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ABSTRACT

We define new measures of sequence similarity for oligonucleotide probe design. These

new measures incorporate the nearest neighbor k-stem motifs in their definition, but can be

efficiently computed by means of a bit-vector method. They are not as computationally costly

as algorithms that predict nearest neighbor hybridization potential. Our new measures

for sequence similarity correlate significantly better with nearest neighbor thermodynamic

predictions than either BLAST or the standard edit or insertion-deletion defined similarities

already in use in many different probe design applications.
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1. INTRODUCTION

MANY PAPERS AND SOFTWARE PRODUCTS address the problem of designing relatively short oligonu-

cleotide probes to identify and distinguish oligonucleotide targets by virtue of the targets hybridiza-

tion signatures with the probes. Frequently, probes are affixed to a surface, for example, microarrays or

beads (Cai et al., 2000; Kaderali et al., 2003). There are three general principles that are important in the

design of oligonucleotide probes for target identification and discrimination (Nordberg, 2005):

1. Sensitivity: Probes must bind to their intended targets very strongly. Therefore, the hybridization

potential of a probe-intended target duplex must be above some sensitivity threshold.

2. Specificity: Probes must not bind to non-targets or other probes. Therefore, the hybridization potential

of all probe-non-target and all probe-probe duplexes must be below some sensitivity threshold.

3. Consistency: All probe-intended target duplexes should have similar melting temperatures.

In the computational intensive search for good probes, the notion of sequence similarity is important,

especially in the preprocessing or probe candidate filter stage that is common to many probe design
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applications (Kane et al., 2000; Li et al., 2005). For sensitivity, the Watson-Crick complement of a probe

must be quite similar (frequently identical) in its sequence composition to some region of its and only its

targets. For specificity, the Watson-Crick complement of a probe must be quite dissimilar in its sequence

composition to all other probes as well as all regions of all of its unintended targets. Most probe design

applications seek a bijection between probes and intended targets. In some cases, there can be multiple

probe/intended target duplexes (Schliep et al., 2003).

2. HAMMING, EDIT, AND INSERTION-DELETION SIMILARITY

Throughout this paper, we assume all probes have length m, all targets have length n, and m � n.

Let x D x1; : : : ; xm and y D y1; : : : ; yn be sequences over a finite alphabet. When x and y are DNA

strands, we think of x as a probe and y as a target. For sequence y, we let yi::j denote the substring

yi ; : : : ; yj . The length of the longest common subsequence between x and y is denoted by lcs.x; y/.

For n D m, the hamming score, denoted by hs.x; y/, is the number of corresponding matches between

x and y. The insertion-deletion score between x and y is minimum number of insertions or deletions

required to change x into y and is denoted by ids.x; y/. Similarly, the edit score is the minimum number

of insertions, deletions or substitutions required to change x into y and is denoted by eds.x; y/. Since a

single substitution is equivalent to one insertion and one deletion, it follows that ids.x; y/ � eds.x; y/.

Note that ids.x; y/ D m C n � 2 � lcs.x; y/.

Definition 1. For m � n, the hamming distance, respectively denoted h.x; y/, between x and y is

h.x; y/ � minfn � hs.x; yi::iCn�1/ W 1 � i � n � m C 1g:

The edit and indel distances, denoted ed.x; y/ and id.x; y/ between x and y are

ed.x; y/ � minfeds.x; yi::j / W 1 � i � j � ng

id.x; y/ � minfids.x; yi::j / W 1 � i � j � ng:

These definitions make the notions seem more complicated then they are. h.x; y/ is the fewest number

corresponding differences between x and some substring of y of length m. ed.x; y/ and id.x; y/ are,

respectively, the fewest number of either insertions, deletions, substitutions or just insertions, deletions to

be made in x so that it is equal to some substring of y of any length not necessarily m.

A table that outlines the functionality of several probe design software applications is given in Nordberg

(2005). Many programs listed there use BLAST to determine sequence similarity likely because BLAST

is computationally efficient and familiar, but there is a trade off between speed and accuracy. Programs

that use BLAST to determine sequence similarity are essentially using h.x; y/ (or a translation of it)

to measure the similarity between two nucleotide sequences. However, as discussed in Nordberg (2005),

there are instances, albeit infrequent, where BLAST does not accurately compute its version of h.x; y/.

Moreover, as we show in Tables 1 and 2, there may not be a strong correlation between BLAST measures

of sequence similarity and nearest neighbor hybridization potential. Not all probe design packages use

BLAST. Other probe design packages use a notion of sequence similarity that is based on either ed.x; y/

or id.x; y/ (Li et al., 2005; Wu et al., 2003).

There are conflicting results about whether or not the aqueous nearest neighbor model (Mathews et al.,

2006; SantaLucia, 1998; SantaLucia and Hicks, 2004; Zuker et al., 1999) is an appropriate one for probe

design (Li and Stormo, 2001; Zhang et al., 2007; Pozhitkov et al., 2006, 2007; Fish et al., 2007):

The point of this note is to suggest other measures of sequence similarity that better reflect the

nearest neighbor thermodynamic model for hybridization potential of two nucleotide sequences.

While it is possible to use the nearest neighbor thermodynamic computations as a basis to define sequence

similarity, they are too computationally costly to be implemented as the only similarity measure used if

the amount of sequence data is too large. Our new sequence similarity definitions are based on simple
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TABLE 1. THE r2 VALUES FOR SIMILARITY MEASURES VERSUS PAIRFOLD PREDICTIONS

FOR PROBE LENGTH 20

m, n Similarity

AT D

0.15

AT D

0.25

AT D

0.35 Meiobenthos m, n Similarity

AT D

0.15

AT D

0.25

AT D

0.35 Meiobenthos

m D 20, H.x W y/ 0.059 0.004 0.000 0.005 m D 20, H.x W y/ 0.261 0.071 0.026 0.365

n D 20 ED.x W y/ 0.302 0.127 0.073 0.248 n D 30 ID.x W y/ 0.280 0.114 0.073 0.532

ID.x W y/ 0.261 0.128 0.082 0.295 ED.x W y/ 0.338 0.136 0.075 0.561

ID2.x W y/ 0.333 0.191 0.129 0.490 ID2.x W y/ 0.299 0.153 0.116 0.600

ED2.x W y/ 0.415 0.226 0.142 0.501 ED2.x W y/ 0.407 0.202 0.132 0.655

ID5.x W y/ 0.359 0.234 0.239 0.659 ID3.x W y/ 0.366 0.240 0.159 0.694

ED5.x W y/ 0.368 0.235 0.241 0.675 ED3.x W y/ 0.433 0.260 0.176 0.706

ID3.x W y/ 0.419 0.282 0.183 0.626 ID5.x W y/ 0.337 0.262 0.222 0.723

ID4.x W y/ 0.433 0.303 0.239 0.686 ED5.x W y/ 0.356 0.262 0.225 0.750

ED3.x W y/ 0.475 0.308 0.206 0.626 ID4.x W y/ 0.369 0.280 0.212 0.724

ED4.x W y/ 0.470 0.320 0.246 0.708 ED4.x W y/ 0.418 0.288 0.216 0.755

m D 20, H.x W y/ 0.186 0.037 0.019 0.397 m D 20, H.x W y/ 0.157 0.028 0.017 0.387

n D 40 ID.x W y/ 0.189 0.061 0.043 0.536 n D 50 ID.x W y/ 0.179 0.044 0.032 0.542

ID2.x W y/ 0.225 0.076 0.063 0.596 ED.x W y/ 0.185 0.054 0.040 0.559

ED.x W y/ 0.223 0.080 0.052 0.551 ID2.x W y/ 0.194 0.062 0.047 0.579

ED2.x W y/ 0.284 0.120 0.076 0.630 ED2.x W y/ 0.237 0.091 0.070 0.618

ID3.x W y/ 0.266 0.123 0.104 0.661 ID3.x W y/ 0.220 0.091 0.078 0.636

ED3.x W y/ 0.314 0.144 0.109 0.679 ID5.x W y/ 0.234 0.111 0.129 0.648

ID5.x W y/ 0.252 0.145 0.154 0.675 ED3.x W y/ 0.268 0.113 0.095 0.656

ED5.x W y/ 0.266 0.147 0.157 0.710 ED5.x W y/ 0.244 0.113 0.130 0.683

ID4.x W y/ 0.270 0.160 0.140 0.677 ID4.x W y/ 0.240 0.118 0.114 0.647

ED4.x W y/ 0.307 0.168 0.145 0.715 ED4.x W y/ 0.268 0.125 0.120 0.683

The probe and target lengths are m and n, respectively. The columns, A, T D p with 0 � p � 1 indicate that strands were

randomly generation where prob.A/ D prob.T / D p and prob.C / D prob.G/ D 1 � p. The column “meiobenthos” indicates

oligos selected from meiobenthos (i.e., small benthic invertebrates that live in both marine and fresh water environments) genomic

sequences. The r2 values are listed in increasing order for the A, T D 0:25 column. The maximum and minimum r2 values in each

column are in bold and italics, respectively. It is important to observe that in all cases even ED2.x W y/ is significantly better than

either H.x W y/, ED.x W y/, or ID.x W y/ currently in use.

TABLE 2. THE r2 VALUES FOR SIMILARITY MEASURES VERSUS PAIRFOLD PREDICTIONS

FOR PROBE LENGTH 30

m, n Similarity

AT D

0.15

AT D

0.25

AT D

0.35 Meiobenthos m, n Similarity

AT D

0.15

AT D

0.25

AT D

0.35 Meiobenthos

m D 30, H.x W y/ 0.065 0.009 0.000 0.006 m D 30, H.x W y/ 0.208 0.047 0.008 0.305

n D 30 ID2.x W y/ 0.288 0.103 0.095 0.511 n D 40 ID.x W y/ 0.234 0.102 0.057 0.472

ID.x W y/ 0.251 0.106 0.066 0.395 ID2.x W y/ 0.250 0.105 0.068 0.519

ED.x W y/ 0.303 0.124 0.063 0.441 ED.x W y/ 0.315 0.136 0.071 0.599

ID3.x W y/ 0.316 0.168 0.127 0.575 ID3.x W y/ 0.286 0.149 0.099 0.579

ED2.x W y/ 0.405 0.180 0.117 0.610 ID5.x W y/ 0.289 0.189 0.184 0.593

ID5.x W y/ 0.308 0.203 0.209 0.601 ID4.x W y/ 0.299 0.190 0.147 0.596

ED5.x W y/ 0.347 0.210 0.218 0.682 ED2.x W y/ 0.377 0.200 0.112 0.662

ID4.x W y/ 0.326 0.212 0.181 0.606 ED5.x W y/ 0.329 0.206 0.195 0.690

ED3.x W y/ 0.437 0.228 0.165 0.674 ED3.x W y/ 0.388 0.237 0.147 0.688

ED4.x W y/ 0.410 0.250 0.205 0.703 ED4.x W y/ 0.376 0.241 0.175 0.710

m D 30, H.x W y/ 0.162 0.036 0.018 0.470 m D 30, H.x W y/ 0.165 0.027 0.012 0.381

n D 50 ID2.x W y/ 0.199 0.069 0.057 0.530 n D 60 ID.x W y/ 0.163 0.051 0.024 0.507

ID.x W y/ 0.164 0.076 0.045 0.478 ID2.x W y/ 0.177 0.054 0.032 0.545

ED.x W y/ 0.221 0.107 0.067 0.576 ED.x W y/ 0.204 0.076 0.043 0.562

ID3.x W y/ 0.229 0.110 0.084 0.571 ID3.x W y/ 0.205 0.077 0.043 0.587

ED2.x W y/ 0.276 0.134 0.098 0.640 ED2.x W y/ 0.247 0.101 0.063 0.633

ID4.x W y/ 0.238 0.142 0.121 0.583 ID4.x W y/ 0.198 0.108 0.086 0.587

ID5.x W y/ 0.227 0.142 0.152 0.576 ED3.x W y/ 0.276 0.113 0.073 0.670

ED5.x W y/ 0.264 0.151 0.158 0.666 ID5.x W y/ 0.193 0.119 0.103 0.579

ED3.x W y/ 0.303 0.161 0.118 0.671 ED5.x W y/ 0.226 0.121 0.109 0.674

ED4.x W y/ 0.299 0.169 0.146 0.683 ED4.x W y/ 0.261 0.124 0.094 0.690

See Table 1 for legend.
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generalizations of the edit and insertion-deletion distances, and can be implemented in a computationally

efficient way by means of the bit-vector approach to computing a dynamic programming matrix (Allison

and Dix, 1986; Myers, 1999; Crochemore et al., 2001; Hyyrö et al., 2005).

3. SIMILARITY MEASURES BASED ON NUCLEOTIDE ALIGNMENT

Single strands of DNA are represented by (A, C, G, T)–quaternary sequences that are oriented, either

50 ! 30 or 30 ! 50. In this paper, single-stranded DNA molecules without an indicated direction are

assumed to be in the 50 ! 30 direction. The reverse-complement of a DNA strand is defined by first

reversing the order of the letters and then substituting each letter with its complement, A for T , C for G,

and vice-versa. For example, the reverse complement of AACGTG is CACGTT. Henceforth, complement

means reverse-complement. For strand x, let x denote its complement. A Watson-Crick duplex is the

joining of complement sequences in opposite orientations so that every base of one strand is paired with its

complementary base on the other strand in the double helix structure, i.e., x and x are “perfectly similar.”

However, when two, not necessarily complementary, oppositely directed DNA strands are “sufficiently

similar,” they too are capable of coalescing into a double-stranded DNA duplex. The process of forming

DNA duplexes from single strands is referred to as DNA hybridization. Crosshybridization is when two

oppositely directed and non-complementary DNA strands form a duplex. Crosshybridization doesn’t always

occur, but there is a potential for it to happen. In general, crosshybridization is undesirable as it usually leads

to experimental error. In general, a collection of probes has sufficient specificity if no crosshybridization

takes place. However, there are situations where probes for intended targets are not perfectly complementary

to intended binding regions (Karaman et al., 2005).

Definition 2. Given two DNA strands x and y, we let x W y denote the DNA duplex formed between x

and y. It is implicitly assumed that x and y are oppositely oriented in x W y with the first strand x always

assumed to be in the 50 ! 30 direction and the second y always assumed to be in the 30 ! 50 direction.

Let x D x1; : : : ; xm and y D y1; : : : ; yn be DNA sequences. For a base yj , let Qyj be its complement

base. Then y D Qym; : : : ; Qy1. A natural simplification for formulating binding specificity is to base it upon

the maximum number of base pair bonds between complementary letter pairs in the x W y duplex. An

upper bound on the maximum number of inter-strand base pair bonds that can form in the x W y duplex

(without pseudoknots) is the maximum length of a common subsequence of x and y. In short, two single

stranded DNA sequences x and y of length m and n can form d inter-strand base pairs bonds in a duplex

only if lcs.x; y/ � d . See Example 2 below. This, coupled with Definition 1 leads to three known and

applied definitions of similarity scores for a duplex.

Definition 3. For m � n, and let x and y be DNA sequences. Then the hamming, edit and insertion-

deletion scores for the x W y duplex, denoted by Hs.x W y/; EDs.x W y/ and IDs.x W y/, are defined

as

Hs.x W y/ � hs.x; y/

EDs.x W y/ � eds.x; y/

IDs.x W y/ � ids.x; y/:

The hamming, edit, and insertion-deletion similarities for the x W y duplex, denoted by H.x W y/, ED.x W y/,

and ID.x W y/, are

H.x W y/ � h.x; y/

ED.x W y/ � ed.x; y/

ID.x W y/ � id.x; y/:
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FIG. 1. An example of edit dynamic programming matrices EDM and IDM.

Note that it follows that IDs.x W y/ D m C n � 2 � lcs.x; y/. To compute ed.x; y/ and id.x; y/ it is

not necessary to compute eds.x; yi::j / and ids.x; yi::j / for each yi::j with 1 � i � j � n. The value

of ed.x; y/ and id.x; y/ can be found by populating a recursively defined .m C 1/ � .n C 1/ dynamic

programming matrix. Let EDM.x; y/ and IDM.x; y/ be .m C 1/ � .n C 1/ non-negative integer matrices

recursively defined by

EDMi;0 D IDMi;0 D i for 0 � i � m

EDM0;j D IDM0;j D 0 for 0 � j � n

EDMi;j D
EDMi�1;j �1 if xi D yj

1 C minfEDMi�1;j ; EDMi�1;j �1; EDMi;j �1g otherwise

IDMi;j D
IDMi�1;j �1 if xi D yj

1 C minfIDMi�1;j ; IDMi;j �1g otherwise.

Then

ed.x; y/ D minfEDMm;j W 0 � j � mg

id.x; y/ D minfIDMm;j W 0 � j � mg:

See Gusfield (1997), Myers (1999), and Hyyrö et al. (2005).

Example 1. Let x D CCCAGT T T TACCCC and y D T GGCATAAACT CGC . Then y D

GCGAGT T TAT GCCA. So to compute ED.x W y/ and ID.x W y/ the matrices EDM.x; y/ and IDM.x; y/

are given in Figures 1a and 1b, respectively. Since in Figures 1a and 1b, the minimum entries along the

bottom rows are 5 and 8, respectively, we have that ED.x W y/ D 5 and ID.x W y/ D 8.

4. SIMILARITY MEASURES BASED ON STACKED k-STEMS ALIGNMENTS

Definition 4. Suppose 1 6 ir ; jr 6 m. A secondary structure of the DNA duplex x W y is a sequence

of pairs of complementary bases � D .xir ; ynC1�jr
/ where xir D QynC1�jr

and .xir / and .ynC1�jr
/ are

increasing and decreasing subsequences of x and y, respectively. For k � 2, given a secondary structure
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FIG. 2. An example of a secondary structure in a DNA duplex.

� D .xir ; ynC1�jr
/, a stacked k-stem in a duplex is a k-tuple of consecutively aligned complementary

bases, xir D QynC1�jr
; xirC1

D QynC1�jrC1
; : : : ; xirCk�1

D QynC1�jrCk�1
in � where irCl�1 D ir C l � 1 and

jrCl�1 D jr C l � 1 for all l with 1 � l � k � 1. Stacked 2-stems and 3-stems are also referred to as

stacked pairs and stacked triples, respectively.

Clearly, the x W y duplex can have many secondary structures; thus, stacked k-stems must be defined

relative to a given secondary structure.

Example 2. The secondary structure in Figure 2 has nine complementary base pairing. This is the

most possible since, as indicated in Figure 3, the lcs.x; y/ D 9. Similar to Example 1, the value of lcs.x; y/

can also be found by populating a recursively defined .m C 1/ � .n C 1/ dynamic programming matrix.

Let LCSM.x; y/ be .m C 1/ � .n C 1/ non-negative integer matrix recursively defined by

LCSMi;0 D LCSMj;0 D 0 for 0 � i � m and 1 � j � n

LCSMi;j D
LCSMi�1;j �1 C 1 if xi D yj

maxfLCSMi�1;j ; LCSMi�1;j �1; LCSMi;j �1g otherwise.

Then

lcs.x; y/ D LCSMm;n:

LCSM.x; y/ for x and y in Figure 2 is given in Figure 3.

FIG. 3. An example of edit dynamic programming matrix LCSM.
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Example 3. The secondary structure given in Figure 2 has five stacked pairs,

A4G5=T11C10; G5T6=C10A9; T6T7=A9A8; T9A10=A7T6; C11C12=G3G2;

where the subscripts indicate the position of the bases in the 50 ! 30 direction in the x and y strands

respectively. The two stacked triples are

A4G5T6=T11C10A9; G5T6T7=C10A9A8

and the single stacked 4-stem is

A4G5T6T7=T11C10A9A8:

If the hybridization potential were solely dependent on the number of base pair bonds, then using

ED.x W y/ or ID.x W y/ as a measure of specificity would make good sense. However, while the hybridiza-

tion potential of DNA duplexes depends, in part, on the number of base pair bonds, the state of the art

model of DNA duplex thermodynamics is the nearest neighbor model where stacked k-stems play a special

role. Briefly, local thermodynamic functions �H , �S , which are essentially independent of temperature T ,

are experimentally found for stacked pairs, stacked k-stems, and other secondary structure motifs and are

then used, in an additive fashion, to predict global thermodynamic values for duplexes (Mathews et al.,

2006; SantaLucia, 1998; SantaLucia and Hicks, 2004; Zuker et al., 1999). The main point is that, in regard

to hybridization potential, the alignment of stacked pairs and k-stems is a more important consideration

than the alignment of the base pairs.

Thus, from the point of view of hybridization potential, it seems reasonable to think of x D x1; : : : ; xm

and y D y1; : : : ; yn not as sequences of bases, but as sequences of consecutive k-strings that could then

be aligned.

Definition 5. Identify A, C , G, and T with 0, 1, 2, and 3, respectively. Then for a DNA sequence

x D x1; : : : ; xm let hxi::iCk�1i be the unique number f0; 1; : : : ; 4k � 1g whose q-ary decimal representation

is xi::iCk�1 . Let x.k/ be defined as x.k/ � .hxi::iCk�1i/m�kC1
iD1 .

Example 4. For x D 2; 3; 3; 0; 3; 0; 2; 2; 1; 1; 2; 0; 2, then

x.2/ D 11; 15; 12; 3; 12; 2; 10; 9; 5; 6; 8; 2

x.3/ D 47; 60; 51; 12; 50; 10; 41; 37; 22; 24; 34:

By making an analogy to the result that the maximum number of inter-strand base pair bonds that can

form in the x W y duplex is lcs.x; y/, one could conjecture that maximum number of stacked k-stems in

the x W y duplex is lcs.x.k/; y.k//. As shown in D’yachkov et al. (2005a, 2005b, 2006), this conjecture

is false, and a counter-example is given in Example 5. However, D’yachkov et al. (2006) does show that

lcs.x.k/; y.k// is an upper bound maximum number of stacked k-stems in the x W y duplex. Specifically,

D’yachkov et al. (2006) shows that the longest common k-gap block isomorphic subsequence between x.k/

and y.k/ is the maximum number of inter-strand stacked k-stems in the x W y duplex (without pseudoknots).

A discussion of k-gap block isomorphic subsequences is beyond the scope of this note.

Example 5. Consider x D AGGAC and y D T CT CA Thus, y D AGAGT . Then x.2/ D .AG; GG;

GA; AC/ D .2; 10; 8; 1/ and y.2/ D .AG; GA; AG; GT/ D .2; 8; 2; 11/. An example of a longest common

subsequence between x.2/ and y.2/ is AG; GA D 2; 8. However, the alignment of x.2/ and y.2/ that matches

this common subsequence does not correspond to any alignment of the bases in x and y that gives two

stacked pairs in the x W y duplex (Fig. 4).

However, even though an alignment of x.k/ and y.k/ may not correspond to any actual secondary structure

of the x W y duplex, it does capture aspects of secondary structures of the x W y duplex by giving a fairly

tight upper bound on the number of k-stems that are possible in an actual secondary structure of the x W y

duplex. Hence, we use “alignments” of x.k/ and y.k/ to define the following new measures for hybridization
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FIG. 4. Two-stem lcs without an associated secondary structure. The standard longest common subsequence on

2-stems does not correspond to an actual secondary structure. Two Gs can’t both bind to the same C .

specificity. Although it is possible to define analogs of the the edit and insertion-deletion similarities that

capture the required “k-gap block isomorphic” properties discussed in D’yachkov et al. (2006), and that

would better reflect actual secondary structures, the complexity of the known algorithms that make these

“k-gap” computations are too costly. Since practical bit vector algorithms exist to compute the standard

edit and insertion-deletion dynamic programming matrices, we make the following definitions.

Definition 6. For m � n, and let x and y be DNA sequences. The k-stem edit and insertion-deletion

similarities for the x W y duplex, denoted by EDk.x W y/ and IDk.x W y/, are

EDk.x W y/ � ed.x.k/; y.k//

IDk.x W y/ � ed.x.k/; y.k//:

Example 6. Let x D CCCAGT T T TACCCC , y D T GGCATAAACT CGC , and y D

GCGAGT T TAT GCCA be as in Example 1. Then EDM.x.2/; y.2//, IDM.x.2/; y.2//, and LCSM.x.2/; y.2//

are given in Figures 5a–5c, respectively. From these figures we have ED2.x W y/ D 7, ID2.x W y/ D 8 and

LCS.x.2/; y.2// D 6.

FIG. 5. Examples of EDM.x.2/; y.2//, IDM.x.2/; y.2//, and LCSM.x.2/; y.2//.
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5. DISCUSSION

Using simple linear regression to nearest neighbor predictions, we compared the measures EDk.x W y/,

IDk.x W y/, and H.x W y/ of similarity, the latter of which essentially reflects the performance of BLAST.

To do this, we used both randomly generated DNA sequences and randomly selected genomic sequences.

For several combinations of probe and target lengths m and n, 5000 pairs of strands were selected. The

nearest neighbor software package PAIRFOLD (Andronescu et al., 2003) was used to predict nearest

neighbor hybridization potential of the selected x W y duplex, denoted by PFE.x W y/, which is measured

in terms of the free energy of duplex formation at 37ıC. Because PAIRFOLD considers the formation of

intra-strand loops, only duplexes where the most stable secondary structure had no internal loops were

used. This seems to be a reasonable assumption to make when designing probes that will not crosshybridize

because the intra-strand interactions would tend to decrease the availability of crosshybridizing sites and

thus make crosshybridization less likely. Moreover, since the probes for intended targets are almost always

completely or nearly complementary to binding regions, one would expected intra-strand interactions to

not be competitive with complete inter-strand complementarity.

Example 7. Tables 1 and 2 indicate the r2 values found for EDk.x W y/, IDk.x W y/, and H.x W y/

measures versus PAIRFOLD PF.x W y/ measurements. In all randomly generated cases, the Hamming

similarity shows no correlation with the nearest neighbor predictions. In all cases, the k-stem similarity

measures where k � 2 have significantly higher correlations that either of the simple single base measures

ED.x W y/, ID.x W y/.

6. CONCLUSION

We have shown that the new k-stem k � 2 measures for hybridization specificity correlates significantly

better with nearest neighbor thermodynamic predictions of hybridization potential than either the hamming

specificity found in BLAST or the standard edit or insertion-deletion similarities that are in current use.

This is especially true for EDk.x W y/. These new edit distance measures can be implemented by Myers

bit-vector method so they are not too costly computational to use. In comparison to both a randomly

generated and randomly selected genomic oligos, the ED3.x W y/ or ED4.x W y/ seemed always to be best.
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