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ABSTRACT

Motivation: A positional weight matrix (PWM) is a statistical
representation of the binding pattern of a transcription fac-
tor estimated from known binding site sequences. Previous
studies showed that for factors which bind to divergent bin-
ding sites, mixtures of multiple PWMs increase performance.
However, estimating a conventional mixture distribution for
each position will in many cases cause overfitting.

Results: We propose a context-specific independence (CSI)
mixture model and a learning algorithm based on a Bayesian
approach. The CSI model adjusts complexity to fit the amount
of variation observed on the sequence level in each position
of a site. This not only yields a more parsimonious description
of binding patterns, which improves parameter estimates, it
also increases robustness as the model automatically adapts
the number of components to fit the data.

Evaluation of the CSI model on simulated data showed
favorable results compared to conventional mixtures. We
demonstrate its adaptive properties in a classical model selec-
tion setup. The increased parsimony of the CSI model was
shown for the transcription factor Leu3 where two binding-
energy subgroups were distinguished equally well as with a
conventional mixture but requiring 30% less parameters. Ana-
lysis of the human-mouse conservation of predicted binding
sites of 64 JASPAR TFs showed that CSI was as good or bet-
ter than a conventional mixture for 89% of the TFs and for
70% for a single PWM model.

Availability: http://algorithmics.molgen.mpg.de/mixture
Contact: {georgi | schliep}@molgen.mpg.de

1 INTRODUCTION
The reliable identification of putative transcription facbinding

Assuming independence between positions, this gives aapilob

stic model of the binding site of a specific factor which swsntly

can be used to score whether a DNA sequence contains a binding
site for this factor [15, 18].

However, this approach relies on two strong assumptionseha
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Fig. 1. WebLogos lttp://weblogo.berkeley.edidfor the two sub-
groups of Leu3 binding sites. It can be seen that sequenizbildy
is limited to positions 1, 4, 5 and 6 (indicated by arrows).
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thatall positions within the site are independent and, more import-
antly, that all binding sites of a factor are slight variagoof the
samesequence. The former has been shown to be a simplification
of biological reality for such examples as the Zinc finger iweot
[40] or the Mnt repressor [21]. For the latter there is ampt#dd

sites (TFBS) in genomic sequences is a problem of consideragical evidence to make it at least doubtful: It is well knowratt

ble importance for understanding gene regulation. The ede
approach is to formulate a mathematical representatioheobin-

ding pattern of a given factor based on collections of cordm

binding site sequences. This representation is subsdguessd to
score candidate sequences for occurrences of said pattereffec-
tiveness of this approach depends on the models abilityciarately
formalize the regularities found in the confirmed sites. iR®s

nal weight matrices (PWM) [30, 31, 38, 33, 34] are a statidtic

approach to modelling the factor-specific binding site cosifion.

A PWM is derived from a multiple alignment of confirmed bin-

ding sites. For each position in the alignment a distributiver the
four bases is estimated from the corresponding alignmedaohuo

TFBS occur in clusters of functionally interacting tranption fac-
tors (TF) in promotor regions, so called transcriptionaldues
[6, 20, 36]. A single factor may have many different intei@ct
partners for different genes and it has been shown that puédgy
of these modules has an impact on the binding site sequenged f
for about nine thousand sites in S. cerevisiae [5]. Alsa Kriown
that a single change in a binding site can have profoundtsffat
both the interaction behavior of a factor [24] or the leveirmfuced
gene expression [39]. Moreover, in [17] the authors find eaer
sed levels of conservation for non-consensus binding sisitipns
for 16 factors in 10 bacterial genomes, concluding thatetstes
are subject to evolutionary pressure. This gives furthatesce for
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a level of biological complexity of binding site sequenceydnd  merged thus reducing the number of components in the mobet. T
the “single site” hypothesis and motivates the developroéntore refore learning of a CSI structure allows for an automatiturgion

sophisticated methods. of the number of components to a value more appropriate fata d
This issue has received some attention in recent years.]In [4set as an integral part of model training.
the authors successfully used subclasses of Bayesian nketaw In the following sections we are going to introduce notation

de novomotive discovery, among them mixtures of PWMs. More the CSI mixture model and present the structure learningriagn.
recently, in [14] binding sites have also been describediagires  We will then evaluate the performance of our method baseditn b
of PWMs. There it was shown, that a two component mixture hodesimulated and real biological data.
yielded improved conservation scores and higher expressibe-
rence when compared to using a single PWM for a collectioof 6 o METHODS
PWMs taken from the JASPAR data base [26]. .

However, the conventional mixture approach has severe-drawz'1 CSI MixtureModels
backs. First, it is an essentially unsolved problem to chocas Before we begin defining the CSI mixture model we briefly intro
appropriate number of mixture components, in particulalafa is ~ duce notation for conventional mixture models (refer to][28 a
sparse and the classical model selection techniques [2l®8pt  detailed coverage of the subject). L&, ..., X, denote random
apply. In general too few components lead to suboptimaloperf variables (RV) over the four bases (A,C,G,T) correspondng
mance due to insufficient generalization, while, more sgyetoo  binding site withp positions. Given a data sé consisting of N
many components will cause overfitting. To circumvent tesue ~ samplesr;,i = 1,..., N where eache; consists of an realization
the number of components was fixed to two in [14]. Secondly, itT:1, ..., zip Of X1,..., X; @ K component mixture distribution is
seems plausible that for most factors which have severaistgp ~ given by
binding sites (and can thus be modeled more precisely by a mix
ture), the different subgroups will not consists of distjmissimilar K L
sequences. Rather, the variability between sites will Ineeotrated P(z) = Z P(C H (2i4|C = k), 1)
on specific positions. Estimating a full PWM for each mixtaoen- k=1 i=1
ponent will then introduce unnecessary parameters intonieel.
This increases model complexity unnecessarily and leadsst
robust parameter estimates.

We present an extension of the conventional mixture framiewo
;T?:C?:irebs;?e;ietsﬁepég:lems by learning an e>.<pI|C|t depey is parameterized by a 4-component probability veétes. Define

ponents of a PWM mixture. The ba5|fh llecti ¢ allo d th ht vectof, — C -

idea of the method is to reduce the number of parameters-requi € collection of afle; . an e weight vectod. = (P(

1),..., P(C = K)) asfn = (0x,0;;). Thendr completely para-
red in the model by representing binding site positions Witle . / o d .
variability in the different components by the same distiim, A meterizes the mixturé/. The likelihoodP(D|M) for data setD is

biological example for such a situation is the TF Leu3. In][14 simply the product over the mixture densities of each inddpat

whereC'is a RV representing the component number, B{€' =
k) are the component prior${,_, P(C = k) = 1) and the
P(z;;|C = k) are discrete distributions over the four bases, con-
ditional on the component R¥'. That is, eachP(z;;|C = k)

the authors showed that a two component mixture naturapig-se sample

rated the known binding sites [19] into one high and one low N

binding-energy subgroup. Now, consider Fig. 1. The figu@agh P(D|M) = H P(z:). )
the sequence logos [27] for these subgroups. It can be saén th o1

sequence variability is only present in position 1, 4, 5 alfiti@ica- . . . ) .

ted by arrows) while the other sites are highly conservecbtier At this point we would like to point out that mixtures modetsa

example is the factor Rebl. Rebl binds with different aféisito the extensions we are about to describe are not limited trades

motives TTACCCGand TTACCCT[37], that is the two subgroups 'eatures. Rather the; (z;|C' = k) can be of any parametric family,

differ in a single &)sition only. - be it discrete or continuous and that in particular the dosaf the
This notion of adapting model complexity to the data is kn@gn s Can be heterogenous.

context-specific independen@@SI) and has received considerable

attention in the probabilistic reasoning community [7, 8].1n the X Xo X3 X4 X, Xo X3 X4
context of mixture modeling, CSI has been successfully tmeithe 01 Cy
analysis of gene expression data [3]. A

The advantage of the CSI model in settings such as the Leu3 af C’ b) o B
Rebl data is that in a conventional mixture random sequesva-d Cy a1 M
tions will cause the parameters in the different compontmtshe Cs Cs

same position to vary slightly, even if there is no meanihgéuia-

p|||ty on the sequence level. This overfitting mtroducgssaajthn Fig. 2. @) Model structure for a conventional mixture with 5 com-

in the scores produced by the model that may resultin a dgiea ,,nents and four RV. Each cell of the matrix represents ailligion

performance. Therefore, learning a CSi structure doesmpy@eld i, the mixture and every RV has an unique distribution in ezmh-

amore parsimonious model, as less parameters are reduitedso  ponentb) CSI model structure. Multiple components may share the

increases robustness for noisy data. Moreover, if comgerstrare  same distribution for a RV as indicated by the matrix celsspng

the same group in the CSI structure for all positions, thaylma  multiple rows. In exampl€'3,Cs andC4 share the same distribution
for Xo.
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In order to formally define the CSI mixture model it is helpful overthefx, ,, were chosen tobe almost uniform with a small bias
to first review the independence assumptions implicit in ¢be- towards uniforn (i.e., all hyper-parameters of the Dirichlets were
ventional mixture model. In addition to the routine assuprpbf set to 1.02). This was done to guard against overfitting biynget
independence between the different data samplese also assume  zero probabilities in the parameter estimation.
conditional independence between tRe given a componenk. For the model priorP(M) we adopted a fairly simple factored
This leads to a model structure as shown in Fig. 2a. The figuuws  form
the structure matrix for a five component mixture wjith= 4, each
cell representing an uniquely parameterized distributwar the P(M) x P(K)P(G), 3

c_orrespondnngj. ”.‘ a CSI model we qualify the general assump- \ here theP(K) is the prior over the number of components and
tion of conditional independence between tkie by representing P(G) is the model structure prior. We sB{K) — ~ andP(G) —

multiple components with the same set of parameters. Halgnt » "% with both~ anda < 1. Thus by means of the prior we
this amounts to learning a parameter tying structure foh edg Jj=1 v )

2 . introduce a bias towards smaller models and simpler stresinto
over the range of”. This is closely related to learning parameter the model posterior
ties in the topology of &lidden Markov Mode(HMM) [10, 32] as P '
a mixture can be seen as an HMM with strongly constrained-topo2.3 Learning Algorithm

logy. In Fig. 2b we show one possible CSI structure for thiglelo  Fqr 5 CS| mixture withi components over RVs there ards%. pos-
Again, each cell of the matrix represents an uniquely paterized  sjpje model structures, wheiéx is the K'th Bell number [1].Bx
distribution. This means that for examgle andC’, are represented  gives the number of possible partitions of a set withelements.
by the same distribution fak; and all components share the same This makes an exhaustive search over the structure spazsible
distribution for.X. even for moderate sizes éf andp. For example fork = 3 and
Formally we define the CSI mixture model as follows: For the , _ g there are 390,625 different structures. Instead we adopt an
set of component indexes = {1, .., K'} and variablesX, ..., X,, iterative greedy backward-selection procedure to learSbn@del
letG = {g;}(j=1,...,) be the CSi structure of the model. Then 7 — (@ 9,,). We initialize the procedure with/® = (G°, 63,),
9; = (9j1,..9z;) whereZ; is the number of subgroups f0f;  gych thatz” is the structure of maximal complexity (which is equi-
and eacty;,r = 1, ..., Z; is a subset of component indexes from \51ent to a conventional mixture) and the initial parametdy are
C. That is, eacty; is a partition ofC into distinct subsets where qptained by a single EM update based on a random assignment of
eachy; represents a subgroup of components which share the samgyta to components, followed by conventional parametric &M
distribution for X;. The CSI mixture distribution is then obtai- piain the MAP parameters.
ned by replacing?; (zi;|C' = k) with P;(xi;|g;(k)) in (1) where In each following step$ we then use the current modzI’ =
gi(k) = rsuch thatt € g;.. Accordinglyfa = (6x,0x,15;,.)  (G',64,) to score the candidate structur€sbased on possible
is the model parameterization. The complete CSI mddek then merges(g§-7.,gé-z) N 957-Ug§z (r,z2=1,..,Z;,r # z) by compu-
given byM = (G,6m) ting the posteriors and accepting the candidate mode! wétkimmal
~ posterior asM'T!. Due to the independence assumption between
The usefulness of the CSI approach for real world applioatio he x; we can score the candidate structures of each variable sepa-
obviously depends on the ability to accurately and reliag§er-  ately. In the framework oStructural EM[11] this scoring can be
mine an approprlate_ structure from data. This problem isemd@d  4one efficiently by computing the expected sufficient stigtof a
in the following section. candidate based on the current mabigl. Once we have determined
2.2 StructureLearning G'*! we can obtain the parameterizati@ﬁl by running parame-
tric EM. The procedure terminates when all candidate mdazle

The task of learning a CSI model from data consists of assigni a posterior worse thah' .

values to the group structure variablgsand estimating parame-
ters for the induced distributions. For the latter tErpectation
Maximization(EM) [9, 22] algorithm is the standard technique to
arrive at parameter estimates. For the former, we adoptegya-B
sian approach in th8tructural EMalgorithm framework [11]. This e Score possible candidatég'*! based onM!, accept candi-
means that we score different candidate model structuresdban date with maximal posterior.

the mgdel posterior”?(M|D) which according to Bayes rule is Optimized’+" by running parametric EM.

given by

In summary, the structure learning procedure for an inftiatel
M? consists of iterations over the following steps:

2.4 Choosingthe StructurePrior
P(M|D) o< P(M)P(D|M), One important aspect of the Bayesian approach to strugaraihg

where P(M) is a prior over the model structure af{D|M) is IS the choice of the hyper parameters in the model prior. & laee
the Bayesian likelihood based on the ddaand themaximum a  techniques for estimating these parameters directly frata {£5]
posteriori (MAP) parameter estimateE)M. That is or by S|mulat|on tech.nlq.ues such as Gibbs sampling [13].IUn o]
application and for this first analysis we choose the strecfuior
_ o o parametery directly based on a simple heuristic.

_ P(DIM) = P(D] 0 m)P(6 ), In general the priotP(M) encodes the preference for a simp-
where P( 6 5r) is a prior over the model parameters in form of a ler model. This is contrasted with the data likelihogtd D|M)
product of conjugate Dirichlet priors over the individudments of  which increases with model complexity. One way of thinkitgat
0. The prior over the mixture weights. was uniform, the priors  the relation between prior and likelihood is that the priotsaas a
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regularization of the likelihood to prevent overfitting o the per-
spective of the CSI structure learning task, the choice efyper
parameterx of the structure prio?(G) expresses our preference
of a simpler, less complex structure. One way to look at thihat

« puts a threshold on the decrease in likelihood we are willing
accept in exchange for a less complex structure. Sincekléhiood

of a data set is dependent on the sample 8izthe same must be

true fora. To make this explicit, consider the decision rule between

a modelM' and a candidate modél/ during an iteration of the
learning algorithm. Recall that!! and M are identical except for a
single merge in @;. This merge is accepted if

PM'|D) _ P(DIM")P(M')
P(M|D) — P(DIM)P(M) —
Substituting Eq. 2 and (3) and cancelling terms we obtain
:rZ|Ml

H P(z;|M)

Each of theV fractlons gives the decrease in likelihood of afor
moving from M° to the less complex modélf. That is, we can
think of each fraction a6l + 4;) whered; is the relative decrease in
likelihood for z;. Under the simplifying assumption that all of the
d; are equal, i.ed; = J, we can now choose &as themaximal
relative decreasén likelihood we are willing to accept in exchange
for a less complex model. Thenis given by

<1

1

(146N

It is important to stress that at this point all we have don®is
replace the choice af with the choice of. However this is advan-
tageous for two reasons: First, the formula given abovei@ipl
shows the impact of the data set si¥e Secondlyy has a straight-
forward interpretation as the reduction in likelihood beém simple
discrete distributions. As such it is easier to make an mémt

a=a(§,N) =

In the first experiment the generating model was a two computone
CSI mixture withp = 10 and random weight8,. The CSI structure
was set up as follows: Out of the ten positions, six were sgred
by single distributions in both components and four had @umi
distribution in each component. The parameters of theibiigtons
0x |4, Were chosen randomly.

| Best model| Best avg. BIC]|

Gy M, 10851
G Mo 11444
Geosr Mecsr 12266
Gy Mcsr 12350

Table 1. Optimal model for the four data sets according to the
average BIC over 30 repetitions.

First we evaluated the ability of our method to adapt to the
structure in the data and thus to avoid overfitting. We trdioee
conventional and one CSI mixture model, both using three-com
ponents on a training data set with 40 samples. The firsttresul
was that the structure learning algorithm recovered theeigen
ting models two component CSI structure with high accuramt (
shown). In order to quantify the advantage of the CSI model fo
sequence scoring we generated test data sets with 500 samfade
used a uniform background model to obtain the scores for smth
ple and the scores were then converted to p-values basedconea s
distribution on 1Mb of random sequence. We repeated the-simu
lation for 30 different randomly generated data sets an@ ksl
that the CSI mixture yielded better (lower) p-values tham ¢bn-
ventional mixture. The one-sided Wilcoxon test for pairachples
assigned a significance of 0.02 to this result. Repeatingxtperi-
ment with only 25 training samples confirmed these resultk wi
Wilcoxon test significance of 0.04.

choice for based on the specific application. In our case it seemed

reasonable to use a strong prior, such that the structuyerarnddu-
ced additional complexity into the model if clearly warredhby the
data. In the following we chose the prior accordingot@®.18, N)
(unless noted otherwise). As an example for 20 sequencebtamo
«(0.18,20) = 0.036

2.5 Sequence Scoring

One practical advantage of the model extensions descrimadbas
that it refines the models ability to represent TF bindingqras
without abandoning the framework of probabilistic modéel$is
means that the CSI model can be seamlessly and easily cainbin
with established techniques for finding hits with significacores

in genomic sequences [15, 18]. Here, as in [14], the scorenika
ture was defined as the maximum score over all components. Th
means that the score of a sequence was given by the stroigyest s
found among the components. Similar scoring schemes hare be
used for instance in the field of speech recognition.

3 RESULTS
3.1 Simulation Studies

In order to examine the difference in performance betwearn no
mal mixture and CSI models we generated artificial data sets f
mixtures with differing numbers of components and struasur

G Apre(M,y) Gy Apio(Ms) GesrApre(Mesr) GrApio(M esy)

1500

1000

++ +

¢ 1+

500

Mg i3 -

M,y

Mg
M,
Mt
M,
M,
Mt
M,t

= =

Fig. 3. Distributions of the difference in BIC to best scoring model
for the four simulated data sets on 30 repetitions.

The next question we addressed was how the CSI model perfor-
med for different data sets in a classical model selectitupséVe
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generated data sets of size 500 with= 10 from four different
models: a single PWM modéeF;, a conventional two component
mixture G2, a CSI mixture with four component&csr and a
conventional four component mixtu@,. The parameters of the
discrete distributions iff,; were chosen such that one baseas
assigned a random probability sampled uniformly from [@.&,and
the remaining mass split evenly over the other bases. |nessss
was chosen such that it adhered to the CSl structure of thectge
model, that is components that did not share a group & also
had a dissimilags. The structure irGcsr consisted of 6 positions
with four groups and two positions with three and two grouashe
Subsequently we trained 30 modalsof each of the four types (i.e.
M, M2, Mcsr andMy) on each of the four data sets. Model fit was
assessed by thgayesian Information Criterio(BIC) [29]. The best
scoring model for each data set and its average BIC valueallmse
the 30 repetitions is shown in Table 1. As one would exped, th
model type that best matches the respective generatingl iyietés
the optimal BIC. A more interesting point to consider was die
tributions of the differences of the remaining models toagpgmal
BIC shown in Fig. 3. It can be seen that for data sets wiléeg; 1

is not optimal it achieves BIC scores very similar to the b&bese
results illustrate the inherent ability of CSI models to @atd® dif-
ferent data settings. This makes CSI a preferable choiceoofen
for practical applications where the true number of compthés
unknown.

3.2 Analysisof TFLEU3

1 2 3 4 5 6 7 8 9 10

C1
C

Fig. 4. Two component CSI mixture structure for known Leu3 bin-
ding sites. Each cell represents a discrete distributidrere cells
spanning both rows identify positions with high conseimain both
subgroups.

It was shown that 46 known binding sites of the TF Leu3 [19]
can be separated into a high and low binding-energy subgrsing
a two component mixture with highly significant p-value [14¥{e
repeated this analysis by training a two component CSI méxtu
Since we were using the model in a clustering context a weiak pr
of «(0.05,46) = 0.11 was used. Fig. 4 shows the resulting CSI
structure. Note the correspondence between the fully peteain
zed positions (1, 4, 5, 6) and the group specific sequencabitity
as visualized in Fig. 1. The CSI mixture yielded a subgrowp- di
sion of the Leu3 sites that was practically identical to the o
previously reported. However there are two important défifces
between the two models: First, the conventional mixturaiires
the estimation of 61 free parameters while due to the tyinyes¢
sed in the CSI structure our model only needs 43 paramethis. T
means that CSI gave equivalent results using about 30% #&as p
meters. Secondly, the CSI structure makes information tatieu
subgroup and position specific sequence variability anigkgplart
of the model. Having this information readily available Macili-
tate further investigations, especially for large-scalelies where
hundreds or more factors are involved.
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Fig. 5. @) Conserved fractions of hits fol/; and M,. The
mixture M, is as good or better for 67% (43) of the TFs.
b) Conserved fractions foMcs; and My. For 70% (45) of the
TFs the conservation d¥/cs; was as good or better than féf; .
Ouitliers with strong preference fdr/; model had very few known
sequences. If we only consider TFs with at least 20 sequettees
CSl yields as good or better conservation in 85% (34/40) ef th
casesc) Comparison of conservation statistics/af and Mcs;.
For 89% (57) of the TF4/¢s; yields higher or equal conservation.

3.3 Conservation Statistics

The validation of predicted binding sites with respect teirttbio-
logical functionality is a difficult problem as functionglicannot
be assessed directly. One surrogate for functionality domnthe
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literature is the degree of conservation in genomic se@sebet-
ween related species [35]. For the sake of comparabilith wie
results reported in [14] we follow the same evaluation appho
taken there and evaluate the different models by the fraabio
conserved predicted binding sites.

| Ma > M, (43) | My > M (21) |

Mcost > M | 84% (36) 100% (21)
Mesr > M, | 47% (20) 81% (17)
Mesr > My | 89% (38) 33% (7)
Meosi > My | 37% (16) 10% (2)

In the fo”owing we are going to evaluate the performance of aTable 2. Comparison of the conserved fraction of the 1000 best sco-

single PWMM,, a two component mixturd/, and a two compo-

ring hits for Mcsy, My and M- in the two subsets of the TF data

nent CSI mixtureMcs; based on human-mouse conservation. Wediven the conditiongM> > M) and(M; > Ma) respectively.
used the same 64 JASPAR TFs as in [14]. We downloaded the 1kb

upstream regions of tHegl7 assembly (May 2004) from the UCSC
genome data base [16]. The mouse conservation datar) was
extracted from the axtNet data set [28] (also UCSC). For edch

For instance the rightmost point in Fig. 5b) at (0.53, 0.4&ye-

the 64 TFs and each of the three models under consideratien, wsponds to MA0062 which has 7 known sites. In such a situation a

then computed the 1000 best scoring hits in the 1kb upstregin r
ons. The overall base composition of the sequences was sghd a
background model. For the mixtures the hits were choseroptiop
nally to the mixing weights. This means that fof.a= (0.6, 0.4)

little random variation in the sequences can have a stropgéton
the trained model and lead to spurious structures. Thisgpated
by the correlation between the number of available seqefore
a factor and the increase in conservation for the CSI mofiglel

we would chose the 600 best hits from the first component amd thonly considered TFs with 15 or more sequendefg;s; is as good

400 best from the second. The fraction of hits that was corgdn

or better in 74% (40/54) of the cases, for 20 or more sequences

mouse was then computed based on a 80% sequence identify cutd5% (34/40) and for 40 or more in 94% (15/16). The fraction B§ T

Evaluation:
tion on the analysis we considered TFs with very similartfoas
of conserved hits for two model types as not giving concleigixe-
ference to any of the two. That is, if the difference in thesmmed
fraction was less than ten percent of the maximal conseraetién
observed for any of the three model types, the scores wesdmsn
red to be "equal” for the purposes of this analysis. This hagffect
of making the results more conservative in the sense thatribact
of factors with very small differences in the conservatitatistics
was suppressed.

Fig. 5 shows the comparison of conserved fraction for theethr
model types. To illustrate the impact of the available numdfe
training samplesgV for a factor on performance, we depict TFs dif-
ferently based on the number of associated sequences. TiFess

where M¢s; is strictly better remained in the range of 30% inde-

In order to decrease the impact of random varia- pendent of the number of sequences.

Mcst vs Ma: In Fig. 5¢) we show the fraction of conserved hits
for Mcsr and the conventional two component mixtuvé,. For
89% (57) of the TFs the CSI model yields higher or equal comser
tion, 58% (37) being strictly greater.

Performance oMcsr: Applying the two condition§ M2 > M)
and(M; > M>) on the conserved fractions of hits split the 64 TFs
in two subsets of size 43 and 21. We can think of the first sudrset
those TFs where a mixture model is appropriate and the sestdrd
set as being better represented by a single PWM. In the foipw
we examined the performance of our CSI models within these tw
subsets. The results are summarized in Table 2. For thetsobse

than 18 sequences are shown as red diamonds, TFs with 19 - kd by(M> > M;) Mcsr was as good or better thev; or M-
sequences are shown as blue rectangles and TFs with mor8lthan for a strong majority of 84% (36) and 89% (38) of the TFs respec
sequences are shown as green dots. The numbers were chésen asvely. Mcs; was strictly better for 47% and 37% respectively. This

split the 64 TFs into three roughly equally sized groups.

My vs M>: In 5a) you can see the conserved fraction\f and
M, for the 64 TFs in the data set. The mixture modél was as
good or better thad/; in 67% (43) of the cases. For 33% (21) of
the TFs the mixture was strictly better. This means that #réop-

means that for TFs where a two component mixture improves per
formance as compared to a single PWM, the CSI model will intmos
cases outperform both of the other mod@ls, due to the reduction
in overfitting and the more robust parameter estimatésbecause
of the improved description of the binding pattern.

For the subset where a single PWM vyielded a larger conserved

mance of the two component mixture was somewhat weaker in oufraction than the two component mixture (given by the caadit

analysis than reported in [14] . Recall, that our data séiél from

(M1 > Ms)) Mcsr was as good or better thall, for all the

the one in [14] as it was based on a later genome freeze ané, mofFs in the subset (100% (19)) and strictly better for 81% .(IH)s

importantly, it did not contain any downstream sequencesth&
best of our knowledge the rest of our analysis was identahée
one conducted in [14].

illustrates the property of the CSI model to adapt to the rema
subgroups supported by the data (one in this case) by medhs of
structure learningMcs; is equivalent or better than/; in 33%

(7) of the TFs in the subset. This rather low number again show

Mecsr vs Mq: The comparison between the fraction of conser-the impact of spurious structures for TFs with few known bigd

ved hits of the CSI mixturd/cs; and the single PWM modél/;
can be seen in Fig. 5b). In 70% (45) of the TFs under considerat
Mecsr showed a conserved fraction as good or better fidanwith
28% (18) being strictly better. One important observatothat in

sites. If we only consider the 11 TFs in the subset with 20 oremo
annotated binding sites, the value fa¥/cs; > Mi) goes up to
64% (7/11). Finally,Mcs; is strictly better thar\/; for a negligi-
ble 10% (2). This is not surprising as we would not expect @Sl t

most instances wher&/; had a strong advantage in conserved hits, outperformi/; in situation where a single PWM is the appropriate
the factor had only a small number of known binding sites.sThi model. Rather a successful application of the structunmieg in
can be seen by the large number of diamonds below the diagonaduch a case makéds; equivalent taM;. This corresponds to the
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points which lie directly on the diagonal (i.e. the conserfractions
are equal) in Fig. 5b).

4 DISCUSSION

The results of our simulation studies show that the CSI ftisma
yields more parsimonious and robust representations far thét
exhibit a position-wise subgroup structure in their bigdpattern.
The greater parsimony of the CSI model as compared to cdovent
nal mixtures was demonstrated for a subgrouping of knowr8Leu
binding sites. In this example CSI required 30% less pararnet
than a conventional mixture for equal performance. Theyaisabf
the conserved fraction of predicted binding sites in hunastream
regions in mouse showed that a two component CSI model idglea
superior to a conventional two component mixture. This raghat
learning the CSI structures led to a more biologically megfuil
characterization of the binding patterns of the TFs undesice-
ration. For the TFs where the CSI model increased performanc
we can assess that the known binding sites apparently édhibi
biologically relevant subgroup structure. The exact reatiithe bio-
logical mechanisms underlying these subgroups remairséselat
this point. One possible explanation though would be thseterce

of different conformations of the TFs which show distinahdiing
patterns.

A strong advantage of the CSI (or conventional mixture) nhode
over the single PWM model could not be observed on this data se
This was due to the occurrence of spurious structures fonifiths
very few known binding sites and the large number of TFs where

the single PWM model seems to be appropriate. This makeg sens

as one would expect the structure learning to be more vuitesta
outliers in situations where data is extremely sparse. Tmelo-
sion we draw from this result is twofold: First, CSl is a preat
tool for the search for putative TFBS that fits in seamlessipiw
the probabilistic framework for scoring hits that has bestalalis-
hed for the single PWM model (e.g. [18]). For a practical gsial
using CSI though it seems important to require a minimum remb
of available binding sites (say 18) in order to attempt to fE%l
model and to use the single PWM model otherwise. This could be
easily included into the model prior. Secondly, we wouldentghe
general usefulness of the CSI approach to increase in thesfas
the pool of known confirmed binding sites increases.

For future research we consider the development of more lexmp
structure priors and improvements to the structure legraiigo-
rithm for sparse data. Also, it might be interesting to qgifaribe
impact of different sequence scoring schemes on the peafuren
the model. Moreover, since the probabilistic framework vagknn
is fully general, there are numerous biological appligaiovhere
our method might yield improved results. In particular wasider
applying our methods on donor splicing site detection, agledata
sets are available in this setting.
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