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Abstract

Background: Hidden Markov Models (HMM) are often used for analyzing Comparative Genomic Hybridization
(CGH) data to identify chromosomal aberrations or copy number variations by segmenting observation sequences.
For efficiency reasons the parameters of a HMM are often estimated with maximum likelihood and a segmentation
is obtained with the Viterbi algorithm. This introduces considerable uncertainty in the segmentation, which can be
avoided with Bayesian approaches integrating out parameters using Markov Chain Monte Carlo (MCMC) sampling.
While the advantages of Bayesian approaches have been clearly demonstrated, the likelihood based approaches
are still preferred in practice for their lower running times; datasets coming from high-density arrays and next
generation sequencing amplify these problems.

Results: We propose an approximate sampling technique, inspired by compression of discrete sequences in HMM
computations and by kd-trees to leverage spatial relations between data points in typical data sets, to speed up
the MCMC sampling.

Conclusions: We test our approximate sampling method on simulated and biological ArrayCGH datasets and high-
density SNP arrays, and demonstrate a speed-up of 10 to 60 respectively 90 while achieving competitive results
with the state-of-the art Bayesian approaches.
Availability: An implementation of our method will be made available as part of the open source GHMM library
from http://ghmm.org.

Background
The Sirens’ call of Bayesian methods is that we can do
without the parameters of models and, instead, compute
probabilities of interest directly, indicating for example
how likely a biological fact is given our data. The price one
pays for that convenience is on one hand the conundrum
of which prior distributions to choose and how to set their
hyper-parameters; the frequent use of uniform priors is
evidence that this is indeed non-trivial. On the other hand,
unless the choice of likelihood and prior yields simple pos-
teriors which we can integrate symbolically, we have to
resort to sampling for example with Markov Chain Monte
Carlo (MCMC) [1].
In the following we will concentrate on HMMs, stochas-

tic functions of Markov Chains, which have not only been
used extensively for discrete sequences–pairwise-sequence

alignments with pair-HMMs [2], gene finding with labeled
HMMs [3], and detecting remote homologs using profile
HMMs [4]–but also for continuous-valued observations,
such as gene expression time-courses [5]. Continuous
observation sequences from either DNA microarrays or
next generation sequencing experiments, note that the
proportion of mapped reads in an interval is frequently
used as a continuous measure of copy number, to detect
chromosomal aberrations or copy number variations lead
to the same fundamental computational problem and
share characteristics of the data. The goal is to segment an
observation sequence into regions in which there is little
variation around a common mean. In other words, the
assumption is that the data can be approximately
described by piece-wise constant functions. Indeed, if
hybridization intensity was an exact, un-biased measure-
ment of DNA concentration before amplification, the
sequence of hybridization intensities of probes along a
chromosome would yield a piece-wise constant function
in ArrayCGH experiments. This assumption holds true for
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a mixture of different cell populations because a finite sum
of piece-wise constant functions is again a piece-wise con-
stant function.
A wide range of methods for copy number detection in

ArrayCGH data have been developed in recent years,
including change-point detection based methods [6,7],
smoothing based methods [8,9], and hierarchical cluster-
ing [10]. Here, we concentrate on HMM-based approaches
which have been proposed for segmenting sequences of
continuous-valued observations and shown to match or
improve upon the state-of-the-art [11-13]. Once a model
is trained from the data, either using maximum likelihood
(ML) or maximum a posteriori (MAP), the segmentation
is given by the most likely state sequence obtained with
the Viterbi algorithm [14]. The segmentation, however, is
highly dependent on the model parameters. A small
change in the computed parameter values can adversely
affect the recovered segmentation. A full Bayesian
approach alleviates this dependence by integrating out the
model parameters. As analytic integration of a complex
high dimensional model is impossible for most distribu-
tions, the Bayesian approach requires the use of numerical
integration techniques like MCMC [15], for example by
direct Gibbs sampling [16] of model parameters and state
paths. Scott [17] reports that combining the forward-back-
ward recursions [18] and Gibbs sampling improves the
converge rate and consequently the running time. Never-
theless, MCMC remains substantially slower than training
one model and running Viterbi once and the loss in relia-
bility introduced by relying on one ML or MAP model is
ignored in practice. For discrete emissions, compressing
sequences and computing forward and backward variables
and Viterbi paths on the compressed sequences yields
impressive speed-ups [19]. However, discretization of con-
tinuous emissions, similar to vector quantization used in

speech recognition [18], is not viable as the separation
between the different classes of observations is low since
the observations are one-dimensional. Moreover, maximal
compression is to be expected for small number of dis-
crete symbols and clearly compression ratio conflicts with
fidelity in the analysis.
For a different task, arguments about spatial relations

between groups of multi-variate data points were used to
achieve considerable speed-up. Moore and colleagues
used modified kd-trees, a data structure to efficiently exe-
cute spatial queries such as determining the nearest
neighbor of a given point, to accelerate k-means [20].
The fundamental insight is illustrated in Figure 1 (left).
In the reassignment step of k-means one has to find the
nearest centroid for every data point. Due to the kd-tree,
there are groups of points contained in a node of the tree
for which this decision about the nearest centroid can be
made simultaneously by a geometrical argument about
the vertices of the hyperrectangle defined by this node. A
similar kd-tree based approach was used in speech recog-
nition [21,22] to quickly find the most important compo-
nents in a mixture of large number of Gaussians and
thus approximate the full observation density in one indi-
vidual HMM state with multi-variate emissions.
At the core of our approach is a similar geometrical

argument about several uni-variate data points based on
a modified kd-tree. We adaptively identify blocks of
observations, cf. Figure 1 (middle). For all observations
in a block we now estimate, at least conceptually, the
most likely state simultaneously depending on the
means of the Gaussians in each state to gain a consider-
able speed-up proportional to the average block length.
Similarly, we can avoid sampling states for each indivi-
dual observation in a block if we can bound the poster-
ior. Considerable care has to be taken for combining

Figure 1 Fundamental insight. When reassigning two-dimensional data points to cluster centroids c and d in k-means clustering (left) the
hyperrectangles obtained from kd-trees reduce the computational effort by making an argument about all points in an hyperrectangle based on
their vertices; consider for example the rightmost hyperrectangle. For sequences (middle) there is no overlap in y-direction and decisions about
the most likely state can be made per block considering the means of the Gaussians of a three-state HMM (right), μ-, μ= and μ+. Note that at
every given block only a decision between the two states with closest mean is necessary, if one assume comparable variances. Decision
boundaries are displayed dashed.
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blocks and to bound the errors introduced by the
approximations based on geometric arguments.
In summary, we

• propose the first use of spatial index structures for
several consecutive observations and approximate
computations based on geometric arguments to sub-
stantially speed-up the problem of segmenting
sequences of continuous observations using HMM,
• demonstrate that very frequently used biological
datasets of high relevance measuring chromosomal
aberration and copy number variations are consis-
tent with our assumptions of piece-wise constant
observations with added noise, and
• achieve speed-ups between 10 and 90 on those
biological datasets while maintaining competitive
performance compared to the state-of-the-art.

Methods
HMM
We only consider HMMs with Gaussian emission distri-
butions; see Figure 1 (right) for an example and [18] for
an introduction. We will use the following notation: N
denotes the number of states, S = {s1, s2, ..., sN} the set of
states, T the length of an observation sequence O = {o1,
o2, ..., oT} with ot Î ℝ, A = {aij}1≤i,j≤N the transition
matrix, π = (π1, π2, ..., πN) the initial distribution over
states, B =

{(
μ1, σ 2

1

)
, . . . ,

(
μN, σ 2

N

)}
with μ1 ≤ ... ≤ μN are

parameters of the emission distributions, and Q = {q1, q2,
..., qT} the hidden state sequences with qt Î S. From an
observation sequence O we can obtain a maximum likeli-
hood point estimate of the parameters (A, B, π) using the
Expectation-Maximization (EM) or Baum-Welch [23]
algorithm and compute the most likely path using the
Viterbi algorithm [14].

MCMC Sampling
Bayesian analysis requires choosing prior distributions
on parameters and we use standard conjugate prior dis-
tributions following [1]. Specifically, we choose
μi ∼ N(μ̃i, σ̃i), σ−2

i ∼ Gamma(ai, bi), Ai ∼ Dirichlet(λAi ) , and
π ~ Dirichlet(lπ), where μ̃i, σ̃i, ai, bi, λAi, and lπ are
the hyperparameters of the model.
It is only possible in some trivial cases to compute

posterior distribution in closed form using analytic inte-
gration. In most applications, specially for high dimen-
sional distributions, Monte Carlo integration techniques,
like MCMC sampling by Gibbs sampling or Metropolis-
Hastings, are easier to compute and generally produce
more accurate results than numerical integration [15].
Scott [17] compares various MCMC approaches and
strongly argues in favor of forward-backward Gibbs
sampling (FBG-sampling), which has been successfully

used by others [24,25], for it’s excellent convergence
characteristics. We briefly summarize FBG-sampling for
an HMM l = (A, B, π); see [17,26] for details:

1. Choose initial parameters θ0 = (A0, B0, π0)
2. Perform the following steps for iteration 0 ≤ m <M.

(a) Compute forward variables P(qt = i, O1, ...,

t|θ
m) for 1 ≤ t ≤ T iteratively using the forward

algorithm [18] for all i.
(b) Sample qm

T ∼ P(qT , O|θm) .
(c) Sample the state sequence Qm in a backward
fashion for T >t ≥ 1.

qm
t ∼ P(qm

t |qm
t+1, O, θm)

∝ P(qm
t , O1, . . . , t|θm)aqm

t
,qm

t+1
.

(d) Sample,

θm+1 ∼PriorDistribution(H, O, Qm, θm)

[H = Set of hyperparameters].

Despite its fast convergence, FBG-sampling takes O
(MTN2) time for M iterations. For long observation
sequences with millions of observations, as they are
common in biological applications, realistic values for M
and N make FGB-sampling intractable. In the next sec-
tion we discuss how FBG-sampling can be approximated
to improve the running time to O(gMTN2), where g is
the compression ratio of the observation sequence,
while maintaining good statistical properties. We refer
to our sampling technique as approximate sampling.

Approximate sampling
Through application of a modified kd-tree algorithm
(details below), we compress the observation sequence
O = o1, ..., oT into O′ = o′

1, . . . , o′
T′ , cf. Figure 1 (middle),

and store precomputed first moment, second moment,
and the number of observations compressed into block
o′

t for all i ≤ T’. In subsequent MCMC iterations we
assume that observations compressed in a block o′

t arise
from the same underlying state. In other words we
ignore the contribution of the state paths that do not go
through the same state for o′

t. By ignoring those state
paths, we refer to them as weak state paths, when com-
puting forward-variables and by reusing pre-computed
statistics we are able to accelerate sampling.
At first ignoring weak state paths may sound like a very

crude approximation for computing forward variables. But
in many applications this is certainly not true. We demon-
strate with a symmetric Gaussian HMM that the weak
state path assumption is a fairly realistic approximation
and leads to faster sampling. We define a symmetric
HMM l = (A, B, π) with N states s1, ..., sN, where we set
self-transition probability aii = t and non-self-transition
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probability aij =
1 − t

N − 1
for 1 ≤ i ≠ j ≤ N, and B = {(μ1, s2),

..., (μN, s2)}. Given a sequence of observations O (assumed
to be generated by l) and its compressed form O’ we
describe an important lemma and some remarks below.
Lemma 1. Let Oi−1 = o1, . . . , oi−1, o′ = oi, . . . , oi+n−1, o′

min = min
oi∈o′

ol, o′
max = max

oi∈o′
ol, d = min

j�=k
|μj − μk|

and
P(qi|Oi−1)

P(qi = sx|Oi−1)
≤ α . Assuming there exists a state

sx s.t. τ = min
(
o′

min − μsx−1 + μsx

2
,
μsx + μsx+1

2
− o′

max

)
≥ 0 , we

can show that
∑

(qi,...,qi+n−1)∈Sn

P(qi, . . . , qi+n−1, o′|Oi−1)∑
s∈S

P(qi = . . . = qi+n−1 = s, o′|Oi−1)
≤ α((1 + rc)n−1 + (N − 1)c

2n
N (1 + r)n−1),

where r =
1 − t

t
and c = e− dτ

2σ 2.

Proof. See Appendix.
Remark 1 For realistic values of τ, t, and n, the contribu-

tion from ignored weak state paths, which we call �, can be
very small. If � ≪ 1, ignoring weak state paths will not
introduce large errors in the computation. For the 2-state
example in Section: Results, where t = 0.9, d = 1, and s2 =

0.1, � is at most
1
3
for a block length n ≤ 10 if we assume

τ > 0.25 and a = 1. If τ is much larger and consequently

c
2n
N is much smaller, we can roughly say that n can be as

large as 1 + log1+rc(1 + �) in a symmetric Gaussian HMM.
Remark 2 We often encounter situations where P(qi =

sx|O
i-1) ≫ P(qi ≠ sx|O

i-1). Even though it is not exploited
in the lemma (a being greater than or equal to 1), as a
consequence of this, the observation sequence can be
compressed into larger blocks keeping � small in practice.
From the above lemma and the remarks we see that

the longer blocks created by an algorithm should con-
centrate around the means of the Gaussian distributions.
While a brute force algorithm looks at local information,
a kd-tree like algorithm alternately looks at both dimen-
sions and utilizes global information like the density of
data points (around the means data concentration
should be high) to create better quality blocks. We use a
modified kd-tree based algorithm to find such blocks
and discuss the details below.
kd-tree Based Sequence Compression
Given a starting width parameter w we create a list of
nodes from the observation sequence O = o1, ..., oT
using the following steps.

1. Let O’ = j be the starting list, δ = 1.25 (picked
empirically), level L = 1, and dimension d = 1.

2. If | max
oi∈O

(oi) − max
oi∈O

(oi)| <
w

δL or |O| = 1, create a

node storing the first and second moment of the
observations in O, append it to O’, and then go to
the end step. Otherwise, go to the next step.

3. If d = 1, find om, the median value of the observa-
tions in O. Partition O into maximal set of consecutive
observations O1, ..., Oi, ..., Op such that ∀o∈Oio ≤ om or
∀o∈Oio ≥ om. For each Oi, go to step 2 with new input
set Oi, level L + 1, and d = 0.
4. If d = 0, divide the input set O into two parts Ol =
o1, ..., oi and Or = oi+1, ..., o|O| such that
|oi − oi+1| ≥ max

j
|oj − oj+1| . Then for each set Ol

and Or, go to step 2 keeping the level value L
unchanged, and setting d = 1.
5. End step.

In the above recursive algorithm, w states the initial
width, δ controls the rate of width shrinking in successive
levels of the iterations, and O’ accumulates the com-
pressed blocks of observations. The current iteration
level L, the current dimension d, and the current input
set O are local variables in the recursive algorithm.
Notice that we start with an empty list O’ and at the end
of the recursive procedure O’ contains an ordered list of
compressed observations. To gain further compression of
the sequence, we sequentially go through the blocks of O’
and combine consecutive blocks if the distance between
their means is less than w. We also combine three conse-
cutive blocks if the outer blocks satisfy this condition and
the inner block has only one observation. In step 3 of the
above algorithm, the input set is divided into two subsets
and each subset contains half of the elements from the
original set. Consequently, the height of the recursion
tree is at most 2logT and the running time of the above
algorithm is O(T log T). This overhead is negligible com-
pared to the time that it takes to run M iterations of
MCMC sampling.
Width Parameter Selection
For increasing values of w the average block size
increases exponentially in the above kd-tree based com-

pression. As a result, the compression ratio γ =
T′

T
plotted as a function of w, has a knee which can inform
the choice of w. Moreover, methods originally developed
to find the optimal numbers of clusters in clustering can
be used to find the knee of such a curve automatically.
In particular, we use the L-method [27] which finds the
knee as the intersection of two straight lines fitted to
the compression curve.
Fast Approximate Sampling
Given the compressed input sequence O′ = o′

1, o′
2, . . . , o′

T′

computing forward variables and subsequent sampling is
a straightforward modification of the uncompressed
case. In particular we make the following two changes
to the FBG-sampling algorithm.
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1. Modified forward variables at positions t∗ =
t∑

i=1
|o′

i|
are computed using the following formula,

P(qt∗ = i, O′
1,...,t|θ)

=
∑

1≤j≤N

P(qt∗−|o′
t| = j, O′

1,...,t−1|θ)aji

a
|o′

t|−1
ii

∏
ok∈o′

t

P(ok|μi, σi).

︸ ︷︷ ︸
constant time computation
using precomputed statistics

2. After sampling the state sequence, parameters are
updated ignoring non-self transitions between conse-
cutive observations in o′

t.

Clearly, each iteration of approximate sampling takes

O(T’ N2) resulting in
T
T′ times speed up.

Results
We evaluate FBG-sampling and approximate sampling
in three different settings. First, its effectiveness is veri-
fied for a simple two state model. Then, we test on
simulated ArrayCGH data which is the accepted stan-
dard for method evaluation [28]. Finally, we report find-
ings from an analysis of Mantle Cell Lymphoma (MCL)
cell lines [29], Corriel cell lines [30], GBM datasets [31],
and high resolution SNP arrays [13,32]. For biological
data, if multiple chromosomes are present, we use pool-
ing [25] across chromosomes, which does not allow
transition between different chromosomes but assumes
model parameters to be identical across chromosomes.
Throughout this section we define sD to be the standard
deviation of all observations in the dataset. We com-
press the dataset with increasing values of w = 0.25sD,
0.5sD, 0.75sD, .... For evaluation we consider the experi-
ments as two class problems: aberrant clones belong to
the positive class and normal clones belong to the nega-
tive class. When ground truth labels of a dataset are
available we report F1-measure, recall, and precision for
the experiment. With tp, fp, tn, fn we denote the num-
ber of true and false positives and true and false nega-

tives respectively. Recall is defined as
tp

tp + fn
, precision

as
tp

tp + fp
, and F1-measure as

2 × recall × precision
recall + precision

.

Experiments were run with a Python implementation on
a Linux machine with 1.6 GHz Intel Core 2 Duo proces-
sor and 2 GB memory. For Expectation Maximization
(EM), we use the Baum-Welch algorithm from the
GHMM package which is implemented in C and consid-
erably faster than a Python implementation.

Synthetic Data
2-State HMM
We define a HMM l2ST = (A, B, π) with

A = [[0.9, 0.1], [0.1, 0.9]], B = [(0, 0.1), (1, 0.1)], π =
[

1
2

,
1
2

]
. From l2ST we

sample an observation sequence O = o1, ..., o10,000, and
run MCMC for M = 100 steps with hyperparameter
values μ̃1:2 = 0, 1 for the prior mean on μ,
σ̃1:2 = 0.5, 0.5 for the prior variance on μ, a1:2 = 4, 4
for the shape of Gamma prior on s-2, b1:2 = 1, 1 for the
rate of Gamma prior on s-2, δπ = 1, 1 for the Dirichlet
prior on the initial distribution π, and δ

Ai
1:2 = 1, 1 for the

Dirichlet prior on row i of transition matrix A.
After M iterations, we compare the posterior prob-

abilities P(qt = i|O, θM
FBG) and P(qt = i|O, θM

A ) , where

θM
FBG and θM

A are M-th parameter samples of FBG-
sampling and approximate sampling. Figure 2 shows
that the posterior probability of being in state 1 for
each position can be approximated fairly well even for
large values of w. The average posterior error

P̃ =
1

2T

∑
t

∑
i|P(qt = i|θM, O) − P(qt = i|θ true, O)|

reflects the same fact in Table 1. Similarly, we com-
pute the Viterbi paths and report total number of mis-
matches between them along with the likelihoods in
Table 1.
Simulation from Genetic Template
We use 500 simulated datasets published in [28]. Each
dataset has 20 chromosomes and 100 clones per chro-
mosome for a total of 2,000 clones per dataset. A four-
state HMM predicts the aberrant regions–loss defined
as state S1 and gain defined as state S3 or S4. The neu-
tral region is modeled as state S2. We put an ordering
constraint on the means, μ1 <μ2 <μ3 <μ4, to prevent
label switching of the states [17]. Hyperparameter
choices follow [25] and are μ̃1:4 = −0.5, 0, 0.58, 1 for
the prior mean on μ, σ̃1:4 = 0.5, 0.001, 1.0, 1.0 for the
prior variance on μ, a1:4 = 10,100, 5, 5 for the shape of
gamma prior on s-2, and b1:4 = δπ = δ

Ai
1:4 = 1, 1, 1, 1 for

the rate of gamma prior on s-2, the Dirichlet prior on
initial distribution π, and the Dirichlet prior on row i of
transition matrix A, respectively.
Table 2 shows the mean and standard deviation of F1-

measure, recall, and precision over the 500 datasets for
FBG-sampling, approximate sampling, and Expectation
Maximization (EM) with the ground truth provided by
[28]. Even for this collection of relatively small datasets
we see a 10-fold speed up. For each dataset we run FBG
and approximate sampling for M = 100 steps (we have
visually monitored the parameters and noticed conver-
gence within 50 steps, see Figure 3 for a representative
example). The last 10 samples are used to compute 10
samples of the posteriors for each state and for each
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position in the observation sequence. Subsequently,
aberrant regions are predicted based on the average of
those distributions. We report the speed-up of approxi-
mate vs. FBG sampling based on the time it takes to
compress the sequence and run M steps of MCMC. For
one individual dataset EM requires 58 seconds on aver-
age, which allows for a total of 800-1000 repetitions
from randomized points sampled from the prior distri-
butions in the time needed for FBG sampling. Each run
continues until the likelihood converges and the best
model based on likelihood is selected. Aberrant regions
are predicted and compared against the ground truth
based on the Viterbi path. We report the mean and
standard deviation of F1-measure, recall, and precision
over the results of EM on 500 datasets.

Biological Data
Mantle Cell Lymphoma (MCL)
De Leeuw and colleagues identified recurrent variations
across cell lines using ArrayCGH data of MCL cell lines
[29]. Out of the eight cell lines [29] HBL-2 was fully
annotated with marked gain and loss regions in the
autosomes. This dataset contains about 30,000 data
points (combining all the autosomes). We have used a
four-state HMM for predicting aberrant regions. State 1
represents copy number loss, state 2 represents normal
copy number, state 3 represents single copy gain, and
state 4 multiple gain. For HBL-2 we report the F1-mea-
sure, recall, precision and speed-up. Similar to the syn-
thetic case we put an ordering constraint on the means,
μ1 <μ2 <μ3 <μ4. Hyperparameter choices follow [25] and

Figure 2 Simulated data: approximate posterior. We show the posterior probability of state 1 (y-axis) for first fifty observations (x-axis) with
w = 0.5sD (top left), 1.0sD (top right), 1.5sD (bottom left), and 2.0sD (bottom right). The true posterior is shown as a solid line, the approximate
posterior as a dashed line, and their absolute difference is shown in dashed vertical lines.

Table 1 We show the average posterior error P̃ =
1

2T

∑
t

∑
i|P(qt = i|θM, O) − P(qt = i|θ true, O)| and total number of mismatches between

the two Viterbi paths Ṽ , generated by models with parameters θtrue and θM

Method w (in sD) P̃ Ṽ Likelihood Time(in sec) Speed up

0.25 0.001 3 -5470 74 1.2

0.50 0.001 3 -5475 61 1.4

0.75 0.002 6 -5469 35 2.4

Approx 1.00 0.004 22 -5478 21 4.2

1.25 0.012 81 -5588 13 6.5

1.50 0.054 410 -6576 8 10.4

1.75 0.219 2345 -8230 4 20.1

2.00 0.248 2857 -8492 3 34.1

FBG ... 0.003 12 -5471 87 1.0

True ... ... -5470 ...
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are same as for the simulation from genetic template,
except for σ̃1:4 = 0.2, 0.1, 0.2, 0.2 , the prior variance on
μ, and a1:4 = 15, 20, 10, 10, the shape of gamma prior
on s-2. Settings for FBG-sampling and approximate
sampling are identical to the simulated case with one
exception; for each simulated dataset sampling methods
run once and we report the average and standard devia-
tion over 500 datasets, but for HBL-2 we let them run
10 times and report the average and standard deviation
of these 10 F1-measures, recalls, and precisions in Table
2. Each EM run starts with the initial parameter values
sampled either from the prior distributions, or from uni-
form distributions, and continues until the likelihood
value converges. We report the performance of the
most likely model (which is the preferred criteria to
select a model), the likelihood of the best model based
on F1-measure, and the average and standard deviation
of F1-measures, recalls, and precisions of all the models

generated by EM. As representative examples, we also
plot the segmentation of chromosome 1 and 9 com-
puted by FBG-sampling and approximate sampling
along with the ground truth labels in Figure 4.
Corriel
Corriel cell lines were used by Snijders et al. [30] and
are widely considered a gold standard in ArrayCGH
data analysis. This dataset is smaller and, in fact, fairly
easy compared to the MCL cell lines. For the Corriel
cell line we use a 4-state HMM and report the results
for GM05296 and GM00143 in Table 2. Again, approxi-
mate sampling performs competitively while achieving
more than a 10-fold speed-up. Hyperparameter choices
follow [24].
GBM
The glioma data from Bredel et al. [31] has previously
been used to analyze the performance of CNV detection
methods [9,33]. According to [33], GBM datasets are noisy

Table 2 EM, FBG-sampling, and approximate sampling results for simulated, HBL-2, and Corriel dataset are shown
here

Dataset Method w F1-measure Recall Precision Time Compression Speed-up Likelihood

0.50 0.97 ± 0.04 0.96 ± 0.07 0.98 ± 0.02 27 0.387 2.2

0.75 0.97 ± 0.04 0.96 ± 0.06 0.98 ± 0.03 16 0.195 3.7

1.00 0.97 ± 0.05 0.95 ± 0.07 0.98 ± 0.03 10 0.097 5.9

Approx 1.25 0.96 ± 0.06 0.94 ± 0.09 0.98 ± 0.03 7 0.050 8.8

Simulated 1.50 0.94 ± 0.09 0.92 ± 0.12 0.97 ± 0.07 5 0.031 11.3

1.75 0.91 ± 0.15 0.89 ± 0.18 0.96 ± 0.12 5 0.023 12.2

2.00 0.86 ± 0.19 0.85 ± 0.21 0.92 ± 0.19 5 0.018 12.2

FBG ... 0.97 ± 0.04 0.96 ± 0.05 0.98 ± 0.03 58 ... 1.0

EM prior, ML ... 0.96 ± 0.09 0.97 ± 0.04 0.96 ± 0.11 58 ... ...

1.0 0.85 ± 0.00 0.83 ± 0.00 0.88 ± 0.00 72 0.078 11.3

2.0 0.87 ± 0.00 0.83 ± 0.00 0.91 ± 0.00 21 0.018 39.3

3.0 0.89 ± 0.00 0.83 ± 0.00 0.95 ± 0.00 13 0.006 61.8

Approx 4.0 0.84 ± 0.08 0.77 ± 0.11 0.95 ± 0.01 13 0.003 61.9

5.0 0.71 ± 0.17 0.60 ± 0.22 0.95 ± 0.01 13 0.002 64.8

6.0 0.79 ± 0.07 0.69 ± 0.10 0.96 ± 0.01 14 0.002 59.3

7.0 0.76 ± 0.08 0.64 ± 0.11 0.93 ± 0.01 13 0.001 61.4

HBL-2 FBG ... 0.82 ± 0.00 0.84 ± 0.00 0.80 ± 0.00 810 ... 1.0

EM prior, ML ... 0.65 0.90 0.50 810 ... ... 15158

EM prior, best ... 0.85 0.84 0.86 810 ... ... 9616

EM prior, mean ... 0.76 ± 0.09 0.86 ± 0.03 0.68 ± 0.12 810 ... ... 13744

EM unif, ML ... 0.64 0.90 0.50 810 ... ... 15159

EM unif, best ... 0.86 0.84 0.88 810 ... ... 9136

EM unif, mean ... 0.54 ± 0.24 0.77 ± 0.21 0.46 ± 0.27 810 ... ... 13457

GM05296 Approx 2.0 0.96 ± 0.00 1.00 ± 0.00 0.93 ± 0.01 3 0.027 13.0

FBG ... 0.89 ± 0.01 1.00 ± 0.00 0.81 ± 0.01 40 ... 1.0

GM00143 Approx 2.0 0.98 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 3 0.027 13.8

FBG ... 0.89 ± 0.24 1.00 ± 0.00 0.86 ± 0.26 40 ... 1.0

Approximate sampling results are reported for different choices of w. The w value which is closest to the one estimated by the L-method is shown in italic.
Width w is reported in sD of the corresponding dataset, time is reported in seconds, and compression is defined as

T′

T
. For HBL-2, the initial parameter values

for EM are sampled from the prior or uniform distributions, and the average (mean), most likely (ML), and best (in terms of F1-measure) performances along with
likelihoods are reported.
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but contains a mixture of aberrant regions with different
width and amplitude. In particular, chromosome 13 of
GBM31 is reported to have low amplitude loss in p-arm
and chromosome 7 of GBM29 is reported to have high
amplitude gains near the EGFR locus by previous studies
[9,33]. The segmentation of these two chromosomes are
shown in Figure 5. Although [33] reports that EM based
HMM failed to detect these aberrations we see that Baye-
sian HMM has successfully detected both the gain in

chromosome 7 and the loss in chromosome 13. For this
dataset, we use a 3-state HMM with non-informative

hyperparameters, μ̃1:3 = −σD

2
, 0,

σD

2
for the prior mean

on μ, σ̃1:3 = 0.2, 0.1, 0.2 for the prior variance on μ,

a1:3 =
1

σ 2
D

,
1

σ 2
D

,
1

σ 2
D

for the shape of gamma prior on s-2,

δπ = 1, 9, 1 for the Dirichlet prior on initial distribution π,
and b1:3 = δ

Ai
1:3 = 1, 1, 1 for the rate of gamma prior on s-2

Figure 3 MCMC convergence. The convergence of posterior probabilities for loss, neutral, and gain of three representative probes–probe 1658,
probe 1512, and probe 447 respectively–from the simulated dataset 63 are shown. For each probe, at first, the posterior probability of the
corresponding HMM state, given the sampled parameters from the current MCMC iteration, is computed. The time-average of these posterior
probabilities, starting from the first iteration to the current iteration, approximates the posterior of the HMM state given the data. The mean of
the posterior probabilities over 10 MCMC chains are shown with error bars (mean ± one standard deviation)–loss probe in the bottom row,
neutral probe in the middle, and the gain probe in the top row. The top figures show the outcomes of FBG sampling and the bottom figures
show the outcomes of approximate sampling. Note that the reduction in standard deviation suggests that approximate sampling converges
quicker than FBG sampling for these probes.
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and the Dirichlet prior on row i of transition matrix A,
respectively, and at the recommended w value we see a 10
fold speed-up.
SNP Array
High-resolution Single Nucleotide Polymorphism (SNP)
arrays are capable of detecting smaller CNVs than
ArrayCGH. To demonstrate the computational advan-
tage of approximate sampling on SNP arrays we have
chosen publicly available Affymetrix 100 k pancreatic
cancer datasets from [32] and Illumina HumanHap550
arrays of HapMap individuals which are provided as
examples in PennCNV [13]. An Affymetrix 100 k

dataset consists of two different arrays each with ≈ 60,
000 SNP markers and, in total, 105 data points per sam-
ple. On the other hand, the Illumina HumanHap550
array has around half a million SNP markers. We have
applied FBG-sampling and approximate sampling with
w = 1.8sD, the recommended value by the L-method, to
the sample datasets from Harada et al. [32] and found
that the computational speed-up is 22-fold (100 runs of
FBG-sampling takes 1844 seconds). Both sampling
approaches mostly agree on their predictions but they,
specially FBG-sampling, detect several more CNVs than
previously identified [32]. For example, the high

Figure 4 HBL-2: chromosome 1 and 9. We contrast the ground truth and the segmentations produced by FBG-sampling and approximate
sampling. For approximate sampling w was set to the value recommended by the L-method. Here, clones predicted as loss are shown in red,
normal clones in green, and gain in blue. The figure at the top shows chromosome 1 and the bottom figure shows chromosome 9.
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amplification in chromosome 11 (sample 33) is success-
fully identified by all methods but in chromosome 18
(sample 16) the sampling algorithms find a few normal
regions previously predicted [32] as loss using the
CNAG tool [34] (see Figure 6). One possible reason for
these differences is that while we use 269 HapMap sam-
ples as reference they use 12 unpublished normal sam-
ples as reference. Similarly, we have tested our method
with 2.0sD ≤ w ≤ 3.0sD against Illumina HumanHap
samples and observed 70 to 90 fold speed-up in compu-
tations (100 runs of FBG-sampling takes 9693 seconds).
These samples are taken from apparently healthy indivi-
duals and contain very few CNVs. As expected, both

sampling algorithms’ predictions are nearly identical and
they seem to predict extreme outliers as aberrant mar-
kers. In contrast, PennCNV [13] does not report CNVs
which are covered by less than 3 SNPs, thus suppressing
the outliers as normal. We plot a typical region (from
1.4e + 08bp to 1.7e + 08bp) of chromosome 6 from
sample 3 (ID 99HI0700A) in Figure 7.
To set hyperparameters we follow the default para-

meters of the HMM used in PennCNV [13]. We have
observed that HMMs for large arrays are particularly
sensitive to the self-transition probabilities (which is also
reflected in the default parameter values of the HMM
used in PennCNV). Hence, hyperparameters were set to

Figure 5 GBM: chromosome 7 (GBM29) and chromosome 13 (GBM31). Loss (red), normal (green), and gain (blue) clones are identified using
FBG-sampling and approximate sampling. For approximate sampling w = 1.5sD is used, which was recommended by the L-method.
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reflect the choice of high self-transition probability for
each state–we set δ

Ai
1:3 = αi1 l, αi2 l, αi3 l, the Dirichlet prior

on row i of transition matrix A, where l = 5000, aii is

0.99 for i = 2, 0.95 for i ≠ 2, αij =
1 − αii

2
for i ≠ j.

Other hyperparameters for the 3-state HMM were set
such that the expected values of prior distributions
match the default values for PennCNV. In particular,
they were μ̃1:3 = 10.66, 0, 0.54 for the prior mean on μ,
σ̃1:3 = 0.001, 0.001, 0.001 for the prior variance on μ,
a1:3 = 12, 30, 25 for the shape of gamma prior on s-2,
b1:3 = 1, 1, 1 for the rate of gamma prior on s-2, and

δπ = 1, 9, 1 for the Dirichlet prior on initial distribution
π, respectively.

Discussion
EM vs. MCMC
As already a 4-state Gaussian HMM has 23 free para-
meters applying EM is often difficult due to the exis-
tence of multiple local optima and the local
convergence of EM. Consequently, the estimate has to
be repeated many times with randomly initialized para-
meter values to find the most likely model. It should
also be noted that not necessarily the model maximizing

Figure 6 Affymetrix 100 k SNP array: chromosome 18 of sample 16 and chromosome 11 of sample 33. Loss (red), normal (green), and
gain (blue) clones are identified using FBG-sampling and approximate sampling. For approximate sampling w = 1.8sD is used, which was
recommended by the L-method.
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the likelihood exhibits the best performance in classify-
ing aberrations 2. Additionally, applying any constraint
in an EM settings, i.e. ordering of the state means, is
harder than in MCMC. EM also produces inferior
results on datasets exhibiting class imbalance, for exam-
ple where one type of aberrations (observations for one
HMM state) are rare or missing, while MCMC can
overcome this problem using informative priors. In
Table 2 we see that MCMC sampling performs better
than EM on real biological data which is consistent with
prior reports from Guha [24] and Shah [25] who also
report difficulties with EM and better MCMC perfor-
mances. In particular, for HBL-2 we observe that the
best model in terms of F1-measure–which is not avail-
able in de novo analysis–is not the most likely model
and the most likely model has very low precision and,
consequently, worse F1-measure than MCMC sampling.
On the simulated datasets, EM performs poorly if the
dataset is imbalanced. As a result we observe slightly
worse standard deviation for the precisions and F1-mea-
sures computed by EM in Table 2. We also notice from
the confusion matrix of three classes–loss, neutral, and
gain–that even though the mean F1-measure, recall, and
precision (defined on two classes, neutral and aberrant)
are high, due to label switching [17], EM does not dis-
tinguish gain from loss, and vice versa, very well (see
Table 3). By re-ordering the already learned state means
the label switching problem can be addressed, but that
increases misclassification rate due to state collapsing as
the parameter values, specially means of the Gaussians,
become almost identical [17]. In contrast, Bayesian
methods cope with class imbalance problem by applying
order constraints. Moreover, using McNemar’s test [35]

on the combined result of the 500 datasets we have veri-
fied that the predictions based on EM are significantly
different from the predictions made by Bayesian meth-
ods with p-values being less than 0.001 in both cases.
FBG vs. Approximate Sampling
In an ideal setting, like the 2-state HMM example,
approximate sampling closely mimics the performance
of FBG sampling up to moderate compression level. For
the simulated and real dataset approximate sampling’s
performance is comparable to FBG’s while achieving a
speed-up of 10 or larger. We also observe that for
higher compression levels approximate sampling reports
small number of aberrant clones, which results in small
tp and fp values, but large fn value. As a result, we see
low recall and high precision rate when the compression

Figure 7 Illumina HumanMap550 array: chromosome 6 of sample 3. Loss (red), normal (green), and gain (blue) clones are identified using
FBG-sampling and approximate sampling. For approximate sampling w = 1.6sD is used, which was recommended by the L-method.

Table 3 Confusion matrices showing the proportion of
accurate predictions based on EM, FBG-sampling, and
approximate sampling methods on 500 simulated
datasets

Truth

Loss Neutral Gain

Loss 0.855 0.071 0.074

EM Neutral 0.001 0.996 0.003

Gain 0.190 0.087 0.723

Loss 0.980 0.020 0.000

FBG Neutral 0.002 0.995 0.003

Gain 0.002 0.020 0.973

Loss 0.981 0.019 0.000

Approx. (w = 1.25sD) Neutral 0.002 0.993 0.005

Gain 0.009 0.022 0.969
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level is too high for a particular dataset (see the rows
with w ≥ 4.0sD for HBL-2 in Table 2).
From Figures 4, 5, 6, and 7 we observe that segmenta-

tions by both sampling methods are almost identical at
the recommended width w value. In case of HBL-2, they
differ from the ground truth in some places. They pre-
dict a few extra gain regions and outliers are generally
predicted as gains. We, as well as Shah et al. [25], have
noticed that the HBL-2 dataset has many outliers, and
the variance of emission distribution of gain state 4 con-
verges to a high value which tries to explain the outliers.
In contrast, GBM has fewer outliers (see Figure 5) and
approximate sampling seems robust to those outliers. As
the compression algorithm forces possible outliers to be
included in a compressed block, it is robust to moderate
frequencies of outliers.
Width Parameter
By varying the width parameter w we can control the com-
pression ratio g and the speed-up achieved by approximate
sampling. But from Table 1 and 2, and Lemma 1 it is also
clear that by setting a large value one can get unfavorable
results. We have analyzed the effect of different w values
using a synthetic dataset with a controlled level of noise
following [36]. Each dataset has three chromosomes with
total probe counts 500, 750, and 1000. Ten aberrant
regions of size 11-20 probes, randomly assigned gain or
loss, are inserted in random positions of the 500 probe
chromosome. Similarly, 15 aberrant regions of size 11-25
probes, randomly assigned gain or loss, are inserted into
larger chromosomes. A noise component N(0, s) is added
to the theoretical log-ratios -1,0,0.58 (loss, neutral, and
gain respectively) to model the data. For a set of noise
levels, s ranging from 0.1 to 0.5, 50 synthetic datasets are
generated. We use a 3-state HMM with width parameter
values in the range 0sD, ..., 4sD (where sD is the standard
deviation of the dataset). Signal-to-noise ratio (SNR) is

defined as
0.58
σ

. In Figure 8 we plot the mean compres-

sion ratio, F1-measure, recall, and precision for 50 syn-
thetic datasets and the real biological data HBL-2. For all
noise levels the compression ratio drops exponentially
with increasing values of w. Ideally, one would like to
compress as much as possible without affecting the quality
of the predictions. We visually identified a best value for
width as the point after which the F1-measure drops sub-
stantially. Comparing the knee of the curve with the best
value, we notice that while using the knee computed by L-
method [27] is a conservative choice for width, in most
cases we can still obtain a considerable speed-up.
Outliers
Gaussian HMMs are known to be sensitive to outliers
which is evident from our results of HBL-2 and SNP
arrays. Traditionally, outliers have been handled either by

using a mixture distribution as the emission distribution
or by preprocessing the data to remove possible outliers
or impute more appropriate values. We have observed
that a simple local median approach works very well to
identify the outliers in a time series of log2-ratio values.
Although using a mixture distribution or a distribution
with fat tails, i.e. Student’s-t distribution, is a better
choice we lose a significant computational advantage in
approximate sampling. For a block of observations o’ =

oi, ..., ok we can compute
k∏

j=i
P(oj|q′, θ) in constant time

using precomputed values
k∑

j=1
oj and

k∑
j=i

o2
j if the emission

distribution is Gaussian. But it is not obvious how we can
accomplish this for a more complicated distribution.
Another approach, which we prefer in this context, is to
use a HMM state with a very wide Gaussian and low self-
transition probability to model the outliers. We have
observed very good performance in this way. However, as
our primary focus is to compare FBG-sampling with
approximate sampling we choose to use a simple Gaus-
sian model at the end.

Conclusions
Analyzing CGH data either from DNA microarrays or
next generation sequencing to estimate chromosomal
aberrations or investigate copy number variations
(CNV), leads to the problem of segmenting sequences of
observations which are essentially noisy versions of pie-
cewise-constant functions. For reasons of efficiency, ML
or MAP point estimates of HMM parameters combined
with the Viterbi-algorithm to compute a most likely
sequence of hidden states and thus a segmentation of
the input are most popular in practice. This ignores
research which clearly demonstrates that Bayesian
approaches, where MCMC is used for sampling and
thus integrating out model parameters, is more robust
with higher recall and higher precision [24]. Addition-
ally, our experiments show that likelihood is not infor-
mative with respect to the quality of CNV calls putting
the use of ML into question even if the estimation pro-
blem could be solved.
We propose a method using approximate sampling to

accelerate MCMC for HMMs on such data. Our method
constitutes the first use of ideas from spatial index struc-
tures for several consecutive observations and approxi-
mate computations based on geometric arguments for
HMM; the effectiveness of this approach was previously
demonstrated for k-means clustering, mixture estimation,
and fast evaluation of a mixture of Gaussians.
We demonstrate that these very abundant biological

CGH datasets, which measure chromosomal aberrations
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and copy number variations, are consistent with our
assumptions of piece-wise constant ground truths, and
we are able to achieve speed-ups between 10 and 60
respectively 90, on these biological datasets while

maintaining competitive prediction accuracy compared
to the state-of-the-art. As datasets with even higher
resolution, both from higher density DNA microarrays
and next generation sequencing, become available, we

Figure 8 Effect of width parameter. F1-measure (red, circle), recall (violet, square), and precision (black, triangle) of approximate sampling over
HBL-2 and five synthetic datasets of varying noise levels are shown. For comparison, F1-measure (green, solid), recall (cyan, dashed dot), and

precision (olive, dotted) of FBG-sampling are also shown as horizontal lines. For width values 0.0sD, ..., 4.0sD compression ratio γ =
T′

T
is

shown as blue line with stars. Knee is predicted using L-method and shown as a vertical line (blue, dashed dot). Vertical line (green, dashed dot)
showing best width is selected by visual inspection.
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believe that the need for precise and efficient MCMC
techniques will increase. The added precision over pop-
ular ML/MAP-based methods is of particular biological
relevance as for complex neurodegenerative diseases
such as Autism de-novo copy number variations have
recently been shown to play a role [37]; a precise and
quick analysis on large collectives of patients is
desirable.
Applying approximate sampling to multi-dimensional

observations–to jointly analyze data sets for recurrent
CNVs [38] instead of analyzing individuals and post-
processing results–and considering more complicated
HMM topologies and observation densities are direc-
tions for our future work.

Appendix
Lemma 1. Let Oi−1 = o1, . . . , oi−1, o′ = oi, . . . , oi+n−1, o′

min = min
oi∈o′

ol, o′
max = max

oi∈o′
ol, d = min

j�=k
|μj − μk|

and
P(qi|Oi−1)

P(qi = sx|Oi−1)
≤ α . Assuming there exists a state

sx s.t. τ = min
(
o′

min − μsx−1 + μsx

2
,
μsx + μsx+1

2
− o′

max

)
≥ 0 , we can

show that
∑

(qi,...,qi+n−1)∈Sn

P(qi, . . . , qi+n−1, o′|Oi−1)∑
s∈S

P(qi = . . . = qi+n−1 = s, o′|Oi−1)
≤ α((1 + rc)n−1 + (N − 1)c

2n
N (1 + r)n−1), where

r =
1 − t

t
and c = e− dτ

2σ 2.

Proof. Using the assumption on τ, for any position i ≤
l ≤ i + n - 1, we can argue that,

e
−

1
2

(ol − μql

σ

)2

e
−

1
2

(ol − μsx

σ

)2 ≤ e − |μql − μsx |τ
σ 2

≤
⎧⎨
⎩

1 if ql = sx,

e
−

dτ

σ 2 otherwise.

(1)

For any partial state path qi, . . ., qi+n-1,

P(qi, . . . , qi+n−1, o′|Oi−1)

= P(qi|Oi−1)P(oi|qi, Oi−1)
i+n−2∏

k=i

aqkqk+1 P(ok+1|qk+1)

= P(qi|Oi−1)
e
−

1
2

(oi − μqi

σ

)2

√
2πσ 2

i+n−2∏
k=i

aqkqk+1

e
−

1
2

(ok+1 − μqk+1

σ

)2

√
2πσ 2

.

(2)

We partition Sn, the set of all possible partial
state paths of length n, into N subsets Ss1 . . . SsN

such that, Ssj = {S̃ ∈ Sn : (∀sl �=sjC(S̃, sj) > C(S̃, sl)) ∨ ((∀sl �=sj C(S̃, sj) ≥ C(S̃, sl)) ∧ S̃1 = sj)}

for 1 ≤ j ≤ N, where C(S̃, s) =
∑
qk∈S̃

1(qk = s) . We

again partition Ssj = ∪n−1
k=0 S

sj

k such that,

S
sj

k = {S̃ ∈ Ssj :
(

n−1∑
l=1

1(S̃l �= S̃l+1)
)

= k} .
The size of Sn can be expressed in terms of total num-

ber of non-self-transitions present in a path,

|Sn| = Nn

= N
n−1∑
k=0

(
n − 1

k

)
(N − 1)k.

(3)

As the sets Ssj are equal sized partitions of Sn ,

|Ssj | =
n−1∑
k=0

(
n − 1

k

)
(N − 1)k . Also notice that, by

definition, the partial state paths in Sn with exactly k
number of non-self-transitions are equally distributed
among the subsets Ssj . As a result,

|Ssj

k | =
(

n − 1
k

)
(N − 1)k .

Now we define S[s] = {(qi, ..., qi+n-1) : (qi = ... = qi+n-1
= s)}. For the remaining part of the proof, if Y is a set
of partial state paths, we use P(Y, o’|Oi-1) in place of∑
(qi,...,qi+n−1)∈Y

P(qi, . . . , qi+n−1, o′|Oi−1) for clarity.

∑
(qi,...,qi+n−1)∈Sn

P(qi, · · · , qi+n−1, o′|Oi−1)∑
s∈S

P(qi = · · · = qi+n−1 = s, o′|Oi−1)

=
P(Sn, o′|Oi−1)∑

s∈S
P(S[s], o′|Oi−1)

<
P(Sn, o′|Oi−1)

P(S[sx], o′|Oi−1)

=
N⋃

j=1

P(Ssj , o′|Oi−1)

P(S[sx], o′|Oi−1)
.

(4)

Now we derive an upper bound of the contribution
from state paths in Ssx . In the following equations we
make use of the fact that a state path with k non-self-

transitions goes through at least
k
2

non-sx states.
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P(Ssx , o′|Oi−1)
P(S[sx], o′|Oi−1)

=

n−1∑
k=0

∑
S̃∈Ssx

k

P(S̃, o′|Oi−1)

P(S[sx], o′|Oi−1)

=
n−1∑
k=0

∑
S̃∈Ssx

k

P(S̃, o′|Oi−1)
P(S[sx], o′|Oi−1)

=
n−1∑
k=0

∑
S̃ ∈ Ssx

k
S̃ = qi, . . . , qi+n−1

P(qi|Oi−1)e
−

(oi − μqi√
2σ

)2

P(Sx|Oi−1)e
−

( oi − μsx√
2σ

)2

i+n−2∏
j=i

aqjqj+1e
−
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2σ

)2

asxsx e
−

( oj+1 − μsx√
2σ

)2

=
n−1∑
k=0

∑
S̃ ∈ Ssx

k
S̃ = qi, . . . , qi+n−1

P(qi|Oi−1)
P(Sx|Oi−1)

i+n−2∏
j=1

aqjqj+1

asxsx
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e
−

(oj − μqj√
2σ
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e
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2σ
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k=0

∑
S̃ ∈ Ssx

k
S̃ = qi, . . . , qi+n−1

α

(
1 − t
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)k

i+n−1∏
j=i

e
−

(oj − μqj√
2σ

)2

e
−

( oj − μsx√
2σ

)2

≤
n−1∑
k=0

(
n − 1
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)
(N − 1)kα

(
1 − t

(N − 1)t

)k
⎛
⎝e

−
dτ

σ 2

⎞
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2

=
n−1∑
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(
n − 1
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)
α

(
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−
dτ

σ 2

⎞
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2

=
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k=0
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(
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k

)(
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)k
⎛
⎝e

−
dτ

σ 2

⎞
⎠

k
2

=
n−1∑
k=0

α

(
n − 1

k

)
(rc)k

= α(1 + rc)n−1.

(5)

Similarly, we derive an upper bound of the contribu-
tion from state paths in Ssy , where 1 ≤ y ≠ x ≤ N. Now
we use the fact that, because of the pigeonhole principle

any state path in Ssy has to go through at least
n

N
non-

sx states.

P(Ssy , o′|Oi−1)
P(S[sx], o′|Oi−1)

≤
n−1∑
k=0

∑
S̃∈S

sy
k

S̃=qi,...,qi+n−1

α

(
1 − t

(N − 1)t

) ki+n−1∏
j=i

e
−

1
2

( oj − μqj

σ

)2

e
−

1
2

(oj − μsx

σ

)2

≤
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(
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k

)
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(
1 − t
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⎛
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−
dτ
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⎞
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n

N

=
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(
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k

)
(N − 1)kα

(
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)k
⎛
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−
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⎞
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n
N

=
n−1∑
k=0

(
n − 1

k

)
α

(
1 − t

t

)k
⎛
⎝e

−
dτ

σ 2

⎞
⎠

n
N

=
n−1∑
k=0

α

(
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k

)(
1 − t

t

)k
⎛
⎝e

−
dτ
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⎞
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n
N

=
n−1∑
k=0

αc

2n
N

(
n − 1

k

)
rk

= αc

2n
N (1 + r)n−1.

(6)

Applying (5) and (6) in (4) we get,∑
(qi,...,qi+n−1)∈Sn

P(qi, . . . , qi+n−1, o′|Oi−1)∑
s∈S

P(qi = qi+1 = . . . = qi+n−1 = s, o′|Oi−1)

≤ α((1 + rc)n−1 + (N − 1)c

2n
N (1 + r)n−1).

Note: For simplicity of the notation, we follow the
convention that μx0 = −∞ and μxN+1 = ∞ so that the
proof holds for x = 1 or x = N.
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