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Abstract
Background: The use of clustering methods for the discovery of cancer subtypes has drawn a
great deal of attention in the scientific community. While bioinformaticians have proposed new
clustering methods that take advantage of characteristics of the gene expression data, the medical
community has a preference for using "classic" clustering methods. There have been no studies thus
far performing a large-scale evaluation of different clustering methods in this context.

Results/Conclusion: We present the first large-scale analysis of seven different clustering
methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Our
results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best
performance in terms of recovering the true structure of the data sets. These methods also
exhibited, on average, the smallest difference between the actual number of classes in the data sets
and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical
methods, which have been widely used by the medical community, exhibited a poorer recovery
performance than that of the other methods evaluated. Moreover, as a stable basis for the
assessment and comparison of different clustering methods for cancer gene expression data, this
study provides a common group of data sets (benchmark data sets) to be shared among
researchers and used for comparisons with new methods. The data sets analyzed in this study are
available at http://algorithmics.molgen.mpg.de/Supplements/CompCancer/.

Background
Microarray technologies enable the measurement of
molecular signatures of cancer cells. These data allow dif-
ferent types of analyses, such as (1) the identification of
differentially expressed genes [1], which could indicate
possible gene targets for more detailed molecular studies
or drug treatments and (2) the building of classifiers, with
machine learning techniques, which could be used to
improve the diagnosis of patients with cancer [2]. Another

common and more exploratory analysis is to perform a
clustering of the cancer/patient samples (tissues). The aim
is to find groups of samples sharing similar expression
patterns, which can lead to the discovery of new cancer
subtypes. This kind of analysis was first employed in [3]
and [4]. Since then, clustering methods have drawn a great
deal of attention in the scientific community [5]. Bioinfor-
maticians have been proposing novel clustering methods
that take intrinsic characteristics of gene expression data
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into account, such as noise and high-dimensionality, to
improve the clusters [6-8]. Such researchers often perform
an evaluation of their methods using available public data
previously published in clinical studies. However, despite
the relevant contributions provided by the bioinformatics
community to the cluster analysis of microarray data, in
order to aid the investigation of their data, researchers of
clinical cancer studies still rely mostly on classic clustering
methods, such as hierarchical clustering. Indeed, in stud-
ies using cluster analysis, the data of which are employed
in this paper, around 95% are based on hierarchical clus-
tering and Pearson's correlation as similarity metrics (e.g.,
[3,4,9-20]). The main reasons for such popularity of hier-
archical clustering include (1) ease of use, as they require
the setting of few parameters; and (2) the availability of
implementations, as these methods are part of many
standard microarray data analysis software programs,
such as those in [21] and [22]. Hierarchical clustering is
also available in standard gene expression databases, such
as the Gene Expression Omnibus [23]. In contrast, com-
mon limitations of new methods proposed by bioinfor-
maticians include the requirement of using particular
programming environments and the specification of a
number of different parameters (e.g., [6-8]), which makes
their implementation difficult for non-expert users.

Motivated by these problems, we present the first large-
scale analysis of different clustering methods and proxim-
ity measures for clustering cancer tissues (samples). The
data employed were generated from gene expression
measurement technologies. The aim is to provide some
guidelines for the biological/medical/clinical community
for the choice of specific methods. The study is based on
35 data sets from either Affymetrix or cDNA chip plat-
forms. We evaluate the use of classic clustering methods,
such as hierarchical clustering with single, complete and
average linkage [24], k-means [25] and mixture of multi-
variate Gaussians [26]; as well as more recent methods,
such as spectral clustering [27] and a nearest neighbor-
based method [28]. Furthermore, in terms of proximity
measures, we evaluate the choice of Pearson's correlation
coefficient, cosine, Spearman's correlation coefficient and
Euclidean distance [24]. For the case of Euclidean dis-
tance, we employ three procedures for pre-processing the
expression profiles: standardization, scaling and ranking
[29,30].

Before putting our analysis into perspective with respect
to some of the related works, in order to prevent mislead-
ing interpretations, it is important to draw the attention to
the fact that the problem of clustering cancer gene expres-
sion data (tissues) is very different from that of clustering
genes. In the former, one has only tens or hundreds of
items (tissues) to be clustered. Each of these data items is
described by thousands of genes [2]. In contrast, in the

task of clustering genes there are a large number of data
items (genes), described by a small number of different
conditions [5]. Thus, clustering few high dimensional
items (tissues) is not the same as clustering several low
dimensional ones (genes).

In either case, there are a small number of analyses in the
literature evaluating the performance of different cluster-
ing methods applied to gene expression data [31-37]. In
[37] the authors present basically a literature review of
existing results on the use of several clustering algorithms
in the context gene expression data. In terms of works that
do develop an experimental analysis, [31-34,36] investi-
gate the problem of clustering genes, differently from our
study that has as a main concern the clustering of tissues.
In fact, the most closely related work to ours is the one in
[35]. There, among other things, the authors approach the
problem of clustering cancer gene expression data sets.
They perform their study in the context of four clustering
methods (k-means, mixture of Gaussians, density-based
clustering and farthest first traversal algorithm) applied to
eight binary class data sets. Based on their experimental
results obtained with the clustering methods, the authors
do not suggest or indicate the suitability/preference of any
of these methods with respect to the others. In contrast to
the work in [35], as previously pointed out, our paper
presents a first large scale analysis of seven different clus-
tering methods and four proximity measures for the anal-
ysis of 35 cancer gene expression data sets. Furthermore,
our data sets are not restricted to have only two classes.

Besides the large-scale comparison of clustering methods
and proximity measures for cancer gene expression data, a
major contribution of this paper is to provide a common
group of data sets (benchmark data sets) to be shared
among researchers as a stable basis for the evaluation and
comparison of different machine learning methods for
clustering or classification of cancer gene expression data
– available in the supplementary material [38].

Results and discussion
Experimental Design
Thirty five publicly available microarray data sets are
included in our analysis (Table 1). These data sets were
obtained using two microarrays technologies: single-
channel Affymetrix chips (21 sets) and double-channel
cDNA (14 sets). We compare seven different types of clus-
tering algorithms: single linkage (SL), complete linkage
(CL), average linkage (AL), k-means (KM), mixture of
multivariate Gaussians (FMG), spectral clustering (SPC)
and shared nearest neighbor-based clustering (SNN).
When applicable, we use four proximity measures
together with these methods: Pearson's Correlation coef-
ficient (P), Cosine (C), Spearman's correlation coefficient
(SP) and Euclidean Distance (E). Regarding Euclidean dis-
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tance, we employ the data in four different versions: orig-
inal (Z0), standardized (Z1), scaled (Z2) and ranked (Z3)
versions. See the Methods Section for further details on
the algorithms, proximity measures and data transforma-
tion procedures.

We perform experiments for each algorithm, varying the

number of clusters in [k, L O], where k represents the

actual number of classes in a given data set with n sam-
ples. The recovery of the cluster structure is measured
using the corrected Rand (cR) index by comparing the
actual classes of the tissues samples (e.g., cancer types/
subtypes) with the cluster assignments of the tissue sam-
ples. For each combination of clustering method, proxim-
ity measure and data transformation procedure, we
calculate the mean of the cR over all data sets in two dif-

ferent contexts: (1) taking into account only the partition
with the number of clusters equal to the number of actual
classes in the respective data set; and (2) considering the
partition that presents the best cR for each data set, regard-
less of its number of clusters. The results of these experi-
ments are illustrated in Figure 1 (Affymetrix data sets) and
Figure 2 (cDNA data sets). We also investigate the influ-
ence of reduced coverage on the algorithms [29]. The idea
is to identify the methods that often generate their best
partition, as calculated by the cR, with more clusters than
the actual number of classes in the corresponding data set.
In order to do so, for a given algorithm, we measure the
difference between the number of clusters of the partition
with best cR and the actual number of classes for each data
set. The mean of the difference of these values for Affyme-

n

Table 1: Data set description

Dataset Chip Tissue n #C Dist. Classes m d

Armstrong-V1 [52] Affy Blood 72 2 24,48 12582 1081
Armstrong-V2 [52] Affy Blood 72 3 24,20,28 12582 2194
Bhattacharjee [9] Affy Lung 203 5 139,17,6,21,20 12600 1543
Chowdary [13] Affy Breast, Colon 104 2 62,42 22283 182
Dyrskjot [14] Affy Bladder 40 3 9,20,11 7129 1203
Golub-V1 [3] Affy Bone marrow 72 2 47,25 7129 1877
Golub-V2 [3] Affy Bone marrow 72 3 38,9,25 7129 1877
Gordon [53] Affy Lung 181 2 31,150 12533 1626
Laiho [15] Affy Colon 37 2 8,29 22883 2202
Nutt-V1 [54] Affy Brain 50 4 14,7,14,15 12625 1377
Nutt-V2 [54] Affy Brain 28 2 14,14 12625 1070
Nutt-V3 [54] Affy Brain 22 2 7,15 12625 1152
Pomeroy-V1 [55] Affy Brain 34 2 25,9 7129 857
Pomeroy-V2 [55] Affy Brain 42 5 10,10,10,4,8 7129 1379
Ramaswamy [50] Affy Multi-tissue 190 14 11,10,11,11,22,10,11,10,30,11,11,11,11,20 16063 1363
Shipp [56] Affy Blood 77 2 58,19 7129 798
Singh [19] Affy Prostate 102 2 58,19 12600 339
Su [57] Affy Multi-tissue 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571
West [58] Affy Breast 49 2 25,24 7129 1198
Yeoh-V1 [20] Affy Bone marrow 248 2 43,205 12625 2526
Yeoh-V2 [20] Affy Bone marrow 248 6 15,27,64,20,79,43 12625 2526
Alizadeh-V1 [4] cDNA Blood 42 2 21,21 4022 1095
Alizadeh-V2 [4] cDNA Blood 62 3 42,9,11 4022 2093
Alizadeh-V3 [4] cDNA Blood 62 4 21,21,9,11 4022 2093
Bittner [10] cDNA Skin 38 2 19, 19 8067 2201
Bredel [11] cDNA Brain 50 3 31,14,5 41472 1739
Chen [12] cDNA Liver 180 2 104,76 22699 85
Garber [59] cDNA Lung 66 4 17,40,4,5 24192 4553
Khan [60] cDNA Multi-tissue 83 4 29,11,18,25 6567 1069
Lapointe-V1 [16] cDNA Prostate 69 3 11,39,19 42640 1625
Lapoint-V2 [16] cDNA Prostate 110 4 11,39,19,41 42640 2496
Liang [17] cDNA Brain 37 3 28,6,3 24192 1411
Risinger [18] cDNA Endometrium 42 4 13,3,19,7 8872 1771
Tomlins-V1 [61] cDNA Prostate 104 5 27,20,32,13,12 20000 2315
Tomlins-V2 [61] cDNA Prostate 92 4 27,20,32,13 20000 1288

The data sets present different values for features such as type of microarray chip (second column), tissue type (third column), number of samples 
(fourth column), number of classes (fifth column), distribution of samples within the classes (sixth column), dimensionality (seventh column) and 
dimensionality after feature selection (last column).
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trix and cDNAs data sets are displayed in Figures 3 and 4,
respectively.

Finally, we perform paired t-tests, adjusted for multiple
comparisons with the Benjamini and Hochberg proce-
dure [39], to determine whether differences in the cR
between distinct methods (as displayed in Figure 1 and
Figure 2) are statistically significant. More specifically,
given that we are mainly interested in comparing the clus-
tering methods, we select only the results with the proxim-
ity measure that displays the largest mean of cR for each
method. As some data sets are harder to cluster than oth-
ers, the cR values exhibited a large variance for a given
clustering method and proximity measure (Figures 1 and
Figure 2). Nonetheless, as all methods are applied to the
same data sets, we can use the paired t-test, which meas-
ures the difference in the cR value between two methods
for each data set. In this case, the null hypothesis is that
the difference in the mean between paired observations is
zero. We can therefore assess whether the difference in the
performance of one method and another is statistically
significant. More detailed results are found out in our sup-
plementary material [38].

Recovery of Cancer Types by Clustering Method
Based on Figures 1 and 2, our results show that, among
the 35 data sets investigated, the FMG exhibited the best

performance – best corrected Rand (cR) -, followed closely
by KM, in terms of the recovery of the actual structure of
the data sets, regardless of the proximity measure used.

For Affymetrix data sets, the paired t-test (p-value < 0.05)
indicated that FMG achieved a larger cR than SL, AL and
CL; and KM a larger cR than SL and AL, when the number
of cluster is set to the actual number of classes. Consider-
ing the partition that presents the best cR for each data set,
regardless of its number of clusters, KM and FMG achieved
a larger cR than SL, AL and CL (p-value < 0.05).

In the case of cDNA data sets, the paired t-test (p-value <
0.05) also indicated that KM and FMG achieved a larger
cR than SL, AL, CL and SNN for both contexts investi-
gated. Also, KM achieved a larger cR than SPC (p-value <
0.05). This holds for both contexts: the number of cluster
sets to the actual number of classes and for the best cR,
regardless of the number of clusters.

Furthermore, KM and FMG achieved, on average, the
smallest difference between the actual number of classes
in the data sets and the number of clusters in the partition
solutions with the best cR (Figures 3 and 4). Likewise,
SNN exhibited consistent behavior in terms of the values
of cR in the different types of proximity measures,

Affymetrix data sets: mean of the cRFigure 1
Affymetrix data sets: mean of the cR. We display the mean of the cR for the partitions with the number of clusters equal 
to the actual number of classes (a) and the mean of the best cR found (b) for Affymetrix data sets. Missing bars correspond to 
combinations of methods and proximity measures not evaluated.
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although with smaller cR values than those obtained with
FMG and KM. In fact, this method, on average, returned
cR values compatible to those achieved by the SPC.

Note that a good coverage alone (Figure 3 and Figure 4)
do not imply accuracy in classes recovery (Figures 1 and

2). For example, according to Figure 3, SPC with  and

KM with C respectively present a mean of the difference
between the actual number of classes and number of clus-
ters found in the partitions with best cR of 0.71 and 0.76
clusters. However, the latter led to a cR of 0.50, while the
former achieved a cR of only 0.12.

Our results show that the class of hierarchical methods,
on average, exhibited a poorer recovery performance than
that of the other methods evaluated. Moreover, as
expected, within this class of algorithms, the single link-
age achieved the worst results. The paired t-test (p-value <
0.05) indicated that it led to the smallest cR, when com-
pared to those of the other methods. Regarding the use of
proximity measures with hierarchical methods, Pearson's
correlation and cosine yielded best results. This is also in
agreement with the overall common knowledge from
clinical/biological studies [22]. In order to present cR val-
ues compatible to those obtained with KM and FMG, such

a class of methods generally required a much more
reduced coverage: a larger number of clusters than that in
the underlying data. For example, according to Figure 1,
the AL with P, achieves a cR of 0.27 for the actual number
of classes. In contrast, if one considers partition solutions
with a larger number of clusters, the cR increases to 0.38.
Such an increase was achieved with partitions that had, on
average, 1.48 more clusters than in the underlying struc-
ture. One surprising result is the good performance
achieved with Z3, mainly with the hierarchical clustering
methods. In this context, the use of such a data transfor-
mation, together with the Euclidean distance, led to
results very close to those obtained with P, C and SP, espe-
cially for the Affymetrix data sets. One reason for this
behavior is the presence of outliers in the data sets, as Z3
reduces their impact [29]. Thus, this is further evidence
that such a class of algorithms is more susceptible to out-
liers than the other methods investigated.

Spectral clustering, in turn, is quite sensitive to the prox-
imity measure employed. For example, the partitions gen-
erated with this method achieved large cR values (e.g., cR
> 0.40) only for the cases of C, SP and P, but smaller cR
values (e.g., cR ≤ 0.15) otherwise. It is well known in the
literature that spectral clustering is susceptible to the sim-

E Z0

cDNA data sets: mean of the cRFigure 2
cDNA data sets: mean of the cR. We display the mean of the cR for the partitions with the number of clusters equal to 
the actual number of classes (a) and the mean of the best cR found (b) for cDNA data sets. Missing bars correspond to combi-
nations of methods and proximity measures not evaluated.
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ilarity matrix used [40]. Moreover, there is as yet no rule
to assist in making such a selection.

In another kind of analysis, we investigated the impact of
reduced coverage on the performance of the algorithms.
As previously mentioned, this impact was more signifi-
cant for the case of the hierarchical clustering methods. As
there are many data sets with an extremely unbalanced
distribution of samples within the classes, this behavior
also occurred with the KM, although to a smaller degree.
In fact, all methods, even the ones that are supposed to
deal well with clusters with an unbalanced number of
samples, profited from a reduced coverage.

Comparison of Hierarchical Clustering and k-means
To better illustrate the issues discussed in the previous sec-
tion, we analyzed the results obtained with k-means and
hierarchical clustering for a single data set. More specifi-
cally, we employed a version of the data set in [4] (Aliza-
deth-V2), which has samples from three cancer types: 42
diffuse large B-cell lymphoma (DLBCL), 9 follicular lym-
phoma (FL) and 11 chronic lymphocytic leukemia (CLL).
In the case of hierarchical clustering, we used the same
algorithm as in [4], which is hierarchical clustering with
average linkage and Pearson's correlation. In order to
improve visualization of the red and green plot [22], the

Affymetrix data sets: difference between the actual number of classes and the number of clusters in the partition solutions with best cRFigure 3
Affymetrix data sets: difference between the actual number of classes and the number of clusters in the parti-
tion solutions with best cR. We display the mean of the difference between the actual number of classes and the number of 
clusters for the best partition found for Affymetrix data sets. Missing bars correspond to combinations of methods and prox-
imity measures not evaluated.
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leaves of the resulting tree were rearranged according to a
standard technique [41].

The partitions with three clusters for hierarchical cluster-
ing and k-means are illustrated in Figure 5(a) and Figure
5(b), respectively. The k-means yielded a partition very
close to the underlying structure in the data. With the
exception of a single DLBCL sample that was wrongly
assigned to Cluster 1 (all other samples in this cluster are
FL), the other clusters in the partition have samples of
only the given class. In the case of hierarchical clustering,
cutting the tree at level three (three sub-trees or clusters),
one can observe the following: the red sub-tree contains

only DLBCL samples and the blue sub-tree presents a
combination of FL and CLL samples. The same DLBCL
sample wrongly assigned in the case of k-means appeared
in the blue sub-tree rather than the red sub-tree. The third
sub-tree (black) is formed by a single sample from DLBCL
(top). Indeed, in the tree generated, the FL and CLL sam-
ples are only separated if we cut the tree at level 25, which
yields 25 sub-trees (clusters). Note that, although our tree
differs slightly from the one in [4], as their analysis
included additional non-cancer tissue samples; in that
paper the FL and CLL samples would also only be in sep-
arate sub-trees when the tree is cut at a lower level.

cDNA data sets: difference between the actual number of classes and the number of clusters in the partition solutions with best cRFigure 4
cDNA data sets: difference between the actual number of classes and the number of clusters in the partition 
solutions with best cR. We display the mean of the difference between the actual number of classes and the number of clus-
ters for the best partition found for cDNA data sets. Missing bars correspond to combinations of methods and proximity 
measures not evaluated.
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One of the reasons for this kind of problem is that hierar-
chical clustering is based on local decisions, merging the
most "compact" cluster available at each step [24]. The
compactness criterion (or how close together objects are)
is defined by the linkage criteria and proximity measure
used. On the other hand, k-means maximizes a criterion,
which is a combination of cluster compactness and cluster
separation. The problem can be illustrated in a two-
dimensional representation of the Alizadeth-V2 data set,
after selecting the two-largest components using principal
component analysis (PCA) – Figure 6. Based on this fig-
ure, we can see that samples from distinct classes form
natural clusters. More specifically, although the cluster
with DLBCL samples (red dots) is well-separated from the
other two clusters, it lies within a non-compacted region.
Thus, as hierarchical clustering has a bias towards com-
pacted clusters, if we simply follow the hierarchical tree, it
would first suggest the sub-division of the cluster with
DLBCL samples before sub-dividing the groups with FL
and CLL samples. In a hypothetical scenario where there
is no a priori knowledge on the distinction between FL
and CLL samples, the use of hierarchical clustering alone
would not indicate the existence of these two classes. In
contrast, this would be detected with k-means or clearly
visualized with a simple PCA analysis.

Conclusion
We have provided the first large-scale data-driven compar-
ative study of seven clustering algorithms and four prox-
imity measures applied to 35 cancer gene expression data
sets. In the following, we summarize some of the general
trends (guidelines for clustering cancer gene expression
data) that emerged from our comparative study.

1. Overall, among the 35 data sets investigated, the FMG
exhibited the best performance, followed closely by KM,
in terms of the recovery of the actual structure of the data
sets, regardless of the proximity measure used.

2. For most algorithms, there is a clear interaction
between reduced coverage and an increase in the ability of
the algorithm to group the samples correctly – larger cor-
rected Rand.

3. The shortcomings of hierarchical methods is noticea-
ble, as it has been the case in the analyses developed in the
context of clustering genes [31,32]. One of the reasons for
this is the sensitivity of hierarchical clustering to noise in
the data [5,24,29].

Hierarchical Clustering and k-means for Alizadeh-V2Figure 5
Hierarchical Clustering and k-means for Alizadeh-V2. We display the red and green plots for (a) the hierarchical clus-
tering and (b) the k-means for the data set Alizadeh-V2. Columns correspond to genes and rows correspond to cancer sam-
ples. The samples are labeled according to one of three classes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma 
(FL) and chronic lymphocytic leukemia (CLL). In the case of k-means, the number of clusters was set at three. Likewise, for 
hierarchical clustering, the tree was cut so as to return three clusters, corresponding to the red, light blue and black sub-trees.
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4. Within this class of hierarchical clustering algorithms,
the single linkage presented the worst results.

5. With respect to the use of proximity measures with hier-
archical clustering methods, Pearson's correlation and
cosine often led to the best results.

6. To present cR values compatible to those obtained with
KM and FMG, the class of hierarchical clustering methods
usually required a much more reduced coverage.

7. Spectral clustering showed to be quite sensitive to the
proximity measure employed.

With respect to the statement in Item 1, it is important to
point out that, although, on average, our experimental

work demonstrates that FMG and KM exhibited a better
performance in terms of the corrected Rand than the other
methods investigated, this does not imply that these algo-
rithms would always be the best choice. Indeed, as one
can see in the table in the supplemental material describ-
ing the individual performance of the algorithms, for cer-
tain data sets, such as Pomeroy-V2, the SNN with P
achieved a much larger cR than all the other methods [38].

A principled way to tackle this problem of predicting
which methods would work better for a certain data set
with particular data properties (i.e., number of samples,
sample dimensionality, array type, etc.) is the use of meta-
learning approaches [42]. For example, in a smaller scale
study, [43] shows that a meta-learning approach taking
into consideration only a set of descriptive statistics of a

PCA plot for Alizadeh-V2Figure 6
PCA plot for Alizadeh-V2. We display a scatter plot with the two first largest components of a PCA for Alizadeh-V2. 
Colors indicate the three classes in the data: diffuse large B-cell lymphoma in red (DLBCL), follicular lymphoma in green (FL) 
and chronic lymphocytic leukemia in blue(CLL).
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given data as input, yields a ranking with the best cluster-
ing methods to be used with the data set.

Another contribution of this paper was that we provided
a common group of data sets (benchmark data sets) that
can be used as a stable basis for the evaluation and com-
parison of different machine learning methods. Recently,
studies proposing benchmarking frameworks have been
introduced in the machine learning and bioinformatics
literature [44,45]. For instance, [44] has proposed a web-
based system for the storage of results from classification
methods for several benchmark data sets used in the
machine learning community. Furthermore, their data-
base allows other researchers to submit results obtained
by new classification methods. In fact, as future work, we
aim to build a central repository for the evaluation of clus-
tering methods in the context of cancer gene expression
data. In this repository, any novel clustering algorithm
could be evaluated with the available data sets, its results
stored and made available in our web database.

Methods
Clustering Methods and Recovery Measure
Seven clustering algorithms are used to generate partition
solutions and form a single factor in the overall experi-
ment design: single linkage, complete linkage, average
linkage, k-means, mixture of multivariate Gaussians, spec-
tral clustering and shared nearest neighbor-based cluster-
ing (SNN). These algorithms have been chosen to provide
a wide range of recovery effectiveness, as well as to give
some generality to the results. In our analysis, when appli-
cable, methods are implemented with Pearson's Correla-
tion, cosine and Euclidean distance. We also use single
linkage, complete linkage, average linkage and spectral
clustering with the Spearman's correlation coefficient –
the implementation that we used for k-means (Matlab)
and SNN [28] do not support such a proximity measure.

Hierarchical clustering methods, more specifically the
agglomerative ones, are procedures for transforming a dis-
tance matrix into a dendrogram [24]. Such algorithms
start with each sample representing a cluster. The methods
then gradually merge these clusters into larger ones; they
start with trivial clustering in which each sample is in a
unique cluster, ending with trivial clustering in which all
samples are in the same cluster. There are three more
widely used variations of hierarchical clustering, which
are used in this paper: complete linkage (CL), average
linkage (AL) and single linkage (SL). These variations dif-
fer in the way the distance between two clusters is calcu-
lated. For SL, the distance between two clusters is
determined by the two closest samples in different clus-
ters. In contrast, CL employs the farthest distance of a pair
of samples to define the inter-cluster distance. In AL, the
distance between two clusters is calculated by the average

distance between the samples in one group and the sam-
ples in the other group. This method has been used exten-
sively in the literature on gene expression analysis
[31,32,46,47], although experimental results have shown
that, in many cases, the complete linkage outperforms it
[5]. Another widely used method for gene expression data
analysis is k-means [46,47]. k-means (KM) is a partitional
iterative algorithm that optimizes the best fitting between
clusters and their representation using a predefined
number of clusters [24,25]. Starting with prototype values
from randomly selected samples, the method works in
two alternate steps: (1) an allocation step, where all sam-
ples are allocated to the cluster containing the prototype
with the lowest dissimilarity; and (2) a representation
step, where a prototype is constructed for each cluster.
One problem with such an algorithm is its sensitivity to
the selection of the initial partition. This could lead the
algorithm to converge to a local minimum [24]. In order
to prevent the local minimum problem, a number of runs
with different initializations is often performed. The best
run based on some cohesion measure is then taken as the
result. Another characteristic of this method is its robust-
ness to noisy data.

Finite mixture of Gaussians (FMG) is a convex summation
of k multivariate Gaussian density functions or Gaussian
components [26]. In mixture model-based clustering,
each component in the mixture is assumed to model a
group of samples. In order to obtain the probabilities of a
sample belonging to each cluster (group), density func-
tions can be used and mixing coefficients can be defined
for the mixture. For a given number k, mixture models can
be efficiently computed with the Expectation-Maximation
(EM) algorithm. The EM works interactively by calculating
the probability of each sample for the components and
then recomputing the parameters of the individual Gaus-
sian densities until convergence is reached. A mixture
model has a number of advantages: it returns the uncer-
tainty of a given cluster assignment and the models esti-
mated can be seen as descriptors of the clusters found. In
practice, k-means can be regarded as an oversimplification
of a mixture of Gaussians, where every sample is assigned
to a single cluster. In this simplified context, clusters tend
to have the same size and lie within spherical regions of
the Euclidean space. With the mixture of Gaussians using
unit covariance matrices employed in this paper, clusters
will also lie within spherical regions, but can have any
arbitrary size.

Spectral clustering (SPC) is a general class of algorithms
characterized by employing the spectrum of similarity
matrices to reduce the dimensionality of a data set and
then applying a basic clustering algorithm, such as k-
means or graph cut-based methods, on this lower dimen-
sion data [27]. For example, assume that we have a graph,
Page 10 of 14
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where nodes are the samples and edges are weighed by the
similarity between two nodes. Spectral clustering methods
can be interpreted as performing a random walk in this
graph, finding clusters by ignoring edges that are rarely
transversed in the walk. More specifically, in this paper,
for a given similarity matrix S obtained with a Gaussian
similarity function, we (1) calculate its normalized Lapla-
cian matrix and (2) perform an eigenvalue decomposition
of this matrix. We then select the k eigenvectors related to
the k lowest eigenvalues and use them to perform k-mean
clustering. Among other interesting characteristics, a spec-
tral clustering method makes no assumptions on the data
distribution at hand. It is also able to find clusters that are
not in convex regions of the space.

The shared nearest-neighbor algorithm (SNN) is a recent
technique. We have added it to our analysis because this
method can robustly deal with high dimensionality, noise
and outliers [28]. SNN searches for the nearest neighbors
of each sample and uses the number of neighbors that two
points share as the proximity index between them. With
this index, SNN employs a density-based approach to find
representative samples and build clusters around them.
Along with the number of nearest neighbors (NN), two
other kinds of parameters are considered: those regarding
the weights of the shared nearest neighbor graph (strong,
merge and label) and others related to the number of
strong links (topic and noise). These parameters are
thresholds on which each step of the algorithm is based.

Regarding the index for measuring the success of the algo-
rithm in recovering the true partition of the data sets, as in
[29], we use the corrected Rand [24,29]. The corrected
Rand index takes values from -1 to 1, with 1 indicating a
perfect agreement between the partitions and values near
0 or negatives corresponding to cluster agreement found
by chance. Unlike the majority of other indices, the cor-
rected Rand is not biased towards a given algorithm or
number of clusters in the partition [24,48].

Formally, let U = {u1,...,ur,...,uR} be the partition given by
the clustering solution and V = {v1,...,vc,...,vC} be the par-
tition formed by a priori information independent from
partition U (thegold standard). The corrected Rand is
defined as:

where (1) nij represents the number of objects in clusters

ui and vj; (2) ni. indicates the number of objects in cluster

ui; (3) n.j indicates the number of objects in cluster vj; (4)

n is the total number of objects; and(5)  is the bino-

mial coefficient .

Data Transformation
In many practical situations, a data set could present sam-
ples the attribute or feature values of which (in our case,
genes) lie within different dynamic ranges [24,29]. In this
case, for proximity measures such as Euclidean distance,
features with large values will have a greater influence
than those with small values. However, this will not nec-
essarily reflect their importance in defining the clusters.
Such a problem is often addressed by transforming the
feature values so that they lie within similar ranges. There
are several ways to perform transformations of attribute
values [24,29]. As the data sets used in our studies have no
categorical features, we consider only the case involving
numeric values. More precisely, for the Euclidean dis-
tance, we analyze three different forms of feature (gene)
transformation.

The first two have been widely used in clustering applica-
tions [24,29]: one is based on the z-score formula (stand-
ardization) and the other scales the gene values to [0, 1]
or [-1, 1]. The third procedure transforms the values of the
attributes into a ranking. This type of transformation is
more robust to outliers than the first two procedures [29].
A large-scale study on the impact of these procedures for
cancer gene expression data has been recently presented in
[30].

The transformation that uses the z-score formula trans-
lates and scales the axes so that transformed feature (gene)
will have zero mean and unit variance. Hereafter, for
short, we will refer to this transformation as Z1. The sec-
ond procedure involves the use of the maximum and min-
imum values on the gene. Assuming non-negative values,
a gene transformed with this procedure is bounded by 0.0
and 1.0, with at least one observed value at each of these
end points [29]. For short, we will refer to this procedure
as Z2. If there are negative values, a gene transformed with
Z2 is bounded by -1.0 and 1.0. Unlike Z1, the transformed
mean and variance resulting from Z2 will not be constant
across all features.

The above procedures could be adversely affected by the
presence of outliers in the genes. This is especially true for
Z2, which depends on the minimum and maximum val-
ues. A different approach, which is more robust to out-
liers, converts the values of the genes to rankings. Given a
data set with n samples, this procedure yields a trans-
formed gene value with mean of (n + 1)/2, range n - 1 and
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variance (n + 1) [((2n + 1)/6) - ((n + 1)/4)] for all genes
[29]. For short, hereafter, we will refer to this procedure as
Z3.

Experimental Design
Data sets
Thirty five microarray data sets are included in our analy-
sis (Table 1). These data sets present different values for
features such as type of microarray chip (second column),
tissue type (third column), number of samples (fourth
column), number of classes (fifth column), distribution
of samples within the classes (sixth column), dimension-
ality (seventh column) and dimensionality after feature
selection (last column).

In terms of the data sets, it is important to point out that
microarray technology is generally available in two differ-
ent types of platforms, single-channel microarrays (e.g.,
Affymetrix) or double-channel microarrays (e.g., cDNA)
[46,47,49]. Note that other microarrays technologies are
also based on either single and double channels methods.
As the data sets analyzed here are restricted to those col-
lected with cDNA and Affymetrix microarrays, we employ
the terms cDNA and Affymetrix to denote double or sin-
gle-channel arrays, respectively. Measurements of Affyme-
trix arrays are estimates on the number of RNA copies
found in the cell sample, whereas cDNA microarrays val-
ues are ratios of the number of copies in relation to a con-
trol cell sample. With Affymetrix microarray data,
following other works, all genes with expression level
below 10 are set to a minimum threshold of 10. The max-
imum threshold is set at 16,000. Values below or above
these thresholds are often unreliable [49-51]. Thus, our
analysis is performed on the scaled data to which the ceil-
ing and threshold values have been applied.

Moreover, for the case of Affymetrix data, we apply the fol-
lowing procedure to remove uninformative genes: for
each gene j (attribute), we compute the mean mj among

the samples. However, in order to get rid of extreme val-
ues, we first discard the 10% largest and smallest values.

Based on this mean, we transform every value  of gene

i and sample j as follows:

For further analysis, we then select genes with expression
levels differing by at least l-fold in at least c samples from
their mean expression level across the samples. With few
exceptions, the parameters l and c were chosen so as to
produce a filtered data set with at least 10% of the original
number of genes (features). It is important to point out

that the data transformed with the previous equation is
only used in the filtering step.

A similar filter procedure was applied for the case of cDNA
microarray, but without the need to transform the data. In
the case of cDNA microarray data sets, attributes (genes)
of which could present missing values, we discard those
with more than 10% of missing values. The attributes that
remain and still present missing values have the values
replaced by the respective mean value of the attribute.

Empirical Study
The experiments compare seven different types of cluster-
ing algorithms: SL, AL, CL, KM, FMG, SPC and SNN. Each
of these algorithms (with the exception of FMG, which
already has the computation of the similarity as a built-in
characteristic) was implemented with versions of four
proximity measures: Pearson's Correlation coefficient (P),
Cosine (C), Spearman's correlation coefficient (SP) and
Euclidean Distance (E). As the implementation of the KM
and SNN used in this work does not support Spearman's
correlation coefficient, these algorithms were only tested
with P, C and E. Furthermore, regarding the Euclidean dis-
tance version, experiments are performed with the sam-
ples in four forms, namely, original (Z0), standardized
(Z1), normalized (Z2) and ranked (Z3). We also applied
the data with these transformations for the case of FMG.

We run the algorithms for the configurations described in
the previous paragraph. Recovery of cluster structure was
measured via the corrected Rand index with regard to the
actual number of classes known to exist in the data. That
is, the number of clusters is set to be equal to the true
number of the classes in the data. The known class labels
were not used in any way during the clustering. As per-
formed by [29], in order to explore the effects of reduced
coverage, recovery was also measured on different levels
preceding the correct solution partition. Reduced coverage
implies that more clusters are present in the partition
obtained than actually exist in the underlying structure.
For example, if k represents the number of classes in a data
set with n samples, we then developed experiments vary-

ing the number of clusters in [k, L O]. In order to build

the partition from hierarchical methods, recovery was
measured based on the hierarchical solution that corre-

sponds to each value in the range [k, L O]. As KM is non-

deterministic, we run the algorithm 30 times for each con-
figuration pair (data set, proximity measure) and select
the one with lowest inter-class error. For further analysis,
we then choose the partition with the best corrected Rand
(cR). This procedure is also used for SPC and FMG. We use

xij
∗

y x mij ij j= ( )∗log / .2

n

n
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default parameters in both cases, with the exception of the
values for the number of clusters.

For SNN, we execute the algorithm with several values for
its parameters (2%, 5%, 10%, 20%, 30% and 40% for
NN), topic (0, 0.2, 0.4, 0.6, 0.8 and 1) and merge (0, 0.2,
0.4, 0.6, 0.8 and 1). Preliminary experiments reveal that
variations in the other parameters did not produce very
different results. Thus, the default values were used for the
parameter strong and the value 0 was used for the param-
eters noise and label (in order to have all points assigned
to a cluster). From the partitions created with such param-
eters values, we choose the partition with best cR and with
k in the interval of interest for further analysis.
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