drosophila male and female. From a recording of a pair of
fruit flies, we can create a training set that contains the annotation of observed behavior as
well as mating songs. A male Drosophila is slightly smaller than female one and thus allows
a possible semi-unsupervised system of the annotation of the dancing pair by using HMM
trained from the manually annotated segments.

3.1 Mating dances of Drosophila

One of the fascinating facts about Drosophila (fruit fly) is that they dance in pairs. Their
inherited dances specifically serve as a selection criterion during courtship. To study the mat-
ing behavior and understand phenotypic effects of genetic mutations Drosophila biologists
collect the data 1 by observing a pair of male and female flies over a period of time and an-
notating their actions with a controlled vocabulary. The manually transcribed poses for wild
types and fly mutants form a language of unknown structure. HMMs will be used to detect
motifs in the dances and build models for wild types and mutants, predicting mating.

A second, later objective is to replace the manual annotation by an automated procedure.
When the recording environment can be constrained to one static camera and a planar view,
we can design a semi-supervised system to perform annotation of dances directly. We can
then model a sequence of video frames, instead of the annotated dance steps, or dancing poses
as an observation sequence produced by an HMM.

3.2 Gene Expression and Chromosomal Proximity

Finding genetic causes for such serious and prevalent diseases as cancer is a very important
and very difficult task. Usually, there will not be a single locus variation causing the disease
but rather a combination of factors. One of the factors are chromosomal aberrations which do
change the levels of expression of genes in close positional proximity on the chromosome.
The problem is to identify groups of genes from contiguous regions which exhibit the same,
possibly weak difference in expression when one compares cells from healthy and diseased
samples. Using the positional information in addition to the differential expression should
yield superior results.

An HMM with states for same, higher and lower levels of expression when comparing
healthy and in diseased tissues is an effective model for the sequence (with respect to position)
of observations. The positional effect can be explicitly modeled by using a non-homogeneous

1Principal investigator is Benjamin Arthur at the ETH.

10

Markov chain. The probability of seeing a higher level of expression in gene = � �
, given that

gene = shows a higher level should decrease with the distance between genes = and = ���
on

the chromosome. This extension to standard HMMs is already part of the GHMM and this
application is the focus of a research project at our institute 2.

4 Software

At the core of the GHMM, see Fig. 9 is the GHMM C-library which provides efficient imple-
mentations of many HMM variants and their relevant algorithms:

� Observations: Discrete, continuous, vector valued, ”silent” emissions, observations
conditioned on previous observations (higher-order states)

� Observation densities: Discrete, uni-variate Normal, truncated uni-variate Normals,
mixture of (truncated) uni-variates Normals, multi-variate Normals

� Markov chain: Discrete state space, time-homogeneous, time-inhomogeneous (dis-
crete classes)

� Training: Expectation-Maximization, Gradient Descent, discriminative learning

� Probabilities: Likelihoods, many marginals

� Decoding: Viterbi, 1-best, posterior

Wrappers — pieces of code which allow easy, native access to C-libraries from Python,
C++ and R — provide one possible interface. This allows to develop applications using the
GHMM, such as the GQL, in either language. Moreover, the Python and R wrappers allow
interactive use of the GHMM from the command line. The HMMEd editor adds a powerful
graphical user interface for the design and modification of HMMs. The different layers are
linked by our HMMXML, implementing XML input and output as an ubiquitous format for
both models and sequences.

Our design choice assumes a novel type of computational scientist as the user of our soft-
ware, the “scripter”. In statistics and numerical analysis software packages such as S, R, and

2Principal investigator is Stefan Röpcke at the Max Planck Institute for Molecular Genetics

A
B

C
Chromosome

Genes

Figure 8: We compare the levels of gene expression for complete chromosomes in healthy
and in diseased tissues. The position of the genes on the chromosome are known. If chromo-
somal aberrations are causing disease, then one would expect a higher chance of observing
differences in expressions if the genes are close. For example, genes � and � should exhibit
a positional effect, whereas � and � can be treated as independent.

11

Figure 9: The GHMM core library is written in C. We provide wrappers to use it from C++,
Python and R. Additional packages use and extend GHMM through provision of graphical
user interfaces and additional computational capabilities.

Matlab respectively have become widely popular for ease of use and the little loss of computa-
tional efficiency when one compares a script (a short program of high-level commands) with
an all-out Fortran or C implementation for the same computational problem. The GHMM
follows this models and thus combines full flexibility (everything is programmable) with ef-
ficiency (everything computationally expensive is coded in C) without locking out potential
users, as it is often the case with problem-specific GUI applications 3. Some of the train-
ing algorithms are implemented using threads to use micro-parallelism on multi-processor
shared memory computers. In applications such as GQL, a Python interface to the standard
MPI (Message Passing Interface) library allows the use of distributed computing resources
from user code.

4.1 Supporting Teaching

There are two target audiences of learners which we try to address with the GHMM used as a
teaching tool. First, students (and scientists) from the application side of things who are inter-
ested in building custom applications for their particular statistical modeling or data analysis
problem. They are able to use the GHMM from an interactive, high-level language aided by
the graphical user interface for editing models. The following real example reads an HMM
build for searching for a particular transcription factor binding site, the nucleotide sequence
of Human chromosome 16 and through computation of the Viterbi path finds putative binding
sites.

>>> m = HMMOpen("trans-fac-13-hmm.xml")
>>> s = FastaOpen("human-chr16.fa")
>>> v = m.viterbi(s)
>>> print "There are %d transcription factor binding sites" % hits(v)

3Point in case: the GHMM was originally started because HMM software used for speech recognition
implemented all the necessary algorithms, but not in an accessible form; licensing was another issue.

12

Figure 10: The HMM editor HMMEd allows graphical design and editing.

It has been our experience that post-Bachelor students were able to implement a simplified
variant of our method for analyzing gene expression time-courses, cf. Sec. 2, within one day
of a week-long full-day course.

The second group we target are tool developers: students who need to acquire an in-
depth understanding of the underlying mathematics to implement variants or extensions of
the core algorithms. On one hand they benefit from the interactive access outlined above
during learning, development and testing. On the other hand, we supply semi-automatically
generated animations of algorithms which provide visual feedback, see Fig. 11.

5 Summary

The GHMM library provides an essential contribution to scientific computing for a widely
applicable class of statistical models, namely Hidden Markov Models. Our design and license
choices allow effective use from many languages and for different roles of users: the data-
analyst, the scripter and the application developer. Driven by the novel approach of modeling
biological time-course data with a mixture of HMMs we leveraged our implementational
effort into a much more usable end result, with a wider range of applications and a larger,
more diverse user base.

Acknowledgments

The GHMM library has been originally conceived at the Zentrum für angewandte Informatik (ZAIK)
at the University of Cologne. Thanks to Bernhard Knab, Bernd Wichern, Barthel Steckemetz for
the original implementation (not publicly available), Achim Gädke, Peter Pipenbacher and Disa Tho-
rarinsdottir for a lot of help with the creation of the first public release. Many thanks to Ivan G. Costa
Filho for maintaining the GQL. Thanks to students from FU Berlin and University of Cologne who
used the GHMM in their practical software courses (“Softwarepraktika”) in other classes and for their
thesis research and all our users for encouragement, bug reports, and code contributions.

13

1

2

3

1 1 1

2 22

3 33

t t t t0 1 = 2 = 3==

Figure 11: Visualization of the Viterbi algorithm for the best alignment of the observation
sequence to the HMM. Based on our graph algorithm animation framework Gato [17], we
animate the Viterbi algorithm as the shortest path problem in a weighted graph without cycle
and non-negative edge weights.

References

[1] Z. Bar-Joseph, G. Gerber, D. K. Gifford, and T. S. Jaakkola. A new approach to analyzing gene
expression time series data. 6th Annual Int. Conf. on Research in Comp. Molecular Biology,
2002.

[2] J. A. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estimation
for Gaussian mixture and hidden Markov models. Technical Report TR-97-021, International
Computer Science Institute, Berkeley, CA, 1998.

[3] R.A. Boyles. On the convergence of the EM algorithm. JRSS B, pages 47–50, 1983.

[4] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. JRSSB, 39:1–38, 1977.

[5] M.B. Eisen, P.T. Spellman, P.O Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns. Proc Natl Acad Sci U S A., 95:14863–8, 1998.

[6] A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein,
and P.O. Brown. Genomic expression programs in the response of yeast cells to environmental
changes. Mol Biol Cell., 11:4241–57, 2000.

[7] David Kulp, David Haussler, Martin G. Reese, and Frank H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. In David J. States, Pamkaj Agarwal,
Terry Gaasterland, Lawrence Hunter, and Randall Smith, editors, Proceedings of the Fourth
International Conference on Intelligent Systems for Molecular Biology, pages 134–142, Menlo
Park, June12–15 1996. AAAI Press. ISBN 1-57735-002-2.

[8] G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in Probability and Statistics.
Wiley, New York, 2000.

[9] G.J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to Clustering.
Marcel Dekker, Inc., New York, Basel, 1988.

14

[10] C. Nilubol, Q. H. Pham, R. M. Mersereau, and M. J. T. Smith. Translational and rotational in-
variant hidden markov models for automatic target recognition. In Proc. Of the SPIE Conference
on Signal Processing, Sensor Fusion, and Target Recognition VI, 1998.

[11] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–285, February 1989.

[12] M. F. Ramoni, P. Sebastiani, and P. R. Cohen. Bayesian clustering by dynamics. Mach. Learn.,
47(1):91–121, April 2002.

[13] M. F. Ramoni, P. Sebastiani, and I. S. Kohane. Cluster analysis of gene expression dynamics.
Proc Natl Acad Sci U S A, 99(14):9121–9126, Jul 2002.

[14] S. A. Rifkin and J. Kim. Geometry of gene expression dynamics. Bioinformatics, 18(9):1176–
83, Sep 2002.

[15] A. Schliep, A. Schönhuth, and C. Steinhoff. Using Hidden Markov Models to analyze gene
expression time course data. Bioinformatics, 19 Suppl 1:I255–I263, Jul 2003.

[16] A. Schliep, C. Steinhoff, and A. Schönhuth. Using Hidden Markov Models to analyze gene
expression time course data. Bioinformatics, Jul 2004. Proceedings of the 12th International
Conference on Intelligent Systems for Molecular Biology. In print.

[17] Alexander Schliep and Winfried Hochstättler. Developing Gato and CATBox with Python:
Teaching graph al gorithms through visualization and experimentation. In Multimedia Tools
for Communicating Mathematics, pages 291–310. Springer-Verlag, Berlin, Heidelberg, 2002.

[18] Philip A. Schrodt. Pattern Recognition of International Crises using Hidden Markov Models.
In Diana Richards, editor, Non-linear Models and Methods in Political Science. University of
Michigan Press, Ann Arbor, MI, 1998.

[19] S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic determination
of genetic network architecture. Nat Genet., 22:281–5, 1999.

[20] M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C.
Matese, C. M. Perou, M. M. Hurt, P. O. Brown, and D. Botstein. Identification of genes peri-
odically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell, 13(6):
1977–2000, Jun 2002.

[21] C.F.J. Wu. On the convergence of the EM algorithm. Ann. Stat., pages 95–103, 1983.

[22] Tetsushi Yada and Makoto Hirosawa. Gene recognition in cyanobacterium genomic sequence
data using the hidden Markov model. In David J. States, Pamkaj Agarwal, Terry Gaasterland,
Lawrence Hunter, and Randall Smith, editors, Proceedings of the Fourth International Con-
ference on Intelligent Systems for Molecular Biology, pages 252–260, Menlo Park, June12–
15 1996. AAAI Press. ISBN 1-57735-002-2.

15

