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ABSTRACT
Motivation: A positional weight matrix (PWM) is a statistical
representation of the binding pattern of a transcription fac-
tor estimated from known binding site sequences. Previous
studies showed that for factors which bind to divergent bin-
ding sites, mixtures of multiple PWMs increase performance.
However, estimating a conventional mixture distribution for
each position will in many cases cause overfitting.
Results: We propose a context-specific independence (CSI)
mixture model and a learning algorithm based on a Bayesian
approach. The CSI model adjusts complexity to fit the amount
of variation observed on the sequence level in each position
of a site. This not only yields a more parsimonious description
of binding patterns, which improves parameter estimates, it
also increases robustness as the model automatically adapts
the number of components to fit the data.

Evaluation of the CSI model on simulated data showed
favorable results compared to conventional mixtures. We
demonstrate its adaptive properties in a classical model selec-
tion setup. The increased parsimony of the CSI model was
shown for the transcription factor Leu3 where two binding-
energy subgroups were distinguished equally well as with a
conventional mixture but requiring 30% less parameters. Ana-
lysis of the human-mouse conservation of predicted binding
sites of 64 JASPAR TFs showed that CSI was as good or bet-
ter than a conventional mixture for 89% of the TFs and for
70% for a single PWM model.
Availability: http://algorithmics.molgen.mpg.de/mixture
Contact: {georgi | schliep}@molgen.mpg.de

1 INTRODUCTION
The reliable identification of putative transcription factor binding
sites (TFBS) in genomic sequences is a problem of considera-
ble importance for understanding gene regulation. The accepted
approach is to formulate a mathematical representation of the bin-
ding pattern of a given factor based on collections of confirmed
binding site sequences. This representation is subsequently used to
score candidate sequences for occurrences of said pattern.The effec-
tiveness of this approach depends on the models ability to accurately
formalize the regularities found in the confirmed sites. Positio-
nal weight matrices (PWM) [30, 31, 38, 33, 34] are a statistical
approach to modelling the factor-specific binding site composition.
A PWM is derived from a multiple alignment of confirmed bin-
ding sites. For each position in the alignment a distribution over the
four bases is estimated from the corresponding alignment column.

Assuming independence between positions, this gives a probabili-
stic model of the binding site of a specific factor which subsequently
can be used to score whether a DNA sequence contains a binding
site for this factor [15, 18].
However, this approach relies on two strong assumptions, namely

Fig. 1. WebLogos (http://weblogo.berkeley.edu) for the two sub-
groups of Leu3 binding sites. It can be seen that sequence variability
is limited to positions 1, 4, 5 and 6 (indicated by arrows).

thatall positions within the site are independent and, more import-
antly, that all binding sites of a factor are slight variations of the
samesequence. The former has been shown to be a simplification
of biological reality for such examples as the Zinc finger motive
[40] or the Mnt repressor [21]. For the latter there is ample biolo-
gical evidence to make it at least doubtful: It is well known that
TFBS occur in clusters of functionally interacting transcription fac-
tors (TF) in promotor regions, so called transcriptional modules
[6, 20, 36]. A single factor may have many different interaction
partners for different genes and it has been shown that the topology
of these modules has an impact on the binding site sequences found
for about nine thousand sites in S. cerevisiae [5]. Also, it is known
that a single change in a binding site can have profound effects on
both the interaction behavior of a factor [24] or the level ofinduced
gene expression [39]. Moreover, in [17] the authors find increa-
sed levels of conservation for non-consensus binding site positions
for 16 factors in 10 bacterial genomes, concluding that these sites
are subject to evolutionary pressure. This gives further evidence for
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a level of biological complexity of binding site sequences beyond
the “single site” hypothesis and motivates the developmentof more
sophisticated methods.

This issue has received some attention in recent years. In [4]
the authors successfully used subclasses of Bayesian networks for
de novomotive discovery, among them mixtures of PWMs. More
recently, in [14] binding sites have also been described as mixtures
of PWMs. There it was shown, that a two component mixture model
yielded improved conservation scores and higher expression cohe-
rence when compared to using a single PWM for a collection of 64
PWMs taken from the JASPAR data base [26].

However, the conventional mixture approach has severe draw-
backs. First, it is an essentially unsolved problem to choose an
appropriate number of mixture components, in particular ifdata is
sparse and the classical model selection techniques [2, 29]do not
apply. In general too few components lead to suboptimal perfor-
mance due to insufficient generalization, while, more severely, too
many components will cause overfitting. To circumvent this issue
the number of components was fixed to two in [14]. Secondly, it
seems plausible that for most factors which have several types of
binding sites (and can thus be modeled more precisely by a mix-
ture), the different subgroups will not consists of distinct, dissimilar
sequences. Rather, the variability between sites will be concentrated
on specific positions. Estimating a full PWM for each mixturecom-
ponent will then introduce unnecessary parameters into themodel.
This increases model complexity unnecessarily and leads toless
robust parameter estimates.

We present an extension of the conventional mixture framework
that addresses these problems by learning an explicit dependency
structure between the components of a PWM mixture. The basic
idea of the method is to reduce the number of parameters requi-
red in the model by representing binding site positions withlittle
variability in the different components by the same distribution. A
biological example for such a situation is the TF Leu3. In [14]
the authors showed that a two component mixture naturally sepa-
rated the known binding sites [19] into one high and one low
binding-energy subgroup. Now, consider Fig. 1. The figure shows
the sequence logos [27] for these subgroups. It can be seen that
sequence variability is only present in position 1, 4, 5 and 6(indica-
ted by arrows) while the other sites are highly conserved. Another
example is the factor Reb1. Reb1 binds with different affinities to
motives TTACCCGand TTACCCT[37], that is the two subgroups
differ in a single position only.

This notion of adapting model complexity to the data is knownas
context-specific independence(CSI) and has received considerable
attention in the probabilistic reasoning community [7, 8, 12]. In the
context of mixture modeling, CSI has been successfully usedfor the
analysis of gene expression data [3].

The advantage of the CSI model in settings such as the Leu3 and
Reb1 data is that in a conventional mixture random sequence devia-
tions will cause the parameters in the different componentsfor the
same position to vary slightly, even if there is no meaningful varia-
bility on the sequence level. This overfitting introduces a distortion
in the scores produced by the model that may result in a decrease in
performance. Therefore, learning a CSI structure does not only yield
a more parsimonious model, as less parameters are required,but also
increases robustness for noisy data. Moreover, if components share
the same group in the CSI structure for all positions, they can be

merged thus reducing the number of components in the model. The-
refore learning of a CSI structure allows for an automatic reduction
of the number of components to a value more appropriate for a data
set as an integral part of model training.

In the following sections we are going to introduce notationfor
the CSI mixture model and present the structure learning algorithm.
We will then evaluate the performance of our method based on both
simulated and real biological data.

2 METHODS

2.1 CSI Mixture Models
Before we begin defining the CSI mixture model we briefly intro-
duce notation for conventional mixture models (refer to [23] for a
detailed coverage of the subject). LetX1, ..., Xp denote random
variables (RV) over the four bases (A,C,G,T) correspondingto a
binding site withp positions. Given a data setD consisting ofN
samplesxi, i = 1, ..., N where eachxi consists of an realization
xi1, ..., xip of X1, ..., Xp a K component mixture distribution is
given by

P (xi) =
K

X

k=1

P (C = k)

p
Y

j=1

Pj(xij |C = k), (1)

whereC is a RV representing the component number, theP (C =
k) are the component priors (

PK

k=1 P (C = k) = 1) and the
P (xij|C = k) are discrete distributions over the four bases, con-
ditional on the component RVC. That is, eachP (xij |C = k)
is parameterized by a 4-component probability vectorθj|k. Define
the collection of allθj|k and the weight vectorθπ = (P (C =
1), ..., P (C = K)) asθM = (θπ, θj|k). ThenθM completely para-
meterizes the mixtureM . The likelihoodP (D|M) for data setD is
simply the product over the mixture densities of each independent
sample

P (D|M) =
N

Y

i=1

P (xi). (2)

At this point we would like to point out that mixtures models and
the extensions we are about to describe are not limited to discrete
features. Rather thePj(xij |C = k) can be of any parametric family,
be it discrete or continuous and that in particular the domains of the
Xj can be heterogenous.
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Fig. 2. a) Model structure for a conventional mixture with 5 com-
ponents and four RV. Each cell of the matrix represents a distribution
in the mixture and every RV has an unique distribution in eachcom-
ponent.b) CSI model structure. Multiple components may share the
same distribution for a RV as indicated by the matrix cells spanning
multiple rows. In exampleC2,C3 andC4 share the same distribution
for X2.
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In order to formally define the CSI mixture model it is helpful
to first review the independence assumptions implicit in thecon-
ventional mixture model. In addition to the routine assumption of
independence between the different data samplesxi, we also assume
conditional independence between theXj given a componentk.
This leads to a model structure as shown in Fig. 2a. The figure shows
the structure matrix for a five component mixture withp = 4, each
cell representing an uniquely parameterized distributionover the
correspondingXj . In a CSI model we qualify the general assump-
tion of conditional independence between theXj by representing
multiple components with the same set of parameters. Essentially
this amounts to learning a parameter tying structure for each Xj

over the range ofC. This is closely related to learning parameter
ties in the topology of aHidden Markov Model(HMM) [10, 32] as
a mixture can be seen as an HMM with strongly constrained topo-
logy. In Fig. 2b we show one possible CSI structure for this model.
Again, each cell of the matrix represents an uniquely parameterized
distribution. This means that for exampleC1 andC2 are represented
by the same distribution forX1 and all components share the same
distribution forX4.

Formally we define the CSI mixture model as follows: For the
set of component indexesC = {1, .., K} and variablesX1, ..., Xp

let G = {gj}(j=1,...,p) be the CSI structure of the modelM . Then
gj = (gj1, ...gjZj

) whereZj is the number of subgroups forXj

and eachgjr, r = 1, ..., Zj is a subset of component indexes from
C. That is, eachgj is a partition ofC into distinct subsets where
eachgjr represents a subgroup of components which share the same
distribution for Xj . The CSI mixture distribution is then obtai-
ned by replacingPj(xij |C = k) with Pj(xij |gj(k)) in (1) where
gj(k) = r such thatk ∈ gjr. Accordingly θM = (θπ, θXj |gjr

)
is the model parameterization. The complete CSI modelM is then
given byM = (G, θM )

The usefulness of the CSI approach for real world applications
obviously depends on the ability to accurately and reliablydeter-
mine an appropriate structure from data. This problem is addressed
in the following section.

2.2 Structure Learning
The task of learning a CSI model from data consists of assigning
values to the group structure variablesgj and estimating parame-
ters for the induced distributions. For the latter theExpectation
Maximization(EM) [9, 22] algorithm is the standard technique to
arrive at parameter estimates. For the former, we adopted a Baye-
sian approach in theStructural EMalgorithm framework [11]. This
means that we score different candidate model structures based on
the model posteriorP (M |D) which according to Bayes rule is
given by

P (M |D) ∝ P (M)P (D|M),

whereP (M) is a prior over the model structure andP (D|M) is
the Bayesian likelihood based on the dataD and themaximum a

posteriori(MAP) parameter estimates
−→
θ M . That is

P (D|M) = P (D|
−→
θ M )P (

−→
θ M ),

whereP (
−→
θ M ) is a prior over the model parameters in form of a

product of conjugate Dirichlet priors over the individual elements of
θM . The prior over the mixture weightsθπ was uniform, the priors

over theθXj |gjr
were chosen to be almost uniform with a small bias

towards uniformθ (i.e., all hyper-parameters of the Dirichlets were
set to 1.02). This was done to guard against overfitting by setting
zero probabilities in the parameter estimation.

For the model priorP (M) we adopted a fairly simple factored
form

P (M) ∝ P (K)P (G), (3)

where theP (K) is the prior over the number of components and
P (G) is the model structure prior. We setP (K) = γK andP (G) =
Qp

j=1 αZj with bothγ andα < 1. Thus by means of the prior we
introduce a bias towards smaller models and simpler structures into
the model posterior.

2.3 Learning Algorithm
For a CSI mixture withK components overp RVs there areBp

K pos-
sible model structures, whereBK is theKth Bell number [1].BK

gives the number of possible partitions of a set withK elements.
This makes an exhaustive search over the structure space infeasible
even for moderate sizes ofK andp. For example forK = 3 and
p = 8 there are 390,625 different structures. Instead we adopt an
iterative greedy backward-selection procedure to learn a CSI model
M = (G, θM ). We initialize the procedure withM0 = (G0, θ0

M ),
such thatG0 is the structure of maximal complexity (which is equi-
valent to a conventional mixture) and the initial parameters θ0

M are
obtained by a single EM update based on a random assignment of
data to components, followed by conventional parametric EMto
obtain the MAP parameters.

In each following stepsl we then use the current modelM l =
(Gl, θl

M ) to score the candidate structuresG based on possible
merges(gl

jr, g
l
jz) → gl

jr ∪gl
jz (r, z = 1, ..., Zj , r 6= z) by compu-

ting the posteriors and accepting the candidate model with maximal
posterior asM l+1. Due to the independence assumption between
theXj we can score the candidate structures of each variable sepa-
rately. In the framework ofStructural EM[11] this scoring can be
done efficiently by computing the expected sufficient statistics of a
candidate based on the current modelM l. Once we have determined
Gl+1 we can obtain the parameterizationθl+1

M by running parame-
tric EM. The procedure terminates when all candidate modelshave
a posterior worse thanM l.

In summary, the structure learning procedure for an initialmodel
M0 consists of iterations over the following steps:

• Score possible candidatesM l+1 based onM l, accept candi-
date with maximal posterior.

• Optimizeθl+1
M by running parametric EM.

2.4 Choosing the Structure Prior
One important aspect of the Bayesian approach to structure learning
is the choice of the hyper parameters in the model prior. There are
techniques for estimating these parameters directly from data [25]
or by simulation techniques such as Gibbs sampling [13]. In our
application and for this first analysis we choose the structure prior
parameterα directly based on a simple heuristic.

In general the priorP (M) encodes the preference for a simp-
ler model. This is contrasted with the data likelihoodP (D|M)
which increases with model complexity. One way of thinking about
the relation between prior and likelihood is that the prior acts as a
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regularization of the likelihood to prevent overfitting. From the per-
spective of the CSI structure learning task, the choice of the hyper
parameterα of the structure priorP (G) expresses our preference
of a simpler, less complex structure. One way to look at this is that
α puts a threshold on the decrease in likelihood we are willingto
accept in exchange for a less complex structure. Since the likelihood
of a data set is dependent on the sample sizeN the same must be
true forα. To make this explicit, consider the decision rule between
a modelM l and a candidate modelM during an iteration of the
learning algorithm. Recall thatM l andM are identical except for a
single merge in agj . This merge is accepted if

P (M l|D)

P (M |D)
=

P (D|M l)P (M l)

P (D|M)P (M)
≤ 1.

Substituting Eq. 2 and (3) and cancelling terms we obtain

N
Y

i=1

P (xi|M
l)

P (xi|M)
α ≤ 1.

Each of theN fractions gives the decrease in likelihood of axi for
moving fromM0 to the less complex modelM . That is, we can
think of each fraction as(1+ δi) whereδi is the relative decrease in
likelihood for xi. Under the simplifying assumption that all of the
δi are equal, i.e.δi = δ, we can now choose aδ as themaximal
relative decreasein likelihood we are willing to accept in exchange
for a less complex model. Thenα is given by

α = α(δ, N) =
1

(1 + δ)N
.

It is important to stress that at this point all we have done isto
replace the choice ofα with the choice ofδ. However this is advan-
tageous for two reasons: First, the formula given above explicitly
shows the impact of the data set sizeN . Secondly,δ has a straight-
forward interpretation as the reduction in likelihood between simple
discrete distributions. As such it is easier to make an informed
choice forδ based on the specific application. In our case it seemed
reasonable to use a strong prior, such that the structure only introdu-
ced additional complexity into the model if clearly warranted by the
data. In the following we chose the prior according toα(0.18, N)
(unless noted otherwise). As an example for 20 sequences we obtain
α(0.18, 20) = 0.036

2.5 Sequence Scoring
One practical advantage of the model extensions described above is
that it refines the models ability to represent TF binding patterns
without abandoning the framework of probabilistic models.This
means that the CSI model can be seamlessly and easily combined
with established techniques for finding hits with significant scores
in genomic sequences [15, 18]. Here, as in [14], the score of amix-
ture was defined as the maximum score over all components. This
means that the score of a sequence was given by the strongest signal
found among the components. Similar scoring schemes have been
used for instance in the field of speech recognition.

3 RESULTS

3.1 Simulation Studies
In order to examine the difference in performance between nor-
mal mixture and CSI models we generated artificial data sets from
mixtures with differing numbers of components and structures.

In the first experiment the generating model was a two component
CSI mixture withp = 10 and random weightsθπ. The CSI structure
was set up as follows: Out of the ten positions, six were represented
by single distributions in both components and four had a unique
distribution in each component. The parameters of the distributions
θXj|gj

were chosen randomly.

Best model Best avg. BIC
G1 M1 10851
G2 M2 11444

GCSI MCSI 12266
G4 MCSI 12350

Table 1. Optimal model for the four data sets according to the
average BIC over 30 repetitions.

First we evaluated the ability of our method to adapt to the
structure in the data and thus to avoid overfitting. We trained one
conventional and one CSI mixture model, both using three com-
ponents on a training data set with 40 samples. The first result
was that the structure learning algorithm recovered the genera-
ting models two component CSI structure with high accuracy (not
shown). In order to quantify the advantage of the CSI model for
sequence scoring we generated test data sets with 500 samples. We
used a uniform background model to obtain the scores for eachsam-
ple and the scores were then converted to p-values based on a score
distribution on 1Mb of random sequence. We repeated the simu-
lation for 30 different randomly generated data sets and observed
that the CSI mixture yielded better (lower) p-values than the con-
ventional mixture. The one-sided Wilcoxon test for paired samples
assigned a significance of 0.02 to this result. Repeating theexperi-
ment with only 25 training samples confirmed these results with a
Wilcoxon test significance of 0.04.
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Fig. 3. Distributions of the difference in BIC to best scoring model
for the four simulated data sets on 30 repetitions.

The next question we addressed was how the CSI model perfor-
med for different data sets in a classical model selection setup. We
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generated data sets of size 500 withp = 10 from four different
models: a single PWM modelG1, a conventional two component
mixture G2, a CSI mixture with four componentsGCSI and a
conventional four component mixtureG4. The parameters of the
discrete distributions inθM were chosen such that one baseβ was
assigned a random probability sampled uniformly from [0.5,0.8] and
the remaining mass split evenly over the other bases. In eachcaseβ
was chosen such that it adhered to the CSI structure of the respective
model, that is components that did not share a group for aXj also
had a dissimilarβ. The structure inGCSI consisted of 6 positions
with four groups and two positions with three and two groups each.
Subsequently we trained 30 modelsM of each of the four types (i.e.
M1, M2, MCSI andM4) on each of the four data sets. Model fit was
assessed by theBayesian Information Criterion(BIC) [29]. The best
scoring model for each data set and its average BIC value based on
the 30 repetitions is shown in Table 1. As one would expect, the
model type that best matches the respective generating model yields
the optimal BIC. A more interesting point to consider was thedis-
tributions of the differences of the remaining models to theoptimal
BIC shown in Fig. 3. It can be seen that for data sets whereMCSI

is not optimal it achieves BIC scores very similar to the best. These
results illustrate the inherent ability of CSI models to adapt to dif-
ferent data settings. This makes CSI a preferable choice of model
for practical applications where the true number of components is
unknown.

3.2 Analysis of TF LEU3

1 2 3 4 5 6 7 8 9 10
C1

C2

Fig. 4. Two component CSI mixture structure for known Leu3 bin-
ding sites. Each cell represents a discrete distribution, where cells
spanning both rows identify positions with high conservation in both
subgroups.

It was shown that 46 known binding sites of the TF Leu3 [19]
can be separated into a high and low binding-energy subgroupusing
a two component mixture with highly significant p-value [14]. We
repeated this analysis by training a two component CSI mixture.
Since we were using the model in a clustering context a weak prior
of α(0.05, 46) = 0.11 was used. Fig. 4 shows the resulting CSI
structure. Note the correspondence between the fully parameteri-
zed positions (1, 4, 5, 6) and the group specific sequence variability
as visualized in Fig. 1. The CSI mixture yielded a subgroup divi-
sion of the Leu3 sites that was practically identical to the one
previously reported. However there are two important differences
between the two models: First, the conventional mixture requires
the estimation of 61 free parameters while due to the tying expres-
sed in the CSI structure our model only needs 43 parameters. This
means that CSI gave equivalent results using about 30% less para-
meters. Secondly, the CSI structure makes information about the
subgroup and position specific sequence variability an explicit part
of the model. Having this information readily available will facili-
tate further investigations, especially for large-scale studies where
hundreds or more factors are involved.
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Fig. 5. a) Conserved fractions of hits forM1 and M2. The
mixture M2 is as good or better for 67% (43) of the TFs.
b) Conserved fractions forMCSI and M1. For 70% (45) of the
TFs the conservation ofMCSI was as good or better than forM1.
Outliers with strong preference forM1 model had very few known
sequences. If we only consider TFs with at least 20 sequences, the
CSI yields as good or better conservation in 85% (34/40) of the
cases.c) Comparison of conservation statistics ofM2 andMCSI .
For 89% (57) of the TFsMCSI yields higher or equal conservation.

3.3 Conservation Statistics
The validation of predicted binding sites with respect to their bio-
logical functionality is a difficult problem as functionality cannot
be assessed directly. One surrogate for functionality found in the
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literature is the degree of conservation in genomic sequences bet-
ween related species [35]. For the sake of comparability with the
results reported in [14] we follow the same evaluation approach
taken there and evaluate the different models by the fraction of
conserved predicted binding sites.

In the following we are going to evaluate the performance of a
single PWMM1, a two component mixtureM2 and a two compo-
nent CSI mixtureMCSI based on human-mouse conservation. We
used the same 64 JASPAR TFs as in [14]. We downloaded the 1kb
upstream regions of thehg17 assembly (May 2004) from the UCSC
genome data base [16]. The mouse conservation data (mm7) was
extracted from the axtNet data set [28] (also UCSC). For eachof
the 64 TFs and each of the three models under consideration, we
then computed the 1000 best scoring hits in the 1kb upstream regi-
ons. The overall base composition of the sequences was used as the
background model. For the mixtures the hits were chosen proportio-
nally to the mixing weights. This means that for aθπ = (0.6, 0.4)
we would chose the 600 best hits from the first component and the
400 best from the second. The fraction of hits that was conserved in
mouse was then computed based on a 80% sequence identity cutoff.

Evaluation: In order to decrease the impact of random varia-
tion on the analysis we considered TFs with very similar fractions
of conserved hits for two model types as not giving conclusive pre-
ference to any of the two. That is, if the difference in the conserved
fraction was less than ten percent of the maximal conserved fraction
observed for any of the three model types, the scores were conside-
red to be ”equal” for the purposes of this analysis. This has the effect
of making the results more conservative in the sense that theimpact
of factors with very small differences in the conservation statistics
was suppressed.

Fig. 5 shows the comparison of conserved fraction for the three
model types. To illustrate the impact of the available number of
training samplesN for a factor on performance, we depict TFs dif-
ferently based on the number of associated sequences. TFs with less
than 18 sequences are shown as red diamonds, TFs with 19 - 31
sequences are shown as blue rectangles and TFs with more than31
sequences are shown as green dots. The numbers were chosen asto
split the 64 TFs into three roughly equally sized groups.

M1 vs M2: In 5a) you can see the conserved fraction ofM1 and
M2 for the 64 TFs in the data set. The mixture modelM2 was as
good or better thanM1 in 67% (43) of the cases. For 33% (21) of
the TFs the mixture was strictly better. This means that the perfor-
mance of the two component mixture was somewhat weaker in our
analysis than reported in [14] . Recall, that our data set differed from
the one in [14] as it was based on a later genome freeze and, more
importantly, it did not contain any downstream sequences. To the
best of our knowledge the rest of our analysis was identical to the
one conducted in [14].

MCSI vs M1: The comparison between the fraction of conser-
ved hits of the CSI mixtureMCSI and the single PWM modelM1

can be seen in Fig. 5b). In 70% (45) of the TFs under consideration
MCSI showed a conserved fraction as good or better thanM1, with
28% (18) being strictly better. One important observation is that in
most instances whereM1 had a strong advantage in conserved hits,
the factor had only a small number of known binding sites. This
can be seen by the large number of diamonds below the diagonal.

M2 ≥ M1 (43) M1 > M2 (21)
MCSI ≥ M2 84% (36) 100% (21)
MCSI > M2 47% (20) 81% (17)
MCSI ≥ M1 89% (38) 33% (7)
MCSI > M1 37% (16) 10% (2)

Table 2. Comparison of the conserved fraction of the 1000 best sco-
ring hits forMCSI , M1 andM2 in the two subsets of the TF data
given the conditions(M2 ≥ M1) and(M1 > M2) respectively.

For instance the rightmost point in Fig. 5b) at (0.53, 0.43) corre-
sponds to MA0062 which has 7 known sites. In such a situation a
little random variation in the sequences can have a strong impact on
the trained model and lead to spurious structures. This is supported
by the correlation between the number of available sequences for
a factor and the increase in conservation for the CSI model. If we
only considered TFs with 15 or more sequences,MCSI is as good
or better in 74% (40/54) of the cases, for 20 or more sequencesin
85% (34/40) and for 40 or more in 94% (15/16). The fraction of TFs
whereMCSI is strictly better remained in the range of 30% inde-
pendent of the number of sequences.

MCSI vs M2: In Fig. 5c) we show the fraction of conserved hits
for MCSI and the conventional two component mixtureM2. For
89% (57) of the TFs the CSI model yields higher or equal conserva-
tion, 58% (37) being strictly greater.

Performance ofMCSI : Applying the two conditions(M2 ≥ M1)
and(M1 > M2) on the conserved fractions of hits split the 64 TFs
in two subsets of size 43 and 21. We can think of the first subsetas
those TFs where a mixture model is appropriate and the secondsub-
set as being better represented by a single PWM. In the following
we examined the performance of our CSI models within these two
subsets. The results are summarized in Table 2. For the subset indu-
ced by(M2 ≥ M1) MCSI was as good or better thenM1 or M2

for a strong majority of 84% (36) and 89% (38) of the TFs respec-
tively. MCSI was strictly better for 47% and 37% respectively. This
means that for TFs where a two component mixture improves per-
formance as compared to a single PWM, the CSI model will in most
cases outperform both of the other models.M2 due to the reduction
in overfitting and the more robust parameter estimates,M1 because
of the improved description of the binding pattern.

For the subset where a single PWM yielded a larger conserved
fraction than the two component mixture (given by the condition
(M1 > M2)) MCSI was as good or better thanM2 for all the
TFs in the subset (100% (19)) and strictly better for 81% (17). This
illustrates the property of the CSI model to adapt to the number of
subgroups supported by the data (one in this case) by means ofthe
structure learning.MCSI is equivalent or better thanM1 in 33%
(7) of the TFs in the subset. This rather low number again shows
the impact of spurious structures for TFs with few known binding
sites. If we only consider the 11 TFs in the subset with 20 or more
annotated binding sites, the value for(MCSI ≥ M1) goes up to
64% (7/11). Finally,MCSI is strictly better thanM1 for a negligi-
ble 10% (2). This is not surprising as we would not expect CSI to
outperformM1 in situation where a single PWM is the appropriate
model. Rather a successful application of the structure learning in
such a case makesMCSI equivalent toM1. This corresponds to the
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points which lie directly on the diagonal (i.e. the conserved fractions
are equal) in Fig. 5b).

4 DISCUSSION
The results of our simulation studies show that the CSI formalism
yields more parsimonious and robust representations for TFs that
exhibit a position-wise subgroup structure in their binding pattern.
The greater parsimony of the CSI model as compared to conventio-
nal mixtures was demonstrated for a subgrouping of known Leu3
binding sites. In this example CSI required 30% less parameters
than a conventional mixture for equal performance. The analysis of
the conserved fraction of predicted binding sites in human upstream
regions in mouse showed that a two component CSI model is clearly
superior to a conventional two component mixture. This means that
learning the CSI structures led to a more biologically meaningful
characterization of the binding patterns of the TFs under conside-
ration. For the TFs where the CSI model increased performance,
we can assess that the known binding sites apparently exhibited a
biologically relevant subgroup structure. The exact nature of the bio-
logical mechanisms underlying these subgroups remains elusive at
this point. One possible explanation though would be the existence
of different conformations of the TFs which show distinct binding
patterns.

A strong advantage of the CSI (or conventional mixture) model
over the single PWM model could not be observed on this data set.
This was due to the occurrence of spurious structures for TFswith
very few known binding sites and the large number of TFs where
the single PWM model seems to be appropriate. This makes sense
as one would expect the structure learning to be more vulnerable to
outliers in situations where data is extremely sparse. The conclu-
sion we draw from this result is twofold: First, CSI is a practical
tool for the search for putative TFBS that fits in seamlessly within
the probabilistic framework for scoring hits that has been establis-
hed for the single PWM model (e.g. [18]). For a practical analysis
using CSI though it seems important to require a minimum number
of available binding sites (say 18) in order to attempt to fit aCSI
model and to use the single PWM model otherwise. This could be
easily included into the model prior. Secondly, we would expect the
general usefulness of the CSI approach to increase in the future as
the pool of known confirmed binding sites increases.

For future research we consider the development of more complex
structure priors and improvements to the structure learning algo-
rithm for sparse data. Also, it might be interesting to quantify the
impact of different sequence scoring schemes on the performance
the model. Moreover, since the probabilistic framework we work in
is fully general, there are numerous biological applications where
our method might yield improved results. In particular we consider
applying our methods on donor splicing site detection, as larger data
sets are available in this setting.

5 ACKNOWLEDGEMENTS
We would like to thank Martin Vingron and Gunnar Rätsch for hel-
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