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Chapter 1

Introduction

Biological Background

Understanding gene regulation is a fundamental problem in molecular bi-
ology. DNA microarrays allow us to infer gene expression by measuring the
concentrations of thousands of mRNAs in parallel, because of that, they have
become one of the most widely used tools in molecular biology. They constitute
a high-throughput technology that can also be used for a variety of further ap-
plications, for example comparative genomic hybridization, SNP detection and
the detection of agents in a sample.

An oligonucleotide DNA microarray consists of a glas or plastic slide with
thousands of short (20 - 75 base pairs long) single stranded DNA sequences,
called probes, attached to it. During a microarray experiment, a sample con-
taining DNA, or in rare cases RNA, molecules, are given onto the microarray.
Due to Watson-Crick base pairing, probes and sample DNA can form duplexes.
Due to the fact that the samples have been labeled, the amount of duplexes
formed can be measured, and because probe composition and position on the
microarray is known, the presence and relative concentration of DNA contain-
ing the reverse complement of the probe sequence can be estimated. Abstractly,
we can talk about target DNA as specific loci in a genome or set of genomes,
or specific regions such as transcripts.

When detecting target hybridization to a probe we want to make sure that
we measure the concentration of the target in the genome. This can only be
done reliably, when a probe hybridizes to the intended target in the genome
exclusively. This leads to the problem of finding unique probes – probes only
hybridizing to their intended targets and not to other spots in the genome.
A probe which also binds to other than its intended target is said to cross-
hybridize. For example, in Figure 1.1 p5 cross-hybridizes to t2.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: The probe selection problem. Probes p1, . . . , p4 can be used to mea-
sure the relative concentration of targets t1, . . . , t4. The probe p5 is a non-unique
probe, t2 and t5 will bind to it, and from signal intensity the concentration of
t5 cannot be infered.

The Thesis

When designing a DNA microarray for a given set of targets, it is desirable
to pick only unique probes, as to be able to unambiguously decode the results.
In order to find a set of unique probes for a set of targets, the hybridization
process has to be modeled, and for every probe, hybridization to not intended
targets has to be ruled out. Algorithms exist to model free energy of hybridiza-
tion of probes and targets, computing the most stable of all possible duplex
structures, but these are computationally very costly und not feasible for large
genomes. Instead, the most widely used approach to detect cross-hybridization
is a BLAST search for the probe in the given genome. The number of matched
base pairs and the length of the longest matched stretch is then used to infer
hybridization.

In this work we present a novel probe selection algorithm, which makes use
of the nearest neighbor thermodynamic model for estimating an upper bound of
the free energy associated with DNA duplex formation. In order to qickly scan
a genome for cross-hybridization for a given probe set, we propose a filtering
method to reduce the search space for each probe.

The nearest neighbor model assumes that the stability of a nucleic acid
duplex depends on the identity and orientation of neighboring base pairs. It
estimates the free energy of a duplex as the sum of free energy contributions
by the stacked pairs. We make use of an efficient alignment algorithm which
maximizes the nearest neighbor stability, and use this as an upper bound for the
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true stability of a duplex. Thus, we take the thermodynamic characteristics of
duplex formation more accurately into account, as opposed to simply counting
matches and mismatches. Figure 1.2 shows stacking effects for an example
sequence.

Scanning through the whole genome to find regions where cross-hybridization
occurrs for a given probe is a time consuming procedure. In this work we pro-
pose a filter using a seed and extend approach to reduce the search space for
each probe. Based on the nearest neighbor model used for our alignment al-
gorithm, we use seeds with a minimum stability contribution. Q-gram indices
for probes and targets are used to instantly find matching probes and sequence
positions, where the nearest neighbor alignment is then used to compute the
lower bound on hybridization free energy.

In our experiments we test the performance of our nearest neighbor align-
ment and the resulting energy bound, and compare it to simpler heuristics based
on the edit distance. We also test the performance of the presented filter for
various paramters and datasets.

Figure 1.2: Pairing of Watson-Crick bases and base stacking effects between
adjacent pairs in a DNA duplex. Adapted from Anatomy & Physiology: The
Unity of Form and Function by Kenneth S. Saladin.
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1.1 Related Work

The probe selection problem has been studied for more than ten years now. Dur-
ing this time, many approaches have been taken to efficiently calculate probe
specificity. Probably the most common way is to use BLAST to do a search for
regions in the genome highly similar to the probe, and then use the Hamming
distance as specificity measure. For example, this method is used by Reymond
et al. (2004) and Rouillard et al. (2002). Other approaches still use the Ham-
ming or edit distance, but do not use BLAST to find regions of interest. Sung
& Lee (2003) use gapped hashing and the pigeon hole principle to quickly find
regions with low Hamming distance to the probe. Rouillard et al. (2003) do not
use the Hamming distance, they compute the best thermodynamic alignment
using dynamic programming. As this is a very costly computation, they com-
bine it with a previous BLAST search to reduce the number of computations.
Rahmann (2003) uses the length of the longest common factor of probe and
target as specificity measure, and finds those quickly with the use of a suffix ar-
ray. A similar approach is taken by Gräf et al. (2007), they define a uniqueness
score based on minimum unique substrings of of probe and target. However,
their implementation using suffix arrays needs a large amount of RAM. Another
approach by Kaderali & Schliep (2002) uses a heuristic for melting temperature
calculation using suffix trees and dynamic programming.

When the target sequences are highly similar, such as different virus sub-
types, it is often impossible to find a unique probe for every target. Rash &
Gusfield (2002) were among the first ones to address this problem by using suf-
fix trees and integer-linear programming to find a set of probes which uniquely
identifies a target. A different approach that also takes cross-hybridization and
experimental error into account was presented by Schliep et al. (2003) and later
extended to use integer-linear programming and a branch-and-cut algorithm to
select a minimal probe set (Klau et al. 2004). When targets are related by
a phylogenetic tree and non-unique probes are present, Schliep & Rahmann
(2006) present a decoding approach based on a Bayesian framework.



Chapter 2

Basics

2.1 DNA Structure

To understand the hybridization processes during microarray experiments it is
necessary to consider basic facts about the structure of DNA.

More than 50 years ago, Franklin, Crick, Watson and Wilkins discovered the
structure of DNA, showing that it consists of two antiparallel complementary
strands which form a double-helix (Watson & Crick 1953, Wilkins et al. 1953).
Each strand arises from the directional polymerization of single nucleotide units.
A nucleotide unit consists of one of the four bases, adenine (A), thymine (T),
cytosine (C) or guanine (G), a sugar (deoxyribose) and a phosphate.

Esterification reactions between the sugar’s C3’ hydroxyl group and the
phosphate of an incoming nucleoside triphosphate (NTP) form the links between
the nucleotides. A phosphodiester group links the 5’C of one deoxyribose to
the 3’C of the next sugar, resulting in a phosphodiester-sugar backbone with
5’-3’ linkages. As DNA transcription can only proceed in 5’-3’ direction it is
customary to look at a strand in this direction.

In a double-stranded DNA molecule, the two strands are Watson-Crick com-
plements ; an A in one strand pairs with a T in the other, in the same way a C
pairs with a G, and vice versa.

2.1.1 Higher Order DNA Structure

When two complementary DNA strands form a duplex, they take on the char-
acteristical structure of a double helix. This is an energetically favourable state,
because the phosphates and sugars, which carry polarized bonds and are thus
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10 CHAPTER 2. BASICS

Figure 2.1: A DNA double helix. Image taken from U.S. Department of Health
and Human Services, NIH Publication No. 07-662.

hydrophilic in nature, are on the outside. The bases, which are hydrophobic due
to the few polarized bonds, are buried within the inside, allowing hydrophobic
interactions between them.

2.1.2 Base Pairing and Base Stacking

The highly specific base pairing results from the formation of hydrogen bonds
between pairs of nucleotides. These bonds are highly directional, because the
interacting atoms must lie in an approximately straight line for strong bonding.
The cytosine-guanine coupling is stronger, incorporating three hydrogen bonds,
than the adenine-thymine coupling, with only two hydrogen bonds.

The hydrogen bonds between bases are responsible for the specificity of the
base interactions, but most of the stability of a DNA duplex arises from inter-
actions that result from base stacking. The interactions of aromatic molecules
in a parallel arrangement are called stacking. These aromatic interactions are
caused by intermolecular overlapping of p-orbitals in π-conjugated systems. In
DNA, the bases of the nucleotides are made from either purine or pyrimidine,
containing aromatic rings. The DNA backbone is tilted by an angle of 30◦,
bringing the planar rings of adjacent base pairs to a position where they lie
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vertically one above the other. The non-covalent bonds between the bases,
resulting from overlapping p-orbitals, are weaker than covalent bonds, but the
sum of all π stacking interactions within the double stranded DNA molecule has
the largest contribution to the overall free energy associated with the duplex.

2.2 Microarray Technology

2.2.1 DNA Microarrays

DNA microarrays (also calles DNA chips) are arrays of thousands DNA molecules
on a quartz, glass or nylon substrate. The main principle of microarray exper-
iments is the hybridization of two nucleic acid strands. DNA sequences in
solution (target sequences, targets) are given onto the chip and bind to specific
immobilized DNA molecules (probe sequences, probes) on the surface of the
microarray. Probes of the same type are placed at regularly spaced and well
defined locations called spots or features. The targets, which often are extracted
from a tissue or blood sample, are labeled with a fluorescent or radioactive dye
and are then allowed to hybridize to the probes on the array. Unhybridized
targets are then washed off, and the amount of hybridized targets at a probe
spot can be measured by the intensity of the dye or radioactivity. This mea-
surement then reflects the relative concentration of the target sequence in the
sample. Because of the high density with which the probes can be attached to
the chip surface, this method allows the detection of vast amounts of different
target sequences in parallel.

The idea behind this procedure is to quantify the presence and concentration
of certain DNA sequences in a sample. Depending on probe and target type,
this can have different applications. For gene expression profiling, the mRNA
of a cell or tissue is used directly as the target, or is converted to cDNA using
reverse transciptase and amplified. Each probe is specifically designed to only
bind a target from a certain gene, and thus, the result represents the expression
level of that gene. These experiments can be used to compare different state of
cells or compare treated and not treated cells. The genomic DNA present in a
sample can also be used directly to create the targets. For the application of
genetic screening, the DNA is fragmented and used directly as target set. With
carefully designed probes, this approach can be used to investigate the presence
of microorganisms, viruses and their types, and genetic mutations. Another
application is a tiling array. Here, the arrays are composed of a large number
of probes from a contiguous region of the genome, selected, so that they are
immediately adjacent to, or overlap, one another. This way, transcribed regions
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outside any known annotation can be discovered (Mockler et al. 2005).

2.2.2 Probe Design Problem

When designing microarrays, special care has to be taken that the probes satisfy
fundamental probe selection criteria: (1) Quantitative criteria; (2) Homogene-
ity; (3) Sensitivity; (4) Specificity.

Quantitative criteria as described by Lockhart et al. (1996): (1) the content
of any single base does not exceed 50% of the probe size; (2) the length of any
contiguous A and T or C and G region is less than 25% of the probe size; (3) GC
content is between 40% and 60%

Homogeneity criterion requires that all probes must react (hybridize) under
the same reaction conditions. This is a direct consequence of the paallelization
of the hybridization of thousands of probe target pairs. The reaction behaviour
is mainly influenced by the salt content, the pH-value and the hybridization
temperature.

Sensitivity criterion (or hybridization efficiency) filters out probes with low
true positive detection. A low sensitivity can be caused by probes which may
fold back on themselves instead of binding its target.

Specificity criterion filters out probes which could possibly hybridize to others
than the intended target, which would result in false positives. This is not only
the case, when copies of the intended target are present at multiple locations in
the genome, but can also be the result of the presence of very similar targets,
which, despite having mismatches with the probe sequence, can still hybridize
to the probe.

The specificity criterion is the computationally most expensive one to check.
In order to validate if a probe could bind to a not intended target, also called
cross-hybridize, all targets have to be taken into consideration and binding
stability has to be computed. The next section will introduce models that are
used to compute the stability of a DNA duplex.
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Figure 2.2: Principle of microarray experiments shown on the example of an
Affymetrix GeneChip. GeneChip is a registered trademark of Affymetrix Inc.,
Santa Clara, California. Images taken from www.affymetrix.com.
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2.3 Models of DNA Hybridization

The duplex formation of nucleic acids is the foundation of all microarray exper-
iments. The stability of the probe-target hybridization is an important factor
for the design and interpretation of the experiments. In this section we give
a brief overview over the currently used thermodynamic models being used to
predict the stability of nucleic acids duplexes expressed as Gibbs free energy.

2.3.1 Basic Notions of Thermodynamics

The stability of a double-stranded DNA duplex or an DNA-RNA hybrid can
be expressed quantitavely in terms of the Gibbs free energy ∆G. Gibbs free
energy and fundamental concepts of physical chemistry and heat theory are
introduced in the following paragraphs. For a more detailed introduction the
reader is referred to the sources of this section (Müller 2001, Alberty & Silbey
1992, Kaderali 2001).

In thermodynamics, the total kinetic, chemical and potential energy of a
system’s molecules is called the internal energy U of the system. Internal energy,
heat, and work are all measured in the same unit, the Joule (J), which is defined
as 1 J = 1 kg m2 s−1. It has been found experimentally that the internal energy
of a system may be changed either by doing work on the system or by heating
it. The first law of thermodynamics states that if heat and work are done to a
system, then the change in internal energy is given by the formula

∆U = q + w, (2.3.1)

where q is heat transferred to the system and w work done to it. Assuming that
only the volume V of a system is changed while the pressure P is constant, w
equals −P∆V . The change in the internal energy of the system is then

∆U = qp − P∆V, (2.3.2)

where qp is the heat for the constant pressure process. Considering a transition
between two states A and B with an internal energy change ∆U = UB − UA

and change in volume ∆V = VB − VA, it follows from Equation 2.3.2 that the
heat absorbed is

qp = (UB + PVB)− (UA + PVA). (2.3.3)

As U , p and V are state functions (i.e. they do not depend on the history of
the system), we define a new state function, the enthalpy.
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Definition 2.3.1 (Enthalpy) Enthalpy H is defined as H := U + PV , where
U is the internal energy, P is the pressure exerted on the system, and V its
volume.

Thus, qp = HB −HA, or, in other words, the heat absorbed in a process at
constant pressure is equal to the change in enthalpy if the only work done to
the system is reversible volume-pressure work (Kaderali 2001). ∆H = ∆U +
P∆V describes the change of the enthalpy of a system for a finite change of
temperature.

Enthalpy describes the state of a system, but it does not give any informa-
tion about the direction of a process (Kaderali 2001). The concept of entropy
captures this aspect. It is strongly connected with the second law of ther-
modynamics : Chemical reactions proceed spontaneously in the direction that
corresponds to an increase in the disorder of the universe. This means that
chemical reactions proceed in the direction that converts free energy (energy
that is available to do work) into heat. Thus, transitions between two states
A and B will proceed in the direction A → B, if the change in free energy
associated with it is negative.

For infinitesimally small changes in energy, Equation 2.3.2 can be rewritten
as dU = dq + dq. For reversible transitions this means,

dU = dqrev + dwrev, (2.3.4)

where

dwrev = −PdV, or
dwrev

−P
= dV. (2.3.5)

Therefore, dU can be written in the form

dU = −PdV + dqrev (2.3.6)

The intensity factor for heat transitions is temperature T , therefore dqrev can
be rewritten as

dqrev

T
= dS, (2.3.7)

where S is a state function called entropy. Boltzman examined the probability
that gas is in a given state, giving a statistical view of entropy. Amongst others,
Moore (1998) describes his work. Without going in to more detail, we use his
results to define S.

Definition 2.3.2 (Entropy) Entropy S is defined as S := R ln W , where
R is the Boltzmann constant, and W the number of possibilities to realize the
state under consideration.
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The entropy is a measure of molecular disorder of a system. Systems pre-
fer states with much freedom, thus have the tendency to maximize entropy.
Substituting TdS for dqrev in Equation 2.3.6 yields

dU = −PdV + TdS, (2.3.8)

which combines the first and second law of thermodynamics into one equation
(Kaderali 2001).

Here, it is important to note that the statement dqrev

T
= dS holds only in

the case of a reversible process, i.e. a process that is at chemical equilibrium.
For irreversible (spontaneous) processes, dS will be larger than dq/T , while a
process with dS < dq/T is impossible. Hence, for irreversible processes

dU ≤ −PdV + TdS (2.3.9)

holds (Kaderali 2001).

Gibbs energy. Gibbs energy G is the Legendre transformation of the enthalpy
of a system held at constant temperature T and constant pressure P , defined
by G ≡ H − TS. Therefore, it follows from Equations 2.3.8 and 2.3.9 and
H = U + PV , that

dG = dH − TdS − SdT ≤ V dP − SdT. (2.3.10)

Thus at constant temperature and pressure, chemical reactions are spontaneous
in the direction of decreasing Gibbs energy dG ≤ 0.

The standard Gibbs energy of reaction is defined in terms of the standard
reaction enthalpy and entropy by

∆rG
◦ = ∆rH

◦ − T∆rS
◦. (2.3.11)

It is the difference in standard molar Gibbs energies G◦
m of the products and

reactants in their standard states at the temperature of the reaction. From now
on we will use the short forms ∆G, ∆H and ∆S in this work.

Intuitevely, ∆G can be interpreted as a difference in stability between the
products and the reactants.

2.3.2 Nearest Neighbor Model

The nearest neighbor model estimates the Gibbs energy change for perfect
Watson-Crick DNA duplex or RNA/DNA-hybrid formation. It is based on the
early work of Zimm (Crothers & Zimm 1964) and Tinoco and Coworkers (Devoe
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& Tinoco 1962, Borer et al. 1974). It assumes that the stability of a nucleic
acid duplex depends on the identity and orientation of neighboring base pairs.
This assumption is justified by the structure of DNA and the base interaction
in double strands, see section 2.1.2. The nearest neighbor model expresses ∆G
for a duplex of n base pairs as a sum of n − 1 terms for consecutive overlap-
ping dinucleotides plus additional terms for the ends. In SantaLucia (1998) a
unified view of oligonucleotide nearest neighbor thermodynamics is presented.
There, the free energy parameters of several laboratories are listed and unified
parameters are derived from them, adequately describing polymer and oligomer
thermodynamics.

Using the nearest neighbor model, the free energy ∆G for a oligonucleotide
duplex of a sequence S1 and its reverse compliment S2 is given by:

∆G =

(
n−1∑
i=1

∆G(si, si+1)

)
+∆G(init(s1))+∆G(init(sn))+∆G(sym), (2.3.12)

where ∆G(si, si+1) are the standard free energy changes for the Watson-Crick
nearest neighbor 5′si si+13

′. For DNA these parameters are given in table 2.1.
∆G(init(s1)) and ∆G(init(sn)) account for the start and terminal base pair.
For a G-C pair this term is 0.98 and for a A-T term 1.03 kcal

mol
. ∆G(sym) is an

additional penalty for the maintenance of the C2 symmetry of self complemen-
tary duplexes; it equals 0.43kcal

mol
if the duplex is self-complementary and zero if

not.

Table 2.1: Standard free energy changes for Watson-Crick nearest neighbors in
kcal
mol

taken from (SantaLucia 1998)

F A C G T

A -1.00 -1.44 -1.28 -0.88
C -1.45 -1.84 -2.17 -1.28
G -1.30 -2.24 -1.84 -1.44
T -0.58 -1.30 -1.45 -1.00

All the parameters are given at a sodium concentration of 1 M NaCl and at
a fixed temperature of 37◦C or 310.15K. In the original work, the components
enthalpy ∆H and entropy ∆S are also given, thus ∆G can be computed for
other temperatures by using the Gibbs-Helmholtz equation ∆G = ∆H −T∆S.
Different salt concentration can be accomodated by applying a salt correction to
each individual dinucleotide entropy term. Similar parameters for RNA/DNA-
hybrids are given by Sugimoto et al. (1995).
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Example 2.3.3 (Nearest neighbor parameters) For the duplex

5′CGTTGA3′

3′GCAACT5′

∆G predicted by the nearest neighbor model using SantaLucia’s unified param-
eters is

∆G = ∆G(init(C)) + ∆G(CG) + ∆G(GT) + ∆G(TT) + ∆G(TG) + ∆G(GA) + ∆G(init(A))

= 0.98− 2.17− 1.44− 1.00− 1.45− 1.30 + 1.03

= −5.35 kcal/mol.

The duplex is non-self-complementary and thus ∆G(sym) is zero.

Drawbacks of the model

• The nearest neighbor model is a simplification of reality; all values are
approximations and different parameters have been reported by different
researchers (Sugimoto et al. 1996).

• Results for temperatures substantially different from 37◦C become increas-
ingly inaccurate, because of the different heat capacities of products and
reactants.

• The parameters originate from measurements of free short oligonucleotides
in solution. Hybridization in microarray experiments occurs at different
conditions. The cRNA or cDNA fragments are longer and in case of the
probes, attached to the chip surface.

• Non-perfect duplexes, i.e. duplexes with mismatches or loops are hard
cases for the nearest neighbor model, as their pairing and stacking inter-
actions are disturbed in complex ways. Allawi und SantaLucia derived
parameters for internal mismatches, but also state that the mismatch
stability is strongly context dependent (Allawi & SantaLucia 1998b,c,a,
1997).



Chapter 3

Nearest Neighbor Alignment

In this section we will give a brief overview of the concept of sequence alignments
and their scoring functions and introduce the Nearest Neighbor Alignment. The
scoring function used to rate a Nearest Neighbor Alignment takes energy contri-
butions from base stacking effects into account, and can thus be used to compute
a lower bound of the free energy of duplex formation of two DNA sequences.

3.1 Idea and Motivation

In general, an alignment of two sequences is a way of arranging them, one se-
quence on top of the other, so that the bases in one position are thought to
have common functional or structural relationships, or evolutionary origin. For
example, when aligning protein sequences, scoring functions that use substitu-
tion matrices like the ones of the PAM or BLOSUM family are used (for more
information see Altschul 1991). The score obtained from an optimal alignment
computed with an algorithm like Needleman Wunsch (Needleman & Wunsch
1970) using such a substitution matrix, indicates how likely the sequences are
to be derived from a common ancestor. A more complex variant of an alignment
algorithm used to fold an RNA molecule was introduced by Zuker & Stiegler
(1981). The scoring function used, considers free energy associated with certain
structure elements. As a result, the computed alignment and its score represent
the most stable conformation and its free energy value.

In our case, we are interested in an alignment of two DNA oligonucleotides
that we can interpret as a virtual secondary structure that the two molecules
could possibly form. We call this structure virtual, because the two DNA
molecules are not expected to form this structure in solution. Instead, the

19
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score of the alignment obtained by the algorithm presented in this work will be
used as a lower bound for the free energy associated with the DNA duplex that
will form in real life. This is possible, because the algorithm uses a simplified
model of the hybridization energy and takes only energetically favorable terms
into account disregarding destabilizing structural elements.

As described in chapter 2.1, the nearest neighbor model can be used to
approximate hybridization energy of two short DNA sequences. The key point
of this model is the idea, that the energy contribution of every base pair depends
on the two neighboring base pairs. Every base pair, except for the first and last
pairs in the alignment, is part of two stacks and contributes twice to the overall
energy. This effect is not considered by some simpler models, which rely on edit
distance or other sequence composition independent measures.

3.2 Nearest Neighbor Alignment Algorithm

T-gap insertion-deletion-like metrics, introduced by D’yachkov et al. (2006), can
be used for DNA hybridization thermodynamic modeling. In this section we
present a slightly modified version of their algorithm and show how it is used to
obtain an upper bound for the hybridization energy of two oligonucleotides. The
resulting algorithm computes the score for the lowest scoring Nearest Neighbor
Alignment (NNA), that can be interpreted as an upper bound for the Gibbs
energy ∆rG

◦ of DNA duplex formation.

First we the define the nearest neighbor score NNscore, which is a score
for the thermodynamic stability of a sequence when being aligned to its reverse
complement.

Definition 3.2.1 NNscore of a sequence s with length l is the sum of the
thermodynamic weights of all pairs, assuming a perfect matching Watson-Crick
duplex.

NNscore(s) =
l−1∑
i=1

F (si, si+1) (3.2.1)

Here, F (si, si+1) denotes the free energy associated with the naturally occuring
stacked pair 5′si, si+13

′. For example, F (G, A) denotes the free energy associated
with the stacked pair 5′GA3′

3′CT5′ . Table 3.1 shows the free energy parameters in kcal
mol

taken from (SantaLucia 1998).

Scoring Scheme: The total score of the alignment is the sum of NNscores
of all matched stretches with a minimum length of two, i.e. it is the sum of all
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Table 3.1: Thermodynamic weights of stacked pairs

F A C G T

A -1.00 -1.44 -1.28 -0.88
C -1.45 -1.84 -2.17 -1.28
G -1.30 -2.24 -1.84 -1.44
T -0.58 -1.30 -1.45 -1.00

matched dinucleotides scored by the nearest neighbor model. Mismatches and
indels do not contribute to the score. They would only lead to destabilizing
structures and can be omitted for the computation of an lower bound for the
Gibbs energy. An Example for a Nearest Neighbor Alignment and its score can
be seen in Figure 3.1.

The use of this scoring scheme is motivated by the following observations

• Indels or mismatches cannot increase the stability of the duplex.

• Edit distance does not take sequence composition into account.

• Position dependence of mismatches, as proposed by Pozhitkov & Tautz
(2002), Zhang et al. (2007), is implicitly taken into account. Mismatches
at the beginning or end of the sequences will disrupt only one stacked
pair, whereas mismatches in the middle disrupt two stacked pairs.

• Many non-contiguous mismatches between two sequences lead to a high
number of destabilizing structures. This is reflected by the Nearest Neigh-
bor Alignment approach, as every mismatch disrupts two stacked pairs,
increasing the resulting score accordingly.

AAGA-TGTC---CCCGAAAGGTCAGTATAC

|||| ||| ||| ||||||||||||

AAGAG-GTCTAT--CGA-AGGTCAGTATAC

Figure 3.1: An example of a Nearest Neighbor Alignment of two
sequences of length 25. With a score of -22.3 it is the lowest-
scoring alignment of the two sequences.

Given the scoring scheme, we need an algorithm which computes the lowest-
scoring alignment of two sequences. The used algorithm is based on dynamic
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programming and is guaranteed to find an optimal scoring alignment. Simi-
lar to other dynamic programming alignment algorithms, the NNA algorithm
builds up an optimal alignment using previous solutions of optimal alignments
of smaller subsequences.

Given two sequences x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), we will
compute a matrix M : {1, 2, . . . ,m} × {1, 2, . . . , n} → R, where M(i, j) equals
the best score of the alignment of the two prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , yj).
As a sequence of length one cannot be part of an alignment with stacked
pairs, M is initialized with zeros in the first row and column, M(i, 1) = 0
for i = 1, . . . ,m and M(1, j) = 0 for j = 1, . . . , n. M(i, j) is computed recur-
sively from the values of M(i−1, j), M(i, j−1), or the values on the upper left
diagonal from M(i, j), depending on the length of the longest common suffix of
(x1, . . . , xi) and (y1, . . . , yj).

There are three different ways an existing alignment can be extended to
(i, j). Table 3.2 gives an overview.

1. xi can be aligned to a gap, the score for M(i, j) is taken from M(i− 1, j)

2. yj can be aligned to a gap, the score for M(i, j) is taken from M(i, j − 1)

3. xi and yj can be matched to each other

The third case requires (x1, . . . , xi) and (y1, . . . , yj) to have a longest common
suffix (lcs) of at least two, because stretches of matching bases of the length
one do not contribute to the nearest neighbor score. For the third case, the
number of bases r of the lcs that should be matched to maximize the score,
has to be computed for 2 ≤ r ≤ lcs. The score for M(i, j) will be taken from
M(i− r, j − r). How to find r, and why r is not always the same as lcs will be
shown later in this section.

Table 3.2: Three ways of extending an existing alignment to (i, j)

(1)
(x1,...,xi−1)
(y1,...,yj)

xi
-

align xi to a gap

(2)
(x1,...,xi)

(y1,...,yj−1)
-
yj

align yj to a gap

(3)
(x1,...,xi−r)
(y1,...,yj−r)

(xi−r+1,...,xi)
(yj−r+1,...,yj)

match the suffixes of length r of
x and y to each other
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This gives rise to the following main recursion for filling the Matrix M

M(i, j) = min


M(i− 1, j)
M(i, j − 1)
D(i, j)

, (3.2.2)

where

D(i, j) =

{
0 if lcf < 2
min

2≤r≤lcf

(
NNscore(x[i−r+1,i]) + M(i− r, j − r)

)
else

(3.2.3)
with lcf being the length of the longest common suffix of x1, . . . , xi and y1, . . . , yj.
The notations x[i−r+1,i] and xi−r+1, . . . , xi are equivalent and may be used in-
terchangeably throughout this work.

The full algorithm, closer to how it is actually implemented, is shown in
Algorithm 1. For two sequences x and y, nna(x, y) denotes the score of the
optimal Nearest Neighbor Alignment of x and y.

The algorithm only matches stretches of length two or longer and adds scores
as defined in the nearest neighbor model for every matched dinucleotide. Hence
the name Nearest Neighbor Alignment (NNA). We are not interested in the
actual alignment, but for verification and illustration purposes, we have also
implemented a backtracking algorithm using a seperate traceback matrix. For
every (i, j) this matrix holds the information, about which case of Equation 3.2.2
holds the minimum. In the case of D(i, j), the value of its minimizer is saved.

Example 3.2.2 Let x = GAAAGG and y = CGAAGG be two sequences with length
m = n = 6. After running the NNA score algorithm as described in Algorithm
1, the score matrix looks as depicted in Table 3.3. The gray fields are those of
matched bases contributing to the final score. The score of the best NNA of
x and y is −4.42, the value in M(6, 6). For descriptive purposes we also show
the traceback matrix TB for this example, Table 3.4. Here the arrows indicate
which value of the three choices in Equation 3.2.2 was the minimum. In the case
of the third one, the number behind the↖ indicates wich value for r minimized
Equation 3.2.3. The resulting alignment is -GAAAGG

CGA-AGG
in single-base form, and, to

better see the matched stacked pairs, in dinucleotide form -- GA AA AA AG GG

CG GA A- -A AG GG
.

Example 3.2.2 also shows why we have to take the minimum for all 2 ≤ r ≤
lcs in Equation 3.2.3. When reaching (i, j) = (5, 5) it is best to match only the
last two bases, even though the lcs has a length of three. In the same way, it is
better to match only the last three bases, when at (i, j) = (6, 6) instead of the
whole lcs of 4. At that point, matching the whole lcs results in --GAAAGG

CG--AAGG
, with a



24 CHAPTER 3. NEAREST NEIGHBOR ALIGNMENT

Algorithm 1: NNA score
input : two sequences x, y with lengths m, n
output: score of best Nearest Neighbor Alignment

initialize first column of M : M(i, 1) = 0 for i = 1, . . . ,m
initialize first row of M : M(1, j) = 0 for j = 2, . . . , n
for i=2 to m do

for j=2 to n do
d = 0.0
d tmp = 0.0
score suf = 0.0
if xi == yj then

r = 1
while i ≥ r and j ≥ r and xi−r == yj−r do

+ + r
score suf += F (x(i−r+1), x(i−r+2))
if i < r or j < r then

d tmp = score suf
else

d tmp = score suf + M(i− r, j − r)
endif
d = min(d, d tmp)

endwhile
M(i, j) = min(M(i− 1, j), M(i, j − 1), d)

else
M(i, j) = min(M(i− 1, j), M(i, j − 1))

endif

endfor

endfor
return M(m, n)
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Table 3.3: M matrix after running the NNA score algorithm with x = GAAAGG

and y = CGAAGG. Gray fields show matched bases.

M C G A A G G

G 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 0.0 -1.3 -1.3 -1.3 -1.3
A 0.0 0.0 -1.3 -2.3 -2.3 -2.3
A 0.0 0.0 -1.3 -2.3 -2.3 -2.3
G 0.0 0.0 -1.3 -2.3 -2.58 -2.58
G 0.0 0.0 -1.3 -2.3 -2.58 -4.42

Table 3.4: Traceback matrix after running the NNA score algorithm with x =
GAAAGG and y = CGAAGG. Arrows indicate where the value in the corresponding
M field derived from. In the case of the↖, the number behind it indicates wich
value for r yielded the minimum

TB C G A A G G

G ← ← ← ← ←
A ↑ ↑ ↖ 2 ← ← ←
A ↑ ↑ ↑ ↖ 3 ← ←
A ↑ ↑ ↑ ↑ ↑ ↑
G ↑ ↑ ↑ ↑ ↖ 2 ←
G ↑ ↑ ↑ ↑ ↑ ↖ 3
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score of −1.0− 1.28− 1.84 = −4.12. Matching only the last three bases, allows
the A at y3 to match with x2, which results in a lower score of −4.42, as there
is a preceding G in both sequences. Figure 3.2 shows the two alignments.

--GAAAGG

||||

CG--AAGG

-GAAAGG

|| |||

CGA-AGG

Figure 3.2: Two examples of Nearest Neighbor Alignments of x = GAAAGG and
y = CGAAGG. left: Matching the whole lcf , score is -4.12 right: Matching only
the last three bases results in the lowest scoring alignment, score is -4.42

3.2.1 Runtime

For two sequences with the same length of k, the matrix M has k2 fields. In
the worst case, the alphabet size of the concatination of both sequences is one,
i.e. both sequences are stretches of the same single nucleotide. In this case, the
lcs in Equation 3.2.3 will always be min(i, j) at every D(i, j). The worst-case
running time is thus O(k3). However, for our application to DNA sequences
this is a very unlikely scenario. If we assume two sequences independently
generated from the i.i.d. model, the probability of having a lcs of length 0 is
P (lcs = 0) = 3

4
, P (lcs = 1) = 1

4
, P (lcs = 2) = 1

16
, P (lcs = n) = 1

4n . The
expected length of a lcs at field M(i, j) is thus

E(lcs) = 1
1

4
+ 2

1

16
+ 3

1

64
+ . . . + n

1

4n
=

n∑
i=1

n

4n
(3.2.4)

where n is the minimum of i and j. As this sum quickly converges to 0.44, it
is sufficient to assume this value as E(lcs) in every field of the matrix. As a
result, for two independent i.i.d. model sequences the expected run time is of
the order of 1.44 · k2.
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T----TGA-CGACGGACCC----AGC--AGTGATGC-TAA-TCT-CAGC----GCTCCGCTGA

||| |||| ||| || || || || || |||||

AATTCTGAT------ACCCGTGGAGCGC---GA-GCC-AAC-CTG--GCAAAT-CTCCG----

TTGACGAC---GGACCCAGCAGTGATGCT-AATCTCAGC-GCTCCGCTGA

|||||||| || ||||||||||||| |||||||| |||||||||

TTGACGACCTT-GA--CAGCAGTGATGCTC-ATCTCAGCAGCTCCGCTG-

Figure 3.3: Two examples of a NNA traceback and the resulting virtual sec-
ondary structure of two sequences x and y. Both examples use sequences of
length k = 44, the same sequence x is used in both cases. The minimum possi-
ble NNA score, nna(x, x), is -65.85. left: Sequence y has only little similarity to
x, resulting in a NNA score of -26.04 from 16 contributing base pairings. right:
Sequence y has a higher degree of similarity, resulting in a NNA score of -51.67
from 35 contributing base pairings.
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3.3 Thresholded NNA

In the previous section we described an algorithm, which will compute a lower
bound on the Gibbs energy of a duplex of two oligonucleotides. When comput-
ing probe qualities, the main question is whether a probe and a given sequence
exceed a certain hybridization stability. If a score stays above a threshold, it is
assumed that no cross-hybridization will occur at that point. The exact score
is not of interest, as long as it stays below the threshold. When looking at
Figure 3.3, it can be seen that the traceback of lower scoring alignments follows
fields on or close to the diagonal. Only matches contribute to the final score.
Thus, fields in the matrix that are off-diagonal are less likely to be part of a
traceback of a low-scoring alignment.

Other alignment algorithms based on ideas by Needleman & Wunsch (1970),
Fickett (1984), Waterman (1989) exploit a similar behaviour using a banded
approach, e.g. FASTA (Pearson 1990). These algorithms limit the computed
fields of the matrix to the diagonal and the surrounding band of width W . The
traceback is forced to stay within the given band, limiting the difference of the
numbers of indels of both sequences. This technique reduces the computation
time to O(NW ), where N is the length of the shorter of the two sequences. For
sequences with sufficient similarity, given the choice of W , the same scores and
alignments are returned as the rigorous Smith-Waterman calculation (Pearson
1991).

The method presented in this section uses a similar approach to reduce the
number of fields of the DP matrix that have to be computed. Given a threshold
score t, we do not want to fill fields of the DP matrix, that cannot be part of a
traceback with a score ≤ t. By the nature of the score matrix M , this means,
that we can, depending on sequence composition and value of t, drop fields with
a certain distance from the diagonal.

Given two sequences x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), let R(i, j)
be the value by which the score can decrease at most by aligning x[i,m] and y[j,n].
Clearly, the score of an alignment of x[i,m] and y[j,n] is higher or equal to the
maximum of NNscore(x[i,m]) and NNscore(y[j,n]), and hence

R(i, j) = max(NNscore(x[i,m]), NNscore(y[j,n])). (3.3.1)

In order to estimate the lowest possible score that can be reached from a
field (i, j) in the DP matrix, we can add M(i, j) and R(i, j), but we also have
to take the decrease of the score into account, that can result from traversing
over all possible values of 2 ≤ r ≤ lcf in Equation 3.2.3.
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To understand how this effects the score, we look closer at the algorithm.
Let M(i, j) be the current field in the matrix. The longest common suffix of
x1,i and y1,j is lcs. Let r be the value minimizing Equation 3.2.3 and r < lcs.
We want to estimate how much is gained by matching only the last r bases
instead of lcs. When matching the last lcs bases, the score will be M(i −
lcs, j − lcs) + NNscore(x[i−lcs+1,i]). When matching the last r bases, the score
will be M(i − r, j − r) + NNscore(x[i−r+1,i]). Since picking r < lcs resulted
in a lower score, M(i− r, j − r) must contain score contributions not found in
M(i− lcs, j − lcs) + NNscore(x[i−lcs+1,i−r]). This can be only the score of the
base pair xi−lcs or yj−lcs. When x[i−lcs,i−r] can be matched to y[1,j], gaps are
introduced after xi−r. The same applies to sequence y. Ultimately, the number
of stacked pairs stays the same, but one pair of the longest common suffix is
exchanged for an energetically more stable pair. Figure 3.4 shows the stacked
pairs that differ.

Figure 3.4: Two ways of matching the suffix of sequence x at M(i, j). Sequence
y is not shown. top: The lowest score resulted from matching the whole of the
lcs of x and y. bottom: The lowest score resulted from matching only the last
r bases of x and y, with r < lcs. Stacked pair contributions by which both
versions differ are marked by red lines.

As a result, for the estimation of the minimal score that can be reached
from a field M(i, j), this means, that in case of a lcs > 1 for x[1,i] and y[1,j]

the possibility of an additional decrease of the score by the effects described
above is given. The additional decrease can be as much as 1.66, as this is
the maximum difference of entries in the scoring matrix shown as Table 3.1.
We define the lowest possible score that can be reached from an index i, j as
L(i, j) = M(i, j) + R(i, j) − 1.66. By this definition, we can be sure, that for
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i ≤ j (upper right corner of the matrix) all values of L(k, l) for k < i OR l > j
(to the right OR above) will be greater or equal to L(i, j). Similarly, for i ≥ j
all values of L(k, l) for k > i OR l < j will be greater or equal to L(i, j).

When filling out the matrix M , we can make use of these observations and
ignore fields that cannot be part of the traceback of the best alignment and as
such do not contribute to the minimum of Equation 3.2.2. We can also stop the
computation, when we know that the lowest possible score will not fall below a
given threshold.

Algorithm 2 is an extension of the NNA algorithm, such that less fields of
the DP matrix have to be computed, when a score threshold is given. To save
computations, we do not compute the whole R matrix containing the lowest
possible score contribution from x[i,k] and y[j,k] for a given position i, j. In-
stead, we compute MinScoreX and MinScoreY , which hold the minimum
score a suffix can contribute to the overall score from sequence x, and y re-
spectively. After computing the score M(i, j) we can compute a lower bound
for the final score an alignment passing through field i, j can have, by adding
max(MinScoreX(i), MinScoreY (j))−1.66 to it. The variable start row holds
the index of the first row of the previous column which has a lower bound for
the final score below or equal to the given limit. This means, that in the current
column rows before start row cannot be part of the traceback, hence, the index
of i starts at start row. If we have computed one or more fields of a column and
reach a field with a lower bound for the final score higher than the threshold, we
can ignore the rest of the column for the same reason, and start with the next
one. If we do not have a single field in the column from which the threshold
could be reached, we can stop the algorithm and return 0.0. Figure 3.5 shows
two examples, visualizing which fields of the DP matrix have to be computed,
before returning the result.

This method provides a good trade-off between bounding the DP matrix
and introducing more computational effort. These simple modifications do not
introduce a significant overhead to the computation, but allow to discard parts
of the matrix fields. The improvement increases with higher differences between
threshold and real score.
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Algorithm 2: NNA score - bounded
input : two sequences x, y with length k, and threshold limit
output: score of best Nearest Neighbor Alignment or 0.0 if score > limit

MinScoreX(i) = NNscore(x[i,k]) for i = 2, . . . , k
MinScoreY (i) = NNscore(y[i,k]) for i = 2, . . . , k
initialize first column of M : M(i, 1) = 0 for i = 1, . . . , k
initialize first row of M : M(1, j) = 0 for j = 2, . . . , k

start row = 2
for j=2 to k do

start row set = False
for i=start row to k do

d = 0.0
d tmp = 0.0
score suf = 0.0
if xi == yj then

r = 1
while i ≥ r and j ≥ r and xi−r == yj−r do

+ + r
score suf += F (x(i−r+1), x(i−r+2))
if i < r or j < r then

d tmp = score suf
else

d tmp = score suf + M(i− r, j − r)

d = min(d, d tmp)

M(i, j) = min(M(i− 1, j), M(i, j − 1), d)
else

M(i, j) = min(M(i− 1, j), M(i, j − 1))

best score = M(i, j)+max(MinScoreX(i), MinScoreY (j))−1.66
if start row set == False then

if best score <= limit then
start row = i
start row set = True

else
if best score > limit then

break

if start row set == False then
return 0.0

return M(k, k)
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Figure 3.5: Two examples of the M matrix computed with the bounded version
of the NNA algorithm. The same sequences as in Figure 3.3 are used and the
score threshold is -35.0. Only the dark gray fields of the matrix have to be
computed when looking for an alignment with a score less or equal to the given
limit of -35.0. left: The two sequences cannot be aligned with an NNA score
≤ threshold because they are not similar enough; 0.0 is returned. right: The
NNA score (−51.67) falls below the limit and is returned.



Chapter 4

Filtering Using the Heaviest
Common Factor Approach

In the previous section, we have shown an algorithm to quickly estimate a lower
bound for the Gibbs free energy of the duplex formation of two DNA sequences.
This lower bound is then used when computing the specificity of a probe. The
simplest but computationally most expensive way, woud be to align a probe to
all non-target positions of the genome and calculate the NNA score. For large
genomes and a high number of probes, this approach becomes infeasible, as the
computational effort is too large. When looking at the scores, one will observe
that in general the vast majority is too high to indicate cross-hybridization. In
this section we introduce a filtering method to reduce the number of scores to be
computed a priori, by only considering positions in the genome, where chances
of obtaining a low NNA score are higher.

Our filtering method is based on the observation that low-scoring alignments
have thermodynamic stable contiguous matches, which undercut a certain score
threshold. Therefore, we look for stable seeds between query and database and
apply the NNA algorithm to only those positions.

4.1 Similar Approaches

In most large scale database search and filtering algorithms, the edit distance
is used to rate similarity of a query sequence and a given database. A lot of
research has been put into developing efficient filtering algorithms for problems
of this type. For example, QUASAR by Burkhardt et al. (1999) is a filtering
approach that finds all local approximate matches of a query sequence in a

33
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database. It is based on the following observation: if two sequences have an
edit distance below a certain bound, one can guarantee that they share a certain
number of q-grams (Jokinen & Ukkonen 1991, Ukkonen 1992). The QUASAR
implementation uses a suffix array as index structure and shows significant
improvements in CPU time, when compared to BLAST. However, it is designed
to quickly detect sequences with strong similarity (>= 94% in the experiments)
and it is not applicable for searching for occurences with edit distances as high
as 75%. Fast programs like BLAST (Altschul et al. 1990, 1997) and FASTA
(Pearson 1990) also use filtering techniques. For a given query sequence, BLAST
performs a linear scan of the database searching for short substrings that also
appear in the query. These hits are then extended to find longer high scoring
matches. Similarly, FASTA determines all exact matches of length k between
a query and a sequence, these exact matches are called hot-spots. Hot-spots
in close proximity to each other can then be merged to larger alignments by
applying a banded Smith-Waterman algorithm. Both BLAST and FASTA are
not guaranteed to find all relevant matches of the query in the database, they
are heuristics and as such are not lossless. However, sensitivity and specificity
can be estimated for a given set of parameters.

4.2 Heaviest Common Factor

Existing algorithms like FASTA and BLAST use a seed and extent approach
and, in the case of DNA sequences, define a seed to be a substring of query and
database with a length exceeding a given threshold. Rahmann (2003) goes as far
as introducing the longest common factor as a measure of specificity of a probe,
but also allowing gaps. Chen et al. (2006) take the same approach. In this
section we introduce the heaviest common factor (HCF), a weighted substring
of two sequences, which we will use in our own seed and extent approach.

Our filtering method exploits the correlation between the NNA score nna(p, t)
of a probe p and a target t and the weight of the heaviest common factor of p
and t.

Notation: We write s C t if s is a factor of t; the cases that s is empty or that
s = t are allowed.

Definition 4.2.1 (Heaviest common factor) A common factor of two strings
p and t is a string s with both s C p and s C t. A common factor is a heaviest
common factor if no energetically more stable factor exists. We write

hcf(p, t) := min{NNscore(s) : s C p and s C t} (4.2.1)
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for the weight of the heaviest common factor.

Note the minimum in the definition; the weight is the sum of free energy
contributions from stacked pairs (which are all negative), and the factor which
can contribute most to the overall energy associated with the duplex formation
of p and t is called the heaviest common factor. The heavier a common factor,
the lower its score.

Using the heaviest common factor as an indicator for cross-hybridization is
motivated by the following observations:

• duplex formation needs a sufficiently stable core to initiate binding.

• low scoring Nearest Neighbor Alignments usually have relatively heavy
common factors, and

• depending on sequence composition, the heaviest common factor need not
be the longest.

A---CGCGTAG-TC-

||| ||

-ACTCGC--AGG--C

(a) hcf = −4.41, factor is
CGC

AC-GCGT-AGTC

|| ||| |||

ACA-CGTC-GTC

(b) hcf = −3.61, factor is
CGT

A--CGCGTAG--TC

||||||

-TG-GCGTAGAG--

(c) hcf = −7.71, factor is
GCGTAG

Figure 4.1: Examples of sequence pairs, their heaviest common factor hcf and
the resulting alignment.

4.3 Algorithm Outline

Here we want to present the basic outline of our filtering mechanism. We are
given a set of genomic sequences D. For a given probe p, with a probe - target
NNA score of t, find all heaviest common factors of p and d, with d ∈ D and a
weight below a given threshold t. A heaviest common factor conforming these
requirements is called a seed. As we are given a large set of probes P with
corresponding thresholds T to check against D, we will use q-gram indices for
P and D and process all probes simultaneously. The outline is:

1. Generate q-gram index for all probes and for all sequences

2. Generate list of possible seeds
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3. Iterate over seeds and use q-gram indices to find occurences in probes and
sequences

The maximum length of seeds is given by a variable qmax. The minimum length
depends on the threshold Ti for a given probe Pi. For example, if Ti is −4.5,
there will not be a factor ≤ −4.5 with a length ≤ 4. The lowest scoring 3-grams
(GCG and CGC) have a score of −4.41.

4.4 Q-gram Indices for Probes & Sequences

For a given seed s, which is simply a short string of length l, we need to find
a subset P ∗ of our given probe set P with s being a factor of p for all p ∈ P ∗.
We also need to know the exact position in p where s starts. In the same way,
we want to find all occurences of s in the given sequences D. To accomplish
this, we build seperate q-gram indices over all probes in P and all sequences in
D. The length l of a seed is not the same for all seeds, it depends on sequence
composition. The seeds can vary in length, qmin ≤ l ≤ qmax. To account for
that, we could build an index for every possible value of l, but this would require
large amounts of memory. For example, for the simple case of D containing only
one sequence d with length |d| and qmin = 2, this would require

space = 42 + (|d| − 1) + 43 + (|d| − 2) + . . . + 4qmax + (|d| − qmax + 1)

= (qmax− 1)|d|+ (4qmax)

qmax−2∑
i=0

1

4i

≤ (qmax− 1)|d|+ 1.33 · 4qmax.

This can be interpreted as the number of pointers and positions we need to
retain in memory.

To save memory, we can take advantage of the fact that every q-gram of
length q will also be indexed in a q-gram index for q + 1. For all q-grams
of length q but the last one in a sequence, there is a q-gram of length q + 1
containing it as a prefix. This observation allows us to only build a q-gram
index for qmax and still be able to find shorter q-grams by looking for longer
q-grams starting with them. Special care has to be taken to deal with shorter
q-grams at the sequence ends. These have to be indexed seperately, because
they will not be indexed as a prefix of a longer q-gram. For the above example,
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the required space will be reduced to

space = 42 + 1 + 43 + 1 + . . . + 4qmax + (|d| − qmax + 1)

= (|d| − qmax + 1) + (qmax− 2) + (4qmax)

qmax−2∑
i=0

1

4i

≤ |d| − 1 + 1.33 · 4qmax.

It is important to note that there is no factor in front of the |d|, which results
in significant space savings for large sequences.

Q-gram index notation: From now on qgiPq will denote a q-gram index over
all sequences in the sequence set P . Indexed q-grams have the length q. If
q < qmax, the indexed q-grams will only be the ones at the last q positions of
the sequences in P . When the sequence set is not relevant or clear from the
context it is ommitted. When no subscript is given, qgiP indicates the set of
all qgram-indices qgiPi for i = qmin, . . . , qmax.

When querying the q-gram index for a sequence s with length |s| < qmax,
we have to consider all indexed q-grams with prefix s. For example, when |s| =
qmax− 1, all occurrences of s are qgiqmax(sA) ∪ qgiqmax(sC) ∪ qgiqmax(sG) ∪
qgiqmax(sT) ∪ qgiqmax−1(s). Here, sA denotes a string resulting from appending
A to s. Recursively, this scheme can be applied to shorter sequences to find
their occurrences. In the indices, all q-grams are sorted lexicographically. This
provides an effortless access to all q-grams sharing the same prefix. The first
q-gram with length q and s as a prefix is expanded by As until it has length
qmax. Starting with this q-gram, the next 4qmax−|s| q-grams all share the same
prefix s. All occurrences of string s in a set of sequences P , are given by

hit(s) =

{
qgiqmax(s) if |s| = qmax
hit(sA) ∪ hit(sC) ∪ hit(sG) ∪ hit(sT) ∪ qgi|s|(s) if |s| < qmax

Here the superscript P is omitted, as it is clear that the indices are build over
the sequence set P .
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Table 4.1: Example for q-gram indices for the two sequences P =
{ACGCTCGT, GGTCGCTC}. Hits are tuples of the sequence number and position
at which the q-gram occurred, both starting at 0. Here only non-empty rows,
i.e. q-grams that actually occur in the sequences, of the indices are shown. In
the implementation, all possible q-grams are indexed. The left part of the table
shows three seperate q-gram indices. In the right half, only for q = qmax all
q-grams are indexed, and for shorter q-grams only those occurrences which are
not prefixes of already indexed longer q-grams, are indexed.

full indices for 2 ≤ q ≤ 4 full index for q = 4 and indices for sequence ends
index qgram hits index qgram hits
qgi4 ACGC (0, 0) qgi4 ACGC (0, 0)

CGCT (0, 1), (1, 3) CGCT (0, 1), (1, 3)
CTCG (0, 3) CTCG (0, 3)
GCTC (0, 2), (1, 4) GCTC (0, 2), (1, 4)
GGTC (1, 0) GGTC (1, 0)
GTCG (1, 1) GTCG (1, 1)
TCGC (1, 2) TCGC (1, 2)
TCGT (0, 4) TCGT (0, 4)

qgi3 ACG (0, 0) qgi3 CGT (0, 5)
CGC (0, 1), (1, 3) CTC (1, 5)
CGT (0, 5) qgi2 GT (0, 6)
CTC (0, 3), (1, 5) TC (1, 6)
GCT (0, 2), (1, 4)
GGT (1, 0)
GTC (1, 1)
TCG (0, 4), (1, 2)

qgi2 AC (0, 0)
CG (0, 1), (0, 5), (1, 3)
CT (0, 3), (1, 5)
GC (0, 2), (1, 4)
GG (1, 0)
GT (0, 6), (1, 1)
TC (0, 4), (1, 2), (1, 6)
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4.5 Iterating Over Possible Seeds

In the previous section, we introduced q-gram indices and how they can be used
to find all occurrences of a short string in an indexed set of sequences. We will
make use of these indices, when looking for common factors between the set of
probes and the set of genomic sequences.

Our filtering method follows a seed and extend approach, where seeds are
substrings of probe and target which can contribute to the NNA score more
than a certain threshold. Every seed is given a weight, which corresponds to
its free energy contribution. We generate a list of all possible q-grams for
qmin ≤ q ≤ qmax and sort them ascending by its weight, i.e. the q-gram with
the highest contribution to duplex stability comes first. Table 4.2 shows a list
of weighted q-grams for 2 ≤ q ≤ 11.

For every probe Pi we define a weight threshold Ti, which determines the
maximum score a seed can have when looking for common seeds of Pi and
the database D. This Ti is defined as a fraction of the NNA score of Pi and its
intended target nna(Pi, Pi). For example, if a probe and its intended target have
a NNA score of −59.20, then the maximum score for a seed will be expressed
as w · (−59.0). Here w can be in the range of 0 ≤ w ≤ 1. Small w will result in
a greater number of seeds that will be considered which in turn leads to more
positions in the database that will have to be verified. In the above example, a
w of 0.1 will lead to a threshold of −5.92, the last possible seed to be considered
is then GCCC with a score of −5.92.

The whole filtering process can be summarized by the following steps:

• Read database D and build q-gram index qgiD

• Read probes P , build q-gram index qgiP and calculate seed thresholds T

• Generate list of possible seeds and sort by weight

• For every p ∈ P

• For every occurrence of a factor of p and D with length > qmax,
compute NNA score of probe p and subsequence of D at that position

• For every seed s

• For every p ∈ P containing s and seed threshold ≥ seed weight

• For every occurrence of s in D, compute NNA score of probe p
and subsequence of D at that position
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Table 4.2: Some of 5,592,400 q-grams with 2 ≤ q ≤ 11 ordered descending by
score contribution.

number q-gram index position sequence length weight
1 1677721 CGCGCGCGCGC 11 -22.05
2 2516582 GCGCGCGCGCG 11 -22.05
3 2464153 GCCGCGCGCGC 11 -21.72
4 2513305 GCGCCGCGCGC 11 -21.72
...

...
...

...
...

2091291 4115044 TTGTAGGCGC 10 -14.24
2091292 55513 AAATCGATCGC 11 -14.24

...
...

...
...

...
5425215 2095664 CTTTTGGAT 9 -9.75
5425216 1050560 CAAAACTTAA 10 -9.75

...
...

...
...

...
5451275 2071296 CTTGCGT 7 -9.58
5451276 565760 AGAGGAGA 8 -9.58

...
...

...
...

...
5589949 4115456 TTGTATA 7 -5.93
5589950 2441216 GCCC 4 -5.92

...
...

...
...

...
5592399 786432 AT 2 -0.88
5592400 3145728 TA 2 -0.58

D
p

s

nna

p

s

nna

Figure 4.2: One step during filtering. Probe p contains seed s, and NNA scores
at positions of s in the sequence set D are computed. Nearest Neighbor Align-
ments are only computed between regions in the boxes.
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4.6 Avoiding Redundant Computations

When iterating over the list of sorted seeds, we will reach seeds that are factors
of seeds that had been considered in an earlier iteration. In practice this means,
that for a seed s redundant computations will be made if we simply compute
NNA scores of all hitP (s) with hitD(s) for a probe set P and a target sequence
set D. Figure 4.3 illustrates an instance of this problem.

AGTGTCGATCGATTACGCATAACTCGAAGCGATCG

  AGTCGACAC          AGTCGACAC
   |||||               ||||

p p

D

s sredundant

Figure 4.3: Example for redundant computation of NNA score. Current seed
s = TCGA. Probe p contains s and NNA scores of p and sequence D are computed
for those positions where s in p matches s in D. The seed GTCGA will have been
processed earlier in the course of the algorithm and the NNA score of p and D
at the first occurrence of s will have already been computed.

Whenever probe and sequence have the same base before or after the seed,
the NNA score will have already been computed. For random sequences from
the i.i.d. model we can quantify how often this will happen for a given seed s.
The probability that the base coming directly before the seed is different in the
probe and the sequence is 3/4, it is also 3/4 for the base just after the seed.
As the two positions are independent, the joint probability is 9/16. This means
that the probability of having the same base before or after the seed is 7/16.
Almost half of the NNA scores need not to be computed again.

In order to avoid these redundant computations, we simply check the posi-
tions before and after the seed in the current probe and at the current hit in
the sequence set for identity. Is the same base before or after the seed in probe
and sequence present, we can skip the NNA computation and proceed with the
next hit.
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Chapter 5

Computation of Probe Qualities

In the previous two sections we introduced the NNA score, an upper bound for
the free energy of probe - target hybridization, and a seed and extend filtering
approach to speed up the computation of NNA scores for a large set of probes
versus a database. In this section we motivate the introduction of a cross-
hybridization potential, which we interpret as a specificity measure, and use it
to rank the given probes by their quality.

During a microarray experiment, the target DNA sequences are placed on
the chip. We assume a high concentration of all targets and an equal distribution
over all probes. We also assume, that when a probe - target pair has a NNA score
greater than a certain threshold, hybridization can occur. This threshold is a
variable and depends on the sequence composition of the probe and a free energy
value ∆E given by the user. This ∆E is the minimum difference of NNA scores
between probe - intended-target and probe - unintended-target that eliminates
the chance of cross-hybridization. The intended target and unintended targets
compete for the probe on the chip, with the duplex of probe and intended target
having the greatest stability. Thus, it is reasonable to define the threshold as
nna(probe, probe) + ∆E, i.e. the free energy of probe - intended-target duplex
raised by ∆E. For example, if a probe and its intended target have a NNA
score of −65.30, and ∆E is 30.0, then all NNA scores of probes and unintended
targets smaller than −35.30 are considered to lead to cross-hybridization.

5.1 Cross-Hybridization Potential

For some applications, such as designing tiling arrays, it can be desirable to
also use non-perfect probes, i.e. probes that, given certain criteria, might cross-
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hybridize. Now, we do not only want to distinguish between good (unique, not
cross-hybridizing) and bad (non-unique, cross-hybridizing) probes, but want a
measure of badness for probes that might cross-hybridize. In this section we
introduce such a measure, the cross-hybridization potential, and show how to
compute it.

Definition 5.1.1 (Cross-hybridization potential) Given a probe p and its
NNA scores T = T1, . . . , Tn with the database, and a cross-hybridization thresh-
old cht = nna(p, p) + ∆E, the cross-hybridization potential chp of p is defined
as

chp(p) =
n∑

i=1

{
−Ti + cht if Ti < cht

0 else.
(5.1.1)

Whenever a NNA score indicates cross-hybridization, the amount it falls below
the threshold becomes part of the sum.

We make a few assumptions to justify this measure. Sequences with a NNA
score ≤ cht do not hybridize. The more cht is surpassed, the stronger the
affinity of probe and sequence becomes. All sequences, that are given onto
the microarray are present in a high number of copies which are distributed
evenly over the surface of the chip. We assume the hybridization process to be
stochastic. The probability of hybridization increases linearly with the amount
tne NNA score surpasses the cht, and the number of sequences present.

For example, a probe p with nna(p, p) = −70 and a choice of ∆E = 35
has the chance of cross-hybridizing at seven position in the genome. At every
of these seven positions, the NNA score is around −40, surpassing the cross-
hybridization threshold cht = −70 + 35 = −35 by 5. This leads to a cross-
hybridization potential of chp(p) = 35. For another probe t, with nna(t, t) =
−70 and the same choice of ∆E = 35, there exists one perfect match at a not
intended position with a NNA score of −70 and no other cross-hybridization is
observed. The cross-hybridization potential of t is then chp(t) = 35.

The chps of different probes can only be compared if they were computed,
using the same target sequence set. The scores itself can then be used to rank
the probes by their probability of cross-hybridizing. For the above example, this
means, that p and t have the same probability of cross-hybridizing, whereas a
probe with a lower chp value is less likely to cross-hybridize.
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Experiments

6.1 Data Used

Generated Data: Artificial DNA sequences generated from the i.i.d. model, if
not stated otherwise. For sequences with a desired GC content every base was
drawn independently from its neighbors from the distribution A : 0.5(1−gc), C :
0.5gc, G : 0.5gc, T : 0.5(1 − gc), where gc specifies the desired GC content as
fraction of G + C of all bases of the sequence.

Mycoplasma genitalium: sequence length 580,076 nt; GC content 0.31
(NCBI 2001b)

Human chromosome 21: sequence length 35,449,598; GC content 0.41
(NCBI 2008)

Escherichia coli K12: sequence length 4,639,675 nt; GC content 0.50
(NCBI 2001a)

Mycobacterium bovis BCG Pasteur 1173P2: sequence length 4,374,522
nt; GC content 0.65
(NCBI 2007)

6.2 Influence of GC Content on Scores

Unlike the edit distance, NNA scores are affected by sequence composition, not
only the number of matches or mismatches. In order to assess the influence dif-
ferent GC contents have on the NNA scores, we ran the algorithm on generated
and real data. For every GC content level from 0.25 to 0.75 in steps of size 0.01,
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and every genomic sequence listed in Section 6.1. we performed the following
procedure:

• Pick a random probe of length 50 from the sequence

• Do 100,000 times :

• Compute NNA score for probe and its perfect Watson-Crick comple-
ment (target)

• Pick a random non-target of length 50 from the sequence

• Compute NNA score for probe and non-target

• probe:=non-target

For the synthetic data, instead of picking a random 50mer from a sequence,
a random sequence of length 50 was generated according to the parameters
given by the GC content.

The results are shown in Figure 6.1. Here, the mean and standard deviation
of the results is plotted versus the GC content. There is a linear increase in
the probe - target scores, which is due to the higher chance of energetically
stable pairs, like those containing a G or C. For the probe - non-target scores the
slope of the curve increases with higher GC content, also the standard deviation
increases. The results for the random selected 50mers from the real data sets,
comply with these findings. The higher standard deviation of both scores in
Human chromosome 21 are an artefact of the uneven distribution of Gs and Cs
in the sequence. They accumulate in CpG islands, and are underrepresented in
the rest of the genome (Takai & Jones 2002, Dunham 2005).
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Figure 6.1: Influence of GC content on average scores. Probe-target and probe-
non-target NNA scores for random 50mers with different GC content levels.
Also shown with thicker lines, the results for Mycoplasma genitalium (GC con-
tent of 0.32), Human chromosome 21 (0.41), Escherichia coli K12 (0.51) and
Mycobacterium bovis BCG Pasteur 1173P2 (0.66). For every GC level, the
scores of 100,000 samples are averaged.
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6.3 NNA Score Compared to Edit Distance

We introduced the NNA score as an upper bound for the free energy associated
with the duplex formation of two DNA strands. This measure can then be
used to predict the likelihood of duplex formation between a probe and a target
during a microarray experiment. Currently, the edit distance is an often used
predictor for hybridization. The experiments in this section show how the edit
distance performs versus the NNA score, when compared to a computationally
expensive computed free energy value.

To obtain accurate free energy values, we use the program hybridize, which
is part of unafold, which in turn is part of DINAMelt by Markham & Zuker
(2005). DINAMelt is a software package available on a webserver, which sim-
ulates the melting of one or two single-stranded nucleic acids in solution. It
predicts the melting temperature for a hybridized pair of nucleic acids and
entire equilibrium melting profiles as a function of temperature. For the com-
putation of free energy of a duplex, stacked pairs, interior loops, bulges and
dangling bases at the ends are taken into account, and all possible conforma-
tional states are recursively tested (Dimitrov & Zuker 2004). We modified the
program hybridize, so that it would take the input sequences as command line
arguments, rather than reading them from files. All free energy values are those
of the duplex at a temperature of 37◦C and a Na+ concentration of 1 M and
Mg++ concentration of 0 M.

We picked a random probe of length 10 and computed the edit distance,
NNA score and the free energy to all 410 = 1, 048, 576 possible sequences of
length 10. Figure 6.2 shows the results. In 1, 732 cases hybridize did not return
valid free energy values, for the other cases we plotted edit distance versus free
energy and NNA score versus free energy. It can be seen, that there is a much
more pronounced correlation between NNA score and free energy, than between
edit distance and free energy score. Free energy scores for a certain edit distance
are spread over a large range, and a low edit distance does not necessarily mean
a low free energy value. Similarly, low free energy values appear at high edit
distances. The point cloud for the NNA score is more compact and shows a
linear behaviour.

To assess the performance of the edit distance and the NNA score as a clas-
sifier for probe-target hybridization in microarray experiments, we generate two
more datasets. We now use a longer probe sequence of length 50 and there-
fore have to generate the datasets carefully as to choose sequences with certain
properties. For both datasets, we use the same randomly picked sequence of
length 50 as probe p, with nna(p, p) = −76.63. The two datasets are:
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Figure 6.2: Edit distance and NNA scores versus free energy. Scores were
computed between 10mer TACACGTGCT and all possible 10mers. The top row
shows the edit distance vesrus free energy, bottom row nna score versus free
energy. The left side shows all points, the right side only the mean and standard
deviation.
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• random: Pick random positions of the probe and substitute with a dif-
ferent random base. This dataset has 526,190 unique sequences with edit
distances to the probe between 0 and 15.

• placed: Create random mismatches at either the begining, end or mid-
dle of the probe sequence, or uniformly distribute the mismatches. This
creates sequences that lead to duplexes with dangling ends or matching
blocks. This dataset has 184,874 unique sequences with edit distances to
the probe between 0 and 15.

For every sequence in both datasets we computed the free energy value, edit
distance and NNA score with the probe. The distribution of edit distance and
NNA score versus free energy of both datasets is plotted in Figure 6.3 and Fig-
ure 6.4. Plots showing the point clouds are given in Figure A.1 in the Appendix.
There is a strong linear correlation for both measures for the random dataset.
For the placed dataset, the edit distance shows less correlation and similar free
energy values are spread over multiple edit distances. In contrast, NNA score
shows the same linear correlation for this dataset as for the random dataset.
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Figure 6.3: Heat map showing the distribution of free energy values for the
probe versus dataset random. left : edit distance versus free energy right :
NNA score versus free energy.

To evaluate sensitivity and specificity of NNA score and edit distance as a
classifier for cross-hybridization, we select a free energy value of −46.6 as the
true cross-hybridization threshold, this corresponds to a ∆E of 30. For varying
edit distances from 0 to 15 in steps of 1 and nna scores from 0 to −76.63 in
100 steps, we computed the sensitivity, specificity and false positive rate. The
resulting ROC plots are shown in Figure 6.5. The corresponding specificity
and sensitivity plots are given in the Appendix in Figure A.2. For the random
dataset, both measures show an equal performance, but for the placed dataset,
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Figure 6.4: Heat map showing the distribution of free energy values for probe
versus dataset placed. left : edit distance versus free energy right : NNA score
versus free energy.

the performance of the NNA score increases, while the performance of the edit
distance decreases. This is a direct result of the lower correlation of edit distance
and free energy for this dataset (see Figure 6.4).
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Figure 6.5: ROC curves for edit distance and nna score as classifier for a free
energy value below −46.6. left : probe versus random dataset right : probe
versus placed dataset

6.4 NNA Score Versus Kane’s Criteria

The experiments of the previous section have shown that the NNA score is
highly correlated with free energy and that the edit distance is only of limited
use, when predicting free energy. Thus, Kane et al. (2000) use an additional
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criteria to define cross-hybridizing probes. For 50mers they define the following
rules: targets with > 75–80% sequence similarity or contiguous stretches of > 15
identical bases will lead to cross-hybridization. With the following experiments
we want to evaluate the performance of Kane’s criteria and compare it with the
NNA score.

Dataset: We combine the two datasets random and placed of section 6.3 to
one dataset random+placed.

For every probe-target pair, the free energy, edit distance, length of the
longest common substring and NNA score is computed. Free energy values are
obtained by the same means as in section 6.3. We want to evaluate the perfor-
mance of Kane’s criteria and the NNA score with various ∆E values as a classi-
fier for cross-hybridization. For varying true free energy cross-hybridization
thresholds, we compute specificity, sensitivity and false positive rate of de-
tecting cross-hybridization for both methods. Free energy cross-hybridization
thresholds are picked in the range from 0 to −76.36 in 100 steps. Three dif-
ferent NNA score cross-hybridizatiom thresholds are used: −76.33 + ∆E for
∆E ∈ {25, 30, 35}. Kane’s criteria resulted in the following thresholds: an edit
distance ≤ 12 (similarity ≥ 76%) or a length of the longest common substring
≥ 16 leads to cross-hybridization.

The results are shown as a ROC curve in Figure 6.6. Figure A.3 in the
Appendix shows the ROC curves for the seperate datasets. For all ∆E values,
the NNA score shows a better performance than Kane’s criteria, coming closer
to the upper left corner of the plot. For high sensitivity the NNA score yields
a smaller false positive rate than Kane’s criteria. In practice, a relatively small
difference in the false positive rate can lead to more probes being considered
as not cross-hybridizing probes. The false positive rate is the fraction of false
positives of all real negatives, so wrongly detecting cross-hybridization increases
this rate. When testing a probe for cross-hybridization with all targets, the
number of real negatives will be much larger than the number of real positives,
as cross-hybridization does not take place often. The results of this experiment
show, that the NNA score will be able to label more probes as good probes (not
cross-hybridizing) and still retain a high sensitivity.
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Figure 6.6: ROC curve for predicting cross-hybridization for varying free energy
cross-hybridization thresholds. The NNA score for the probe and the inteded
target is −76.63 resulting in NNA thresholds of −51.63,−46.63and− 41.63 for
∆E = 25, 30 and 35. Note the ranges of the axes, this is only the upper left
corner of the ROC plot.
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6.5 Filtration Performance

In chapter 4 we introduced a filtering method we use to reduce the amount
of sequence we have to scan for cross-hybridization for each probe. With the
following experiments we want to evaluate the performance of this filter.

6.5.1 Filtration Ratio

For a filter the filtration ratio is defined as

filtration ratio =
# of particles downstream

# of particles upstream
.

The smaller this number, the less particles passed the filter. In our case, every
kmer of the sequence, which does not overlap with the probe is an upstream
particle, a candidate that has to be checked for cross-hybridization with the
given probe using its NNA score. When applying out filtering technique, only
a portion of all these candidates is considered. This portion corresponds to the
downstream particles.

In this experiment, the following sequences were used: Mycoplasma genital-
ium, Escherichia coli, Mycobacterium bovis and a random sequence of length 1
Mbp. For every sequence the following procedure is carried out:

• Do 1000 times:

• Pick a random 50mer as probe

• For every 50mer in the sequence not overlapping with the probe

• Compute weight of heaviest matched factor with probe

The heaviest matched factor is similar to the heaviest common factor but with
the constraint that the factor starts at the same position in both sequences.
For our example this means that if the weight of the heaviest matched factor is
below the seed threshold T (compare to section 4.5), this 50mer of the sequence
will never be considered, and the NNA score will not be computed. Thus, this
50mer will not appear downstream.

For every probe p the seed threshold T is given as T = w nna(p, p). We
vary w from 0 to 0.3 in 100 steps and compute the filtration ratios and call this
the seed threshold. The mean values for the 1000 probes of all sequences are
shown in Figure 6.7. More detailed plots showing the standard deviation of the
runs can be found in the Appendix in Figure A.4.



6.5. FILTRATION PERFORMANCE 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2

fil
tr

at
io

n 
ra

tio

seed threshold

random sequence
Mycobacterium bovis BCG

Escherichia coli K12
Mycoplasma genitalium

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.08  0.09  0.1  0.11  0.12  0.13  0.14  0.15

fil
tr

at
io

n 
ra

tio

seed threshold

random sequence
Mycobacterium bovis BCG

Escherichia coli K12
Mycoplasma genitalium

Figure 6.7: Filtration ratios for different seed thresholds and different sequences.
The x-axis show the seed threshold as the value of w. The right plot shows only
a section of the left one.

For increasing seed thresholds, the filtration ratio decreases exponentially,
quickly reaching values below 10%. For example, for Escherichia coli the mean
filtration ratio when picking w = 0.1 for the seed threshold is 1.3%. As expected,
filtration ratios for the random sequence are the lowest, as this sequence shows
the highest entropy. Biological sequences show reoccurring motifs and repeated
regions, but filtration ratios are on the same order. For example, for w = 0.11
the filtration ratio for the random sequence is 0.5%, for Mycobacterium bovis it
is 1.2%.

6.5.2 Filtration Quality

In the previous section we examined the filtration ratio of our filter for different
seed thresholds and sequences. This gives us information about the amount of
sequence that we have to inspect for cross-hybridization. With the experiment
in this section we want to analyze the quality of the filter. The goal of this
filter is to let positions of a target sequence set pass, which will lead to cross-
hybridization, whereas the other position, which will lead to NNA scores greater
than the cross-hybridization threshold are blocked (i.e. not considered). Similar
to the above experiment, we take the same four sequences and the same 1000
random probes for each. We then proceed:

• For every 50mer in the sequence not overlapping with the probe

• Compute weight of heaviest common factor hcf with probe

• Compute NNA score with probe
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• If hcf >= seed threshold:

• If NNA score > cross-hybridization threshold: count as true pos-
itive

• Else: count as false positive

• Else:

• If NNA score > cross-hybridization threshold: count as false
negative

• Else: count as true negative

The cross-hybridization threshold is given by ∆E, as described in chapter 5.
As in the previous section, the seed threshold is given by the value of w, the
fraction of the NNA score of probe and intended target. The experiment is run
for ∆E in20, 25, 30, 35, 40, 45 and we vary w from 0 to 0.3 in 100 steps. The
results for Escherichia coli and ∆E = 30 are shown in Figure 6.8. Additional
plots are given in the Appendix in Figure A.5.
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Figure 6.8: Results of the filtration quality experiment for Escherichia coli and
∆E = 30. Of the 100 probes 864 showed cross-hybridization at an average
of 678 locations. left: Sensitivity and specificity versus seed threshold; mean
values of the 1000 runs are connected by solid lines; standart deviations are
shown in a lighter color. right: Corresponding ROC curve.

From the results it can be seen, that for Escherichia coli and ∆E = 30
sensitivity does not decline until a seed threshold value of about 0.1. For this
value, sensitivity is around 0.98, meaning that 98% of all positions which yield
a NNA score below the cross-hybridization threshold have passed the filter.
Specificity is around 0.6, which means that 60% of all positions which passed
the filter resulted in NNA scores below the cross-hybridization threshold. For
lower ∆E sensitivity increases for a constant seed threshold and error bars be-
come larger, as there are less positives. For higher ∆E (an easier to reach
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cross-hybridization threshold), performance decreases, as more and more posi-
tions lead to a NNA score below the threshold. Similarly, for a constant ∆E,
sequences with higher average differences between probe and intendet-target,
and probe and not-intended-target scores (compare Figure 6.1) are easier to
filter.

6.6 Probe Qualities

In this section we present experiments carried out to compare the cross-hybridization
potential with Kane’s criteria, and to test our implementation on a large bio-
logical example.

6.6.1 CHP and Kane’s Criteria

We interpret the NNA scores as lower bound for the free energy of duplex
formation and assume that no cross-hybridization occurrs, when the NNA score
for a probe p and target stays below T , where T = nna(p, p) + ∆E. If we take
this assumption as the truth, we can define false positives and true negatives for
probes marked as cross-hybridizing by Kane’s criteria. If a probe is a positive
according to Kane’s criteria (edit distance ≤ 12 (similarity ≥ 76%) or a length
of the longest common substring ≥ 16 for 50mers), but the NNA score does not
fall below the threshold T , this probe is considered a false positive (fp). On
the other hand, if both methods agree on not cross-hybridizing, the probe is a
true negative (tn). As the NNA score is a lower bound, we cannot realiably say,
when a probe is a true positive or false negative accoring to Kane’s criteria.

For this experiment we used the same data as in the previous two experi-
ments. For 1000 probes of each genome, we computed cross-hybridization based
on Kane’s criteria and based on the NNA score. The fp and tn count for the
different genomes and ∆E values is given in table 6.1.

Of course, the results strongly depend on the choice of ∆E. A smaller ∆E
results in less positives for the NNA criteria, leading to more false positives for
Kane’s criteria. However, ∆E = 30 can be a reasonable choice for Mycobac-
terium bovis, and in this case, leads to at least 6.4% false positives for Kane’s
criteria.
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Table 6.1: False positives (fp) and true negatives (tn) for Kane’s cross-
hybridization criteria, given those probes considered negative by the NNA crite-
ria. 1000 random probes versus the whole sequence for Mycoplasma genitalium
(MG), Escherichia coli (EC), Mycobacterium bovis (BCG) and a random se-
quence of length 1 Mbp

∆E
Sequence

MG EC BCG random
fp tn fp tn fp tn fp tn

20 181 781 330 641 530 405 22 978
25 49 401 287 569 492 390 22 962
30 5 59 36 100 64 45 11 426
35 0 0 0 0 0 0 0 7

6.6.2 Probe Qualities for Escherichia coli

To simulate the size of a real world example we computed probe qualities for
a large set of probes and a real genome. The probe set consists of 50mers, one
starting at every position in the Escherichia coli genome. This results in a set of
4,639,626 probes. As target sequence to check for cross-hybridization, we also
use the whole 4,639,675 base pair Escherichia coli genome, both strands are
considered. We use a ∆E of 25 to compute the NNA score cross-hybridization
threshold for each probe and a w = 0.14 for the computation of the seed thresh-
old for each probe. The task is divided in 100 about equally sized jobs, in every
job cross-hybridization potentials for about 46,666 probes are computed. Ta-
ble 6.2 summarizes the results. Given a ∆E of 25, a total of 527,754 probes
show cross hybridization. Of these, a large number has low cross-hybridization
potentials and can still be useful depending on the application. Table 6.3 shows
the frequency of probes with a low chp.

On an Intel Xeon 2.8 GHz CPU the average running time for a job was 4
hours, the fastest job was done in 81 minutes, the slowest in 17 hours. The
computation of all probe qualities took 17 CPU days, or 0.318 seconds per
probe.

In a real application the user would never compute specificity for all kmers
of the target sequence. Instead other filters are used beforehand, to reduce the
size of the probe candidate set. Nevertheless, this experiment shows, that the
algorithm in its implemented form can be applied to large datasets to efficiently
compute probe qualities.
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Table 6.2: The absolute frequency of cross-hybridization potentials of all
4,639,626 probes used in the experiment.

chp number of probes
chp ≤ 0.00 4111872

0.00 < chp ≤ 184.76 502356
184.76 < chp ≤ 369.52 14525
369.52 < chp ≤ 554.28 3778
554.28 < chp ≤ 739.04 2390
739.04 < chp ≤ 923.80 1574
923.80 < chp ≤ 1108.56 1149

1108.56 < chp ≤ 1293.33 743
1293.33 < chp ≤ 1478.09 539
1478.09 < chp ≤ 1662.85 374
1662.85 < chp ≤ 1847.61 200
1847.61 < chp ≤ 2032.37 92
2032.37 < chp ≤ 2217.13 29
2217.13 < chp ≤ 2401.89 4
2401.89 < chp ≤ 2586.65 1

Table 6.3: The absolute frequency of low but non-zero cross-hybridization po-
tentials of all 4,639,626 probes used in the experiment.

chp number of probes
0.00 < chp ≤ 5.00 311579
5.00 < chp ≤ 10.00 36324

10.00 < chp ≤ 15.00 17252
15.00 < chp ≤ 20.00 10851
20.00 < chp ≤ 25.00 17395
25.00 < chp ≤ 30.00 14020
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Chapter 7

Discussion and Outlook

We have presented an efficient method to compute probe specificity for a large
set of probes. In contrast to often used simple rules based on edit distance and
length of longest common substring, our approach accounts for the more accu-
rate nearest neighbor model without introducing the computational complexity
of an optimal thermodynamic alignment. In conjunction with an index-based
filter we are able to compute probe specificities quickly without having to scan
the whole genome.

The Nearest Neighbor Alignment (NNA) algorithm minimizes the sum of
all free energy values of matched pairs. We compute the score using dynamic
programming and the well known unified nearest neighbor parameters by San-
taLucia (1998) as scoring matrix. Our experiments show that the NNA score
has a much higher correlation with free energy of DNA duplex formation than
the edit distance. It also shows a higher specificity and sensitivity as a classi-
fier for cross-hybridization than the edit distance and the length of the longest
substring combined, as proposed by Kane et al. (2000).

To reduce the search space in the genome for a given probe, we exploit the
correlation of short stable matches and low NNA scores between probes and
targets, and follow a seed and extend strategy. In order to quickly find these
seeds, we use qgram indices for probes and targets. For several sequences, we
analyze the filtration ratio as well as the probability of false positives and false
negatives in respect to the choice of w as the seed weight threshold. The results
show that the filter is able to significantly reduce the number of targets that
have to be considered, while maintaining a high sensitivity and reaching a high
specificity.

These findings make the NNA algorithm presented here and the weighted
seed filter a perfect extension for the tool chain used during probe selection.

61
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When we compare the performance of Kane’s simple criteria with the NNA
score as a classifier for cross-hybridization, we can see that Kane’s criteria lead
to more false negatives and false positives, but in general is a good indicator
for cross-hybridization. This suggests that it is a good idea to still use these
criteria which are fast to compute. For example, for probes of length 50, Kane’s
constraints could be softened to exclude only probes with matching stretches of
length ≥ 19 and an edit distance of ≤ 5. This is a fast method of filtering out
probes which obviously cross-hybridize. The remaining probe candidates can
then be inspected for cross-hybridization by the computationally more expensiv
NNA score, which will have higher accuracy than Kane’s original constraints
alone.

Future extensions to the NNA algorithm could include a banded version,
much like in the FASTA algorithm (Pearson 1990). Using only fields within a
narrow band around the diagonal of the scoring matrix should yield to the same
or very similar scores for cross-hybridizing sequences. Another future improve-
ment would be the use of gapped seeds for the filter. Allowing a small gap in
the seed could improve filtration ratio by retaining sensitivity and specificity,
but more research has to be done in this area.
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Appendix A

Appendix

A.1 Possible Seeds

Table A.1: Frequency of weighted seeds. Weight count versus length q.

q
weight

< 2 < 4 < 6 < 8 < 10 < 12 < 14 < 16 <18 < 20 < 22 < 24
11 0 0 0 236 39724 518955 1528402 1487214 544514 72539 2718 2
10 0 0 0 1503 62007 318853 436273 198907 29797 1236 0 0
9 0 0 10 4620 55850 118672 69904 12550 538 0 0 0
8 0 0 160 7229 28776 23947 5205 219 0 0 0 0
7 0 0 542 5898 7679 2153 112 0 0 0 0 0
6 0 12 862 2284 898 40 0 0 0 0 0 0
5 0 72 570 356 26 0 0 0 0 0 0 0
4 0 104 144 8 0 0 0 0 0 0 0 0
3 10 48 6 0 0 0 0 0 0 0 0 0
2 14 2 0 0 0 0 0 0 0 0 0 0

A.2 NNA Score Compared to Edit Distance
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Figure A.1: Edit distance (left) and NNA score (right) versus free energy for
the random dataset (top) and the placed dataset (bottom)
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Figure A.2: Specificity and sensitivity of edit distance and NNA score as clas-
sifier for cross-hybridization. top: random dataset bottom: placed dataset.
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A.3 NNA Scores Versus Kane’s Criteria
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Figure A.3: ROC curves for the random dataset (left) and the placed dataset.

A.4 Filtration Ratio
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Figure A.4: Filtration ratios for different seed thresholds and different se-
quences. Mean and standard deviation of 1000 runs. Top to bottom: My-
coplasma genitalium, Escherichia coli, Mycobacterium bovis, a random sequence
of length 1 Mbp
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A.5 Filtration Quality

Figure A.5 shows the results for additional datasets. The experiment is de-
scribed in section 6.5.2.

Table A.2: Number of probes showing cross-hybridization; for these probes, in
brackets the average number of positions where cross-hybridization occurs is
given.

sequence
∆E

20 25 30 35 40
Mycoplasma genitalium 38 (44) 550 (82) 936 (8,200) 1000 (109,666) 1000 (372,511)

Escherichia coli 29 (101) 144 (50) 864 (678) 1000 (39,838) 1000 (541,862)
Mycobacterium bovis 65 (28) 118 (35) 891 (47) 1000 (2,974) 1000 (119,355)

random sequence 0 (0) 16 (5) 563 (72) 993 (4,825) 1000 (103,361)
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Figure A.5: Results of the filtration quality experiment for top to bottom: My-
coplasma genitalium, Escherichia coli, Mycobacterium bovis, a random sequence
of length 1 Mbp and ∆E = 25 (left) and ∆E = 30 (right).
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A.6 The Software

The NNA algorithm and the filtering procedure were implemented in ansi C
(ISO C90) on a PC running Linux. The source code will be made available by
the author.

Usage: ./proqual probe_file sequence_file [options]

probe_file: fasta compatible file containing probe candidates

sequence_file: fasta compatible file containing target sequences

Options:

-p, probe range starting with zero (optional, if omitted all probes are used) = [first probe] [last probe+1]

-deltae, delta E for cross hybridization threshold = [deltae] as min difference in binding energy

-minw, minimum weight of seeds = [minimum weight] as fraction of probe target binding energy

-maxq, maximum length of seeds = [maximum length] in bases

-s, strands to check

[0] = check for cross hybridization to forward strand

[1] = check for cross hybridization to both strands

[2] = check for cross hybridization to reverse strand

Example:

./proqual genome_candidates.fa genome.fa -deltae 30.0 -minw 0.10 -s 1 -maxq 10

For the usage example above, the output file will be

genome_candidates.chp

6702 0.000000

6703 0.000000

6704 3.700008

6705 3.700008

6706 8.130013

6707 11.940048

6708 17.050079

with one line for each processed probe giving the number of the probe and
its cross-hybridization potential.
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