
Analyzing Gene Expression Time-Courses
Alexander Schliep, Ivan G. Costa, Christine Steinhoff, and Alexander Schönhuth

Abstract—Measuring gene expression over time can provide important insights into basic cellular processes. Identifying groups of

genes with similar expression time-courses is a crucial first step in the analysis. As biologically relevant groups frequently overlap, due

to genes having several distinct roles in those cellular processes, this is a difficult problem for classical clustering methods. We use a

mixture model to circumvent this principal problem, with hidden Markov models (HMMs) as effective and flexible components. We

show that the ensuing estimation problem can be addressed with additional labeled data—partially supervised learning of

mixtures—through a modification of the Expectation-Maximization (EM) algorithm. Good starting points for the mixture estimation are

obtained through a modification to Bayesian model merging, which allows us to learn a collection of initial HMMs. We infer groups from

mixtures with a simple information-theoretic decoding heuristic, which quantifies the level of ambiguity in group assignment. The

effectiveness is shown with high-quality annotation data. As the HMMs we propose capture asynchronous behavior by design, the

groups we find are also asynchronous. Synchronous subgroups are obtained from a novel algorithm based on Viterbi paths. We show

the suitability of our HMM mixture approach on biological and simulated data and through the favorable comparison with previous

approaches. A software implementing the method is freely available under the GPL from http://ghmm.org/gql.

Index Terms—Mixture modeling, hidden Markov models, partially supervised learning, gene expression, time-course analysis.

�

1 INTRODUCTION

MICROARRAYS have changed the way science is done in
molecular biology greatly over the course of the last

15 years. In essence, a microarray experiment quantifies the
individual abundances of mRNA molecules specified a
priori in parallel. The reaction observed in the experiment is
the hybridization of targets, the mRNA molecules, to
prescribed probes, short oligonucleotides or cDNAs. If the
targets are the transcripts of genes, the outcome of an
experiment can measure genome-wide levels of gene
expression.

As a consequence of the high throughput of microarrays,
the levels of error and noise in the measurements are high
and methods used for the analysis have to reflect that.
Normalization of the data is a usual preprocessing step. It is
is still subject to debate and an overview of the issues can be
found in [1]. More importantly, the biology governing the
levels of gene expression we observe is highly complex and
still under investigation. Contributing factors and relevant
processes exist on many levels of the biological system
under investigation and its environment. Genes can be
involved in several pathways and have multiple functions
depending on specifics of the cell’s environment. Hence,
groups of genes defined according to similarity of function
or regulation of a gene are not disjoint in general.

We are concerned with microarray experiments which
measure levels of gene expression over time. This includes,
for example, changes in expression during the cell-cycle,

during development or in response to external factors.
Finding groups of genes going through the same transcrip-
tional program—having the same pattern of changes in
gene expression over time—is a routine approach for a first
analysis of such data. Often, clustering, or unsupervised
learning, methods are applied to normalized data to
identify groups of genes, to organize the data for further
manual analysis, and obtain hints about possible function or
regulation for groups containing well-studied genes.

1.1 Prior Work on Analyzing Expression
Time-Courses

Previous approaches, see [2] for a recent overview, fall
roughly into two classes, depending on whether they
assume the experiments at different time-points to be
independent or not. Methods in the first class neglect these
so called temporal dependencies. They define a distance
measure and group genes in a way that minimizes an
objective function based on the distances between expres-
sion time-courses. Examples are hierarchical [3], [4] and
k-means clustering [5] or singular value decomposition [6].
Note that, for those methods, permuting time points
arbitrarily does not change the result of the clustering.

Most methods in the second class are model-based.
Statistical models are used to represent clusters, and cluster
membership is decided based on maximizing the likelihood
of data points. Model-based clustering is more suitable for
time-series data [7] and its main advantage is that no
distance function between time-courses is required. Eu-
clidean distance, for example, overly emphasizes many
noncritical variances of signals—a delay or a slower
rate—and similar arguments can be made against other
distance functions. Methods used for analysis of expression
time-courses are based on cubic splines [8], autoregressive
curves [9], [10] or on multivariate Gaussians [11].

Another important criterion is whether the method
assumes cyclic time-courses. Methods which do so [12],

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 179

. A. Schliep, I.G. Costa, and C. Steinhoff are with the Max Planck Institute
for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
E-mail: {alexander.schliep, ivan.filho, christine.steinhoff}@molgen.mpg.de.

. A. Schönhuth is with the Center for Applied Computer Science, University
of Cologne, Weyertal 80, 50931 Cologne, Germany.
E-mail: schoenhuth@zpr.uni-koeln.de.

Manuscript received 6 Sept. 2004; revised 3 Dec. 2004; accepted 11 Mar.
2005; published online 31 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0135-0904.

1545-5963/05/$20.00 � 2005 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

cannot be used for differentiation or pathogen response
experiments. As it is difficult to separate cyclic and
noncyclic genes a priori, a method should be able to cope
equally well with temporal dependencies indicative of
cyclic behavior as well as gene expression time-courses
displaying nonperiodic behavior.

The general idea of combining complex statistical
models which can reflect temporal dependencies, in
particular, HMMs, in cluster ensembles or mixtures has
been applied to a number of other problem domains [13],
[14], [15], [16], [17], [18].

1.2 Partially-Supervised Learning

Unsupervised learning is not the most appropriate frame-
work for analyzing gene expression data for two reasons.
First, usually some relevant information about the genes we
want to group will be at our disposal. This might be the
function of some gene or the mechanism of regulation of
another. If we can trust this information, then we should
exploit it in the computation of the grouping, even if it only
indicates whether two genes should be members of the
same or of distinct groups. Second, many of the approaches
used in analyzing gene expression data rely on likelihood
maximization with some variant of the locally convergent
Expectation-Maximization (EM) algorithm. How additional
information—so-called labeled data—can help to alleviate
the ensuing estimation problems is an active area of
research.

The advantage of combining labeled and unlabeled data
was first discovered in the context of learning classifiers. In
fact, the decrease in classification error is exponential in the
proportion of labeled data [19]. Since then, a number of
approaches have been developed following the same
general idea; for an overview see [20]. Approaches range
from classifying text documents by constructing weighted
graphs [21], partitioning graphs by min-cuts controlled by
labeled examples [22], or inferring the (minimal) submani-
fold from labeled and unlabeled data and by using the
labeled samples for classification on it [23]. Cozman et al.
[24] studied how supervised mixtures get corrupted by
unlabeled examples, which can also be interpreted as
transductive learning, as introduced by Vapnik [25]. A more
recent work provides a framework for integrating labeled
data when learning hidden Markov random fields [26].

1.3 Method Overview

There are four major building blocks to our method: First,
we introduce a class of statistical models, hidden Markov
models, able to capture qualitative behavior of time-courses
while being robust to delays and rate changes. Second, we

select an initial collection of models, either manually by
experts, randomly, or automatically by using a determinis-
tic Bayesian top-down clustering approach. Third, we
estimate a finite mixture model using prior information in
a partially supervised setting. Fourth, we infer groups from
the mixture with the level of ambiguity, as measured by
Entropy, not exceeding a given threshold, and which are
synchronous in behavior, if so desired. We motivate and
support our methodological choices with simulations. In
subsequent sections, we demonstrate the suitability of our
method for the analysis of gene expression time-course data
on biological and simulated data, and close with a
discussion.

2 HMMS FOR GENE EXPRESSION TIME-COURSES

Hidden Markov models (HMMs), see [27] for an excellent
introduction, are a widely popular model class, particularly
in biological sequence analysis. Observations, a biological
sequence or a time-course of gene expression, are explained
by a sequence of internal, unobservable states of the
biological system under investigation. The simplifying
assumptions are that changes from one state to another
can be described by a Markov chain,1 and that an
observation depends only on the state of the system.

Gene expression levels are easily modeled with a
univariate Gaussian for each state. However, in the models
we propose, states do not have a specific semantic, contrary
to other applications [28]. The HMM topology we employ is
essentially a linear chain (following [29], [30], see Fig. 1),
except for the possible transition from the last to the first
state to accommodate cyclic behavior. The only valid
interpretation is that a state expresses the qualitative
assessment of gene expression level, reflecting contiguous
regions of a time-course with similar levels of expression.
We do not assume or require states to indicate specific steps
in the underlying regulatory mechanisms. Once more
regulatory pathways become available it will be an
interesting question to consider whether such an assign-
ment of semantics becomes possible.

Prototypical behavior of time-courses can be readily
encoded in simple models (see Fig. 1 for some examples).
Themodels are parameterized by a triple ðaii; �i; �iÞ per state
where aii is the self-transition probability of state i and
Nð�i; �iÞ is the univariate Gaussian of state i. The optional
transition from the last to the first state is parameterizedwith
an1. The models are capable of representing time-courses

180 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 1. Three hidden Markov models visualized as directed graphs. The emission pdfs are attached to the states numbered 1 to 3, transitions are

shown as directed edges. The models depicted are prototypes for constant (left), down (middle), and up-down-regulation (right).

1. We assume that the Markov chain is time-homogeneous, first order,
and has a finite state space.

which show the same prototypical behavior, such as up-
regulation in Fig. 2, occurring asynchronously, that is at
different time points or with different rates.

If we assume a different state per time-point in the
observation—note that this implies aii ¼ 0 for all i—then
the linear model is equivalent to a multivariate Gaussian
with mean vector ð�1; . . . ; �T Þ and covariance matrix
diagð�1; . . . ; �T Þ, where T denotes the number of time-
points. Typically, the number of states will be substantially
smaller than the number of time-points and a simple
interpretation of the models in terms of multivariate
Gaussians becomes impossible; which state of the HMM
explains which time-points is decided individually per time-
course, so no global covariance structure can exist. In
particular, several similar successive measurements will be
accounted for by the same state.

Simple as the linear models are, they allow us to capture
a wide range of behaviors. It is important to point out that
our approach is not limited to such models but rather
accommodates arbitrary HMM topologies. As many of the
successful applications in time-course modeling [7], [18]
show, more complex models, capturing more of the
“grammar” observable in the time-courses, which in the
case of gene expression is imposed by the regulatory
mechanisms, should improve the quality of the results
greatly. Also, one can use different emission distributions
per state such as the Gamma distribution or finite mixtures
of Gaussians.

Missing data is handled in a straightforward manner. A
unique symbol is used to represent a missing observation
and every state can either emit this symbol with a fixed
probability—the proportion of missing observations—or a
value distributed according to its Gaussian. We assume that
missing data occurs uniformly over time and over the
possible models. Note that we do not attempt to estimate or
interpolate gene expression levels when they are missing,
an undertaking which, given the sparseness of sampling
along the time axis, would require, in our opinion, a large
degree of optimism. To ensure that all the states are used to
account for a time-course, we append a dedicated end-
symbol to every time-course, and add a terminal state, not
shown in Fig. 1, which solely emits the end-symbol, to each
model. This is a routine technique for HMMs.

3 INITIAL MODEL COLLECTION

Estimating mixtures is similar to many clustering problems
in the sense that the function we strive to optimize has
many local optima. A lack of “nice” mathematical proper-
ties, such as convexity, precludes us from finding a global
maximum easily, and the standard algorithms, such as the
EM-algorithm, are only guaranteed to arrive at a local
maximum. Hence, the choice of a starting point becomes
crucial, more so because the high dimension of the
parameter space describing our models precludes us from
performing, say, a grid search for identifying a good
starting point. In the following, we introduce three ways
of choosing a starting point for the mixture estimation. That
is, three ways of choosing for a fixed, given k, an initial
collection of k HMMs.

3.1 Expert Selection

By using a graphical tool [31], we can verify or falsify the
presence of genes exhibiting prototypical behaviors, exam-
ples were shown in Section 2, in expression time-courses. If
only particular prototypes are of interest, we use corre-
sponding hand-crafted models as the initial model collec-
tion. Alternatively, we can create an exhaustive—constant,
up, down, up-down-regulation etc.—collection of models
encoding all prototypical behaviors. The result of the
mixture estimation will quantify the proportion of time-
courses adhering to specific prototypes through the mixture
weights. In the first case, we can gain some insight as to
whether our list of prototypes is a sufficient explanation of
the whole data set through a careful analysis of the resulting
mixture.

3.2 Randomized Models

We propose randomized initial model collections as
follows. Pick a number of states N and create k different
N-state models with identical Gaussian emissions centered
around zero. Perform Baum-Welch training until conver-
gence with each of the k models. The gene expression time-
courses are weighted with random, uniform in ½0; 1�,
weights per model. The resulting randomized model
collection (RMC) will explain random subpopulations of
the data. In our experience (experiments not shown), the
proposed algorithm leads to more reasonable starting
points compared to randomizing the mixture parameters

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 181

Fig. 2. Capturing asynchronicity: We show how the same model (left) can account for the same qualitative behavior—an up-regulation of gene

expression—occurring at different time-points (right). Gene #1 is already up-regulated at the second time-point whereas gene #2 is up-regulated at

time-point 3. The corresponding state sequences in the same model are 1; 2; 2; 2 and 1; 1; 2; 2 for the two genes, respectively.

(cf. Section 4) directly or training k models on a random

k-partition of the data.

3.3 Learning Initial Models

The question remains, whether one can propose a more

appropriate initial model collection ab initio in a determi-

nistic fashion. Analogous to [13], we first restate the

problem by replacing a mixture of k distinct linear HMMs

by one larger HMM consisting of a dedicated starting state

from which k individual models branch off, so that we can

consider learning one HMM instead. Ab initio inference of

HMM topology is a challenge, which has been solved only

in special cases, through the integration of extensive priors

[32], [33], [34] or with extensive computation.
We adapt the Bayesian model-merging algorithm [33] to

continuous emissions and linear HMMs. Model-merging

starts with the topologically unconstrained maximum like-

lihood model for a number of sequences, and successively

merges states—a merge is known as identification of

vertices in graph theory—until a (local) maximization of

the posterior is reached. The choice of prior is prudent since

it determines when the merging procedure terminates. For

large amounts of data, the procedure becomes computa-

tionally infeasible as all pairs of states have be to evaluated

as merge candidates based on the likelihood of the resulting

model.
In our setting, we only consider a simpler problem, as we

take advantage of the linear topology of our HMM and

further heuristics. We start with a topologically uncon-

strained maximum likelihood model (see Fig. 3) which has

one linear path of states, or branch, per gene-expression

time-course, and one state per time-point in each branch.

The merging procedure consists of two steps. First, we

merge states within the branches. We identify per branch

successive states whose merging decreases the likelihood the

least. As we assume that variances are equal for all states,

they only have a scaling effect and we can neglect them in

the following. Hence, we only have to identify those

successive states whose means are closest. This “horizontal”

merging is performed until we arrive at the desired number

of states, typical values range from a third to half the

number of time-points.
Second, we merge the shrunken branches such that the

loss of likelihood is minimal in each merging step with

hierarchical clustering. The distance between two models �i

and �j is computed with a modification of the probabilistic

distance function [35],

Dð�i; �jÞ :¼
1

T
log

P½Oij�i�
P½Oij�j�

;

where Oi is a random sequence of length T generated by �i.

Computation of this distance function requires the genera-

tion of one (or several) sequences and the computation of

likelihoods.
Due to the linear topology, we can compute the distance

function directly from the parameters, if we make the

additional assumption that the generating state path is

independent of the actual emissions. We then can approx-

imate the likelihood along the state path we obtain when we

stay the expected duration as determined by the self

transition probability in each state. We approximate the

distance, neglecting the scaling term, as

�DDð�i; �jÞ :¼ �DD�ð�i; �jÞ þ �DDað�i; �jÞ;

where we define

�DD�ð�i; �jÞ :¼
XN
k¼1

log
P½�ðiÞ

k j state k in �i�diðkÞ

P½�ðiÞ
k j state k in �j�diðkÞ

 !
;

and

�DDað�i; �jÞ :¼
XN
k¼1

log
ðaðiÞkk Þ

diðkÞ�1ð1� a
ðiÞ
kk Þ

ðaðjÞkk Þ
diðkÞ�1ð1� a

ðjÞ
kk Þ

 !
;

N denotes the number of states and diðkÞ ¼ a
ðiÞ
kk=ð1� a

ðiÞ
kk Þ is

the expected duration of state k in model i. As model �i may

be the result of previous merges and the decrease of

likelihood due to a merge is proportional to the number of

time-courses that are affected, we introduce the factor Ni,

which is the number of time-courses which have been

merged into model �i. Note that �DD�ð�i; �jÞ accounts for

distance due to differences in emissions and �DDað�i; �jÞ
measures distance due to differences in transition prob-

abilities. We can thus introduce a weighted variant of
�DDð�i; �jÞ, �DD ¼ Ni

�DD� þ wsync
�DDa

� �
. This provides a means of

driving models toward more synchronicity as differences in

transition probabilities get punished more heavily when

increasing wsync. Note that D� turns out to be the sum of

squares of differences of means, weighted by the expecta-

tions diðkÞ. We use the symmetrized version �DDsymð�i; �jÞ ¼
1
2

�DDð�i; �jÞ þ �DDð�j; �iÞ
� �

in order to identify the pair of

models whose merge results in the minimal loss of

likelihood in each step. The merge, �m denotes the model

obtained from merging �i and �j, is performed by merging

corresponding states and computing weighted averages for

emissions and durations:

�
ðmÞ
k ¼ Ni � diðkÞ�ðiÞ

k þNj � djðkÞ�ðjÞ
k

Ni � djðkÞ þNj � djðkÞ
;

and

dmðkÞ ¼
Ni � diðkÞ þNj � djðkÞ

Ni þNj
:

Merging continues until the desired number of models has

been reached. Combining the parts yields the following

algorithm.

182 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 3. We show the topologically unconstrained maximum likelihood
model with respect to the set of sequences fO1; O2; . . . ; OKg of length T .
The means of the emission probability distributions are the values of
corresponding time points. The variances are set to a fixed constant
value.

Algorithm Bayesian Model Collection (BMC)

Input: A set of gene expression time-courses fO1; . . . ; OKg
of length T , a desired number of models K0 and a desired

number of hidden states N0.

1. For each Oi define a linear model �i with a
ðiÞ
kk ¼ 0 and

�
ðiÞ
k ¼ Oi

k. Let N
� ¼ T and K� ¼ K.

2. While N� > N0 do horizontal merging within each

model �i

(a) Choose

k� ¼ argmin
k2f1;...;N��1g

j�ðiÞ
k � �

ðiÞ
kþ1j:

(b) Merge states k� and k� þ 1 into a new state m for

which

�ðiÞ
m ¼

diðk�Þ�ðiÞ
k� þ diðk� þ 1Þ�ðiÞ

k�þ1

diðk�Þ þ diðk� þ 1Þ

and diðmÞ ¼ diðk�Þ þ diðk� þ 1Þ. Decrease N� by

one.

3. While K� > K0 do vertical merging

(a) Choose

ðk�; l�Þ ¼ argmin
ðk;lÞ;k6¼l

�DDsymmðMk;MlÞ;

where ðk; lÞ 2 f1; . . . ; K�g � f1; . . . ; K�g.
(b) Merge the corresponding models as defined above.

Decrease K� by one.

Output: A set of K0 initial models

4 A MIXTURE oF HMMS

Even neglecting the high experimental error rates, biology
gives us no reason to believe that genes can be assigned
unambiguously to nonoverlapping groups of unique func-
tional category due to the high complexity of interacting
networks and thevarious, context-specific functions of genes.
Mixture estimation—a nonstatistical analogue is fuzzy
clustering [36]—circumvents this dilemma, which will lead
most clusteringmethods astray.We combineK linearHMMs
�1; . . . ; �K to one probability density function (pdf) for a gene
expression time-course by use of a convex combination of the
K component probability density functions induced by the
HMMs, denoted pjð�; �jÞ. The mixture pdf is parameterized
by � ¼ �1; . . . ; �K; ð�1; . . . ; �KÞð Þ and defined as pð�j�Þ :¼PK

j¼1 �jpjð�; �jÞ.Note, thenonnegative�j sumtounity. This is
just a usual mixture model [37], [38] and the resulting
likelihood function can be optimized with the EM-algorithm
[32], [39], [40], [41] to compute maximum-likelihood esti-
mates for �, or learning the mixture.

4.1 Partially Supervised Learning

The EM-algorithm we use to learn mixtures is only
guaranteed to converge to a local maximum of the
likelihood function. This often results in estimates far away
from the globally optimal mixture. While this problem is
more pronounced in high-dimensional spaces or for small

data sets, it also persists in the simplest settings due to
identifiability problems [42]. Good initial model collections
(Section 3) can alleviate the problem somewhat. A more
general idea for improving performance is introduced in the
following.

Analogous to [43], we propose partially supervised learning
as an extension to the EM-algorithm. The training can
benefit from prior knowledge about genes, for example,
when it is known that they are regulated by the same
regulatory pathway. The payoff of even very small
quantities, one percent or less, of labels is already large.
The robustness of the estimation process with respect to
noise increases as well as the quality of the local optimum to
which the mixture likelihood converges. In the following,
we will argue why the modified EM-algorithm still
converges in the case of partially supervised learning.

To apply the EM-algorithm, one assumes the existence of
unobservable (or hidden) data Y ¼ fyig, which indicates
which component has produced each Oi in the set of time-
courses O. Thus, we can formulate a complete-data log-
likelihood function logLð�jO; Y Þ.

If we are given labeled time-courses, we do not have to
guess the corresponding yi. While the labels do not reveal
the parameters of the mixture component, they do indicate
whether two labeled time-courses have been created by the
same or by distinct components. We denote the set of labeled
time-courses with OL and the set of unlabeled ones with
OU . For a time-course Oi from OL, we set the value of yi to
its component label li and maintain this assignment
throughout the running time by setting P½�jjOi� ¼ 1 for j ¼
li and zero else. This can be thought of as conditioning the
relevant distributions and the likelihood on the known
labels, yielding a Q-function (cf. [41]; the �t are the
estimates for the maximum likelihood in the t-th iteration),
which splits into two sums,

Qð�;�tÞ :¼
X

Oi2OL

log �lipliðOij�liÞ
� �

þ
X

Oi2OU

XK
j¼1

log �jpjðOij�jÞ
� �

P½jj�t; Oi�;

and for which the usual local convergence result holds.

4.2 Estimating the Number of Components

Estimation of the correct or optimal number of components
in a mixture is an unsolved problem. When we make use of
our prior beliefs in modeling, we can tackle this task in a
Bayesian framework, by comparing the competing mixture
models Mi with Bayes Factors. In other words, calculating
the ratio of posteriors without favoring one or the other a
priori; i.e., B12 ¼ P½OjM1�=P½OjM2�, where M1 and M2 are
two models with respective parameters �1 and �2. Then, it
is possible to compare several models at once, rather than
two by two as in frequentist statistical tests. When we use
the EM-algorithm to estimate maximum likelihood models,
approximate Bayes factors can be easily deduced from the
Bayesian information criterion (BIC) [44],�2 logP½OjMK ��
�2 logLðOj�K;MKÞ þfK logn, where K is the number of
components, LðOj�K; MKÞ is the maximized mixture log-
likelihood with K components, fK is the number of free
parameters in �K , and n is the number of sequences in O.

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 183

The right-hand term of the formula represents a factor
for penalizing more complex models, since the fit of a
model tends to improve as the number of parameters
increases. The smaller the value of BIC, the better the
model. It has been shown that BIC does not underestimate
the number of true components asymptotically and per-
forms well in simulation studies [38]. Each state of an HMM
is parameterized by the triple ðaii; �i; �iÞ, see Section 2. As a
result, the number of free parameters in a model �j is
f�j

¼ 3Nj, respectively, 3Nj þ 1 for models with loops from
last to first state, where Nj is the number of states in �j.
Hence, the number of free parameters in �K is defined as
fK ¼

PK
j¼1 ðf�j

þ 1Þ � 1.

5 INFERRING GROUPS

While the mixture encodes relevant information about the
data, groups are easier to handle and give a more
accessible starting point for further analysis. The simplest
way of decoding a mixture, that is, to infer groups in the
data, is to interpret the mixture components as descriptive
models of non-overlapping clusters and assign each time-
course O to the cluster j of maximal posterior P½�jjO�.
This is exactly the assignment step in model-based or
k-means clustering. However, a mixture encodes much
more information. Inspection of the discrete distribution
dðOÞ :¼ fP½�ijO�g1�i�K , the posterior of components given
a time-course, reveals the level of ambiguity in making
the assignment. This ambiguity can be quantified (see
Fig. 4) by computing the entropy HðdðOÞÞ, where HðpÞ :
¼ �

P
pi log

1
pi

is the usual Shannon entropy. Choosing a
threshold on the entropy yields a grouping of the data
into at most K þ 1 groups. If HðdðOÞÞ is below the chosen
threshold, we assign O to the component with maximal
posterior as above. Otherwise, O is assigned to the ðK þ
1Þst group, which contains all genes which cannot be
assigned unambiguously.

There is no simple way to choose an optimal threshold
on the entropy. However, an interactive graphical user
interface [31], displaying the time-courses and their assign-
ment to clusters when the user changes the threshold
provides one exploratory way to settle on a value. While a
threshold on the entropy clearly helps in identifying

unambiguous groups, we will demonstrate by use of gene
annotation information that the groups become more
biologically meaningful as the entropy threshold decreases.

5.1 Entropy Threshold and Specificity of Gene
Annotation

Gene Ontology (GO) describes genes in three distinct
categories [45]: cellular component, molecular function,
and biological process. Such an ontology has the form of a
directed acyclic graph (DAG), where the leaves are genes
and the internal nodes are terms (or annotations) describing
gene function, gene cellular localization, or the biological
processes genes take part in. Leaves near the root describe
very general processes, while nodes near the leaves describe
specific ones. One should expect that the more unambig-
uous a cluster is, the more specific information it contains.
Following this rationale, we evaluated the relationship
between ambiguity of gene clusters and the specificity (or
level) of GO annotations.

In order to find GO annotations related to a given group
of genes, one should look for annotation terms that are
overrepresented in this group. The probability that this
overrepresentation is not found by chance can be measured
with the use of a hype-geometric Fisher exact test [46]. Let n
be the total number of annotated genes in GO (reference
group), and m be the number of genes annotated with a
specific GO term. This will give us m positive genes and
n�m negative genes. If we draw k genes from the reference
group (or analogously obtain a cluster with k genes), we
obtain q positive genes and k� q negative genes, see Table 1
for a two-by-two contingency table representation of these
terms. We are interested in observing how unusually large
this value q is, given n, m, and k. This can be achieved by
computing a p-value defined by P½X � q�, where X is
defined by fP½x ¼ i�g1�i�k, and

P½x ¼ i� ¼
m
i

� �
n�m
k�i

� �
n
k

� � :

Because of the effects of multiple testing, a subsequent
correction of the p-values is necessary. For example, if we
have 1,000 GO terms, and a p-value of 0.1 is used, at least
100 false positives are expected. To correct this, we apply
the false positive discovery rate proposed in [47]. For

184 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 4. We depict a three component mixture model as a density plot for a two time-point gene expression time-course on the left. Darker colors

correspond to less dense regions. On the right, we depict the entropy of the corresponding points posterior distribution over components. Darker

colors correspond to lower entropy.

further details, see [48], where GOStat, the tool used in this
work, is described.

The calculation of the specificity (or level) of the
annotations from a set of genes is straightforward. Given
a cluster, we repeat the above test for each term in GO, and
retrieve the ones which do not exceed a given p-value. Then,
the length of the path from the root to each enriched term is
computed. Since GO is a DAG, one node can be reached by
more than one path from the root, so the average of all
possible path lengths is taken.

The results show that the level peaks at distinct thresh-
olds for each cluster (Fig. 8), suggesting that distinct
threshold should be used. This, however, does not prevent
us from use of the average specificity level for all clusters
from a given data set to quantify the overall behavior of the
GO level as a function of the threshold.

5.2 Viterbi Decomposition

Thegroupsweinferareasynchronousbydesign(cf.Section2).
If synchronous subgroups are required, they can be obtained
by use of the Viterbi decomposition. The sequence of HMM
states which generated each particular time-course may vary
within a group. The task now is to distinguish between
sequences whose generation procedure has been decisively
different and thus to infer subgroups of time-courses
following synchronous generation mechanisms.

This translates to finding the path through the hidden
states of the models most likely to have been used to
generate each sequence, the so called Viterbi paths. Our
approach is based on the assumption that there is one
hidden state that defines the characteristic pattern of the
time-courses assigned to each model. This is, according to
our experience, reasonable. Take, for example, a group of
cyclic time-courses. Sorting these according to the time at
which the first peak is reached usually produces subgroups
of time-courses with the same phase shift. Nonetheless, our
approach can easily be extended to check for more than one
state if needed.

Algorithm Viterbi decomposition

Input: An HMM � and a corresponding group of gene

expression time courses O¼fO1; . . .; OKgof length T .

1. For each i 2 f1; . . . ; Kg compute the Viterbi path

vi :¼ við1Þvið2Þ . . . viðT Þ 2 QT of time-course Oi, where

Q ¼ fq1; . . . ; qNg is the set of all hidden states of �.

2. For each q 2 Q partition the set O into a subgrouping

OðqÞ ¼ fOðqÞ1; . . . ; OðqÞjqg, such that for j 2 f1; . . . ; jqg

Ol;Om 2 OðqÞj :, T ðqÞl ¼ T ðqÞm ¼: T ðqÞj;

where T ðqÞl ¼ ft 2 f1; . . . ; Tg : vlðtÞ ¼ qg is the set of

time-points t, where gene Ol is in state q.

3. For each subgrouping OðqÞ compute a coefficient CðqÞ
assessing the quality of the subgrouping (see below).

4. Choose the hidden state q�, s.t.

q� ¼ argmax
q

CðqÞ:

5. Within the subgrouping Oðq�Þ iteratively join pairs of

subgroups of time-courses yielding the largest

increase of Cðq�Þ. Stop if no joining of two subgroups

results in an increase any more and return the
obtained subgrouping (comments see below).

In the following, we will elaborate on some details of the

Viterbi decomposition.

Step 3: The coefficient for the subgrouping OðqÞ can be

written asCðqÞ¼bðqÞ�aðqÞ; with bðqÞ¼1=Nb

P
k;l D

q
bðOk;OlÞ,

where ðk; lÞ ranges over all pairs of sequences ðOk;OlÞ such
thatOk andOl are contained in different subgroups,Nb is the

total number of such pairings and Dq
bðOk;OlÞ¼ 1

jTk;lj
P

t2Tk;l

ðOkðtÞ �OlðtÞÞ2, where Tk;l ¼ ft 2 f1; . . . ; Tg j ðvkðtÞ ¼ q ^
vlðtÞ 6¼ qÞ _ ðvkðtÞ 6¼ q ^ vlðtÞ ¼ qÞg (i.e., all time-points where

exactly one of the two genes is in state q) and analogously

aðiÞ ¼ 1=Na

P
k;l D

q
aðOk;OlÞ, where now ðk; lÞ ranges over all

tuples, which correspond to sequences Ok;Ol, which can be

found in the same subgroup (Na is the total number of such

pairings) andDq
aðOk;OlÞ ¼ 1

jTk;lj
P

t2Tk;l
ðOkðtÞ �OlðtÞÞ2, where

nowTk;l ¼ ft 2 f1; . . . ; Tg j ðvkðtÞ ¼ q ^ vlðtÞ ¼ qÞg.Note that

CðqÞ can be understood as a local silhouette coefficient.
Step 5: If two subgroupsOðqÞi;j :¼ OðqÞi [OðqÞj are joined

and T ðqÞi; T ðqÞj are the corresponding sets of time points

(obtained through the defining property of these subgroups,

see Step 2) then 8Ok 2 OðqÞi;j : T ðqÞk :¼ T ðqÞi [T ðqÞj, which

can be understood as an updating of Viterbi paths.
Step 5 can be seen as a hierarchical clustering procedure.

It is motivated through the fact that sometimes different

subgroups are essentially synchronous although their

Viterbi paths slightly differ even in regions where sig-

nificant changes occur. In Fig. 6, we show results of the

Viterbi decomposition on biological data.

6 EVALUATION

It is still open to debate what constitutes appropriate

evaluation of methods for gene expression time-course

analysis. Regulation is not well understood and the

annotation available is too sparse and too inconsistent to

support a large-scale evaluation. Hence, biological data

can only provide anecdotal evidence, as demonstrated by

prior work. We used HeLa cell-cycle and Yeast sporula-

tion data, and a fully annotated subset [11] of Yeast cell-

cycle data. Note, this data set contains only a small

percentage of the original genes and the selection criteria

is likely to introduce a bias. To test our method under

more controlled conditions and for benchmarking, we

resorted to artificial data. All data sets, links to software

and results are available in the supplementary material

(http://algorithmics.molgen.mpg.de/ExpAna/).

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 185

TABLE 1
Two-by-Two Contingency Table for Genes Annotated or Not

Annotated by a Given GO Term

6.1 Data

6.1.1 Yeast Cell Cycle (Y5)

This data set represents the expression levels of more than
6,000 genes during two cell cycles from Yeast measured in
17 time points [50]. Following [50], we used a subset, 5-phase
criterion, abbreviated Y5, of 384 genes visually identified to
peak at five distinct time points [50], each representing a
distinct phase of cell cycle (Early G1, Late G1, S, G2, and M).
All the genes in Y5 are annotated. The expression values of
each gene were standardized, which can enhance the
performance of model-based clustering methods, when the
original data consists of intensity levels [11].

6.1.2 Yeast Sporulation (YSPOR)

This data set [51] contains gene expression measurements
during sporulation for more than 6,400 genes of budding
yeast. The measurements were taken at seven time points
(0h, 0.5h, 2h, 5h, 7h, 9h, and 11h). Clones with more than
20 percent of values missing were excluded. The data was
preprocessed by extracting all those genes with an absolute
fold change of at least two in at least one time point. The
resulting data set contains 1,171 genes.

6.1.3 HeLa Cell Cycle (HeLa)

We used published data from a time-course experiment
[52], in which the authors measured genome wide gene
expression of synchronized HeLa cells. We used the raw
data from doubly thymidine experiment three as provided
by the authors in the supplementary information. In this
data set, HeLa cells, which have been arrested in S phase by
a double thymidine block, were measured every hour from
0 to 46 hours. For reasons of comparison, we excluded
clones with missing values from further analysis. The data
was also filtered by extracting all genes that do not show a
two-fold change as in YSPOR. This resulted in a data set
containing 2,272 expression time courses as logarithms of
ratios with respect to a control. Additionally, we used a list
of genes the regulation of which has been described in the
literature to depend on the cell cycle [52].

6.1.4 Simulated Data 1 (SIM1)

To create an unbiased benchmarking data set, we chose to
make only mild assumptions, independent from the under-
lying assumptions of our method and those we compare
against about the nature of the data, while still reflecting the
realities of microarray experiments. We assume three broad
categories of genes, cell-cycle regulated, noncell-cycle
regulated, and unregulated genes. We chose sine functions
as a “true” model for the first, linear functions for the
second and const ¼ 0 for the third category (see [30] for
details). Randomization is performed by changing phase,
frequency and amplitude, shifting all values and adding
Gaussian noise.

6.1.5 Simulated Data 2 (SIM2)

We selected eight HMMs encoding the possible three-
segment regulation behaviors (e.g., down-down-down, up-
down-down) and used a Monte-Carlo algorithm (variances
of emission probabilities were set to 0.2) to generate
100 time-courses from each of the eight HMMs.

6.2 Measure of Agreement

External indices are used to assess the degree of agreement
between two partitions, say, between a clustering U and
classes V obtained from independent category labels [53].
Among a number of existing indices, the use of corrected
Rand (CR) is suggested by [54].

Let U ¼ fu1; . . . ; ur; . . . ; uRg be the partition given by the
clustering solution, and V ¼ fv1; . . . ; vc; . . . ; vCg be the
partition defined by the a priori classification. The corrected
Rand is defined as

PR
i¼1

PC
j¼1

nij

2

� �
� n

2

� ��1PR
i¼1

ni?

2

� �PC
j¼1

n?j

2

� �
1
2 ½
PR

i¼1
ni?

2

� �
þ
PC

j¼1
n?j

2

� �
� � n

2

� ��1PR
i¼1

ni?

2

� �PC
j¼1

n?j

2

� � ;
where nij represents the number of objects in clusters ui and
vj, ni? indicates the number of objects in cluster ui, n?j

indicates the number of objects in cluster vj, and n is the
total number of objects. CR can take values in ½�1; 1�, where
the value 1 indicates a perfect agreement between the
partitions, whereas values below some � > 0 correspond to
cluster agreement found by chance (see [54] for simulation
studies).

We also use sensitivity, #TP
#TPþ#FN , and specificity,

#TP
#TPþ#FP , where, for a given U and V , TP denotes the

number of pairs of objects in the same cluster in U and same

class in V . The remaining three types of pairs are counted as

FP (same cluster, distinct class), TN (distinct cluster and

class) and FN (distinct cluster, same class). The main

distinction between CR and these two indices is the fact that

CR weighs both types of error (FP and FN) equally. As a

consequence, the use of sensitivity and specificity is

complementary to the use of CR.

6.3 Results on Biological Data

We used both randomized model collection (RMC) and
Bayesian model collection (BMC) to obtain starting points for
mixture estimation. In each model collection, we added a
designated noise-component, which is simply a one-state
model with Nð0; �Þ-emissions for a large value of �,
exempted from training. This mixture component accounts
for time-courses which do not fit any of the other
components and, thus, avoids unnecessary “broadening”
of the other components. We used BIC in order to select the
number of components. We repeated the experiments
30 times for varying numbers of k and used BIC to choose
a best k. Best performance is shown.

6.3.1 HeLa

Cell cycle regulators as, for example, different cyclins, E2F,
PCNA and HDAC3 are known to be active in different
stages in the cell cycle. Furthermore, they regulate each
other, either directly (e.g., E2F1 acting on CyclinD) or
indirectly (E2F1 regulates p27 and vice versa via CDK2-
CyclinA). Thus, one expects to find these patterns of
regulatory activity in the underlying gene expression data
set. CyclinB and CyclinA both act while being bound to
CDC2 during the transition from G2 to M Phase. They are
coordinately regulated and there is a clear phase shift
compared to E2F1, which is active in the transition from
G1 phase to S phase. CyclinF is known to have a sequence
similar to CyclinA and B, but its function is largely

186 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

unknown [55]. It is apparently regulated synchronously to
CyclinA and B [30]. On the other hand, E2F1 regulates p27
which is demonstrated by a clear phase shift in the time-
courses. PCNA is also needed for the initiation of S phase
and is regulated clearly in G1/S phase. HDAC3 which is
needed to permit access to the DNA and, thus, allow
transcriptional regulation is expressed during G1/S transi-
tion as well.

The initial collection consisted of 35 24-state models
obtained from RMC. We used the five G2/M phase genes
described above as labels for one cluster and four genes of
the G1/S phase for a second one. Decoding the mixture
resulted in two groups containing the labeled time-courses
of size 91 and 14, respectively (Fig. 7). We computed a
Viterbi-decomposition of the larger group. The first sub-
group contained 26 genes known to be G2 and one G2/M,
the second 11 G2 and 19 G2/M, the third 31 G2/M, two M/
G1 and 1 G1/S. The second group (not shown) contained
twelve G1/S and two S-phase genes. Both CDC2 represen-
tatives are found in the same subgroup (Fig. 7, phase 1).
Furthermore, cyclin A (Fig. 7, phase 2) and cyclin B (Fig. 7,
phase 3) are assigned to different subgroups, shifted in
phase with respect to the one containing CDC2. Moreover,

all time-courses that are assigned to the different phases of
our G2, G2/M phase cluster are known to be cell cycle
regulated in their respective phase [52]. The same holds for
the G1/S, S phase subgroups. Apparently, the modest
amount of prior information helped find highly specific
groups of synchronously expressed genes.

6.3.2 Specificity of Gene Annotation

We only used the complete biological data sets (HeLa and
YSPOR) for experiments relating entropy threshold and GO
specificity. Given the best performance model, g threshold
values from maxHðdðOiÞÞ to zero were selected and their
corresponding clusters analyzed (the value zero is not
included since it yields no groups). Only GO terms with a
p-value below 0:1 were considered.

In both HeLa and YSPOR, we observe an increase in GO
specificity until a certain low threshold value, followed by a
decrease of specificity (see Fig. 5). The mean level raises
considerably (around 2.0) until it reaches the threshold
value 0.3 with HeLa, while in the YSPOR an increase of 0.5
was found.

In individual clusters distinct behaviors can be noticed
(Fig. 8a). In cluster one from YSPOR, at the maximum
threshold, 24 genes are related to the term “M Phase.” After
applying a threshold of 0.41, 18 of these genes were still
present in the cluster. Cluster four, for instance, has no
enriched terms for high thresholds, but for values around
0.6 and 0.4, enrichment for terms related to “ATP” and
“nucleus” is found. On HeLa (Fig. 8b), we observe distinct
GO specificity patterns (we display only six representative
groups out of the 35). Cluster one, which has a high and
increasing GO level, has 12 out of 37 genes associated with
the GO term “mitotic cell cycle,” and these 12 genes are still
in cluster one after the application of the lowest threshold
(see Table 2). Cluster three presents no enriched term for
high cutoff values, but for values around 0.7 to 0.3, GO
terms related to “ion binding” present enrichment. A
similar behavior is found in cluster six, where term
enrichment is only present with values threshold values
lower than 1.5. Cluster five, where the GO level decreases
after the value 1.1, does not contain more than two genes

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 187

Fig. 6. A cluster of gene expression time-courses from the Fibroblasts data set [49] (see [29] for an analysis) displays “on-switch” behavior at

different time-points decomposed by the Viterbi Decomposition. The top left picture shows the complete ensemble of “on-switch” genes whereas the

other plots show the synchronous components.

Fig. 5. We show the mean GO annotation level of all groups from HeLa

versus the entropy threshold. The lower the threshold, the more

unambiguous is a cluster.

related to the same term for any of the thresholds values
analyzed. There are two possible explanations for the
decreasing behavior of cluster five. Either this is a cluster
of poor quality or, most probably, it contains genes, which
are not annotated in GO. In contrast to Yeast, where the
majority of genes are annotated, only parts of the Human
genome are present in GO. Furthermore, this scarce
annotation is possibly biased toward well-known biological
processes. This difference of GO coverage between species
can also be the reason why Yeast groups have higher GO
specificity levels. This, however, does not invalidate the
results shown above, as they do display a increase in the
majority of clusters from the YSPOR data set and in most of
the clusters from HeLa.

6.4 Benchmarking Results

Three methods of model initialization were used: the
randomized model collection (RMC), the Bayesian model
collection (BMC), and k-means initialization (KMI), to supply a
base line. In the latter, a standard k-means algorithmwas first

applied to the data, and the k groups obtained were used to
initialize models. In addition to mixture estimation, we also
evaluated HMM-clustering [29], and partially supervised
mixture estimation. When needed, Viterbi decomposition
was applied to the results (see Section 6.8.7). Experiments
usingRMC andKMIwere replicated 50 times (mean results are
shown). Note, BMC does not require repetitions, as it is a
deterministic algorithm.We also evaluate the performance of
Caged [9], Splines [8] (as obtained from the authors using
default parameters) and k-means [56].

6.4.1 Y5

The k-means algorithm obtained a remarkably good result
withaCRof 0.43 (0.56 specificity and0.56 sensitivity).Mixture
estimation with BMC and a posterior Viterbi decomposition
also performed quite well, with a CR of 0.467, 0.55 specificity,
and 0.66 sensitivity. The best results (see Table 3) were
obtained by the partially-supervisedmixture estimationwith
only 15 labels followed by VD (0.49 CR, 0.56 specificity and

188 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 7. We computed a mixture model from nine labeled and 2,263 unlabeled time-courses for the HeLa data set. One group (top left) was seeded
with five of the labeled time-courses. It was subsequently decomposed into three subgroups, corresponding to groups of synchronous genes, with
the Viterbi decomposition. The first subgroup contains mainly G2 genes (phase 1, top right), the second G2 as well as G2/M genes (phase 2, bottom
left) and the third mostly G2/M genes (phase 3, bottom right).

Fig. 8. (a) We present the GO specificity levels of 10 individual clusters from the YSPOR and (b) the levels of six out of the 35 clusters from HeLa.

0.68 sensitivity). The results of Caged were not included,
since it could only find one cluster (this cannot be controlled
by the user).

Except for the partially supervised estimation, all other
methods were not able to separate some genes from groups
Late G1 and S or M and Early G1. These phases are
separated by a phase-shift and their genes have very similar
time courses. The application of the Viterbi Decomposition
yielded noticeable improvements in distinguishing genes
from these overlapping groups in all methods.

Even though this data set has been useful for comparing
distinct methods, it should be pointed out that it does not
represent the ideal data for benchmarking. It almost
exclusively contains cell cycle genes, which does not
represent the typical input, where usually all behaviors of
temporal gene expression are present.

6.4.2 SIM1

Two of the more involved methods, Caged [9] and Spline-
based clustering [8] (using default parameters) only reached
a specificity and CR of less than 0.5 (see Table 4). The main
error made by Caged is deciding on too few clusters (this
cannot be controlled by the user), which leads to merging of
several classes (C1 and C2, respectively, C3-C6 into one
cluster). HMMs perform quite well with all initialization
methods. In particular, mixture estimation with BMC

achieved a high CR of 0.84, over 91 percent specificity and
over 82 percent sensitivity. The tests also show very clearly
the positive effect of partially supervised learning. It
suffices to have labels for twenty time-courses to obtain a
specificity and sensitivity exceeding 0.91 and 70 labels to
have both values around 0.94.

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 189

TABLE 2
Ten Most Enriched GO Terms of Clusters One and Five from Hela

We depict the terms enriched for cluster one, threshold values 1.98 and 0.31 and cluster five, same thresholds (top to bottom). Counts represents
the terms q and m� q, respectively. Cluster one shows a high enrichment with terms associated with “mitotic cell cycle,” even when the lowest
threshold is applied. In cluster five, GO terms are poorly enriched, and the application of the threshold excludes a high number of genes from the
cluster, 16 of the original 18 genes (see the supplementary material for the enrichment of other clusters).

6.4.3 Robustness of Mixtures versus Clustering

Besides the biological motivation for choosing mixtures, we
would like to argue also from the robustness point of view.
We compared the robustness of mixture estimation with
HMM-clustering [29] as follows: We selected eight HMMs
encoding the possible three-segment regulation behaviors
(e.g., down-down-down, up-down-down) and used a
Monte-Carlo algorithm to generate twenty sets of 200 time-
courses each from the eight HMMs (32,000 artificial time-
courses total). Noise was introduced by adding i.i.d.
Gaussian variates with mean zero and variance �2 for
increasing values of � to each simulated observation.
Subsequently, both clustering and mixture estimation were
run until convergence, with the true generating models as
the initial model collection in both case. To quantify
performance, we computed the sum of squared deviation

of means between true and estimated models over all states
and all models in the collection (see Fig. 9).

The results on SIM1 and Y5 also confirms the advantages
of mixture estimation over clustering. In most of the
experimental settings, mixture estimation performed as
well as or better than clustering.

6.4.4 Partially Supervised Learning

We demonstrated the importance of partially supervised
learning for biological data in Section 6.2. To give a better
understanding, we performed the following experiments on
SIM1 and SIM2. We randomly picked a number of labels
from each class, from 0 percent to 25 percent of the total
number of genes. For each number of labels used,
30 replications were performed. Sensitivity, specificity and
CR increase (Fig. 10) as the proportion of labels increases,
and even small numbers of labels have a pronounced effect.

6.4.5 Finding the Number of Components

BIC was able to find the correct number of components in
SIM1 (six) and underestimated the number of components
by only one in Y5 (Fig. 11). This underestimation is another
indication of the deficiency of the methods to separate some
classes of Y5 (there is no way to integrate VD in the
estimation of the number of components). Our results agree
with the literature on the performance of BIC on large data
sets [37]. Furthermore, the calculation of BIC is very simple
and requires no replication of experiments, in contrast to
other methods [14].

6.4.6 Comparing Initialization Methods

As shown in the results of SIM1 and YSPOR, BMC obtained
higher accuracy than KMI and RMC in most of the experi-
mental settings. Another important characteristic in favor of
BMC is its deterministic nature. As a consequence, there is no
need to perform replicates of the experiments and to choose
the best replicate, contrary to use of RMC or KMI.

190 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

TABLE 3
Results of the Different Methods on Y5

TABLE 4
Results on SIM1

6.4.7 Viterbi Decomposition

The results on Y5 suggest that some clustering methods fail
to separate time-course classes with very subtle distinctions.
In this particular case, these distinctions are based on small
phase-shifts in successive cell cycle phases. This seems to be
typical for biological data, and the results obtained in both
cell cycle data sets (Y5 and HeLa) show that with VD we can
group those genes correctly. The necessity of the applica-
tion, however, cannot be generalized. For instance, in SIM1,
where no such phase-shifted classes exists, the use of VD

would not improve the results, since clustering was already
able to group the genes correctly.

7 SUMMARY

We present a robust and efficient approach to analyze gene
expression time-course data with a mixture of hidden
Markov models. The method can easily make use of prior
knowledge about genes due to a partially supervised
training procedure, which greatly increases robustness
and the quality of the local optima found. Availability of

such labels is a realistic assumption for the analysis of gene
expression time-courses. Simultaneous analysis of cyclic
and noncyclic time-courses is possible and neither missing
values nor high levels of noise pose a serious problem.
Mixtures are, for reasons of the complexity of gene function
and regulation, a more appropriate model of biological
reality than clusterings. They also have computational
advantages, demonstrating a higher robustness to noise
compared to clustering. Most importantly, mixtures allow
us to quantify the level of ambiguity when assigning genes
to groups based on their gene expression time-courses. Our
simple, information-theoretic approach supports interactive
exploration of assignments at various levels of uncertainty,
as well as decoding of mixtures to arrive at unambiguous
groups. Further algorithms are provided for arriving at
reasonable starting points for mixture estimation, through a
modification to Bayesian model merging, as well as
obtaining synchronous subgroups through the use of
Viterbi decomposition.

We demonstrate biological relevance by the analysis of
HeLa and Yeast time-course data sets for which we infer
synchronousgroups specific to cell cycle phases.With theuse

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 191

Fig. 9. On the y-axis, squared estimation error summed up over all
states and all models and averaged over the 20 samples is plotted
against different levels of added noise, Nð0; �Þ; 0:1 <¼ � <¼ 1:5 in
increments of 0:1). A Wilcoxon test comparing deviation of estimated
model parameters from their true value showed significantly lower
estimation error for mixture estimation.

Fig. 10. We depict sensitivity, specificity and CR of a partially supervised

clustering procedure depending on the percentage of labeled data in the

input on SIM1.

Fig. 11. We show BIC versus number of components for the data set (a) SIM1 and (b) Y5. The correct number of clusters are six and five,

respectively.

of Gene Ontology information, we show the effectiveness of
themixture decoding. A comparison of different methods on
simulated data, created under mild assumptions distinct
from those implicit to other and our method, yielded
favorable results. Our flexible framework, combined with
an effective graphical user interface implemented in theGQL
application, supports interactive, exploratory knowledge
discovery, making full use of biological expert knowledge.

It should be noted that some of our contributions—mix-
ture estimation in a partially supervised learning setting,
subsequent inference of unambiguous groups—apply in
general to any setting where clustering has so far been
predominant, and that we would also expect favorable
results in other application areas where the existence of
partitions is not guaranteed.

ACKNOWLEDGMENTS

The second and last author would like to acknowledge
funding from the DAAD/CNPq (Brazil) and the BMBF
through the Cologne University Bioinformatics Center
(CUBIC), respectively. Thanks to Wasinee Rungsarityotin
and Benjamin Georgi for work on the HMM library GHMM
[57], the GHMM Python interface, and GQL [31], to Xue Li
and Olof Persson for work on the Viterbi Decomposition
and choosing initial models, and to Tim Beissbarth for
helping with GOStat [48]. Thanks also to Terry Speed for
helpful discussions. Thanks to two anonymous referees and
Ben Rich for their valuable comments on the manuscript.

REFERENCES

[1] Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng, J. Ngai, and T. Speed,
“Normalization for cDNA Microarray Data: A Robust Composite
Method Addressing Single and Multiple Slide Systematic Varia-
tion,” Nucleic Acids Research, vol. 30, no. 4, Feb. 2002.

[2] Z. Bar-Joseph, “Analyzing Time Series Gene Expression Data,”
Bioinformatics, vol. 20, no. 16, pp. 2493-2503, Nov. 2004.

[3] M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster
Analysis and Display of Genome-Wide Expression Patterns,” Proc.
Nat’l Academy of Science, vol. 95, pp. 14, 863-868, 1998.

[4] A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G.
Storz, D. Botstein, and P. Brown, “Genomic Expression Programs
in the Response of Yeast Cells to Environmental Changes,”
Molecular Biology of the Cell, vol. 11, pp. 4241-4257, 2000.

[5] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church,
“Systematic Determination of Genetic Network Architecture,”
Nature Genetics, vol. 22, pp. 281-285, 1999.

[6] S.A. Rifkin and J. Kim, “Geometry of Gene Expression Dynamics,”
Bioinformatics, vol. 18, no. 9, pp. 1176-1183, Sept. 2002.

[7] I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models
for Discrete-Valued Time Series. London: Chapman & Hall, 1997.

[8] Z. Bar-Joseph, G. Gerber, D.K. Gifford, and T.S. Jaakkola, “A New
Approach to Analyzing Gene Expression Time Series Data,” Proc.
Sixth Ann. Int’l Conf. Research in Comp. Molecular Biology, 2002.

[9] M.F. Ramoni, P. Sebastiani, and I.S. Kohane, “Cluster Analysis of
Gene Expression Dynamics,” Proc. Nat’l Academy of Science, vol. 99,
no. 14, pp. 9121-9126, July 2002.

[10] M.F. Ramoni, P. Sebastiani, and P.R. Cohen, “Bayesian Clustering
by Dynamics,” Machine Learning, vol. 47, no. 1, pp. 91-121, Apr.
2002.

[11] K.Y. Yeung, C. Fraley, A. Murua, A.E. Raftery, and W.L. Ruzzo,
“Model-Based Clustering and Data Transformations for Gene
Expression Data,” Bioinformatics, vol. 17, no. 10, pp. 977-987, 2001.

[12] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders,
M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Compre-
hensive Identification of Cell Cycle-Regulated Genes of the Yeast
Saccharomyces Cerevisiae by Microarray Hybridization,” Mole-
cular Biology of the Cell, vol. 9, no. 12, pp. 3273-3297, Dec. 1998.

[13] A. Krogh, M. Brown, I.S. Mian, K. Sjolander, and D. Haussler,
“Hidden Markov Models in Computational Biology. Applications
to Protein Modeling,” J. Molecular Biology, vol. 235, no. 5, pp. 1501-
1531, Feb. 1994.

[14] P. Smyth, “Probabilistic Model-Based Clustering of Multivariate
and Sequential Data,” Proc. Seventh Int’l Workshop AI and Statistics,
D. Heckerman and J. Whittaker, eds., 1999.

[15] B. Knab, “Erweiterungen von Hidden-Markov-Modellen zur
Analyse ökonomischer Zeitreihen,” PhD dissertation, Informatik,
Universität zu Köln, 2000.

[16] S.G.I. Cadez and P. Smyth, “A General Probabilistic Framework
for Clustering Individuals,” ACM SIGKDD 2000 Proc., 2000.

[17] B. Wichern, “Hidden-Markov-Modelle zur Analyse und Simula-
tion von Finanzzeitreihen,” PhD dissertation, Informatik, Uni-
versität zu Köln, 2001.

[18] B. Knab, A. Schliep, B. Steckemetz, and B. Wichern, “Model-Based
Clustering with Hidden Markov Models and Its Application to
Financial Time-Series Data,” Between Data Science and Applied Data
Analysis, M. Schader, W. Gaul, and M. Vichi, eds., Springer,
pp. 561-569, 2003.

[19] V. Castelli and T.M. Cover, “On the Exponential Value of Labeled
Samples,” Pattern Recognition Letters, vol. 16, pp. 105-111, 1994.

[20] M. Seeger, “Learning with Labeled and Unlabeled Data,” Inst. for
Adaptive and Neural Computation, technical report, Univ. of
Edinburgh, 2001.

[21] M. Szummer and T. Jaakkola, “Partially Labeled Classification
with Markov Random Walks,” Neural Information Processing
Systems (NIPS), vol. 14, 2002.

[22] A. Blum and S. Chawla, “Learning from Labeled and Unlabeled
Data Using Graph Mincuts,” Proc. Int’l Conf. Machine Learning,
2001.

[23] M. Belkin, “Problems of Learning on Manifolds,” PhD disserta-
tion, Univ. of Chicago, 2003.

[24] F.G. Cozman, I. Cohen, and M.C. Cirelo, “Semi-Supervised
Learning of Mixture Models,” Proc. 20th Int’l Conf. Machine
Learning (ICML), 2003.

[25] V. Vapnik, The Nature of Statistical Learning Theory. Wiley, 1998.
[26] S. Basu, M. Bilenko, and R.J. Mooney, “A Probabilistic Framework

for Semi-Supervised Clustering,” Proc. 10th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD), Aug. 2004.

[27] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, no. 2,
pp. 257-285, Feb. 1989.

[28] C. Burge and S. Karlin, “Prediction of Complete Gene Structures
in Human Genomic DNA,” J. Molecular Biology, vol. 268, no. 1,
pp. 78-94, Apr. 1997.

[29] A. Schliep, A. Schönhuth, and C. Steinhoff, “Using Hidden
Markov Models to Analyze Gene Expression Time Course Data,”
Bioinformatics, vol. 19, no. 1, pp. 255-263, July 2003.

[30] A. Schliep, C. Steinhoff, and A. Schönhuth, “Robust Inference of
Groups in Gene Expression Time-Courses Using Mixtures of
HMM,” Bioinformatics, vol. 20, no. 1, pp. 283-289, July 2004.

[31] I.G. Costa, A. Schonhuth, and A. Schliep, “The Graphical Query
Language: A Tool for Analysis of Gene Expression Time-
Courses,” Bioinformatics, vol. 21, no. 10, pp. 2544-2545, 2005.

[32] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc.:
Series B, vol. 39, pp. 1-38, 1977.

[33] A. Stolcke and S. Omohundro, “Hidden Markov Model Induction
by Bayesian Model Merging,” Proc. Neural Information Processing
Systems 5 (NIPS-5), 1992.

[34] A. Schliep, “Learning Hidden Markov Model Topology,” PhD
dissertation, Center for Applied Computer Science, Univ. of
Cologne, 2001.

[35] B.H. Juang and L.R. Rabiner, “A Probabilistic Distance Measure
for Hidden Markov Models,” AT&T Technical J., vol. 64, no. 2,
pp. 391-408, 1985.

[36] W. Pedrycz, “Fuzzy Sets in Pattern Recognition: Methodology and
Methods,” Pattern Recognition, vol. 23, nos. 1/2, pp. 121-146, 1990.

[37] G. McLachlan and K. Basford, Mixture Models: Inference and
Applications to Clustering. New York, Basel: Marcel Dekker, Inc.,
1988.

[38] G. McLachlan and D. Peel, Finite Mixture Models, Wiley Series in
Probability and Statistics. New York: Wiley, 2000.

[39] C. Wu, “On the Convergence of the EM Algorithm,” Annals of
Statistics, pp. 95-103, 1983.

192 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

[40] R. Boyles, “On the Convergence of the EM Algorithm,” J. Royal
Statistical Soc.: Series B, pp. 47-50, 1983.

[41] J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and Its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models,” Technical Report TR-97-021, Int’l
Computer Science Inst., Berkeley, Calif., 1998.

[42] H. C, E. Loken, and J.L. Schafer, “Difficulties in Drawing
Inferences with Finite-Mixture Models: A Simple Example with
a Simple Solution,” Am. Statistician, vol. 58, no. 2, pp. 152-158,
2004.

[43] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell, “Text
Classification from Labeled and Unlabeled Documents Using
EM,” Machine Learning, 1999.

[44] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of
Statistics, vol. 6, pp. 461-464, 1978.

[45] T.G.O. Consortium, “Gene Ontology: Tool for the Unification of
Biology,” Nature Genetics, vol. 25, pp. 25-29, 2000.

[46] F. Sokal and R.R. Rohlf, Biometry. New York: W.H. Freeman and
Company, 1995.

[47] A. Reiner, D. Yekutieli, and Y. Benjamini, “Identifying Differen-
tially Expressed Genes Using False Discovery Rate Controlling
Procedures,” Bioinformatics, vol. 19, no. 3, pp. 368-375, 2003.

[48] T. Beissbarth and T.P. Speed, “GOstat: Find Statistically Over-
represented Gene Ontologies within a Group of Genes,” Bioinfor-
matics, vol. 20, no. 9, pp. 1464-1465, 2004.

[49] V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C. Lee,
J.M. Trent, L.M. Staudt, J.R. Hudson, M.S. Boguski, D. Lashkari, D.
Shalon, D. Botstein, and P.O. Brown, “The Transcriptional
Program in the Response of Human Fibroblasts to Serum,”
Science, vol. 283, no. 5398, pp. 83-87, Jan. 1999.

[50] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L.
Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman, J. Lockhart,
and W. Davis, “A Genome-Wide Transcriptional Analysis of the
Mitotic Cell Cycle,” Molecular Cell, vol. 2, pp. 65-73, 1998.

[51] S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P.O. Brown,
and I. Herskowitz, “The Transcriptional Program of Sporulation
in Budding Yeast,” Science, vol. 282, no. 5389, pp. 699-705, 1998.

[52] M.L. Whitfield, G. Sherlock, A.J. Saldanha, J.I. Murray, C.A. Ball,
K.E. Alexander, J.C. Matese, C.M. Perou, M.M. Hurt, P.O. Brown,
and D. Botstein, “Identification of Genes Periodically Expressed in
the Human Cell Cycle and Their Expression in Tumors,”Molecular
Biology of the Cell, vol. 13, no. 6, pp. 1977-2000, June 2002.

[53] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data.
Prentice Hall Int’l, 1998.

[54] C.M. C. Milligan G.W., “A Study of the Comparability of External
Criteria for Hierarchical Cluster Analysis,” Multivariate Behavior
Research, vol. 21, pp. 441-458, 1986.

[55] B. Kraus, M. Pohlschmidt, A.L. Leung, G.G. Germino, A. Snarey,
M.C. Schneider, S.T. Reeders, and A.M. Frischauf, “A Novel
Cyclin Gene (CCNF) in the Region of the Polycystic Kidney
Disease Gene (PKD1),” Genomics, vol. 24, no. 1, pp. 27-33, Nov.
1994.

[56] M. de Hoon, S. Imoto, J. Nolan, and S. Miyano, “Open Source
Clustering Software,” Bioinformatics, vol. 20, no. 9, pp. 1453-1454,
2004.

[57] “The General Hidden Markov Model Library (GHMM),” http://
ghmm.org, 2003.

Alexander Schliep received the PhD degree in
computer science from the Center for Applied
Computer Science at the University of Cologne,
Germany, in 2001, working in collaboration with
the Theoretical Biology and Biophysics Group
(T-10) at Los Alamos National Laboratory. Since
2002, he has been group leader of the bioinfor-
matics algorithms group in the Department for
Computational Biology at the Max Planck
Institute for Molecular Genetics in Berlin. The

research interests pursued in his group include data mining, statistical
models, and algorithms for analyzing complex, heterogeneous data from
molecular biology.

Ivan G. Costa received the MSc and BSc
degrees in computer science at the Universidade
Federal de Pernambuco, Brazil. Since 2004, he
has been working toward the PhD degree in
computer science in the Department for Compu-
tational Biology at the Max Planck Institute for
Molecular Genetics in Berlin. His research inter-
ests are in the area of pattern recognition,
statistical learning, and cluster validation, as well
as applications of these in transcriptomics.

Christine Steinhoff studied mathematics and
genetics at Heinrich Heine University in Düssel-
dorf and at Oxford University. She received the
PhD degree in molecular biology in 2001 work-
ing on gene therapeutical models. Afterward,
she joined the bioinformatics group at the Max
Planck Institute for Molecular Genetics in Berlin.
Her research interests include different statisti-
cal aspects of data analysis of microarrays and
epigenetic gene regulation models.

Alexander Schönhuth joined the Bioinformatics
Group as a PhD student in the Center for Applied
Computer Science at the University of Cologne,
Germany, at the end of 2001. He is a scientific
assistant in theCologneUniversityBioinformatics
Center holding Computer Science lectures and
guiding project work. Educated in pure Mathe-
matics, he has specialized in Markovian models
and their extensions in statistical learning theory.
Biological applications of his work are sequence

analyses of proteins as well as mining gene expression time-courses.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SCHLIEP ET AL.: ANALYZING GENE EXPRESSION TIME-COURSES 193

