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Abstract. Mixture models represent results of gene expression cluster analysis in
a more natural way than ’hard’ partitions. This is also true for the representation
of gene labels, such as functional annotations, where one gene is often assigned
to more than one annotation term. Another important characteristic of functional
annotations is their higher degree of detail in relation to groups of co-expressed
genes. In other words, genes with similar function should be be grouped together,
but the inverse does not holds. Both these facts, however, have been neglected by
validation studies in the context of gene expression analysis presented so far. To
overcome the first problem, we propose an external index extending the corrected
Rand for comparison of two mixtures. To address the second and more challenging
problem, we perform a clustering of terms from the functional annotation, in order
to address the problem of difference in coarseness of two mixtures to be compared.
We resort to simulated and biological data to show the usefulness of our proposals.
The results show that we can only differentiate between distinct solutions after
applying the component clustering

1 Introduction

Biology suggests that a single gene will often participate not in one, but in
multiple metabolic pathways, regulatory networks or protein-complexes. As
a result, mixture models represent the results of gene expression clustering
analysis in a more natural way than ’hard’ partitions (Schliep et al. (2005)).
This is true not only for the clustering results, but also for the represen-
tations of gene labels. Biological sources of information, such as functional
annotations, transcription binding sites or protein-protein interactions are
formed by overlapping categories. However, this has been neglected so far by
validation studies for gene expression analysis. A classical approach for com-
paring two partitions is the use of external indices (Jain and Dubes (1988)).
Their basic definition only allows the comparison of ’hard’ clusterings. To
overcome this limitation, we propose extensions of external indices, such as
the corrected Rand (CR), suitable for comparing mixtures or overlapping par-
titions (encoded as mixtures). In order to investigate the characteristics of
the proposed index, we make use of experiments with simulated data sets.



Other important characteristics of most biological information are their
complex structure, large size and specificity of information. Gene Ontology
(G.O. Consortium (2000)), for example, is composed of a redundant directed
acyclic graph with thousands of biological terms. The terms in Gene Ontology
(GO) can either describe general concepts, such as ’development’, which has
more then 17.000 annotated genes, or very specific concepts, such as ’pupal
cuticle biosynthesis’, which has only one associated gene. The construction
of a ’compact’ and ’meaningful’ mixture from such complex structure is non-
trivial. Furthermore, one should not expect that the information contained
in a single gene expression data set is as specific as the information contained
in GO. Biologically speaking, co-regulated genes should share similar func-
tion, but clusters of co-regulated genes will be associated not with one, but
with several biological functions. The use of CR to compare two mixtures (or
partitions), where one of the mixture represents a more coarse representation
of the data, yields too conservative CR values, given the high number of false
positives. As a consequence, a procedure for clustering GO terms prior to the
comparison of the mixtures – clustering of components – is necessary in order
to achieve more general representations of GO. This compact representation
of GO yields a better basis for comparison of distinct results. To evaluate
the proposal, we perform analysis of gene expression time-courses from Yeast
during sporulation (Chu et al. (1998)). The results with and without the
component clustering are then compared with Yeast annotation from GO.

2 External Indices

External indices assess the agreement between two partitions, where one par-
tition U represents the result of a clustering method, and the other partition
V represents a priori knowledge of the clustered data. A number of exter-
nal indices have been introduced in the literature, but the use of corrected
Rand (CR) has been suggested given its favorable characteristics (Hubert and
Arabie (1985)). Among others, CR has its values corrected for chance agree-
ment, and is not dependent of the object distribution in U or V (Milligan
and Cooper (1986)). This work proposes an extension of the corrected Rand,
in order to access the agreement of partitions with overlap (encoded as mix-
tures) or mixture models, by comparing their posterior distributions for a
fixed data set. The main idea of the extended corrected Rand (ECR) is to
redefine the indicator functions, as defined in Jain and Dubes (1998), giving
them a probabilistic interpretation.

To simplify the notation, we consider for a given mixture model f(·|Θ) =
∑K

k=1
αkfk(·|Θk) 1 the components U = {uk}1≤k≤K ; similarly V = {vl}1≤l≤L

for a second mixture model. Let O = {on}1≤n≤N be the set of objects to be
clustered, U be the estimated mixture model (or clustering solution), and V

1
Θk and αk are the mixture model parameters (McLachlan and Peel (1996))



be the mixture defined by the a-priori classification. The posterior distribu-
tion defines the probability that a given object o ∈ O belongs to a component
uk from U or vl from V , {P[uk|o]}1≤k≤K and {P[vl|o]}1≤l≤L. We denote the
event that a pair of objects has been generated by the same component in
model U , the co-occurrence event, as oi ≡ oj given U . Assuming indepen-
dence of the components in U , the probability of the co-occurrence of oi and
oj given U for 1 ≤ i ≤ j ≤ N is:

P[oi ≡ oj given U ] =

K
∑

k=1

P[uk|oi]P[uk|oj ] (1)

We use the above formula to redefine the variables a, b, c and d, used
in the definition of CR, which are equivalent to the number of true positives,
false positives, false negatives and true negatives respectively.

a =

N−1
∑

i=1

N
∑

j=i+1

P[oi ≡ oj given U ]P[oi ≡ oj given V ] (2)

b =

N−1
∑

i=1

N
∑

j=i+1

P[(oi ≡ oj given U)C ]P[oi ≡ oj given V ] (3)

c =

N−1
∑

i=1

N
∑

j=i+1

P[oi ≡ oj given U ]P[(oi ≡ oj given V )C ] (4)

d =

N−1
∑

i=1

N
∑

j=i+1

P[(oi ≡ oj given U)C ]P[(oi ≡ oj given V )C ] (5)

From these the extended corrected Rand (ECR) can be calculated by the
original formula for the CR, as defined below.

ECR =
(a + d) − ((a + b)(a + c) + (c + d)(b + d))p−1

p − ((a + b)(a + c) + (c + d)(b + d))p−1
(6)

where p is equal to the sum a + b + c + d or the total number of object pairs.
ECR takes values from -1 to 1, where 1 represents perfect agreement while

values of ECR near or below zero represent agreements occurred by chance.
The original CR, proposed in Hubert and Arabie (1984), estimates the ex-
pected Rand value by assuming that the baseline distributions of the parti-
tions are fixed. By definition, ECR is an extension of CR. It works exactly as
the latter when hard partitions are given. In the used terminology, a ’hard’
partition can be described by the following posterior.

P[uk|o] =

{

1, if o ∈ uk

0, otherwise
(7)



Fig. 1. We display three hypothetical partitions, U and U
′, which represent two

distinct clustering results, and V , which represents the true labels (the objects in U

and U
′ are depicted in the correspondent label color defined in V ). Both clusterings

failed to recover the three true components. U splits the objects from v2 in half,
while U

′ joined the objects of v2 and v3. Comparing the partitions with V , U has a
CR value of 0.57 and U

′ a value of 0.53. Assuming, however, that the classes v2 and
v3 can not be distinguished in the clustered data, and joining these two components,
U would have a CR of 0.56 while U

′ a value of 0.78.

3 Component Clustering

The component clustering deals with the problem of difference in coarseness
of two mixtures (or partitions). Given the two mixtures U and V , using
the ECR (or CR) to compare the agreement will always result in low values
when #U << #V , even when U is a more coarse representation of V . A
simple example of this, in the context of partitions, can be seen in Fig 1.
In some real world problems, as with the use of functional annotation of
genes to validate co-regulation of genes, it is reasonable to assume that U is
a coarser representation of V , and the clustering of components in V yields
a better comparative basis for choosing between distinct solutions U , and
hence between different methods.

More formally, given that the number of components of the model V is
higher then the one in U , and assuming that model U is a more general de-
scription of V , we want to find a partition P = {pk}1≤k≤K of the components
in V . This partitioning can be used to define a new model V ′, where each
group of components in P is a single component in V ′ and V ′ is similar to
U . A natural choice of a criterion for evaluating the ’similarity’ of the two
models is the mutual information.

I(X, Y ) =

L
∑

i=1

J
∑

j=1

P[X = xi, Y = yj ] log

(

P[X = xi, Y = yj ]

P[X = xi]P[Y = yj ]

)

(8)

Given mixture models U and V , its posteriors on O and, assuming inde-
pendence between them, we can define the joint probability P[U, V |O] and
the probability distribution P[U |O] as:

P[U = uk, V = vl|O] =
1

N

N
∑

i

P[uk|oi]P[vl|oi] (9)



P[U = uk|O] =
1

N

N
∑

i

P[uk|oi] (10)

We accomplish the components clustering by applying a algorithm similar
to hierarchical clustering. It joins a pair of groups of components at a time,
until a certain number of clusters is reached. At each step, the partition in the
set of candidate partitions (C) with higher mutual information is selected.
Starting with the singleton partition, where pi = {vi} for 1 ≤ i ≤ L, the
method works as follows:

1. while (#P > #U) do
2. C = ∅
3. for each pair (pi,pj), where 1 ≤ i < j ≤ #P do
4. P ′ = P \ pj

5. p′i = pi ∪ pj

6. C = C ∪ {P ′}
7. P = argmaxH∈CI(U, merge(V, H))

where merge(V, P ) defines a new model V ′ from V , where #V ′ = #P and
P [v′k|o] =

∑

i∈pk
P[vi|o].

4 Experiments

To evaluate the extended corrected Rand, we make use of simulated data
from multivariate mixture of normals. We use a simple test data with two
normal components to compare the characteristics of ECR and CR when dis-
tinct overlaps are present. Then, we make use of biological data in order to
show the applicability of the proposal, in particular the component cluster-
ing method, to real data. The Estimation-Maximization algorithm (EM) is
used to fit multivariate normal mixtures with unrestricted covariance matri-
ces (McLachlan and Peel (1996)). For each data set, 15 repetitions of the
EM algorithm with random initialization are performed, and the result with
maximum likelihood is selected. In the simulated data experiments, 50 test
data sets are generated for each proposed mixture.

4.1 Simulated Data

We perform experiments with a normal mixture with two equiprobable com-
ponents to evaluate the proposed index characteristics in the presence of dis-
tinct overlaps. The components have means µ1 = [0, 0]T , µ2 = [d, 0]T , covari-
ant matrices C1 = C2 = I, and 0.0 < d < 7.5 (structured data) (Figueiredo
and Jain (2002)). For each component we draw 200 samples (or objects),
and the multivariate normal density of the mixtures are used to obtain the
distributions P[V |o]. We also display the value from the CR, by the following
partition assignment of the objects of a given posterior distribution:
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Fig. 2. We show results of the mixture estimation with the normal bivariates. The
larger d, the lower is the overlap between the two components.

P[ui|o] =

{

1, if i = argmax1≤k≤K(P[uk|o])
0, otherwise

(11)

Additionally, we generate random noise data to serve as a null case. This
consists of data generated from a single normal component with µ = [d/2, 0]T

and C = I. A ’hypothetical solution’ (V ) with the same number of compo-
nents and object distributions is calculated from the definition of the respec-
tive structured data. We carried out a non parametric equal-means hypothesis
test based on bootstrap (Efron and Tibshriani (1997)) to compare the mean
ECR (or CR) obtained with the structured (s) and random data (r).

H0 : r = s and H1 : r < s (12)

As displayed in Fig. 2, for data with high overlap, ECR has higher values
then CR, while for data with low overlap both indices have similar values.
With random data, both indices take on mean values near zero and low
variance (< 0.001), which indicates that ECR is successful in the correction
for randomness. In relation to the hypothesis test, H0 is rejected in all d
values with α = 0.001 with the use of ECR, while for data with very high
overlap (d < 0.4) the null hypothesis is not rejected (α = 0.001) with the
use of CR. From these we can conclude that ECR is able to show significant
distinctions between the agreement of the random and structured data, even
when the overlap is great, while CR fails.

4.2 Biological Data

We use gene expression data from Yeast (Chu et al. (1998)) in our evaluation.
This data set contains gene expression measurements during sporulation for
over 6400 genes of budding yeast. The measurements were taken at seven time
points (0h, 0.5h, 2h, 5h, 7h, 9h and 11h). Clones with more than 20% of values
missing were excluded. The data is pre-processed by extracting all those genes



with an absolute fold change of at least two in at least one time point. The
resulting data set contains 1171 genes. We perform mixture estimation, as
described in Sec. 4, and we use the Bayesian information criteria to determine
the optimal number of components (10 for this data set).

Gene Ontology Gene Ontology (GO) describes genes in three distinct cat-
egories (G.O. Consortium (2000)): cellular component, molecular function
and biological process. Such an ontology has the form of a directed acyclic
graph (DAG), where the leaves are genes and the internal nodes are terms
(or annotations) describing gene function, gene cellular localization or the
biological processes genes take part in. Gene are associated not only with the
terms which it is directed linked, but also to all parents of this term. Given
this parent relation and the number of GO terms, a reasonable way to obtain
a mixture from GO is to cut it at a fixed level m, where each GO term in
level m represents one component from the mixture T m = {tmp }1≤p≤P . For
a given set of genes O, one could define a simple definition of a posterior
distribution of a gene o given T m by:

P[tmp |o] =

{

1/#{i|o ∈ tmi , i = 1, ..., P}, if o ∈ tmp
0, otherwise

(13)
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Fig. 3. In the left, we show the ECR values obtained for distinct levels of GO and
in the right we show the number GO terms and annotated genes for distinct GO
levels. The higher the level the lower the number of genes. The number of GO terms
increases until level 3 reaching a peak of 234, and decreases afterwards.

The use of the component clustering posterior to the mixture estimation
represented a considerable increase in the ECR values (Fig. 3), while the ECR

values obtained only with the mixture estimation are not too far apart from
zero (similar results are encountered with other gene expression data sets).
The main reason for this difference is the reduction in the number of false
positives obtained after the application of the clustering of components. In



relation to the use of GO, the choice of the level of cutting the DAG is
a rather subjective task. Figure 3 shows that high levels of GO should be
avoided, since there is a lower percentage of annotated genes. The levels
two and three represent a better choice, since they obtained the highest ECR
while they still maintain a reasonable number of genes. These characteristics,
however, are dependent on the data set analyzed and on the GO annotation
used.

5 Conclusions

The use of simulated data allow us to assess the characteristics of the ex-
tended corrected Rand. It displayed superior results in comparison to the
original corrected Rand when high overlap is present and values near zero
when the data is random. With the biological data, the results indicate that
(1) there is a low agreement between the results of mixture analysis and GO
and (2) this agreement is greatly enhanced by a clustering of components.
We can conclude that the use of component clustering prior to ECR is impor-
tant when structures with distinct level of coarseness are compared allowing
to choose between different solutions which were previously not very distin-
guishable. Despite the importance of this problem, it has been neglected in
the bioinformatics literature, where in several problems we are faced with the
comparison of data with such distinctions in coarseness.
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