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Abstract. Genomic tiling arrays are a type of DNA microarrays which
can investigate the complete genome of arbitrary species for which the
sequence is known. The design or selection of suitable oligonucleotide
probes for such arrays is however computationally difficult if features
such as oligonucleotide quality and repetitive regions are to be consid-
ered.

We formulate the minimal cost tiling path problem for the selection
of oligonucleotides from a set of candidates, which is equivalent to a
shortest path problem. An efficient implementation of Dijkstra’s short-
est path algorithm allows us to compute globally optimal tiling paths
from millions of candidate oligonucleotides on a standard desktop com-
puter. The solution to this multi-criterion optimization is spatially adap-
tive to the problem instance. Our formulation incorporates experimental
constraints with respect to specific regions of interest and tradeoffs be-
tween hybridization parameters, probe quality and tiling density easily.
Solutions for the basic formulation can be obtained more efficiently from
Monge theory.

1 Introduction

Tiling arrays. DNA microarrays can be manufactured today with the high den-
sity required to comprehensively sample the complete genomic sequence of an
organism. These chips are typically referred to as genomic or tiling arrays and are
widely used in transcriptome analysis. Representing a genome completely opens
new routes, such as transcription profiles that do not rely on prior gene predic-
tion, discovery of microRNAs or chromatin-immunoprecipitation-chip studies for
the detection of transcriptional regulation.

Depending on the type of question, the probe selection for the array needs
to be customized, which is economically feasible as several providers offer cus-
tomer designed arrays. The determination of suitable probe sequences, typically
contiguous subsequences of the genomic sequence, however is computationally
demanding even for relatively small genome sizes of bacteria if the quality of
probes is considered in the design.
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Oligonucleotide quality. There are many aspects determining the quality of
oligonucleotides probes, which arise from the specifics of the hybridization reac-
tion between an oligonucleotide probe immobilized on the chip surface and the
region of genomic DNA it reacts with. Prominent aspects are the melting temper-
ature or binding energy of the duplex formed and the cross-hybridization poten-
tial. The latter reflects the availability of forming stable duplexes with genomic
regions other than the intended and is approximated heuristically through se-
quence similarity. Kane et al [1] measured the amount of cross-hybridization and
summarized the results into two criteria for unique probe selection for oligonu-
cleotides probes of length 50, or 50mers. The first criterion is satisfied if the
probe has no match of global sequence identity exceeding 75% in another region
in the target genome. The second criterion requires that there is no exact match
of 15 bases or more within unintended matches of a sequence identity between
50% to 75%. Later efforts tried to extend Kane’s work to larger sets of genes,
oligonucleotide lengths and sequence composition [2,3]. Other aspects are under
discussion, for instance hairpin structures or the occurrence of guanine or cy-
tosin on the 5’ or 3’ end of the oligonucleotide. Recently, a disillusioning study
showed that designing for optimal oligonucleotide quality is ill-understood and
that thermodynamic considerations do not necessarily improve results [4]. The
major body of work to assess hybridization was done on Affymetrix microarrays,
which typically employ 25mers and particular experimental arrangements to as-
sess the quality. It is unclear how to make best use of this work in the context
of other array designs with oligonucleotides of different lengths and different
hybridization conditions.

Prior work. One possible approach to the design is the selection of evenly spaced
oligonucleotide probes which provide dense coverage of a genome. Selinger et
al [5] constructed a dense microarray for the 4MBb genome of Escherichia coli
with a density of one 25mer for each 30 base window. The design of such an
array is straight-forward but suffers from the problem that cross-hybridization
between probes and several genomic regions is to be expected. While the analysis
of such an array can yield important results as to whether particular genomic
regions are expressed, it is compromised due to the high error rates of unspecific
probes and, furthermore, if relative expression levels are to be quantified and
compared. The question of finding specific probes is further complicated by the
vast amount of repetitive sequence in higher organism, which is often handled
by repeat detection and subsequent masking.

The large proportion of repetitive sequence in the human genome requires
enhanced design considerations to achieve high coverage. One approach [6] con-
centrates on maximizing the size of segments which can be covered with evenly
spaced oligonucleotide probes by post-processing genomic sequences with masked
repeats by joining segments of non-repetitive DNA if they are separated by short
segments of repetitive DNA as long as the joined segment is sufficiently longer.
As probe quality is ignored in the process, probes with a large cross-hybridization
potential will often be chosen for the array.
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A two-stage approach was proposed by Lipson et al [7]. Following computation
of candidate probes they propose to choose a whenever possible (WP) ε-cover. A
WP ε-cover is a subset of candidates so that for any chromosomal position x the
following holds. Either there are probes i, j, i ≤ x ≤ j (probes are identified with
their chromosomal location) in the cover with j − i ≤ ε or there is no candidate
between i and j. They provide a greedy algorithm for computation of WP ε-
covers and minimizing ε for a given array size with a log-normal complexity
of their entire approach. For a problem instance with candidates at positions
1, 2, . . . , ε, ε + 1, 2ε + 1, 2ε + 2, . . . , 3ε + 1, 3ε + 2, 4ε + 2 the greedy algorithm
will arrive at the WP ε-cover ε, ε + 1, 2ε + 1, 3ε + 1, 3ε + 2, 4ε + 2, . . .. This is
clearly undesirable as one third of the probes are essentially uninformative and
for example ε + 1, 2ε + 1, 3ε + 2, 4ε + 2 uses fewer probes to cover the same
segment with the same resolution. Furthermore, their approach cannot optimize
with respect to probe quality.

Computation of candidates. There are also two stages in our approach. First,
candidate oligonucleotides are computed for a given genome with one of the
several tools available. For this work, we compute candidates with the recently
introduced tool Flog [8]. It employs a suffix array [9] for the selection of unique
probes that satisfy particular experimental conditions such as GC content and
melting temperature. It implements a set of filters to satisfy Kane’s criteria [1]
(see above). We used the margin with which the second criterion was fulfilled as
the quality values for probes.

For specific applications it is desirable to use oligos of different lengths to
satisfy experimental constraints, in particular the melting temperature Tm. The
very tool used in the process is not essential and other tools that satisfy ex-
perimental requirements or considerations such as hair-pin formation tendencies
can be easily employed. The use of Flog removes the need to scan for repetitive
regions. If particular repetitive regions are to be covered explicitly, our algo-
rithm can incorporate additional selected oligonucleotides. Note that candidate
computation has to be done only once per genome.

Novel contributions. We formulate the multi-criterion optimization problem of
selecting an optimal subset of oligonucleotide probes from set of candidates as
the minimal cost tiling path problem. We show that our formulation is equivalent
to a shortest path problem, which can be solved in log-linear time to global op-
timality using Dijkstra’s shortest path algorithm. The optimal solutions adapt
to spatial differences within the problem instance and can be controlled globally
with respect to tradeoffs between hybridization parameters, probe quality and
tiling density. Additionally, the solutions can be locally constrained for example
to reflect regions of particular interest to the biologist. We also provide an effi-
cient implementation of Dijkstra’s shortest path algorithm. The resulting com-
putational efficiency and memory footprint makes it feasible to solve instances
with millions of candidate oligonucleotides on standard desktop computers. Fur-
thermore, optimal solution for the case of homogeneous (position-independent)
tradeoffs and design parameters can be obtained from Monge theory in linear
time.
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2 Minimal Cost Tiling Paths

We formalize the problem of designing a tiling array in the following. The pri-
mary input is a collection of n candidate oligonucleotide probes and relevant
information about them. Let i ∈ {1, . . . , n} denote the probes covering a DNA
sequence S and p(i), Tm(i) and q(i) the position, the melting temperature and
the probe quality of probe i respectively. The melting temperatures Tm(i) for
probes selected should be within a narrow range to optimize comparability of
probes and thus consistency of the experiments. There are various measures
for probe quality mainly reflecting the potential for cross-hybridization. Higher
quality probes with a lower cross-hybridization potential not only have a lower
false positive rate but also a lower variance of probe intensities, so high quality
probes should be used. Here we assume that the q(i) are computed while creating
the list of candidates; the details do not matter. To simplify the analysis, which
typically relies on homogeneous proximity effects in signal correlation between
adjacent probes, it is also desirable to keep the distance p(j)− p(i) between any
two adjacent probes close to constant. Further relevant parameters exist and our
formulation can be trivially extended to accommodate them.

The question remains how to choose a tuple T ⊂ {1, . . . , n} of probes, which
we will refer to as the tiling path such that p(j) − p(i) = d� for any two adja-
cent probes, Tm(i) = T �

m and q(i) maximal for all i ∈ T . Here d� is the desired
tiling distance and T �

m the desired melting temperature. The multi-criterion op-
timization has conflicting criteria. Fulfilling the distance criterion is trivial when
choosing arbitrarily bad probes with incorrect melting temperature and vice
versa. Which tradeoffs are made has to be decided individually depending on
the organism selected, possible density maxima given by the size of the array
and sensitivity differences in the melting temperature, which varies in time and
stringency between experimental conditions.

To simplify, we first cancel units in probe parameters and bring the different
criteria on a common scale. Let

d(i, j) :=
|d� − (p(j) − p(i))|

d�
(1)

denote the penalty for choosing adjacent probes i and j in T . Similarly, let

pt(j) :=
|T �

m − Tm(j)|
T �

m

(2)

denote the penalty contribution from Tm violations and finally

pq(j) :=

{
q�−q(j)

q� if q(j) < q�, and
0 otherwise

(3)

denote the penalty for selecting probes of quality below q�. Note that this for-
mulation does not distinguish between probe quality exceeding q� as this reflects
the practice of microarray design.
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i+k. . . . . .. . . i+k-1i+2i+1i

Fig. 1. We show the neighborhood structure for node i. It is adjacent to nodes i +
1, i + 2, . . . , i + k. Other edges are not shown.

We can compute the cost of a tiling path T now as

C(T ) =
|T |∑
i=0

d(Ti, Ti+1) +
|T |∑
i=1

pt(i) + pq(i) (4)

or consider a weighted version to allow global control of the tradeoffs

Cw(T ) = wd ×
|T |∑
i=0

d(Ti, Ti+1) +
|T |∑
i=1

wt × pt(i) + wq × pq(i). (5)

Note that d(0, i) and d(i, |T | + 1) only penalize probe choices which are too far
away from either sequence end; that is d(0, i) = p(i)−d�

d� for p(i) > d� and 0 else;
d(i, |T |+1) is analogously defined. This leads us to the definition of the minimal
cost tiling path problem.

Problem 1. Find a tiling path T of minimal cost Cw(T ) given candidate probes
{1, . . . , n}, probe parameters p(i), Tm(i) and q(i) and design parameters d�, T �

m

and q� with criteria weights wd, wt and wq.

2.1 Shortest Path Solution

The problem can be reformulated as a shortest path problem. Consider the
graph in Figure 1. The set of vertices are the probes {1, . . . , n} with special
nodes 0 and n + 1, which are “virtual probes” before the start and after the
end of the sequence we want to tile. For an edge (i, j), with 1 ≤ i, j ≤ n we
compute its weight w(i, j) as the terms j contributes to the sum in Eq. 5. That
is, w(i, j) = wd×d(i, j)+wt×pt(j)+wq×pq(j). The weights w(0, i) and w(i, n+1)
are defined as d(0, i) above. Clearly, the cost of a path 0, i1, i2, . . . , n+1 is exactly
as defined in Eq. 5 and its vertices define the tiling path. Dikstra’s shortest path
algorithm [10] with a Fibonacci heap based priority queue [11] can compute a
shortest path in O(|E|+ |V | log |V |), where |V | and |E| are order and size of the
input.

To improve the running time we bound the cardinality of the neighborhoods
by k. Theoretically, all possible edges (i, j), 0 ≤ i < j ≤ n + 1 have to be
considered. However, a simple analysis of behavior of the cost function reveals
that the distance penalty dominates the other penalties for typical choices of
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Fig. 2. The graph-theoretic distance of vertices i, j, which are adjacent on the shortest
path in the input graph. This experiment with about 40,000 probes selected from
2,000,000 candidates in Mycobacterium smegmatis exemplifies the existence of a bound
for j − i on real data. Computations were performed with k = 1000.

tradeoff weights and instances. As p(j)− p(i) ≥ j − i, we can see that k depends
on d� rather than n. Hence larger arrays, with lower d� for the same genome
length |S|, are actually faster to compute. Note, from k independent of n it
follows that we can solve the minimal cost tiling path problem with a worst-case
complexity of O(n× log(n)), as in the corresponding graph |E| < k × |V |, which
is dominated by |V | log |V |.

We present the derivation for the unweighted cost function C(T ); similar
results for Cw(T ) are straight-forward to obtain.

Proposition 1. Let T be a minimal unweighted cost tiling path, and let i and j
be adjacent probes in T . Then j−i < 2d�+1, provided maxl pt(l)+maxl pq(l) < 1.

Proof. Assume that j − i ≥ 2d� +1. We show that for i′ = � j−i
2 � the cost of T is

lowered when we replace (i, j) by (i, i′), (i′, j). That is, T is not minimal. Using
Eq. 4 we can rewrite w(i, j) > w(i, i′)+w(i′, j)—note i, i′ and j are chosen such
that with p(j) − p(i) > j − i the position specific terms are positive—as

−d�+(p(j) − p(i)) > −d�+(p(i′) − p(i))+d�(pq(i′)+pt(i′))−d�+(p(j) − p(i′)) .

Canceling further terms we arrive at

0 > −d� + d�(pq(i′) + pt(i′))

which finishes the proof.

Note that typically maxl pt(l) < 0.3; the quality penalties are equally bounded.
Based on experimental results, cf. Figure 2, and manual inspection of gap size,
melting temperature and probe quality distributions we choose k = 400 for
d� = 160. In the instances for which we computed tiling paths we never observed
two selected probes i and j with j − i > 200. Our choice of k clearly leaves room
for further improvement, in particular as a k too small could lead to a shortest
path which is not a minimal cost tiling path.
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2.2 Implementation

As problem instances are quite large—from order 2,000,000 and size 800,000,00
up to order 30,000,000 and size 1,200,000,000 for a small bacterium like M.
tubercolosis and Human chromosome 2 respectively—computation of the shortest
path is a veritable challenge. Even state-of-the-art libraries like Boost(http://
www.boost.org) or LEDA [12] cannot effectively cope with graphs of this size.
For n = 3.200.000 and k = 300 a Boost-based implementation needs over 50GB
of memory and over 20 minutes of CPU time for allocating the graph. This does
not include time for computing edge weights or the shortest path.

As Dikstra’s shortest path algorithm explores the neighborhood of minimal
vertices removed from the priority queue, we simply compute the neighbor-
hood when needed instead of precomputing all neighbors and storing them as a
graph. This quite obvious optimization of shortest path computations was im-
plemented for example in [13]. Our method is implemented in Python (http://
www.python.org using the numpy (http://numpy.scipy.org/) package for lin-
ear algebra and a priority queue implementation from http://py.vaults.ca/
apyllo.py/514463245.769244789.44776582.

Figure 3 shows the growth of running time and memory usage for increasing
problem sizes. The memory usage is minimized as we can use large arrays to store
probe position, quality, and hybridization parameters, which can be allocated in
constant time (neglecting the priority queue). Neighborhood computations are
performed by vector-valued operations using numpy, where the vectors are slices.
A slice is a vector consisting of a consecutive number of elements of another
vector, for example the positions of candidate oligonucleotides i, i + 1, . . . , i + k
is a slice in the vector of all candidate positions. Numpy utilizes either vendor
supplied basic linear algebra system (BLAS) libraries or self-optimizing BLAS
such as Atlas [14] which are tuned to specific hardware.

2.3 Local Constraints in the Formulation

There is considerable interest in custom tiling arrays for specific applications.
Novel, complete genome sequences are released almost daily now and many dif-
ferent experimental applications exist for tiling arrays. Theoretically, oligonu-
cleotide probes should be evenly spaced, but often the experimental questions
warrants a particular interest in specific genes or their upstream regions and pre-
fer higher coverage (or better regions) for particular regions of the chromosome.

– Inclusion of obligatory oligonucleotides. The algorithm can easily incorporate
the selection of specific oligonucleotides, such as positioned at the start of a
gene or exon to ensure specific coverage and optimal tiling density. Another
potential constraint is selection of probes that span exon boundaries [15].
For comparison with previous results and standardization, it might be help-
ful to use oligonucleotide probes from previous experimental designs. This
constraint is trivially implemented for a obligatory probe o by removal of
edges (i, j), i < o < j.

http://www.boost.org
http://www.boost.org
http://www.python.org
http://www.python.org
http://numpy.scipy.org/
http://py.vaults.ca/apyllo.py/514463245.769244789.44776582
http://py.vaults.ca/apyllo.py/514463245.769244789.44776582
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Fig. 3. Memory usage and running time of the algorithm for segments of human chro-
mosome 2. In this experiments, n denotes the number of probe candidates, k = 400
denotes the neighborhood cardinality. Further parameters were d� = 150, T �

m = 87.5.

– Heterogeneous probe density. To improve the density in gene-rich or other
regions of interest, one can specify a shorter spacing of the oligonucleotides
by a position-specific definition of the d�(p), where p designates the chromo-
somal location. g

– Position-dependent penalty weights. Likewise, to achieve a more even spac-
ing for particular regions, the algorithm can relax criteria locally by using
position-specific weights wd(p) instead of global weights, similarly for melting
temperature and quality.

2.4 Optimal Solutions from Monge Theory

In the case of homogeneous (position-independent) weights wd, wt and wq and
design parameters d�, optimal solutions can be obtained in linear time from the
theory of Monge matrices. See Burkard et al [16] for a review.

Definition 1. A matrix C is called an upper triangular Monge matrix, if for all
integers i, r, j, s with 1 ≤ i < r ≤ j < s ≤ n the following condition holds:

cij + crs ≤ cis + crj . (6)

Lemma 1. The matrix W = {w(i, j)} is an upper triangular Monge matrix.

Proof. Let i, r, j, s be integers such that 1 ≤ i < r ≤ j < s ≤ n holds. We can
substitute our definition of edge weights into the Monge condition (6):

wd × d(i, j) + wt × pt(j) + wq × pq(j)
+ wd × d(r, s) + wt × pt(s) + wq × pq(s)
≤ wd × d(i, s) + wt × pt(s) + wq × pq(s) (7)
+ wd × d(r, j) + wt × pt(j) + wq × pq(j).
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Fig. 4. Distance between adjacent candidates and the density of candidate probes in
2.5kb windows for M. tuberculosis (top). The low density regions are caused by known
repetitive regions.On the bottom we show distance and density for a minimal tiling
path computed for d� = 90 and stringent conditions on oligonucleotide quality, causing
gaps. Note, the there is little deviation from d� towards smaller values.

Note that the quality and temperature penalties are identical on both sides and
hence cancel. We multiply both sides by d�/wd to simplify the remaining distance
penalties. We obtain

|d� − (p(j) − p(i))| + |d� − (p(s) − p(r))|
≤ |d� − (p(s) − p(i))| + |d� − (p(j) − p(r))| . (8)

To check that the inequality holds we have to consider cases depending on the
signs of the individual terms, which is tedious but fully elementary. If, for ex-
ample, p(j) − p(r) ≥ d�, it follows that also p(j) − p(i) ≥ d�, p(s) − p(r) ≥ d�

and p(s)−p(i) ≥ d�. Then the inequality (8) is equivalent to −d� +p(j)−p(i)−
d� + p(s) − p(r) ≤ −d� + p(s) − p(i) − d� + p(j) − p(r)where all terms cancel.
The other cases are left to the reader.

This is relevant, as linear time algorithms [17,18,19] exist, which are on-line
variants of the SMAWK-algorithm of Aggarwal et al [20], and which solve the
shortest path problem for upper triangular Monge matrices. Moreover, also ef-
ficient algorithms to compute shortest paths with a prescribed number of edges
have been proposed; e.g. [21].
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3 Application

We have designed a tiling array for the genome of Mycobacterium tuberculosis
H37Rv comprising 44,000 spots [22], a desired T �

m of 87.5 ◦C, desired distance
of d� = 150bp using oligomers of length 50 to 60. Mycobacteria have GC-rich
genomes and contain several repetitive regions of varying degree of similarity.
Instead of masking known biases, we explored the maximal possible tiling path
defined by sequence properties only. Figure 4 shows that regions without cover-
age have no candidate oligonucleotides. As manual inspection shows, the gaps in
the coverage (spikes) are typically caused by repeated regions such as insertion
sequences, which results in 2kb regions without placements of oligonucleotides.
The largest regions (6kb) without oligo placement correspond to proteins belong-
ing to the families of PE and PPE genes, which are highly repetitive structures
with low sequence complexity. These regions are of no particular interest for our
experimental settings and can safely be ignored.

Note, any naive equidistant tiling with d� = 150 selects more than 75% of
probes from the over 5.3 million oligonucleotides filtered out by Flog.

4 Discussion

We formulate a multi-criterion optimization problem in the design of oligonu-
cleotide tiling or genome arrays. The minimal cost tiling path problem lends itself
to a reformulation as a shortest path problem and a solution with Dijkstra’s algo-
rithm. Due to the structure of our cost function we can bound the neighborhood
cardinality in the graph by a constant independent of n, the number of candidate
probes, leading to a O(n × log n) complexity. We demonstrate on real data that
our efficient implementation of Dijkstra’s algorithm allows us to solve problem
instances with millions of candidates on standard desktop computers. Solutions
can be controlled globally by criteria weights and locally to incorporate different
constraints with respect to solution specifics and even extend partial solutions.
A case study on a bacterial genome shows the effectiveness in covering genomes
without prior handling of repetitive regions, in contrast to [6], which also does
not optimize for oligonucleotide quality, and in obtaining balanced solutions of
high-quality oligonucleotides with low cross-hybridization potential.

The size of the final design m cannot be specified directly. Rather the genome
size divided by the desired distance between probe start position gives the ex-
pected number of probes, that is m ≈ |S|/d�. Depending on parameter choices
this may or may not be realized and consequently m can possibly not take on
arbitrary values. Nevertheless a parameter exploration starting with d� = |S|/m
quickly provides reasonable solutions in practice. A prior approach [7] of the
same log-normal complexity as ours allows specification of m directly but pro-
duces solutions with possibly large variations in probe distances and without
discrimination of probe quality.

Further improvements concern the inclusion of non-unique probes [23], probes
which hybridize very well in two or more genomic positions but otherwise do not
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cross-hybridize, in the candidate generation which will facilitate closing of gaps
due to repetitive regions. A spatially adaptive quality measure [7] for candidates
can easily be incorporated. We will also explore an implementation of the Monge
linear time algorithms in practice.

An implementation of our method is available from http://algorithmics.
molgen.mpg.de/Tileomatic.
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