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1 Introduction

The analysis of gene expression data is a wide field in bioinformatics and a lot
of work was put into finding methods that group genes based on their expression
profiles. The goal of these clustering methods is to group genes based on their
function in the cell.

This work focuses on a method that can be used to analyze gene expression data
during cell proliferation and differentiation. [Costa et al., 2006] use a statistical
framework called mixture of trees to query gene expression data that was collected
during blood cell development. As all blood cells have a common ancestor, the
self-renewing hematopoietic stem cell, the lineage of a certain type of blood cell
resembles the path of a tree, when one cell differentiates its path is divided in
multiple new paths. When querying the data for lineage specific gene expression
profiles, [Costa et al., 2006] assumed the structure of the cell development tree to
be given.

In this paper algorithms are proposed, which can estimate the structure from
the given data, while clustering the genes. The algorithms and models were first
introduced by [Chow and Lui, 1968] and [Meila-Predoviciu, 1999] and had to be
extended to continuous variables for the purpose of this work. The statistical
models used in this work are based on Bayesian networks (BN) which are formally
introduced in section 2.2. A BN is a graphical model that intuitively describes
the causal relations of variables. The parameters that define the relations of the
variables can be learned from data [Dempster et al., 1977] so that the resulting BN
resembles the properties of the given data as closely as possible. The structure of a
Bayesian network holds the information about how one variable is influenced by the
other, or in other words, whether one gains information about one variable, when
knowing the other. If the dependencies of the variables and thus the structure
of the BN are unknown, it can be learned from the given data [Friedman, 1999].
For a gene expression profile during blood cell development the different time
points correspond to variables and the gene expression data represent the different
observations. Recovering the dependencies of the time points for all, or groups of
genes can give information about blood cell development and which genes mediate
cell differentiation. In this work methods for learning the structure of conditional
trees, which can be used to query gene expression profiles, are introduced. In order
to validate these methods, they were implemented and rum with simulated data.

This paper is organized in the following way. First Bayesian networks and linear
Normal distributions as their conditional propability distributions are introduced.
Then, structural learning of Bayesian networks with a focus on finding the best tree
structure for a set of normally distributed variables is explained. After introducing
mixtures of trees, the EM algorithm is extended to two versions of the structural
EM. In section 5 the experiments are described and the results are presented. In
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the last section the results are interpreted and their meaning is discussed.

2 Basics and notation

2.1 Notation

Random variables are denoted by an uppercase token (e.g. X, Yi) and a state or
value of that variable by the same token in lower case(e.g. x, yi). Sets of variables
are denoted with bold-face capitalized tokens (e.g. X, Y ) and corresponding sets
of values by bold-face lower case tokens (e.g. x, y). At last, calligraphic letters
(e.g. G,B) are used to denote statistical models and graphs.

2.2 Bayesian networks

Before defining Bayesian networks and their properties, some graph theory basics
are recapitulated. The following definitions are taken from [Diestel, 2005]. An
undirected graph is a pair G = (V , E) of sets such that E ⊆ [V ]2; thus, the
elements of E are 2-element subsets of V . the elements of V are the vertices (or
nodes, or points) of the graph G, the elements of E are its edges (or lines). The
usual way to picture a graph is by drawing a dot (or circle) for each vertex and
joining two of these dots by a line if the corresponding two vertices form an edge.
A directed graph is a pair (V , E) of disjoint sets of vertices and edges, where
every edge e = (x, y) is assigned an initial vertex x and a terminal vertex y, e is
considered to be directed from x to y. The vertex x is called a parent of vertex
y. If for every vertex v in a directed graph, there is no nonempty directed path
starting and ending in v, the graph is called a directed acyclic graph (DAG). A
tree is defined as a DAG, that has exactly one vertex that does not serve as a
terminal vertex (the root) and all other vertices have at most one parent.

A Bayesian network (BN) is a graphical structure that represents probabilistic
relationships for a given domain. Generally speaking, a BN B = (G, θ) consists of
two distinct parts: a graphical structure G and a set of parameters θ that define
probability distributions.

The BN G = (V, E) is a DAG with nodes V and directed edges E. Nodes
stand in a one-to-one correspondence to the set X = {X1, . . . , Xn} of random vari-
ables and will be used interchangeably. The edges are ordered pairs of elements of
V and correspond to conditional dependencies between them. PaG(Xi) denotes
the parents of a node Xi defined by G. Note that if the structure is clear from
the context the superior G is omitted. The graph G represents conditional inde-
pendence assumptions that allow decomposition of the joint distribution, reducing
the number of parameters. The graph G holds the Markov Assumption:

4



(*) Each variable Xi depends only on the variables that directly precede it.

Thus, by applying the chain rule of probabilities, any joint distribution that sat-
isfies (*) can be decomposed into the product form

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PaG(Xi)), (2.1)

see Figure 1 for an example.

Figure 1: A basic graph structure for a BN. The product form it implies is
P (A, B, C,D,E) = P (A)P (B)P (C|A)P (D|A, B)P (E|C, D).

The parameters θ define conditional probability distributions (CPDs) over X
fully specifying the joint distribution. The CPDs P (Xi|Pa(Xi)) are specified by
a set of parameters θi. For a random variable X that is normally distributed (also
called Normal or Gaussian) the probability density function is defined by

f(x) =
(√

2πσ
)−1

exp

(
−(x− µ)2

2σ2

)
. (2.2)

In this case θ is the mean µ and the variance σ2. For discrete variables θ specifies
the probabilities of the discrete states resulting in a conditional probability table
(CPT). For a more detailed description of Bayesian networks and how to use them,
see [Spirtes et al., 1993].

2.3 Linear Normal distributions as CPDs

The previous described Normal distribution is fully specified by the variables µ
and σ2. The CPDs in a BN also have to depend on the values of the parents.
In this section, the linear Normal distribution, first introduced by [Lauritzen and
Spiegelhalter, 1990], is described, which is used throughout this work.
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Linear Normal distributions differ in their distribution from the previous de-
scribed Normals, as that they estimate a linear fit on their parent. Let G be a
tree, so that each node has at most one parent, then the distribution of node B
with Pa(B) = A is

f(b|a) =
(√

2πσB|A

)−1

exp

(
−(b− wB|Aa− µB|A)2

2σ2
B|A

)
(2.3)

and the following holds,

wB|A =
COV(B, A)

VAR(A)
, (2.4)

µB|A = µB − µAwB|A, and (2.5)

σ2
B|A = VAR(B)− w2

B|AVAR(A). (2.6)

The meaning of the above definitions is best described with an example. Let A
and B be two random variables that are expected to have a Normal distribution
and Pa(B) = A. N = 1000 observations from these variables are drawn. Figure 2
shows the observed values plotted versus each other and their histograms. The
parameters µ and σ2 can be calculated from the give data and the resulting density
functions are also depicted in Figure 2. The covariance COV(B, A) measures how
much the two variables B and A vary together from their means. It takes positive
values if the values of B and A tend to vary together in the same direction and
negative values if they vary in the opposite directions. Thus, wB|A measures the
strength and direction of the linear relationship of B and A. In this example A and
B have a positive linear relationship and wB|A = 0.4. The resulting probability
density function of the linear Normal distribution of B given A can be seen in
Figure 3. As a result, the CPD for the node B given its parent A is fully described
by f(b|a), the probability of B taking on value b, given the value a of its parent
A.

In a tree the root node has no incoming edges and Pa(root) = ∅. Let wroot|∅ = 0,
thus the CPD of the root is normally distributed as described by (2.2).
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Figure 2: left: The values of dataset A plotted versus the values of dataset B.
right: The histograms for both datasets and the probability density functions g(x)
and h(x) of the Normal distributions that fit best to the given data. g(x) has the
parameters µ = 5 and σ2 = 2.12, h(x) has the parameters µ = 10 and σ2 = 2.11.

Figure 3: left: The probability density function f(b|a) of the linear Normal dis-
tribution of B given the parent A. The parameters are wB|A = 0.4 , µB|A = 7.92
and σ2

B|A = 1.77. right: The datasets plotted against each other and f(b|a) color
coded in the background.
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3 Structural learning

3.1 Finding the most likely structure

Learning the structure of a BN is a model selection problem in the sense that
each possible structure corresponds to a model for which the parameters have
to be estimated, and one model needs to be selected based on the data. As
shown by [Robinson, 1976], the number of possible structures for a BN grows
super-exponential to the number of vertices. For a Bayesian network having 5
nodes 29281 possible structures exist, for 10 nodes this number grows to ' 4.2×
1018. Therefore, the problem of finding the best structure can require extensive
computational power, but many heuristics have been proposed, see [Friedman,
1999] for an example. Additional information, like the order of vertices, can reduce
the size of the search space significantly. In this work the search space of possible
structures is reduced to tree structures. Finding the best tree structure for a given
set of vertices is a much simpler task and can be solved by well known algorithms.
Let Gd be the family of DAGs with maximum number of parents equal to d. Then
it is NP-hard to find

G∗ = arg max
G∈Gd

score(G, D) (3.1)

for any d ≥ 2 where D is the set of nodes and score some scoring function e.g.
the Likelihood or the BIC for the resulting Bayesian network [Chickering and
Heckerman, 1994]. For trees the maximum number of parents d ≤ 1 holds and
the problem can be solved in O(n2) time using maximum weight spanning tree
(MWST) algorithms, as proposed by [Chow and Lui, 1968]. Before presenting the
algorithms needed for finding the best tree structure for a given set of data in
section 3.3, mutual information for normally distributed variables is introduced.

3.2 Mutual information of normally distributed variables

Using the Kullback-Leibler divergence [Chow and Lui, 1968] show that the overall
likelihood for a directed or undirected tree can be maximized by maximizing the
sum of weights of all edges, where the weight W of an edge is defined by the mutual
information. Let X and Y be two continuous random vectors, then the mutual
information is defined as the distance from independence between X and Y mea-
sured by the Kullback-Leibler divergence [Cover and Thomas, 1991, Kullback and
Leibler, 1951]. Given two densities p(x) and q(x) the Kullback-Leibler divergence
KL is defined by

KL(p(x), q(x)) :=

∫
p(x) log

p(x)

q(x)
dx (3.2)
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with the convention that 0 log(0/0) := 0. Let p(x, y) be the joint density of
the two random vectors and p(x) and p(y) their marginal densities. The mutual
information I between X and Y is defined by

I(X, Y ) := KL(p(x, y), p(x)⊗ p(y)), (3.3)

where p(x)⊗ p(y) is the tensor product of the two marginal densities. The above
definition shows, that the mutual information is symmetric and, by applying the
Jensen inequality to the Kullback-Leibler divergence, one can see, that the mutual
information is always non negative and zero if and only if X and Y are stochasti-
cally independent. The Kullback-Leibler divergence is a natural distance measure
from a ”true” probability distribution p to an arbitrary probability distribution q.

Mutual information can also be interpreted as the information obtained from
the differential entropy H, which extends the idea of the Shannon entropy to
continuous probability distributions.

H(f(x)) = −
∫

f(x) log f(x)dx, (3.4)

where f is a probability density function and with the convention that 0 log 0 := 0.
With respect to the differential entropy, the mutual information between X and
Y can be rewritten as

I(X, Y ) = H(p(x))− Ep(y)(H(p(x|y))) = H(p(y))− Ep(x)(H(p(y|x))) (3.5)

[DeGroot, 1962, Morales et al., 1996]. Thus, the mutual information can be in-
terpreted as the reduction in the uncertainty of X (resp. Y ) due to the knowl-
edge of Y (resp. X) [Ullah, 1996]. The expectation in (3.5) can be rewritten as
Ep(y)(H(p(x|y))) = H(p(x, y))−H(p(x)), and therefore

I(X,Y ) = H(p(x)) + H(p(y))−H(p(x, y)). (3.6)

For a normally distributed random variable X the differential entropy is

H(X) =
1

2
log(2πeσ2

X) (3.7)

and for the two-dimensional case with another Normal Y

H(X, Y ) =
1

2
log(2πe)2 |K| , (3.8)

where |K| is the determinant of the covariance matrix K.

K =

[
σ2

X σXY

σY X σ2
Y

]
9



Substitution of equations (3.7) and (3.8) into (3.6) results in

I(X,Y ) = −1

2
log(2πe)2 |K|+ 1

2
log 2πeσ2

X +
1

2
log 2πeσ2

Y (3.9a)

= −1

2
log

|K|
σ2

Xσ2
Y

(3.9b)

for two normally distributed variables X and Y . Thus, given the covariance of two
variables with Normal distribution, their mutual information can be computed
with little computational cost.

3.3 Finding the best tree structure

In the previous subsection it was shown how to compute the mutual information of
two normally distributed variables. Now this information will be used to find the
best tree topology for a given set of variables V . Given the mutual information of
each pair of the variables V as a weight matrix Wij = I(Vi, Vj), the tree structure
with the highest likelihood will be the one maximizing the sum of all edge weights1.
There are two commonly used MWST algorithms, Prim’s algorithm and Kruskal’s
algorithm [Cormen et al., 1990], both of which are greedy algorithms. Prim’s
algorithm constructs an unrooted MWST given a set of edges E, nodes V and a
weight matrix W . Prim’s algorithm is explained in Algorithm 1.

Algorithm 1: Prim’s MWST algorithm
input : nodes V , edges E, edge weights W
output: maximum weight spanning tree T

1 T = (∅, ∅)
2 pick random node r ∈ V and add it to T

repeat
3 select edge Euv where u ∈ T and v /∈ T and Wuv is maximum
4 add Euv and v to T

until all nodes V are in T

The algorithm picks a random node r ∈ V to start with and adds it to the
empty spanning tree T . As long as not all nodes V are in T , all edges connecting
a node in T with a node not in T are examined. The edge with the highest weight
and the node that it connects are then added to T . The output of the algorithm
is an undirected graph that connects all nodes and has no cycles, a complete tree.
The algorithm runs in time which is O(n2), using a binary heap this time can

1Since the goal is to maximize the likelihood a maximum weight spanning tree algorithm is
used, instead of multiplying the edge weights by −1 and calling it minimum spanning tree.
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be reduced to O(E log V ) where E is the number of edges and V the number of
vertices, see [Aho et al., 1983] for a more detailed description.

4 Structural EM with mixture of trees

In the previous section it was explained how to find the tree structure which max-
imizes the likelihood for a Bayesian network with normally distributed variables
as nodes. The mutual information of all pairs of variables had to be calculated
and it was also shown how to do this, given the covariance matrices.

In this section a combination of multiple Bayesian networks with tree struc-
tures, called mixtures of trees, is introduced and the algorithms for learning the
structure and parameters of such a model are explained.

4.1 Mixtures of trees

The combination of K trees in a mixture by adding a discrete hidden variable Z
was introduced by [Meila-Predoviciu, 1999]. The mixture of trees Q(x) is defined
as

Q(x) =
K∑

k=1

λkTk(x) (4.1)

with λk ≥ 0 for k = 1, . . . , K and
∑K

k=1 λk = 1. The mixture coefficients λk repre-
sent the probability that for a mixture component Tk the hidden choice variable z
takes the value k ∈ {1, . . . , K}. In respect to the value of z the visible nodes form
a tree. The K different trees may have different structures and different parame-
ters. As the structures of these trees depends on the value of z, they can be called
conditional trees. The mixture components Tk are Bayesian networks with tree
structures as described in section 2.2. In this work, linear Normal distributions
are used as CPDs. Thus, for every node U with parent V , wU |V,k, µU |V,k and σ2

U |V,k

must be specified.

4.1.1 Covariance of conditional normally distributed variables

As this paper focuses on conditional tree models, it is necessary to compute the
covariance of two conditional normally distributed variables in order to calculate
their mutual information. Given a normally distributed variable Y with normally
distributed parent X, and a discrete variable Z with Z being the parent of both of
them, [Murphy, 1998] shows how to estimate the covariance matrix. See Figure 6
for the graphical representation of this BN. Assume et for t = 1, . . . , N training
cases to be given.Let the share st,i be the posterior probabilities P(Z = i|et), then
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Figure 4: A mixture of trees sharing the same structure, taken from [Meila-
Predoviciu, 1999].

Figure 5: A mixture of trees with different structures with K = 3 and 5 nodes,
taken from [Meila-Predoviciu, 1999].

12



is

COV(X, Y )i =

∑
t st,i xt yt∑

t st,i

−
(∑

t st,i xt∑
t st,i

∑
t st,i yt∑

t st,i

)
(4.2)

the covariance of X and Y and

VAR(X)i =

∑
t st,i x

2
t∑

t st,i

−
(∑

t st,i xt∑
t st,i

)2

(4.3)

the variance of X and

VAR(Y )i =

∑
t st,i y

2
t∑

t st,i

−
(∑

t st,i yt∑
t st,i

)2

(4.4)

the variance of Y in respective to Z = i. With these equations, a covariance matrix
for every possible value of Z can be computed. How much an observation affects
the variance and covariance depends on its value for st,i. If the probability of Z
having value i given the observation et is small, then this observation has little
influence on the estimation of the covariance matrix for Z = i.

Z

YX

Figure 6: Conditional normally distributed variables X and Y with discrete parent
Z.

4.1.2 Tree learning with conditional normally distributed variables

As shown in the previous subsection, K multiple covariance matrices exist for con-
ditional variables that all have the same discrete parent Z and Z = 1, . . . , K. To
find the tree structure with the highest likelihood for a set of conditional normally
distributed variables given the value of its discrete parent, first compute the co-
variance matrix as described in 4.1.1. Given the covariances, compute all pairwise
mutual information and use a MWST algorithm with the mutual information as
weights [Meila-Predoviciu, 1999]. Algorithm 2 summarizes the required steps.

Given the dataset D and the posterior probabilities w, see 4.1.1, the algorithm
first computes the mutual information I of all node pairs. Then, the MWST
algorithm with I as input finds the best tree structure T .
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Algorithm 2: TreeLearn
input : posterior probabilities w, dataset D with variables V
output: tree T maximizing likelihood

1 Compute mutual information I(u, v) for u, v ∈ V using w and D in
equations from 4.1.1

2 T = MWST(V , all possible edges, I)

4.2 EM algorithm

The hidden choice variable Z of a mixture of trees model is previously unknown but
can be marginalized after all other parameters have been learned from data. One
algorithm that maximizes the complete likelihood when incomplete data is given
is the Expectation-maximization (EM) algorithm from [Dempster et al., 1977].

The algorithm starts from some initial parameter set θ0, e.g. randomly chosen.
In the expectation step (E step) the sufficient statistics are estimated from the
observed data by using the current estimate θt. The maximization step (M step)
then takes the estimated parameters and computes the MLE. The result is the
new estimate θt+1 that is then used as the estimate for the next iteration.

Given the estimated parameters, it is then possible to compute the posterior
probability of z = k for k = 1, . . . , K for every observation of the given dataset. For
gene expression data where gi for i = 1, . . . , N is the ith gene of N , each gene could
be assigned a cluster by selecting a z so that zi = arg max1≤k≤K P (zi = k|gi, θk).
In the following sections the terms ’number of mixture components’ and ’number
of clusters’ are used interchangeably.

4.2.1 Structural EM with mixed structures

To also learn the structure of a conditional tree while learning its parameters, the
TreeLearn algorithm (see Algorithm 2) has to be embedded in the EM algorithm.

The MixTree algorithm takes as input the initial mixture of trees model Q
with K mixture components T and a dataset g with N observations. The number
of variables in the dataset has to match the number of nodes of the mixture
components. The output of the algorithm is the new model Q∗ with newly learned
structures for the mixture components T ∗ and estimated model parameters θ∗.

First, the algorithm picks some structures and parameters for the mixture com-
ponents to start with. Then, the parameters of the unobserved data are estimated
given the current estimate (E step). For every mixture component the probability
of every data observation that it was generated by this component, given the cur-
rent model and estimate, is computed. These posterior probabilities and the given
data is then used to learn the structure of that component with the TreeLearn

14



Algorithm 3: MixTree
input : initial model Q, dataset g with N observations
output: Q∗ with MLE θ∗ and learned structures T ∗

1 pick initial structures Tk and parameters θk for Q, k = (1, . . . , K)
repeat

2 E step: estimate sufficient statistics from g and current θ, given Q
for k=1 to K do

3 compute marginals mi = P(z = k|gi, θk) for every observation gi,
i = (1, . . . , N)

4 T ∗
k =TreeLearn(m,g)

endfor
5 M step: compute MLE θ∗

until convergence

algorithm, see Algorithm 2. The M step follows and a new estimate is computed
by maximizing the likelihood for the parameters given the data and the sufficient
statistics from the E step. These steps are repeated until the complete likelihood
and the parameters of the model converge.

4.2.2 Structural EM with shared structure

If all K mixture components are to share the same structure the MixTree algorithm
has to be adapted to this requirement. Algorithm 4 shows the steps for the EM
algorithm for finding the shared structure.

This algorithm differs from the one with different structures, as that the mutual
information of every variable pair are summed up for all K mixture components in
a distance matrix S. This matrix is then used in the MWST algorithm to compute
one tree that best compromises the structure for all components. This structure
can be seen as an average structure of all components.
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Algorithm 4: MixTreeS
input : initial model Q, dataset g with N observations and D variables V
output: Q∗ with MLE θ∗ and learned structure T ∗

1 pick initial structure T and parameters θk for Q, k = (1, . . . , K)
repeat

2 E step: estimate sufficient statistics from g and current θ, given Q
3 distance matrix Su,v = 0 for u, v ∈ V

for k=1 to K do
4 compute marginals mi = P(z = k|gi, θk) for every observation gi,

i = (1, . . . , N)
5 compute mutual information Iu,v for u, v ∈ V given m as described in

3.2
6 add I to S, S∗ = S + I

endfor
7 T ∗ = MWST(V , all possible edges, S)
8 M step: compute MLE θ∗

until convergence

5 Experiments

In order to validate the proposed algorithms, they were implemented and tested
in various experiments. Mixture of trees models were generated and sample data
drawn from them. Using the structural EM algorithms it was tried to recover the
parameters and structure of the original models. These estimated models were
then compared to the original models to see how well the algorithms performed.

5.1 Method

The mixture of trees and the structure learning algorithms were implemented in
Matlab 7 using the Bayesian Network Toolbox (http://bnt.sourceforge.net/).

For given datasets the mixture of trees models with the highest likelihood were
estimated using the structural EM algorithms. Linear Normal distributions as
described in section 2.3 were used as CPDs for the continuous variables. Ran-
dom parameters and structures were picked for the initial models of the EM
algorithm. After learning the parameters and structures of the mixture com-
ponents, the data samples were clustered. The posterior probability of zi = k
for k = 1, . . . , K for every sample di was computed and di was assigned cluster
ci = arg max1≤k≤K P (zi = k|gi, θk). For clustering the data with K-means the
implementation of the Matlab Statistics Toolbox was used.
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5.1.1 Data

For the experiments simulated data was used. Mixture of trees models were gen-
erated and datasets sampled from them. The used tree topology was generated
randomly, for the mixed structure datasets this was done separately for each mix-
ture component. If not stated otherwise, the following parameters were randomly
chosen: µU |V,k from the range [−1.5, 1.5], σ2

U |V,k from [0, 1] and wU |V,k from the

ranges [−0.7,−0.2],[0.2, 0.7]. 10 to 25 mixtures were generated for each K and a
total of Kb1000/Kc samples were drawn from each model.

5.1.2 K-means

In order to compare sensitivity and specifity of the discussed methods, K-means
was also used to cluster the datasets. For each dataset the clustering was repeated
10 times and the best solution was kept. Squared Euclidean distance was used
and the maximum number of iterations was 100.

5.2 Results

5.2.1 Mixture of trees with same structure

For K = (3, 5, 10, 11, 12, 13, 14, 15) 25 mixtures were generated and from each of
these 800 models a dataset was sampled. Each dataset was processed 10 times and
the result with the highest likelihood was kept. In all cases the original structure
was found, recovering every edge of the models used to generate the data. In
addition, 10 mixtures with K = (3, 5, 10, 11, 12, 13, 14) and higher absolute values
for wU |V,k were generated. The w values were picked randomly from the ranges
[−1,−0.5],[0.5, 1].

Figure 7 shows the sensitivity and specifity of the clustering using the mixtures
of trees method compared to K-means. For a low number of clusters, K ≤ 10,
the mixture of trees clustering is more accurate than K-means and sensitivity and
specifity are ≥ 0.9. For higher numbers of clusters, the number of samples from
each cluster becomes too low and the clustering performance drops. Sensitivity
and specifity of both methods drop to values between 0.8 and 0.9, with K-means
being a little better than the mixture of trees method.

Figure 8 shows the results for datasets with stronger linear dependencies be-
tween their variables. In this scenario, the clustering performance of the mixture
of trees method remains accurate for higher numbers of clusters. Sensitivity and
specifity are about 0.1 higher for the mixture of trees method than for K-means.
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Figure 7: Sensitivity and specifity of the estimated mixture of trees model sharing
one structure for K = (3, 5, 10, 11, 12, 13, 14, 15), compared to K-means. The
original structure was recovered in all cases.
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Figure 8: Sensitivity and specifity of the estimated mixture of trees model sharing
one structure, compared to K-means. For K = (3, 5, 10, 11, 12, 13, 14) 10 datasets
with higher absolute values for wU |V,k were generated. They were picked randomly
from the ranges [−1,−0.5],[0.5, 1]. The original structure was recovered in all
cases.
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5.2.2 Mixture of trees with different structure

For K = (3, 5, 10) 10 mixtures were generated. Each dataset was processed 10
times and the result with the highest likelihood was kept.
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Figure 9: Sensitivity and specifity of the estimated model with different structures
for the K = (3, 5, 10) mixture components, compared to K-means.

For this model with a different randomly generated structure for each cluster
the right structure was not always recovered. To measure how well an estimated
structure compares to the original structure that was used when generating the
data, wrong edges and their difference in mutual information were counted. A
wrong edge is an edge connecting two nodes which in the original structure do not
have an edge between them. As the original structures are complete trees, there
must be one edge missing for every wrong edge in an estimated structure. The
difference in mutual information MIdif of the original model o and the estimated
model e is defined as

MIdif (o, e) =

∣∣∣∣∣∣
∑

wrong edges(e)o

Iwrong edge(e) −
∑

missed edges(e)o

Imissed edge(e)

∣∣∣∣∣∣ (5.1)

the absolute value of the difference of the mutual information of all wrong edges
and all missed edges of the estimated model given the original model. This value
will indicate how much different (in terms of mutual information) the falsely picked
edges are than the true ones.

Sensitivity and specifity for the clustering with the mixture of trees model is
above 0.95 for 3 and 5 clusters and above 0.9 for 10 clusters. K-means is signif-
icantly less accurate, especially for a higher number of clusters. For 10 clusters,
sensitivity and specifity of K-means is around 0.75. See Figure 9 for more details.

The ratio of wrong edges in an estimated mixture of trees model increased with
the number of clusters. For a model with 3 clusters, less than 5% of the recovered
edges were wrong. This value increases to 18% for a model with 10 clusters, which
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has a sample size of 100 per cluster. This means, that on average, 12 to 13 of the
70 edges of the mixture components are wrong for an estimated mixture of trees
model with K = 10. Figure 11 summarizes these results. It also shows that the
difference in mutual information of the estimated models compared to the original
models grown with the ratio of wrong edges.

For an example of the structure and the mutual information of an estimated
component see Figure 10.
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Figure 10: Structure and mutual information of one cluster from a model with
mixed structures and K = 10. left: The original structure and mutual information
right: Estimated structure and mutual information. The found structure has
2 wrong edges compared to the structure used when generating the data. The
difference in mutual information is 0.0035 .
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Figure 11: left: Average Difference in mutual information per component of the
estimated mixture, compared to the original structure. right: Ratio of wrong edges
in found structure compared to original structure. All values are averages of 10
datasets for each number of clusters.

5.2.3 Evaluating an estimated structure

Once the two presented algorithms have found a structure for a cluster or a group
of clusters, it is interesting to know how confident one can be that this structure is
supported by the data. The MWST algorithm will always return a complete tree
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but with real life data, the found structure could be a result of chance. In order
to separate spurious from significant results, one needs to validate the estimated
model.

One way to analyze the found structure is to look at the mutual information of
the found edges and compare it to the mutual information of nodes that are not
connected.

For data with a high structural background the mutual information of de-
pendent variable pairs should be higher than that of variable pairs that are not
connected in the structure. As a result the mutual information of variables sharing
an edge in the estimated structure is considerably higher than that of variables
not connected, see Figure 12. If there is no structure underlying the data, all
variables are independent and identically distributed (i.i.d.) random variables and
all mutual information is very close to 0. As can be seen in Figure 13 all mutual
information values are near 0 and there is no significant difference between mutual
information of connected nodes and not connected nodes.

Figure 14 and Figure 15 are examples of mutual information histograms of
an estimated structure with some wrong edges and an estimated structure that
contains no wrong edges. These examples demonstrate how the inspection of the
mutual information can help to verify the learned structure. By closely looking at
the mutual information of found edges and comparing it to the pairwise mutual
information of nodes that are not connected by an edge, it is possible to estimate
the possibility of wrong edges.
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Figure 12: Histogram of the mutual information of used edges and not used edges
of the generating models. For all 25 datasets with K = 5 and same structure (for
parameters see 5.1.1) the nodes and their mutual information were observed. top:
175 true edges. bottom: 525 pairwise mutual information that does not correspond
to an edge.
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Figure 13: Mutual information frequency of used edges and not used edges of
generated models. For K = 5, 25 datasets with wU |V,k = 0 and shared structure
were generated and the nodes and their mutual information were observed. top:
175 true edges. bottom: 525 pairwise mutual information that does not correspond
to an edge.
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Figure 14: Mutual information frequency of used edges and not used edges of a
learned model. One cluster of the model with K = 10 and mixed structure was
analyzed. Note, that with only 28 pairwise mutual information there is not much
data do examine the structure with, but the overlap in mutual information of used
and not used edges can be an indicator for wrong edges. In this example cluster
the estimated structure had 3 wrong edges.
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Figure 15: Mutual information frequency of used edges and not used edges of a
learned model. One cluster of the model with K = 10 and mixed structure was
analyzed. The structure of this cluster matched the one of the original one and
did not contain wrong edges.
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6 Discussion

The results have shown that finding the right tree topology for a mixture of con-
ditional trees that share the same structure is a solvable task. This must be due
to the fact that the structural information which is encoded in every observation
is fully used. The whole dataset holds the same information about the structure,
and during the structure learning this information is used, independently from the
learning of the hidden variable. In this case the learning of the structure is inde-
pendent of the final cluster assignment and the number of clusters, but depends
mainly on the number of observations and on the strength of the regression (the
w). As the number of clusters increases, the number of observations per cluster
decreases, making it harder to reliably estimate the model parameters. The effect
of inexact parameters is an inaccurate probability for the hidden choice variable.
This explains the stronger decrease of sensitivity and specifity for the mixture of
trees model compared to K-means.

For higher absolute values of w the Euclidean distance of the variables decreases
and the clustering of K-means becomes less accurate. The structural learning is
easier and faster in this case and helps finding the right clusters in the Bayesian
approach.

For mixture of trees with different structures, finding the right structures is
a more difficult task. When the number of samples for each cluster is too low
(100 in the described experiments), wrong are likely to be introduced in the es-
timated structures. The number of observations per cluster is critical for finding
the structure of the component that was used to generate the data. With only lit-
tle evidence given, the computated mutual information might not reflect the true
value. With these limitations in mind, a ratio of 18% of wrong edges for the model
with 10 clusters and 100 samples for each cluster, is a good value. Clustering is
easier with a mixture of structures, because every cluster has a different set of w
values and this additional information is used when calculating the probability of
the hidden choice variable. The observations can be distinguished by more param-
eters than in the shared structure case. For K-means this additional parameter
is of no use, instead it acts as noise to the data. The structure learning for the
model with mixed structures results in a significantly better clustering of the data
than K-means.

As the results show evaluating a found structure can be challenging. By looking
at the mutual information it is possible to distinguish between data that has no
structural background (i.i.d.) and data that does imply structural dependencies,
but it is considerably harder to be confident that a found structure is free of errors.
Rather than trying to find the ”one true” structure, methods for finding a possible
group of structures should be developed in the future. This approach can then
be extended to give a probability distribution over a group of structures for every
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component.
Using this method for querying gene expression data of blood cells during their

development, could lead to interesting insights about gene regulation. Regarding
the estimated structures, the above mentioned limitations have to be kept in mind.
The datasets could be too small and resulting tree topologies spurious. Despite
that, the clustering using the EM algorithm with structure learning yields better
results than the mixture of trees method for a fixed topology, and can so lead
to a more accurate grouping of the genes. Results of not published experiments
have shown that the mutual information matrices for an estimated component
can be used to gain additional information about the relation of groups of genes
at different time points. When looking for genes which do not differ in their
expression at two different time points, comparing mutual information can help
identifying those kinds of genes.

In summary, it is shown that structure learning of conditional trees is a well
solvable task and its application to gene expression data should be subject to
further investigation.
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